
• At the end of each trial, the correct category was revealed and the subjects 
recorded the accuracy of their category guess. 
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Given  with sparsity  and 
, apply a mechanism  s.t.  is 

-differentially private with respect to pairs of 
vectors  with 

x ∈ Rd ∥x∥0 ≤ k
∥x∥∞ ≤ u 𝒜 𝒜(x)
ε

x, x′ ∈ Rd ∥x − x′ ∥1 ≤ 1

Techniques

* Results are explicit or follow directly from the references
** Approximate differential privacy

Goals:
•  stored in small-space data structure, 

space depending on , , , and 
• Ability to quickly query for a value   
• Per-query error similar to 

𝒜(x)
k d u n = ∥x∥1

xi
Lap(1/ε)

Reference Space in bits Access time
Per-query error 

(expected, worst x) 

DMNS06 O(d log u) O(1) O(1/𝜀)

KKMN09** O(k log (d+u)) O(1) O(log (1/𝛿)/𝜀)

CPST12 O(k log (d+u)) O(1) O(log (d)/𝜀)

BV18 Õ(n/𝜀 log d) Õ(n/𝜀) O(1/𝜀)

Previously investigated by, e.g., [KKMN09], 
[BNS16], [BV18], [LKSS18], [CGSS20]. In this 
setting, it was known how to improve the 
per-query error bound to .

Our mechanism has the following properties:

O(log(1/δ)/ε)

Main result

Space in bits Access time Per-query error

O(k log (d+u)) O(log d) O(1)・Lap(1/𝜀)

Expected value of  is Lap(1/ε) O(1/ε)

We introduce the Approximate Laplace 
Projection (ALP) private sparse vector 
representation, with these properties:

Space in bits Access time Per-query error

Õ(k log (d+u)) O(log (1/𝛿)) O(1)・Lap(1/𝜀)
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Initially scale to values  
 

Difficult case: Small values, 
 

Idea for the case :
• Randomly round  to an integer 
• Use unary -bit representation of 
• Flip each bit with probability 
• Maximum-likelihood estimator  for 
• Estimate for  is 

Extending to :  
Use hashing to randomly choose where to 
place each bit in unary representation of 

yi = εxi

|yi | = O(log d)

k = 1
yi y′ i

O(log d) y′ i
1/3

̂y′ i y′ i
xi ̂y′ i /ε

k > 1

y′ i
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Open problem

Space in bits Access time Per-query error

O(k log (d+u)) O(1) O(1)・Lap(1/𝜀)

Is it possible to improve access time while not 
increasing space and error? 
If so, is it possible to achieve these properties?
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