
Differentially Private Sparse Vectors with Low Error,
Optimal Space, and Fast Access

Martin Aumüller

maau@itu.dk

IT University of Copenhagen

Copenhagen, Denmark

Christian Janos Lebeda

chle@itu.dk

BARC

IT University of Copenhagen

Copenhagen, Denmark

Rasmus Pagh

pagh@di.ku.dk

BARC

University of Copenhagen

Copenhagen, Denmark

ABSTRACT
Representing a sparse histogram, or more generally a sparse vector,

is a fundamental task in differential privacy. An ideal solution would

use space close to information-theoretical lower bounds, have an

error distribution that depends optimally on the desired privacy

level, and allow fast random access to entries in the vector. However,

existing approaches have only achieved two of these three goals.

In this paper we introduce the Approximate Laplace Projection

(ALP) mechanism for approximating 𝑘-sparse vectors. This mech-

anism is shown to simultaneously have information-theoretically

optimal space (up to constant factors), fast access to vector entries,

and error of the same magnitude as the Laplace-mechanism applied

to dense vectors. A key new technique is a unary representation of

small integers, which is shown to be robust against “randomized

response” noise. This representation is combined with hashing, in

the spirit of Bloom filters, to obtain a space-efficient, differentially

private representation. Our theoretical performance bounds are

complemented by simulations which show that the constant factors

on the main performance parameters are quite small, suggesting

practicality of the technique.

1 INTRODUCTION
One of the fundamental results in differential privacy is that a

histogram can be made differentially private by adding noise from

the Laplace distribution to each entry of the histogram before it is

released [5]. The expectedmagnitude of the noise on each histogram

entry is𝑂 (1/𝜀), where 𝜀 is the privacy parameter, and this is known

to be optimal [8]. In fact, there is a sense in which the Laplace

mechanism is optimal [10]. However, some histograms of interest

are extremely sparse, and cannot be represented in explicit form.

Consider, for example, a histogram of the number of HTTP requests

to various servers. Already the IPv4 address space has over 4 billion

addresses, and the number of unique, valid URLs have long exceeded

10
12
, so it is clearly not feasible to create a histogram with a (noisy)

counter for each possible value.

Korolova, Kenthapadi, Mishra, and Ntoulas [9] showed that it

is possible to achieve approximate differential privacy with space

that depends only on the number of non-zero entries in the his-

togram. However, for (𝜀, 𝛿)-differential privacy the upper bound

on the expected per-entry error becomes 𝑂

(
log(1/𝛿)

𝜀

)
, which is sig-

nificantly worse than the Laplace mechanism for small 𝛿 . Cormode,

Procopiuc, Srivastava, and Tran [4] showed how to achieve pure

𝜀-differential privacy with expected per-entry error bounded by

𝑂

(
log(𝑑)

𝜀

)
, where 𝑑 is the dimension of the histogram (number of

columns). While both these methods sacrifice accuracy they are

very fast, allowing access to entries of the private histogram in con-

stant time. If access time is not of concern, it is possible to combine

small space with small per-entry error, as shown by Balcer and

Vadhan [2]. They achieve an error distribution that is comparable

to the Laplace mechanism (up to constant factors) and space pro-

portional to the sum 𝑛 of all histogram entries — but the time to

access a single entry is �̃� (𝑛/𝜀), which is excessive for large data

sets.

1.1 Our results
Our contribution is a mechanism that achieves optimal error and

space (up to constant factors) with only a small increase in access

time. The mechanism works for either approximate or pure differ-

ential privacy, with the former providing faster access time. Our

main results are summarized in Theorem 1.1.

Theorem 1.1 (Informal Version of Theorems 4.1 and 4.2).

Given privacy parameters 𝜀 > 0 and 𝛿 ≥ 0, there exists an (𝜀, 𝛿)-
differentially private algorithm to represent a 𝑘-sparse histogram
using𝑂 (𝑘 log(𝑑 +𝑢)) bits with per-entry error matching the Laplace
mechanism up to constant factors. The access time is log(1/𝛿) when
𝛿 > 0 and log(𝑑) when 𝛿 = 0.

Here we assume that 𝑘 = Ω(log(𝑑)). Otherwise the mechanism

has an additional term of 𝑂 (log2 (𝑑)) or 𝑂 (log(𝑑) log(1/𝛿)) bits
in its space usage for pure and approximate differential privacy,

respectively.

1.2 Techniques
We first use a thresholding technique developed in [4, 9] to handle

all “large” histogram entries that have at least logarithmic size. To

encode the small entries of the histogram, we conceptually switch

to a unary encoding. In order to pack all unary representations into

small space, we use hashing to randomize the position of each bit

in the unary representation of a given entry. The access time is

logarithmic, and though hash collisions can lead to overestimates,

they do not influence the error asymptotically. Finally, privacy is

achieved by perturbing each bit in the data structure using ran-

domized response [11]. This is where the unary representation

is important: It is redundant enough to allow accurate estimation

even when the probability of flipping each bit is a constant bounded

away from 1/2. Direct application of randomized response does not

give the desired𝑂 (1/𝜀) dependency, but we solve this issue with an

initial scaling step that gives 𝜀-differential privacy when combined

with randomized response. Though the discussion above has been

phrased in terms of histograms, which makes the comparison to

1

earlier work easier, our techniques apply more generally to repre-

senting sparse real vectors, with privacy for neighboring data sets

with bounded ℓ1-distance.

2 PRELIMINARIES
Problem Setup. In this work, we consider 𝑑-dimensional 𝑘-sparse

vectors of non-negative real values. We say that a vector 𝑥 ∈ R𝑑+
is 𝑘-sparse if it contains at most 𝑘 non-zero entries. We assume

that 𝑘 = Ω(log(𝑑)). All entries are bounded from above by a value

𝑢 ∈ R, i.e., max𝑖∈[𝑑] 𝑥𝑖 =: ∥𝑥 ∥∞ ≤ 𝑢. Here [𝑑] is the set of integers
{1, . . . , 𝑑}. We consider the problem of constructing an algorithm

M that releases a differentially private representation of 𝑥 , i.e.,

𝑥 := M(𝑥). Note that 𝑥 does not itself need to be 𝑘-sparse.

Utility Measurements. We use two measures for the utility of

𝑥 = M(𝑥). We define the per-entry error as |𝑥𝑖 − 𝑥𝑖 | for any 𝑖 ∈ [𝑑].
We define themaximum error asmax𝑖∈[𝑑] |𝑥𝑖 −𝑥𝑖 | = ∥𝑥 −𝑥 ∥∞. We

compare the utility of algorithms using the expected per-entry and

maximum error, and compare the tail probabilities of the per-entry

error of our algorithm with the Laplace mechanism.

Differential Privacy. In this work, two vectors are neighbors iff

their ℓ1-distance is at most 1. That is for all neighboring vectors

𝑥, 𝑥 ′ ∈ R𝑑+ we have ∥𝑥 − 𝑥 ′∥1 :=
∑
𝑖∈[𝑑] |𝑥𝑖 − 𝑥 ′

𝑖
| ≤ 1.

Definition 2.1 (Differential privacy [6, Def 2.4]). Given 𝜀 > 0 and

𝛿 ≥ 0, a randomized algorithm M : R𝑑+ → R is (𝜀, 𝛿)-differentially
private if for all subsets of outputs 𝑆 ⊆ R and pairs of 𝑘-sparse

input vectors 𝑥, 𝑥 ′ ∈ R𝑑+ such that ∥𝑥 − 𝑥 ′∥1 ≤ 1 it holds that:

Pr[M(𝑥) ∈ 𝑆] ≤ 𝑒𝜀 · Pr[M(𝑥 ′) ∈ 𝑆] + 𝛿.

Probabilistic Tools. Random rounding or stochastic rounding is

used for rounding a real value probabilistically based on its frac-

tional part. We define random rounding for any real 𝑟 ∈ R as

follows:

RandRound(𝑟) =
{
⌈𝑟⌉ with probability 𝑟 − ⌊𝑟⌋
⌊𝑟⌋ with probability 1 − (𝑟 − ⌊𝑟⌋)

Randomized response was first introduced by Warner [11]. The

purpose of the mechanism is to achieve plausible deniability by

changing one’s answer to some question with probability 𝑝 . We de-

fine randomized response for a boolean value 𝑏 ∈ {0, 1} as follows:

RandResponse(𝑏, 𝑝) =
{
1 − 𝑏 with probability 𝑝

𝑏 with probability 1 − 𝑝

3 THE ALP MECHANISM
In this section, we introduce the Approximate Laplace Projection

(ALP) mechanism
1
and give an upper bound on the expected per-

entry error. The ALP mechanism consists of two algorithms. The

first algorithm constructs a differentially private representation of

a 𝑘-sparse vector and the second estimates the value of an entry

based on its representation.

1
The name is chosen to indicate that the error distribution is approximately like the

Laplace distribution, and that we project the sparse vector to a much lower-dimensional

representation. It also celebrates the mountains, whose silhouette plays a role in a

certain random walk considered in the analysis of the ALP mechanism.

Algorithm 1: ALP-projection
Parameters :𝛼, 𝛽, 𝜀 > 0, and 𝑠 ∈ N.
Input :𝑘-sparse vector 𝑥 ∈ R𝑑+ where 𝑠 > 2𝑘 .

Sequence of hash functions from domain [𝑑]
to [𝑠], ℎ = (ℎ1, . . . , ℎ𝑚), where𝑚 =

⌈
𝛽𝜀
𝛼

⌉
.

Output :𝜀-differentially private representation of 𝑥 .

(1) Apply random rounding to a scaled version of each

non-zero entry of 𝑥 such that 𝑦𝑖 = RandRound(𝑥𝑖𝜀𝛼).
(2) Construct 𝑧 ∈ {0, 1}𝑚×𝑠

by hashing the unary

representations of 𝑦 such that:

𝑧𝑎,𝑏 =

{
1, ∃𝑖 : 𝑏 ≤ 𝑦𝑖 and ℎ𝑏 (𝑖) = 𝑎

0, otherwise

(3) Apply randomized response to each bit of 𝑧 such that

𝑧𝑎,𝑏 = RandResponse(𝑧𝑎,𝑏 , 1

𝛼+2).
(4) Release ℎ and 𝑧.

Figure 1: Embedding with𝑚 = 8, 𝑠 = 5 and 𝑦𝑖 = 5.
The 𝑖th entry is the only non-zero entry.

3.1 Representing a sparse vector
The basic idea is as follows: we apply random rounding to a scaled

version of every non-zero entry such that every entry maps to an

integer. We then store the unary representation of these integers

in a two-dimensional bit-array using a sequence of universal hash

functions [3]. We call this bit-array the embedding. Lastly, we apply
randomized response on the embedding to achieve privacy. The

pseudocode of the algorithm is given in Algorithm 1 and we discuss

it next.

Figure 1 shows an example of an embedding before applying

randomized response. The input is a vector 𝑥 where the 𝑖th entry

𝑥𝑖 is the only non-zero value. The result of evaluating 𝑖 for each

hash function is shown in the table at the bottom and the𝑚 = 8 bits

2

representing the 𝑖th entry in the bit-array have been highlighted.

In Step (1) of the algorithm, 𝑥𝑖 is scaled by 𝜀/𝛼 and randomized

rounding is applied to the scaled value. This results in 𝑦𝑖 = 5. Using

the hash functions, we represent this value in unary encoding by

setting the first five bits to 1 in Step (4), where the 𝑗 th bit is selected

by evaluating the hash function ℎ 𝑗 on 𝑖 . The final three bits are

unaffected by the entry. Finally, we apply randomized response in

each cell of the bit-array. The bit-array after applying randomized

response is shown in Figure 2. Both the bit-array and the hash

functions are the differentially private representation of the input

vector 𝑥 .

The algorithm takes three parameters 𝛼, 𝛽 , and 𝑠 in addition to

the privacy parameter 𝜀. The parameters 𝛼 and 𝑠 are adjustable. In

general, we set 𝛼 = Θ(1) and 𝑠 = Θ(𝑘). In the full version of the

paper, we discuss the constants hidden in the Theta notation. The

parameter 𝛽 bounds the values stored in the embedding.

The proof that Algorithm 1 satisfies 𝜀-differential privacy is in

the full version of our paper. Here we present the intuition behind

the proof. First, we analyse the algorithm with privacy parameter

𝜀 = 1. Consider the case that only the 𝑖th entry in 𝑥 is changed

to construct 𝑥 ′ and only a single bit in the embedding is affected

by this change. It can be shown that the probability of outputting

any value for said bit is within a factor of 𝑒 |𝑥𝑖−𝑥
′
𝑖 | . This result is

generalized to the case that neighboring databases differ in more

than one entry. If two neighboring vectors differ in positions I,
the probability of outputting any embedding is within a factor

of

∏
𝑖∈I 𝑒 ∥𝑥𝑖−𝑥

′
𝑖 ∥ = 𝑒 ∥𝑥−𝑥

′ ∥1
. As such, the algorithm satisfies 1-

differentially private as desired. Furthermore, since 𝜀 is used to

scale the input we have that for any 𝜀 and pair of neighboring

vectors, the probability of outputting any embedding is within a

factor of 𝑒 ∥𝑥−𝑥
′ ∥1 ·𝜀 ≤ 𝑒𝜀 .

3.2 Estimating an entry
We now introduce the algorithm to estimate an entry based on the

embedding from Algorithm 1. When accessing the 𝑖th entry, we

estimate the value of 𝑦𝑖 and multiply by 𝛼/𝜀 to reverse the initial
scaling of 𝑥𝑖 . As shown above, the 𝑖th entry is represented by𝑚

bits in the embedding. The estimate of 𝑦𝑖 is chosen to maximize

a partial sum. If multiple values maximize the sum we chose use

their average.

Intuition. The first𝑦𝑖 bits representing the 𝑖th entry are set to one
before applying noise in Algorithm 1, cf. Figure 1. The last𝑚 − 𝑦𝑖
bits are zero, except if there are hash collisions. Some bits might

be flipped due to randomized response, but we expect the majority

of the first 𝑦𝑖 bits to be ones and the majority of the remaining

𝑚−𝑦𝑖 bits to be zeros. As such the estimate of 𝑦𝑖 is based on indices

maximizing the difference between ones and zeros prior to the

index. The pseudocode for the algorithm is given as Algorithm 2.

Figure 2 shows an example of Algorithm 2. The example is based

on the embedding from Figure 1 after adding noise. The plot shows

the value of

∑𝑛𝑖
𝑎=1

(2𝑧𝑎,(ℎ𝑎 (𝑖)) − 1) for all candidate estimates. This

sum is maximized at index 3 and 5. This is visualized as the peaks
in the plot. The estimate is the average of those indices.

In the full paper, we bound the expected per-entry error of Al-

gorithm 2 as well as provide tail bounds. The analysis works by

considering a simple random walk that goes up with probability

Algorithm 2: ALP-estimator

Parameters :𝛼, 𝜀 > 0.

Input :Embedding 𝑧 ∈ {0, 1}𝑚×𝑠
. Sequence of hash

functions ℎ = (ℎ1, . . . , ℎ𝑚). Index 𝑖 ∈ [𝑑].
Output :Estimate of 𝑥𝑖 .

(1) Define the function 𝑓 : {0, . . . ,𝑚} → Z as:

𝑓 (𝑛) =
𝑛∑︁

𝑎=1

2𝑧ℎ𝑎 (𝑖),𝑎 − 1

(2) Let 𝑃 be the set of arguments maximizing 𝑓 . That is,

𝑃 = {𝑛 ∈ {0, . . . ,𝑚} : 𝑓 (𝑎) ≤ 𝑓 (𝑛) for all 𝑎 ∈ {0, . . . ,𝑚}}
(3) Let 𝑦𝑖 = average(𝑃)
(4) Return 𝑦𝑖 · 𝛼𝜀 .

Figure 2: Estimation of 𝑖th entry from Figure 1.
The partial sum is maximized at indices 3 and 5.
The estimate is 4, while the true value was 5.

𝑝 < 1

2
and down with probability 1 − 𝑝 [1]. This random walk

models the noise introduced by randomized response and the prob-

ability of hash function collisions. The per-entry error can be upper

bounded by the position of the last non-negative value in the ran-

dom walk. Using standard properties of random walks, we show

that this position is expected to be constant. Through the rescal-

ing in the last step of the estimation algorithm, this results in an

expected error of 𝑂 (1/𝜀). We can also derive tail bounds, and they

match the Laplace mechanism up to constant factors for any fixed

parameters 𝛼 = Θ(1) and 𝑠 = Θ(𝑘). However, this only holds for

3

Algorithm 3: Threshold
Parameters :𝜀, 𝛽 > 0.

Input :𝑘-sparse vector 𝑥 ∈ R𝑑+.
Output :𝜀-differentially private representation of 𝑥 .

(1) Let 𝑣𝑖 = 𝑥𝑖 + 𝜂𝑖 for all 𝑖 ∈ [𝑑], where 𝜂𝑖 ∼ Lap(1/𝜀).
(2) Remove entries below 𝛽 such that:

𝑣𝑖 =

{
𝑣𝑖 , if 𝑦𝑖 ≥ 𝛽

0, otherwise

(3) Return 𝑣 .

entries with a true value of at most 𝛽 . In general, this would mean

that we had to set 𝛽 = 𝑢 if we only were to use the ALP mechanism.

The space and access time of the mechanism scale linearly in 𝛽 . In

the next section, we combine our technique with techniques from

previous work to lower the value of 𝛽 .

4 COMBINED DATA STRUCTURE
The ALP mechanism can be combined with techniques from previ-

ous work to improve space and access time. As stated above, the

ALP mechanism performs well when all entries are bounded by a

small value. Some of the algorithms from previous work perform

well for large entries. The idea is to combine the mechanism with

such an algorithm to construct a composite data structure that

performs well for both small and large values.

We use the techniques introduced by Korolova et al. [9] and

Cormode et al. [4] for approximate and pure differential privacy,

respectively. In this version of the paper, we focus on the pure

version based on the algorithm by Cormode et al. The approach is

the same for approximate differential privacy. The pseudocode for

the algorithm is presented in Algorithm 3.

The algorithms are combined as follows: We represent a 𝑘-sparse

vector by releasing the output of both Algorithm 1 and 3. By

composition [6, Theorem 3.16], the combined representation is

𝜀-differential private if we use privacy parameter 𝜀/2 for both algo-

rithms. When accessing the 𝑖th entry, we return the 𝑖th entry of 𝑣

from Algorithm 3 if it is non-zero. Otherwise we run Algorithm 2

on the output of Algorithm 1.

To achieve expected per-entry error 𝑂 (1/𝜀) for any entry, we

set 𝛽 =
2 ln(𝑑/2)

𝜀 , 𝛼 = Θ(1) and 𝑠 = Θ(𝑘). Then the output of

Algorithm 3 is 𝑂 (𝑘)-sparse with high probability and we can store

a𝑂 (𝑘)-sparse vector using𝑂 (𝑘 log(𝑑+𝑢)) bits in the standard word
RAM model [7]. Furthermore, the embedding of Algorithm 1 can

be stored using𝑂 (𝑘 log(𝑑)) bits and the access time of Algorithm 2

is 𝑂 (log(𝑑)). The expected maximum error is 𝑂 (log(𝑑)/𝜀) + 𝛽 =

𝑂 (log(𝑑)/𝜀).

Theorem 4.1. Let𝛼 = Θ(1), 𝑠 = Θ(𝑘), and 𝜀 > 0. Then there exists
an 𝜀-differentially private algorithm with 𝑂 (1/𝜀) expected per-entry
error, 𝑂

(
log(𝑑)

𝜀

)
expected maximum error, access time of 𝑂 (log(𝑑)),

and space usage of 𝑂 (𝑘 log(𝑑 + 𝑢)) with high probability.

Theorem 4.1 presents our results for pure differentially privacy.

When approximate differentially privacy is acceptable, we can in-

stead combine the ALP mechanism with the technique introduced

Figure 3: Observed error distribution for parameters 𝜀 = 1,
𝛼 = 3 and Pr[collisions] = 0.1.

by Korolova et al. to achieve smaller expected maximum error and

faster access times. Theorem 4.2 presents our result.

Theorem 4.2. Let 𝛼 = Θ(1), 𝑠 = Θ(𝑘), and 𝜀, 𝛿 > 0. Then there
exist an (𝜀, 𝛿)-differentially private algorithm with 𝑂 (1/𝜀) expected
per-entry error, 𝑂

(
log(1/𝛿)

𝜀

)
expected maximum error, access time of

𝑂 (log(1/𝛿)), and space usage of 𝑂 (𝑘 (log(𝑑 + 𝑢) + log(1/𝛿))).

5 EXPERIMENTS
In this section, we discuss the per-entry error of Algorithm 2 in

practice. We experiment with the impact of adjustable parameters

𝛼 and 𝑠 on the expected per-entry error in the full paper. The

parameters also determine the constant factors for space usage and

access time of the ALP mechanism. The space requirements scale

linearly in
𝑠
𝛼 and the access time scales linearly in

1

𝛼 . As such, the

optimal parameter choice differs depending on the use case due to

a space, access time, and error trade-off.

Based on our initial experiments, we fixed the parameters to

examine the error distribution. We set 𝜀 = 1, 𝛼 = 3, and the prob-

ability of a hash collision to 0.1. Note that 𝑠 = 10𝑘 implies that

the probability of a hash collision is at most 0.1 for any input. We

simulated a query 10
6
times. For each simulation we chose the value

of 𝑥𝑖 uniformly at random in the interval [0, . . . , 𝛽].
The error distribution is shown in Figure 3. The mean absolute

error of the experiment is 6.4 and the standard deviation is 11. The

90th percentile is 15.78, which is shown in Figure 3 using vertical

lines. For comparison, the plots include the Laplace distribution

with scale parameters 1 and 6. Note that the Laplace distribution

with parameter 1 is optimal for the privacy budget.

The distribution is slightly off-center. This is due to hash colli-

sions. This effect can be reduced by increasing 𝑠 . This also decrease

the expected error, but the space requirements increase. For larger

values of 𝑠 the observed mean absolute error was slightly below 5.

Specifically, this was observed for 𝑠 ≥ 100𝑘 .

The full version of our paper is available at https://arxiv.org/abs/

2106.10068.

4

https://arxiv.org/abs/2106.10068
https://arxiv.org/abs/2106.10068

REFERENCES
[1] Sven Erick Alm. 2002. Simple random walk. (2002).

[2] Victor Balcer and Salil P. Vadhan. 2018. Differential Privacy on Finite Computers.

In 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January
11-14, 2018, Cambridge, MA, USA (LIPIcs, Vol. 94), Anna R. Karlin (Ed.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 43:1–43:21. https://doi.org/10.4230/

LIPIcs.ITCS.2018.43

[3] J Lawrence Carter andMark NWegman. 1979. Universal classes of hash functions.

Journal of computer and system sciences 18, 2 (1979), 143–154.
[4] Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, and Thanh TL Tran.

2012. Differentially private summaries for sparse data. In Proceedings of the 15th
International Conference on Database Theory. 299–311.

[5] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. 2006. Cali-

brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography,
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March
4-7, 2006, Proceedings (Lecture Notes in Computer Science, Vol. 3876), Shai Halevi

and Tal Rabin (Eds.). Springer, 265–284. https://doi.org/10.1007/11681878_14

[6] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Dif-

ferential Privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.

https://doi.org/10.1561/0400000042

[7] Torben Hagerup. 1998. Sorting and Searching on the Word RAM. In STACS
(Lecture Notes in Computer Science, Vol. 1373). Springer, 366–398.

[8] Moritz Hardt and Kunal Talwar. 2010. On the geometry of differential privacy.

In Proceedings of ACM symposium on Theory of Computing (STOC). 705–714.
[9] Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and Alexandros

Ntoulas. 2009. Releasing search queries and clicks privately. In Proceedings of the
18th international conference on World wide web. 171–180.

[10] Fragkiskos Koufogiannis, Shuo Han, and George J Pappas. 2015. Optimality of

the laplace mechanism in differential privacy. arXiv preprint arXiv:1504.00065
(2015).

[11] Stanley LWarner. 1965. Randomized response: A survey technique for eliminating

evasive answer bias. J. Amer. Statist. Assoc. 60, 309 (1965), 63–69.

5

https://doi.org/10.4230/LIPIcs.ITCS.2018.43
https://doi.org/10.4230/LIPIcs.ITCS.2018.43
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042

	Abstract
	1 Introduction
	1.1 Our results
	1.2 Techniques

	2 Preliminaries
	3 The ALP mechanism
	3.1 Representing a sparse vector
	3.2 Estimating an entry

	4 Combined data structure
	5 Experiments
	References

