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Abstract

As designs become more complex, formal verification
techniques are becoming increasingly important in the
hardware industry. Many different methods are used, rang-
ing from propositional tautology checking up to the use of
interactive higher-order theorem provers. Our own work is
mainly concerned with the formal verification of floating-
point mathematical functions. As this paper aims to illus-
trate, such applications require a rather general mathemat-
ical framework and the ability to automate special-purpose
proof algorithms in a reliable way. Our work uses the
public-domain interactive theorem prover HOL Light, and
we claim that this and similar ‘LCF-style’ theorem provers
are a good choice for such applications.

1 Formal Verification

As most programmers know to their cost, writing pro-
grams that function correctly in all circumstances — or
sometimes even saying precisely what that means — is dif-
ficult. Most large programs contain ‘bugs’. In the past,
hardware has been substantially simpler than software, but
this difference is eroding, and current leading-edge micro-
processors are also extremely complex and usually contain
errors. It has often been noted that mere testing, even on
carefully selected sets of test cases, is usually inadequate to
guarantee correctness in all situations, since the number of
possible inputs and internal states, while finite, is usually
astronomically large. For example [14]:

As I have now said many times and written in
many places: program testing can be quite effec-
tive for showing the presence of bugs, but is hope-
lessly inadequate for showing their absence.

The main alternative to testing is formal verification,
where it is rigorously proved that the system functions cor-

rectly on all possible inputs. This involves forming mathe-
matical models of the system and its intended behavior and
linking the two:

Actual system

Mathematical model

Mathematical specification

Actual requirements

The facts that (i) getting a mathematical proof right is
also difficult [13], and (ii) correctness of formal models
does not necessarily imply correctness of the actual system
[15], were called on to denigrate the idea of formal verifi-
cation in the 70s. However, these objections seem to have
little intellectual force and have largely been swept away.
It is now widely accepted that formal verification, with the
proof itself checked by machine, gives a much greater de-
gree of confidence than traditional testing and simulation
techniques. The main impediment to greater use of formal
verification is not these general philosophical objections,
but just the fact that formal verification of real systems is
rather difficult. Only in a few isolated safety-critical niches
of the software industry, like avionics, is any kind of for-
mal verification widespread. But in the hardware industry,
formal verification is widely used, and increasingly seen as
necessary. We can identify at least three plausible reasons:

Hardware is designed in a more modular way than
most software. Constraints of interconnect layer-
ing and timing means that one cannot really design
‘spaghetti hardware’.
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Newton-Raphson iteration or power series expansion, and it
culminates in a final fma that rounds a ‘result before the fi-
nal rounding’ . In general, may be irrational, whereas
the final is of the form for some floating-point
numbers , and and is therefore always rational. This
shows that in general we cannot expect . However
we do require that they always round in the same way. How
might this be proved?

On general grounds we note that cannot be exactly
the midpoint between two floating-point numbers, because
in a floating-point format with bits of precision, a mid-
point value has significant digits and therefore its
square more than . This is a useful observation. We’ll
never be in the tricky case where there are two equally close
floating-point numbers (resolved by the ‘round to even’
rule.) So in round-to-nearest, and could only round
in different ways if there were a midpoint between them, for
only then could the closest floating-point numbers to them
differ. For example in the following diagram where large
lines indicate floating-point numbers and smaller ones rep-
resent midpoints, would round ‘down’ while would
round ‘up’:

Although analyzing this condition combinatorially
would be complicated, there is a much simpler sufficient
condition. One can easily see that it would suffice to show
that for any midpoint :

In that case and couldn’t lie on opposite sides of
. Here is the formal theorem in HOL in a more general

form:

|- (precision fmt = 0)
( m. m IN midpoints fmt

abs(x - y) < abs(x - m))
(round fmt Nearest x =
round fmt Nearest y)

Unfortunately, the distance can be very small,
about , where is the floating-point preci-
sion. For example, fix a floating-point format with bits of
precision, and consider the square root of the next floating-
point number below , whose significand consists entirely
of s. Its square root is about from a midpoint:

In general, it is difficult to ensure that is
small enough to use the above theorem directly. Thanks
to the fma, we can guarantee an error bound of about

, which falls short by a factor of around .

Yet since the error bounds are necessarily pessimistic, as-
suming worst-case rounding errors reinforcing each other
on all the previous operations, it seems quite likely that the
algorithm is in fact correct. How can we bridge the gap?

One solution is to utilize more refined theorems [32],
but this is complicated and may still fail to justify several
algorithms that are intuitively believed to work correctly.
An ingenious alternative [11] is to observe that there are
relatively few cases like whose square roots
come close enough to render the simple theorem inappli-
cable, and these can be isolated by fairly straightforward
number-theoretic methods. We can therefore:

Isolate the special cases that have square
roots within the critical distance of a midpoint.

Conclude from the simple theorem that the algorithm
will give correct results except possibly for .

Explicitly show that the algorithm is correct for the
(effectively by running it on those inputs).

By some straightforward mathematics [11] formalized in
HOL without particular difficulty, one can show that the dif-
ficult cases for square roots have significands , considered
as -bit integers, such that one of the following diophantine
equations has a solution for some integer , where

is roughly the factor by which the guaranteed relative er-
ror is excessive:

We consider the equations separately for each chosen
. For example, we might be interested in whether

has a solution. If so, the possible value(s)
of are added to the set of difficult cases. It’s quite easy
to program HOL to enumerate all the solutions of such dio-
phantine equations, returning a disjunctive theorem of the
form:

The procedure simply uses even-odd reasoning and re-
cursion on the power of two (effectively so-called ‘Hensel
lifting’). For example, if

then we know must be odd; we can write and
deduce:

By more even/odd reasoning, this has no solutions. In
general, we recurse down to an equation that is trivially

4
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What’s Intel up to?

Trigonometric range reduction.

HOL

What happens if                                ? 

— in one real application we needed to derive a few hundred
special cases [24]. An additional requirement is to prove
that the prime factors are indeed prime, otherwise we will
not be able to complete the requisite chain of logical infer-
ences. Since the primes can be quite large (around in
applications so far, and conceivably as large as in fu-
ture), naive algorithms based on testing all factors are out of
the question.

We exploit the fact that although we have to produce a
final proof of primality by strict HOL primitive inferences,
we may use arbitrary means to find that proof, even includ-
ing the use of an external ‘oracle’ (cf. [25]). We use the
factorization software included in the the PARI / GP sys-
tem3 to help construct our proofs of primality. Originally,
the verification was based on Lucas’s theorem [37], but in-
spired by similar work in [35] we later modified it to use
Pocklington’s theorem, which can be significantly more ef-
ficient.4

|- 2 n
(n - 1 = q * r)
n q EXP 2
(a EXP (n - 1) == 1) (mod n)
( p. prime(p) p divides q

coprime(a EXP ((n - 1) DIV p) - 1,n))
prime(n)

To use this theorem to verify primality of , we find a
primitive root modulo (there are plenty of them, and we
just search blindly) and a factor of with ,
find all the prime factors of and then verify that all the
hypotheses of the above theorem hold, hence allowing us to
verify that is prime. All factorization is done by calling on
PARI/GP, and of course to dispose of the side-conditions of
the theorem we need to use the same procedure recursively
to verify that each of the factors returned by PARI/GP is
itself a prime.

Trigonometric range reduction

Algorithms for the trigonometric functions ( , and
) often start with an initial range reduction step where

the initial input is broken down as follows:

where is the integer closest to and .
(In practical implementations, might not be precisely the
closest integer, so the bound on is a little greater than

.) We can then evaluate and/or as either
, , or depending on mod-

ulo , and since is of moderate size, the core computation
is now fairly straightforward.

3http://www.parigp-home.de/
4The author is grateful to Freek Wiedijk for pointing out this work.

The principal difficulty in implementing trigonometric
range reduction is that the input argument may be large
and yet the reduced argument very small, because is
unusually close to a multiple of . In such cases, the
computation of needs to be performed very carefully. As-
suming we have calculated , we need to evaluate:

However, is irrational and so cannot be represented ex-
actly by any finite sum of floating point numbers. So how-
ever the above is computed, it must in fact calculate

for some approximation . The relative error

is then which is of the order . Therefore, to keep
this relative error within acceptable bounds (say ) the
accuracy required in the approximation depends on how
small the (true) reduced argument can be relative to the in-
put argument. In order to formally verify the accuracy of
the algorithm, we need to answer the purely mathematical
question: how close can a floating-point number of given
precision and specified range be to a nonzero integer multi-
ple of ?

To answer this question, we first need to be able to pro-
duce accurate approximations to by formal proof. This is
a straightforward application of the techniques for comput-
ing with computable reals described in [22]. It is encapsu-
lated as a HOL function PI APPROX RULE which given a
required accuracy returns a theorem asserting that a suit-
able rational approximation is within of , e.g.

#let pth = PI_APPROX_RULE 5;;
pth : thm =

|- abs(pi - &26696452523 / &8498136384)
<= inv (&2 pow 5)

Armed with the ability to find arbitrarily good rational
approximations to , we can now tackle the main problem.
For the algorithm we have been concerned with, we can
assume that that is a floating-point number with bits
of precision and . (For larger arguments a more
elaborate and expensive range reduction is used.) Any such

can be written

for some integers and ; assuming the
number is normalized, is simply its significand consid-
ered as an integer. We are then interested in bounding:

6
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x close to a multiple of π/2

— in one real application we needed to derive a few hundred
special cases [24]. An additional requirement is to prove
that the prime factors are indeed prime, otherwise we will
not be able to complete the requisite chain of logical infer-
ences. Since the primes can be quite large (around in
applications so far, and conceivably as large as in fu-
ture), naive algorithms based on testing all factors are out of
the question.
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We only need to consider cases where
since otherwise is not close to a multiple of . So
we can consider only such that .
Moreover, we need only consider since otherwise

and so is too small to be close to a nonzero
multiple of . So, for each we just
need to find the closest rational number to with

. We can then get a reasonable lower
bound for by:

This is not quite optimal: we could use our knowledge of
and to avoid the overestimate contained in the factor on

the left, and rely on the fact that the term on the right would
be significantly larger again for other . However it is
good to within a factor of 2, enough for our purposes.

We now have merely to solve (63 instances of) a clas-
sic problem of diophantine approximation: how close can a
particular real number be approximated by rational num-
bers subject to some bound on the size of ? There is
a well-established method for solving this problem, which
is easy to formalize in HOL. Suppose we have two strad-
dling rational numbers such that

. It is easy to show that any other ra-
tional approximation with is no better
than the closer of and . In such a case, un-
less and are the same rational we must have

, since
the numerator is a nonzero integer. Similarly,

unless . Therefore,
since :

Consequently cannot lie inside the straddling inter-
val, and so cannot be closer to . This is easily proved in
HOL. However, it remains to find these special straddling
pairs of rational numbers, for it is not immediately obvious
that they must exist. In fact they do, but once again, we
don’t need to prove this general property in HOL, merely
supply suitable ones for the case in hand. The most pop-
ular method for finding such ‘convergents’ uses continued
fractions [3], but we use an even simpler technique based
on mediants [18].

The final HOL theorem about how close the input num-
ber can come to a multiple of gives the answer of about

:

|- integer(N) (N = &0)
a iformat (rformat Register)
abs(a) < &2 pow 64

abs (a - N * pi / &2) >= &113 / &2 pow 76

Polynomial approximations

The core computation in modern implementations of
transcendental functions usually involves a polynomial ap-
proximation. (Formerly, methods using rational functions
were common, but these are a poor fit to modern proces-
sors where division is much more expensive than multipli-
cation.) In analyzing the accuracy of the function, one needs
to take into account both the approximation error (the dif-
ference between the polynomial and the function approxi-
mated) and the computation error (arising from roundings
in the intermediate computation). Although both are inter-
esting problems, we will focus here on the mathematical
approximation error. For example, in one application we
want to place a bound on:

where has some upper bound and the various are par-
ticular floating-point numbers that have been chosen to min-
imize this bound. (They are not exactly Taylor series coef-
ficients, though the early ones are close.)

The corresponding question for a Taylor series is easy
to answer, since there are clean mathematical expressions
for the remainder when it is truncated, at least one form
of which has been proved in HOL. In order to arrive at a
bound on the gap between the mathematical function
and the polynomial approximation , the HOL bounding
rule uses a subsidiary function to generate a Taylor series

approximating . If the bound on is
required to accuracy , the Taylor series is constructed so

over the interval — since the polyno-
mial is more or less optimal for its degree, we normally
need a few more terms in to guarantee this. Then, the
remaining problem is to bound to the same
accuracy . Since is just a polynomial with
rational coefficients, this part can be automated in a regular
way. In fact, the polynomial-bounding routine can be used
separately, and is used at other places in our floating-point
proofs.

The fundamental fact underlying the polynomial bound-
ing rule is that the maximum of a polynomial over an inter-
val (as for any differentiable function) lies either at one of
the endpoints of the interval or at a point of zero derivative.
This is proved in the following HOL theorem, which states
that if a function differentiable for has the
property that at all points of zero derivative, as
well as at and , then everywhere.
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What’s Intel up to?

Large HOL libraries of mathematical 
knowledge and proofs.

Example: Reals library.

Years of development effort.

Little sharing with the community.

Not surprising: Intel intellectual property.



NASA Space Shuttle

Langely Research Center.             [Butler ‘98]

PVS (Prototype Verification System).  [Owre]

Example: 

GPS Receiver State Processing.

GPS Reference Sate Processing.

Result: 86 issues or minor discrepancies 
were discovered.



NASA Space Shuttle

Huge PVS libraries developed at NASA.

Algebra,  Real analysis,  Complex numbers, 
Directed graphs, Graph theory,  Integer 
division,  Abstract orders,  Lattices,  Fixed 
Points, Power sets,  Trigonometry,  Series, 
Taylor’s theorem etc.

Sharing ok, but how?



Mathematics

Four-Color theorem      [Appel, Haken 1976]

Kepler’s Conjecture           2D   [Thue 1890]

                                     3D  [Hales 1989]



2.2 Weight Assignments

We call the constant 14.8, which arises repeatedly
in this section, the target.

Define a : N → R by

a =



















14.8 n = 0, 1, 2,

1.4 n = 3,

1.5 n = 4,

0 otherwise.

Define b : N × N → R by b(p, q) = 14.8, except for
the values in the following table (with the under-
standing that x = 14.8):

q = 0 1 2 3 4
p = 0 x x x 7.135 10.649

1 x x 6.95 7.135 x
2 x 8.5 4.756 12.981 x
3 x 3.642 8.334 x x
4 4.139 3.781 x x x
5 0.55 11.22 x x x
6 6.339 x x x x

Define c : N → R by

c =































1 n = 3,

0 n = 4,

−1.03 n = 5,

−2.06 n = 6,

−3.03 otherwise.

Define d : N → R by

d =















































0 n = 3,

2.378 n = 4,

4.896 n = 5,

7.414 n = 6,

9.932 n = 7,

10.916 n = 8,

14.8 otherwise.

A set V of vertices is called a separated set of
vertices if the following four conditions hold.

1. For every vertex in V there is an exceptional
face containing it.

2. No two vertices in V are adjacent.

3. No two vertices in V lie on a common quadri-
lateral.

4. Each vertex in V has degree 5.

A weight assignment of a plane graph G is a
function w : G → R taking values in the set of
non-negative real numbers. A weight assignment is
admissible if the following properties hold:

1. If the face F has length n, then w(F ) ≥ d(n)

2. If v has type (p, q), then
∑

v∈F

w(F ) ≥ b(p, q).

3. Let V be any set of vertices of type (5, 0). If
the cardinality of V is k ≤ 4, then

∑

V ∩F #=∅

w(F ) ≥ 0.55k.

4. Let V be any separated set of vertices. Then
∑

V ∩F #=∅

(w(F ) − d(len(F ))) ≥
∑

v∈V

a(tri(v)).

The sum
∑

F w(F ) is called the total weight of w.

2.3 Plane Graph Properties

We say that a plane graph is tame if it satisfies the
following conditions.

1. The length of each face is (at least 3 and) at
most 8.

2. Every 3-circuit is a face or the opposite of a
face.

3. Every 4-circuit surrounds one of the cases il-
lustrated in Figure 4.

4. The degree of every vertex is (at least 2 and)
at most 6.

5. If a vertex is contained in an exceptional face,
then the degree of the vertex is at most 5.

6.
∑

F

c(len(F )) ≥ 8,

7. There exists an admissible weight assignment
of total weight less than the target, 14.8.

It follows from the definitions that the abstract
vertex-edge graph of G has no loops or multiple
joins. Also, by construction, every vertex lies in at
least two faces. Property 6 asserts that the graph
has at least eight triangles.

5The Flyspeck Project

• Formal proof of Kepler’s 
conjecture.

• ETA: 20 years.

• HOL light.

• Hopes for access to Coq, 
Isabelle/HOL.

• Tame Planar Graphs.

[Hales, Nipkow, MacLaughlin]
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(w(F ) − d(len(F ))) ≥
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The sum
∑

F w(F ) is called the total weight of w.

2.3 Plane Graph Properties

We say that a plane graph is tame if it satisfies the
following conditions.

1. The length of each face is (at least 3 and) at
most 8.

2. Every 3-circuit is a face or the opposite of a
face.

3. Every 4-circuit surrounds one of the cases il-
lustrated in Figure 4.

4. The degree of every vertex is (at least 2 and)
at most 6.

5. If a vertex is contained in an exceptional face,
then the degree of the vertex is at most 5.

6.
∑

F

c(len(F )) ≥ 8,

7. There exists an admissible weight assignment
of total weight less than the target, 14.8.

It follows from the definitions that the abstract
vertex-edge graph of G has no loops or multiple
joins. Also, by construction, every vertex lies in at
least two faces. Property 6 asserts that the graph
has at least eight triangles.
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• Reconstruct mathematical vernacular.

• Proof verifier.

• Large body of mathematical knowledge.

• No explicit proof objects.

• Journal of formalized mathematics.

• On the Hausdorff distance between compact subsets.  [Adam Grabowski]

• Chains on a grating in Euclidean space.                             [Freek Wiedijk]

MIZAR [Trybulec’72]
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Library Growth
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Digital Libraries

FDL library.                        [Constable 2000]

• Storage, retrieval of mathematical facts.

• Logic dependent.

Logosphere.                     [Schürmann 2002]

• Logical framework.

• Foundationally uncommitted.

• Theory morphisms.

• Currently under development.



What shall we store?

Semantic meaning of a theorem!

Formulas alone insufficient.  

• Logics vary in proof-theoretic strength.

• Example: First-order logic vs. impredicative type theory.

• Semantics-preserving transformations.

|=L1 F1 =⇒ |=L2 F2



Meaning of theorems ...

... are mathematical entities expressed as

• Denotations (Domain theory).

• Objects (Category theory).

• {0,1} (Model theory).

• Strategies (Game theory).

• Syntactic Proofs (Proof Theory).

Large proofs but small trustworthy checkers.



Proofs are important

Although the Annals will publish Dr Hales's 
paper, Peter Sarnak, an editor of the Annals, 
whose own work does not involve the use of 
computers, says that the paper will be 
accompanied by an unusual disclaimer, stating 
that the computer programs accompanying the 
paper have not undergone peer review. There is 
a simple reason for that, Dr Sarnak says—it is 
impossible to find peers who are willing to review 
the computer code.      

             [The Economist, May 2005]



Rest of this talk

• The logic HOL.

• Logical framework LF.

• Nuprl type theory.

• HOL - Nuprl connection.

• Open questions.

joint work with Mark-Oliver Stehr





HOL

• Higher-order logic                 [Church ‘40]

• HOL theorem prover           [Gordon ‘85]

• Flavor: Isabelle/HOL [Paulson, Gordon ‘92]HOL (Typing)

Terms: e1, e2 ::= x |=|⊃| e1 e2 | λx : τ.e

Types: τ ::= o | τ1 → τ2

Judgments: e : τ

Rules: imp
⊃: o → o → o

eq

=: τ → τ → o

e1 : τ2 → τ1 e2 : τ2
app

e1 e2 : τ1

u
x : τ1

...

e : τ2

lamu

λx : τ1.e : τ1 → τ2

Proofs “R” Us – p.22/48



HOL (Typing)

HOL (Typing)

Terms: e1, e2 ::= x |=|⊃| e1 e2 | λx : τ.e

Types: τ ::= o | τ1 → τ2

Judgments: e : τ

Rules: imp
⊃: o → o → o

eq

=: τ → τ → o

e1 : τ2 → τ1 e2 : τ2
app

e1 e2 : τ1

u
x : τ1

...

e : τ2

lamu

λx : τ1.e : τ1 → τ2

Proofs “R” Us – p.22/48



HOL (Proofs)HOL (Proofs)

Judgments: ! P

Rules:

! P ! P ⊃ Q
mp

! Q

! P
...

! Q
disch

! P ⊃ Q

refl
! P = P

beta
! (λx : τ.P )Q = [Q/x]P

Proofs “R” Us – p.23/48



HOL (Booleans)
HOL (Booleans)

bool =̂ o

true =̂ λx : bool.x = λx : bool. x

all P =̂ P = λx : τ. true

false =̂ all (λx : bool.x)

neg P =̂ P ⊃ false

P and Q =̂ all (λR : bool.(P ⊃ Q ⊃ R) ⊃ R)

the P (newly declared)

ex P =̂ P (the P )

Proofs “R” Us – p.24/49





Twelf

• Logical framework LF.             [Harper ‘93]

• Meta-language for deductive systems.

• Judgments-as-types,  derivations-as-objects.

• Representation methodology.

• Higher-order abstract syntax.

• Captures variable binding.



Twelf (cont’d)

Representing numbers in BS (binary strings).

Representing judgments in LF.

Representing derivations in LF.

Reprsentation

!79" = ∗, 1, 0, 0, 1, 1, 1, 1

Proofs “R” Us – p.27/49

The Logical Framework LF

Representation paradigm.

• Judgments-as-types.

!! P":type=! !P"

• Derivations-as-objects.

!

H1

! P ⊃ Q

H2

! P
mp

! Q

"

: ! !Q"

= mp !P" !Q" !H1" !H2"
Proofs “R” Us – p.30/49

The Logical Framework LF

Representation paradigm.

• Judgments-as-types.

!! P" : type = ! !P"

• Derivations-as-objects.

!

H1

! P ⊃ Q

H2

! P
mp

! Q

"

: ! !Q"

= mp !P" !Q" !H1" !H2"
Proofs “R” Us – p.30/49



Reprsentation

!79" = ∗, 1, 0, 0, 1, 1, 1, 1

Adequacy Theorem: Every HOL derivation D

of P1, . . . , Pn " Q can be represented in LF

as a canonical object !D" : !Q" in context

u1 :" !P1", . . . un :" !Pn".

Proofs “R” Us – p.27/49

Twelf’s Strength

Logical Framework LF

Canonical 
objects

HOL
Terms
Types
Typing

Derivability
Definitions



Twelf (cont’d)

• Edinburgh Logical Framework.

• Signature declares object/type constants.

• Dependent types.

The Logical Framework LF

• λΠ [Harper, Honsell, Plotkin]

• Edinburgh Logical Framework.

K ::= type | Πx : A.K | A → K

A ::= a | A M | Πx : A1. A2 | A1 → A2

M ::= c | λx : A.M | M1 M2

• Dependently-typed λ-calculus.

• Signature: declares c : A and a : K.

• Implementation: Twelf (www.twelf.org).

Proofs “R” Us – p.34/49

[Pfenning, Schürmann ‘98]



Twelf Encoding of HOL
tp : type.	 	 	 	 %name tp (A B).
--> : tp -> tp -> tp.		 	 %infix right 10 -->.
o  : tp.

tm : tp -> type.	 	 	 %name tm (H G) (x y P Q R).
=>: tm (o --> o --> o).
== : tm (A --> A --> o).
@ : tm (A --> B) -> tm A -> tm B.	 %infix left 15 @.
\ : (tm A -> tm B) -> tm (A --> B).  
==> = [H:tm o] [G:tm o] => @ H @ G.	 %infix right 13 ==>.
=== = [H:tm A] [G:tm A] == @ H @ G.	 %infix left 14 ===.

|-    : tm o -> type.		 	 %prefix 10 |-.  %name |- D u.
mp    : |- H -> |- H ==> G -> |- G.
disch : (|- H -> |- G) -> |- H ==> G.
refl  : |- H === H. 
beta  : |- (\ H) @ G === (H G).
sub   : {G:tm A -> tm o} |- H1 === H2 -> |- G H1 -> |- G H2.
abs   : |- \ H === \ G 
	  <- ({x} |- H x === G x).

bool  = o.
true  : tm bool = (\ [x : tm bool] x) === (\ [x: tm bool] x).
all|  : tm ((A --> bool) --> bool)
      = \ [P:tm (A --> bool)] P === \ [x] true.
all   = [P] all| @ P.
false : tm bool = all (\ [P] P).
neg   : tm (bool --> bool) = \ [P:tm bool] P ==> false.
/|\   : tm (bool --> bool --> bool)
      = \ [P:tm bool] \ [Q:tm bool] 
         all (\ [R:tm bool] (P ==> Q ==> R) ==> R).	
/\    = [P] [Q] /|\ @ P @ Q.	 	 %infix right 12 /\.
\|/   : tm (bool --> bool --> bool)	
      = \ [P:tm bool] \ [Q:tm bool] 
         all (\ [R:tm bool] (P ==> R) ==> (Q ==> R) ==> R).	
\/    = [P] [Q] \|/ @ P @ Q.	 	 %infix right 11 \/.
the|  : tm ((A --> bool) --> A).
the   = [P] the| @ P.
ex|   : tm ((A --> bool) --> bool)
      = \ [P:tm (A --> bool)] P @ (the (\ [x] P @ x)).
ex    = [P] ex| @ P.



Applications of Twelf

• Foundational Proof-Carrying Code.  

                                                [Appel ‘99]

• Typed Assembly Language.          [Crary ‘02]

• POPLmark Challenge.            [UPenn ... ‘05]

• Logosphere Digital Library.     



Alternative Logical 
Frameworks

Hereditary Harrop Formulas.        [Isabelle, λProlog]

Substructural logical frameworks.              [LLF, OLF]

Equational logic, rewrite logic.              [Maude, Elan]

Constructive type theory.         [AGDA, Coq, Nuprl]





Nuprl

• Polymorphic extensional type theory.

                                         [Constable ‘86]

• Judgments establishes equality among terms.

• A type is true iff it is inhabited.

• Many applications.

• Ensemble (TCP/IP stack).                                 [Kreitz ‘04]

• Protocol Verification.                                  [Felty et al ‘98]



Nuprl Functions

CS 671 Automated Reasoning 6 Introduction to NuPRL

Refinement Rules for Function Spaces

H ! S→T type funR

H ! S type

H ! T type

H ! λx.e = λx′.e′ ∈ S→T lamR

H, x:S ! e = e′[x/x′] ∈ T

H ! S type

H ! f e = f ′ e′ ∈ T appR S→T

H ! f=f ′ ∈ S→T

H ! e=e′ ∈ S

H ! (λx.e) e′ = e∗ ∈ T compute 1

H ! e′[e/x] = e∗ ∈ T

Note: e=e ∈T is usually abbreviated by e ∈T
 [Courtesy Kreitz]



Nuprl (cont’d)

• Also: Dependent Sums, Functions, Quotient 
types, Universes, Substitution principles.

• Judgments, rules form deductive system.

• Variable binding and hypotheses modeled 
using higher-order abstract syntax.

• Implemented in Twelf.

• Details omitted here.





Translation

• Original idea.                            [Howe ‘98]

• Syntactic argument.     [Meseguer, Stehr ‘01]

• Implemented in Nuprl, replay of proof 
scripts.                                  [Naumov ‘01]

• Formalized and executable specification.

                               [Schürmann, Stehr ‘05]



Translation (cont’d)

• Booleans.

• Propositions-as-types.

Nuprl’s Boolean domains

• Booleans:

boolean = unit+ unit

tt = inl bullet

ff = inr bullet

if e e1 e2 = decide e (λz. e1) (λz. e2)

• Proposition-as-types:

BOOLEAN = uni 1

TRUE = unit

FALSE = void

ALL = pi

=n=> = pi
Proofs “R” Us – p.3/14

Nuprl’s Boolean domains

• Booleans:

boolean = unit+ unit

tt = inl bullet

ff = inr bullet

if e e1 e2 = decide e (λz. e1) (λz. e2)

• Proposition-as-types:

BOOLEAN = U1

TRUE = unit

FALSE = void

ALL = Π

=n=> = Π
Proofs “R” Us – p.3/14



Howe’s Observation

• Axiom of the excluded middle.

• Lift Booleans to propositions.

• Lower propositions to Booleans.

• All important laws verifiable within Nuprl.

Nuprl’s Classical Extension

• Axiom of the excluded middle.

inhI
! inh # Πx : BOOLEAN. x + (x → void)

• Lift Booleans to Propositions.

↑ M = if M TRUE FALSE.

• Lower Propositions to Booleans.↓ P = decide (app inh P) (λx:n-tm. tt)

(λy:n-tm. ff).

Proofs “R” Us – p.4/14
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Translation (cont’d)

HOLBBooleans NuprlBBooleans

NuprlBBOOLEANS

Types
Terms

Se
nte
nce

s

Pro
ofs

HOL Nuprl



• Relations in Twelf.

• Defining declarations omitted.

• Executable within Twelf.

• We can transform HOL proofs into Nuprl.

Translations-as-Relations
Translation (Terms)

trans-tp : tp→ nuprlterm → type

trans-tm : tm A → nuprlterm → type

trans-sentence : tm o→ nuprlterm → type

trans-proof : " P → trans-sentence P T → " M#T → type

ttm : tm A → n-tm → type.

t=> : ttm => =p=>.

t== : ttp A N → ttm == (=p= N).

where

=p=> = lam (λx:n-tm. lam (λy:n-tm.
if x y tt)).

=p= N = lam (λx:n-tm. lam (λy:n-tm.
↓ (eq x y N))).

Proofs “R” Us – p.9/14





Conclusion

• There is a true need to share mathematical 
knowledge in form of proofs.

• Proof-theory: syntax instead semantics.

• Logical framework technology important.

• Proof conversion between HOL and Nuprl.

• For other systems (PVS), work in progress.



Open Questions

• Design of a query language.

• Design of the database.

• Shared domains, integers, natural numbers, 
complex numbers.

• Partial transformations.     

• Connection to OMDOC.  [Kohlhase 2001]

• Formalization of other logics.



Thank you!

www.logosphere.org


