Problem formulation

Given $x \in \mathbf{R}^d$ with sparsity $||x||_0 \le k$ and $\|x\|_{\infty} \leq u$, apply a mechanism \mathscr{A} s.t. $\mathscr{A}(x)$ is ϵ -differentially private with respect to pairs of vectors $x, x' \in \mathbb{R}^d$ with $||x - x'||_1 \leq 1$

<u>Goals</u>:

- $\mathscr{A}(x)$ stored in small-space data structure, space depending on k, d, u, and $n = ||x||_1$
- Ability to quickly query for a value x_i

- Per-query error similar to $Lap(1/\varepsilon)$

Known trade-offs*

Reference	Space in bits	Access time	Per-q (expec
DMNS06	$O(d \log u)$	O(1)	С
KKMN09**	$O(k \log (d+u))$	O(1)	O(log
CPST12	$O(k \log (d+u))$	O(1)	O(1c
BV18	$\tilde{O}(n/\epsilon \log d)$	$\tilde{O}(n/\epsilon)$	С

* Results are explicit or follow directly from the references ** Approximate differential privacy

Differentially Private Sparse Vectors with Low Error, Optimal Space, and Fast Access

Martin Aumüller[†], Christian Janos Lebeda^{*†}, and Rasmus Pagh^{*‡} **†**IT University of Copenhagen, *BARC, **‡**University of Copenhagen

uery error (ted, worst x)

 $D(1/\varepsilon)$

 $g(1/\delta)/\varepsilon$

 $\log(d)/\varepsilon$

 $D(1/\varepsilon)$

Main result

We introduce the Approximate Laplace Projection (ALP) private sparse vector representation, with these properties:

Space in bits	Access time	Per-query error
$O(k \log (d+u))$	$O(\log d)$	$O(1) \cdot Lap(1/\varepsilon)$

Expected value of Lap $(1/\varepsilon)$ is $O(1/\varepsilon)$

Techniques

Initially scale to values $y_i = \varepsilon x_i$

Difficult case: Small values, $|y_i| = O(\log d)$

Idea for the case k = 1:

- Randomly round y_i to an integer y'_i
- Flip each bit with probability 1/3
- Maximum-likelihood estimator \hat{y}_i for y_i'
- Estimate for x_i is \hat{y}'_i / ε

Extending to k > 1: Use hashing to randomly choose where to place each bit in unary representation of y'_i

• Use unary $O(\log d)$ -bit representation of y'_i

Previously investigated by, e.g., [KKMN09], [BNS16], [BV18], [LKSS18], [CGSS20]. In this setting, it was known how to improve the per-query error bound to $O(\log(1/\delta)/\varepsilon)$.

Our mechanism has the following properties:

Space

 $\tilde{O}(k \log k)$

Is it possible to improve access time while not increasing space and error? If so, is it possible to achieve these properties?

Space

 $O(k \log k)$

References

[BNSI6] Bun, Nissim & Stemmer. Simultaneous Private Learning of Multiple Concepts. ITCS 2016. [BVI8] Balcer & Vadhan. Differential Privacy on Finite Computers. ITCS 2018. [CGSS20] Cohen, Geri, Sarlos & Stemmer. Differentially Private Weighted Sampling. AISTATS 2021. [CPST12] Cormode, Procopiuc, Srivastava & Tran. Differentially Private Summaries for Sparse Data. ICDT 2012. [DMNS06] Dwork, McSherry, Nissim & Smith. Calibrating Noise to Sensitivity in Private Data Analysis.TCC 2006. [KKMN09] Korolova, Kenthapadi, Mishra & Ntoulas. Releasing Search Queries and Clicks Privately. WWW 2009. [LKSS18] Li, Karwa, Slavkovic & Steorts. A Privacy Preserving Algorithm to Release Sparse High-dimensional Histograms. J. Priv. Conf. 2018.

Approximate DP

e in bits	Access time	Per-query error
g(d+u))	$O(\log(1/\delta))$	$O(1) \cdot Lap(1/\varepsilon)$

Open problem

e in bits	Access time	Per-query error	
$g\left(d+u ight)$	O(1)	$O(1) \cdot Lap(1/\varepsilon)$	

Research supported by the VILLUM foundation grant number 16582.

mauu@itu.dk chle@itu.dk pagh@di.ku.dk