
Meta-Logical Frameworks
and

Formal Digital Libraries ?

Carsten Schürmann

Department of Computer Science
Yale University

carsten@cs.yale.edu

Although the Annals will publish Dr. Hales’s paper, Pe-
ter Sarnak, an editor of the Annals, whose own work does
not involve the use of computers, says that the paper will
be accompanied by an unusual disclaimer, stating that the
computer programs accompanying the paper have not un-
dergone peer review. There is a simple reason for that, Dr.
Sarnak says it is impossible to find peers who are willing
to review the computer code. [Economist, March 31, 2005]

1 Introduction

Software verification research has become once again a very exciting research area
and simultaneously a melting pot for many different subareas within computer
science. In this position paper, I emphasize two of the areas that I am particularly
interested in and consider to be of significant importance to this endeavor; meta-
logical frameworks and formal digital libraries.

The central concepts in software verification are program code and formal
proofs. Proofs vouch for the fact that software adheres to its specification. Spec-
ifications may be chosen arbitrarily, while within the confines designated by
the specification logic. A first approximation to software correctness is soft-
ware soundness. Type soundness or resource soundness guarantee that a piece
of software doesn’t consume too many resources (including time and space) and
doesn’t crash leaving the computer system in an undefined state that could be
exploited by malicious intruders. Memory soundness restricts access to private
and protected data. However, the task of software verification goes much be-
yond soundness in that it requires that any computation always adheres to its
specification.

The days when software was written in only one language are long gone.
In fact, a program is rarely ever a monolithic construction but almost always
draws on a large variety of different functions, written in different programming
languages with different semantics. These functions are organized in the form of
libraries and usually invoked by name through (possibly even foreign) function

? This research has been funded by NSF grants CCR-0325808 and CCR-0133502.

interfaces. For example, the infamous malloc implemented in C may be called
upon by a compiler written in SML.

Correctness proofs, on the other hand, still tend to be monolithic constructs.
This is because, logically speaking, it is really not clear in general how speci-
fication logics interact. For example, what does it mean to appeal to a lemma
proven in constructive type theory from within a classical argument about the
correctness of a piece of code. It is not surprising that there is little sharing of li-
braries of proofs between systems like PVS, Isabelle, Nuprl, Coq, Lego, or Twelf.
I argue that for software verification, we need not only worry about the inter-
action of different programming languages, but also the interaction of different
specification logics.

Hence we must carefully distinguish between libraries of code and libraries
of proofs.

There are numerous specification logics, including logics with special con-
nectives for reasoning about time (temporal logics) and mutable state (sepa-
ration logic). I prefer to think about the meaning of logical propositions proof-
theoretically (as opposed to set theoretical or model theoretical), because it often
yields a well-understood syntactic way of handling semantics. Those syntactic
denotations are also called proof objects that can be independently verified and
capture the evidence why a proposition holds. Syntactic proof objects have be-
come very popular in the last decade, witnessed by the design of numerous proof
carrying code architectures where explicit proof objects are shipped from code
producers to code consumers as evidence that the obtained byte code adheres to
an a priori defined safety policy. In such an architecture it is the compiler that
needs to construct the proof object, possibly drawing on libraries of proofs.

One way of giving the machine access to abstract concepts such as mean-
ing or derivability is by capturing the defining judgments as types in a logical
framework. For example, in the logical framework LF [HHP93], the judgment
that “an expression e evaluates to a value v” is encoded as a type (eval peq pvq),
where peq corresponds to the encoding of expression e and pvq as an encoding
of value v. Similarly, the judgment that F is derivable in HOL may be captured
by a type (hol pFq) where pFq is an encoding of formula F .

In the judgments as types paradigm, derivations are subsequently encoded as
objects of the corresponding type. For example, HOL proof objects are encoded
as objects of type (hol pFq). The encoding is said to be adequate if type-checking
automatically entails the validity of a derivation. Over the years, many different
and more expressive logical frameworks have been developed with one goal in
mind: to sharpen the conciseness of encodings. Please consult [Pfe99] for a survey
article.

Thus, software verification goes far beyond one programming language and
one specification logic. The effort must be seen holistically, which involves inte-
gration of different semantic programming models and the validity of mathemat-
ical knowledge beyond the borders of a particular specification logic. I believe it
is here where we will find many challenging and interesting research problems in
the future.

2 Challenges

2.1 Semantic Modeling

Logical framework technology has provided a reliable representation methodol-
ogy for a substantial class of programming languages, including the semantic
characterization of machine code [Cra03] and a complete encoding of the full
semantics for SML (an ongoing project led by Robert Harper and Karl Crary)1.
There is a large pool of practical programming languages, whose semantical foun-
dations may mathematically not be as clean and as well understood as those of
Haskell, yet need to be urgently looked at as well. Scripting languages and query
languages form the basis of modern web based computing and must play a central
role in any serious verification effort.

And similarly, logical framework technology has proven useful for studying
properties of specification logics, including soundness and completeness proper-
ties, yet there are other specification logics that have not been looked at, which
may influence the design of future logical frameworks. The current state of the
art logical framework technology can capture many derivations from higher-order
logic to sub-structural non-commutative logics, yet little research has been con-
ducted on how to model modal and temporal logics. Those logics are of particular
interest, especially for specifying concurrent programs.

An important challenge arises when proof theoretic means are not enough to
capture meaning. In contrast to searching for proof objects, decision procedures
that are used increasingly within software verification tools guarantee adherence
to a specification by executing a program. Model checkers, for example, traverse
large state spaces in the search of bad states. Combining the dynamic aspects of
decision procedures with the static aspects of deductive reasoning, I believe, is
an exciting and important research challenge that is still in its infancy.

2.2 Morphisms

The act of verifying software requires not only a solid understanding of the
meaning and behavior of programs written in a single programming language
but also the intricate details of the interaction with programs written in other
languages. Analogously, proofs need to be understood not only in the context of
a single specification logic, but interpreted instead in some desired target logic,
be it constructive type theory or separation logic.

I think about a software verification infrastructure as the integrated whole
of several programming languages and specification logics together with a set
of morphisms between them as indicated by the edges in Figure 1. It is useful
to distinguish between vertical morphisms, i.e. morphisms that express semantic
embeddings among programming languages or logics, and horizontal morphisms,
i.e. morphisms that encode programming languages and their semantics inside a
specification logic. Vertical morphisms are denoted by undirected edges among

1 Personal communication.

SML

C++ Java

C

x86

Perl SQL

Nuprl

HOL PVS

LTL

FOL

Coq

SOL

Programming Language Semantics Specification Logics

Fig. 1. Vertical and Horizontal Morphisms

programming languages and logics and horizontal morphisms by directed edges
between programming languages and logics.

Vertical Morphisms. Consider for example the embedding of HOL into Nuprl
pioneered by Howe [How96,How98]. Every theorem and every proof in HOL can
be translated into a Nuprl proof. The meta-theoretical argument is constructive
and therefore defines a total function for proof translation [SS05]. This function
is a vertical morphism as it expresses a relation between two specification logics.
The judgment that an HOL formula A can be translated into Nuprl formula B
is captured by the type (trans pAq pBq) where pAq and pBq are encodings of
the respective formulas in LF. Not every morphism needs to be total. To keep
proof translation practical, morphisms may need to remain partial in oder to
translate more expressive specification logics into less expressive ones.

Programming morphisms involves programming with meanings and proof
objects. In my group, we are pursuing the development of logical framework
specific programming languages for programming (partial) morphisms. The pro-
gramming language whose term algebra is that of the logical framework LF is
called Delphin.

Example 1 (Logic embeddings). Without going into the details over how to write
Delphin programs, we give the sample Delphin type of a function f that converts
HOL proofs into Nuprl proofs of the translated HOL statement. Let A be the
HOL sentence, and H the proof of A in HOL. We can show that there exists
a Nuprl sentence B, evidence E that B is in fact the translation of A, and
of course the Nuprl proof N of B. In Delphin, we carefully separate between
data expressed in the logical framework LF and programs. If pAq is the LF
representation of HOL formula A, 〈pAq〉 stands for the corresponding embedded
value in Delphin. Similarly, 〈hol pAq〉 is an (atomic) Delphin type that merely
states that A is provable in HOL.

f 〈pAq〉 〈pNq〉 = (〈pBq〉, (〈pEq〉, 〈pNq〉))

In Delphin we write ⊃ for non-dependent function types, Π for dependent ones,
and ? and Σ for Cartesian products. Thus, we derive that

f ∈ Π〈A〉 ∈ 〈o〉 .〈hol A〉 ⊃ Σ〈B〉 ∈ 〈o〉 .〈trans A B〉 ? 〈nuprl B〉.

The most noteworthy feature of Delphin’s dependent type constructors is that
binding occurrences of variables are determined by pattern matching, such as
〈A〉 and 〈B〉. �

Vertical morphisms also surface in the realm of programming languages in
form of compilers. Proving properties about a high-level program is of little
use when compiling it with a buggy compiler. It is therefore essential that the
compilation process is semantics preserving.

Example 2 (Compilers). Let S be a valid program written in SML with mean-
ing V and let us assume that this relation can be formally encoded in LF as
(sml pSq pV q). Similarly, let us assume we can capture the meaning of an inter-
mediate language program M as W , where we encode the relation between M
and W in LF as a type (il pMq pWq). Furthermore, let us specify a compiler as
a relation between SML programs and intermediate code, which is encoded in
LF as type (compile pSq pMq). Finally we encode an interpretation function of
machine language values into SML as LF type (interpret pWq pV q). A compiler
is semantics preserving, if we can write a program c in Delphin such that

c 〈pSq〉 〈pV q〉 〈pDq〉 = (〈pMq〉, (〈pWq〉, (〈pCq〉, (〈pEq〉, 〈pIq〉)))),

and show that c is total. D is evidence that V is the meaning of S, C is evidence
that S compiles into M , E is evidence that the meaning of M is indeed W , and
I establishes the relation between W and V . In Delphin, c has type

Π〈S〉 ∈ 〈exp〉 .Π〈V 〉 ∈ 〈value〉 .〈sml S V 〉
⊃ Σ〈M〉 ∈ 〈mcode〉 .Σ〈W 〉 ∈ 〈answer〉 .

〈compile S M〉 ? 〈il M W 〉 ? 〈interpret W V 〉.

�

Horizontal Morphisms. In specification logic, programs and their meaning
are the central subjects of reasoning. Since we propose to formalize both pro-
gramming languages and specification logics in the same logical framework, it
is important to examine how to embed programming languages into the term
algebra of the logic. This embedding is made explicit by horizontal morphisms
that translate programs and their meanings into the logical domain and make
them available for radical scrutiny.

Example 3 (Greatest Common Divisor). The following SML program

fun gcd a b = if a mod b = 0 then b
else gcd b (a mod b)

can be represented as an object of type (exp) in LF. Recall that in LF, we write
(eval peq pvq) for the encoding of the operational meaning of programs. The
property we would like to prove in the specification logic is that if gcd(a, b)
returns c, that c is indeed the greatest common divisor of a and b, which means
that c divides a and b, and every other divisor of a and b is also a divisor of c.

The proof proceeds by induction on the structure of the derivation that
gcd(a, b) returns c. Therefore, for the formal argument to be carried out in Coq,
we need to turn the definition of “being an expression” and the “operational
meaning” into inductively defined types and make them available to the speci-
fication logic by means of reflection.

For example, the fact that a is a valid expression is expressed by an inductive
type exp providing a new infix constructor @ for application, and that v is the
semantic value of e is encoded as an inductive type as well, eval peq pvq.

∀(a : exp).∀(b : exp).∀(c : exp).eval(pgcdq @ a @ b) c
⊃ (c | a) ∧ (c | b) ∧ (∀(d : exp).(d | a) ∧ (d | b) ⊃ (d | c)).

�

A meta-logical framework extends a logical framework with tools for program-
ming and reasoning with deductive systems, including programming languages
and specification logics together with a collection of vertical and horizontal mor-
phisms. Reflection is only one of the challenges that arises when designing a
meta-logical framework as the foundation of a software verification infrastruc-
ture. A reflective meta-logical framework that supports standard induction prin-
ciples was described by Basin and Meseguer [BCM04]. However, it remains yet
to be investigated on how to extend their result to accommodate non-standard
induction principles, which are prevalent implicitly in (almost all) LF encod-
ings. Therefore, I consider research on meta-logical frameworks, in general, an
important part of the grand challenge for software verification.

2.3 Organization of Mathematical Knowledge

Many verification tasks rely on domain-specific knowledge. For example, numer-
ical applications may have to appeal to properties of floating point arithmetic or
even stability results for solutions of sets of differential equations. But what shall
one do, if the specification logic is Isabelle/HOL yet all desired theorems were
already proven in PVS? It seems to be a waste of effort to redo all those parts
from scratch. Thus, I have become very interested on how to share mathematical
knowledge and proofs across logic specific boundaries.

In a formal digital library we store a collection of mathematical facts together
with their respective meanings in form mathematical proofs. Vertical morphisms

help cast mathematical knowledge from one formalism into another. A formal
digital library should be extensible, meaning that new logical systems and ver-
tical morphisms can be easily added. Furthermore, it should provide adequate
functionality to retrieve and maintain mathematical knowledge in a database.

I speculate that such a formal digital library is not only applicable for libraries
of proofs, but that it also helps organize libraries of code. Moreover, if invariants
and their proofs are stored in conjunction with code, the query engine could use
this information and retrieve library functions, not by name, but by a semantic
description.

Example 4 (Relative primality). Assume that a programmer tries to write a func-
tion to compute if two numbers a and b are relatively prime. He or she might
formulate the following (speculative) query: Is there a program S in SML, that
has the following invariant provable in Coq?

∀a : exp.∀b : exp.∀c : exp.(c | a) ∧ (c | b) ⊃ c = 1

The answer should be: Yes, choose

S = (gcd (a, b) = 1 andalso gcd (b, a) = 1).

�

At least two different formal digital library projects are currently underway.
The FDL project led by Cornell University, the California Institute of Technol-
ogy, and the University of Wyoming focuses on the organization of mathematical
knowledge. The Logosphere project conducted at Carnegie Mellon University,
SRI International and Yale University concentrates on the organization of li-
braries of mathematical proof and the specification of vertical morphisms.

3 Conclusion

The enormously difficult task of verifying software involves a colorful variety of
programming languages and specification logics and is intimately connected to
mathematical truth. Sometimes this truth can be retrieved, other times it must
be constructed. It is common knowledge that the performance of verification
technologies depends on the kind of verification problems it is applied to, and
each technology has its weaknesses and its strengths. The more we can draw
on all areas of automated deduction and formal methods, the faster we can
reach the goal of software verification. Thus, a common meta-logical framework
infrastructure that facilitates the construction of libraries of code and libraries
of proofs will help us make strides towards a solution of the grand challenge.

Returning to the original opening quote to this position paper, a formal
digital library may help Dr. Hales to completely formalize the proof of Kepler’s
conjecture in HOLlight, his chosen target logic. The vertical morphisms will help
to convert pieces of the proof formulated in different logical formalisms and the
horizontal morphisms allow him to reason about the correctness of the programs

he used to obtain the proof, leading up to one huge monolithic proof object in
HOLlight, that can be subsequently checked by a small and well-understood
proof checker. Trusting the checker means trusting the proof, which simplifies
the job of the referee who does not even have to look at the proof at all any
more.

References

[BCM04] David Basin, Manuel Clavel, and José Meseguer. Reflective metalogical
frameworks. ACM Transaction on Computational Logic, 5(3):528–576, 2004.

[Cra03] Karl Crary. Toward a foundational typed assembly language. In Proceedings
of the 30th Symposium on Principles of Programming Languages (POPL),
pages 198–212, New Orleans, Louisiana, USA, 2003.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the Association for Computing Machinery, 40(1):143–184,
January 1993.

[How96] D. J. Howe. Importing mathematics from HOL into Nuprl. In J. Von Wright,
J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order Logics,
9th International Conference, TPHOLs’96, Turku, Finland, August 26-30,
1996, Proceedings, volume 1125 of Lecture Notes in Computer Science, pages
267–282. Springer Verlag, 1996.

[How98] D. J. Howe. Toward sharing libraries of mathematics between theorem
provers. In Frontiers of Combining Systems, FroCoS’98, ILLC, University
of Amsterdam, October 2–4, 1998, Proceedings. Kluwer Academic Publish-
ers, 1998.

[Pfe99] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning. Elsevier Science Publishers, 1999.
In preparation.

[SS05] Carsten Schürmann and Mark-Oliver Stehr. An executable formalization
of the HOL/Nuprl connection in the meta-logical framework Twelf. In Geoff
Sutcliffe and Andrei Voronkov, editors, Proceedings of Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR), Montego Bay, Jamaica, 2005.
Springer Verlag. to appear.

