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Abstract

We present a presheaf model for the observation of infinite as well as finite com-
putations. We give a concrete representation of the presheaf model as a category
of generalised synchronisation trees and show that it is coreflective in a category
of generalised transition systems, which are a special case of the general transition
systems of Hennessy and Stirling. This can be viewed as a first step towards repre-
senting fairness in categorical models for concurrency. The open map bisimulation
is shown to coincide with eztended bisimulation of Hennessy and Stirling, which
is essentially fair CTL*-bisimulation. We give a denotational semantics of Milner’s
SCCS with finite delay in the presheaf model, which differs from previous semantics
by giving the meanings of recursion by final coalgebras and meanings of finite delay
by initial algebras of the process equations for delay. Finally we formulate Milner’s
operational semantics of SCCS with finite delay in terms of generalised transition
systems and prove that the presheaf semantics is fully abstract with respect to
extended bisimulation.

Introduction

When reasoning about and describing the behaviour of concurrent agents it
is often the case that some infinite computations are considered unfair and
consequently ruled out as being inadmissible. An economical way of studying
this situation was proposed by Milner in [1] showing how to express a fair
asynchronous parallel composition in his calculus SCCS (Synchronous CCS)
by adding a finite, but unbounded delay operator. Syntactically, the finite delay
of an agent ¢ is written et. The intended semantics is that et can perform
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an unbounded number of 1-actions (delays) but must eventually perform an
action, changing to an agent ¢', if £ can perform this action and change to t',
or it must eventually stop, if t cannot perform any actions. In other words, its
actions are the same as for (the possibly infinite delay) 6t = recz.(1:x + t),
except that infinite unfolding of the recursion is not allowed.

To deal with agents in which only some infinite computations are admissible,
one must re-address the issue of how to represent the behaviour of agents and
so when two agents behave equally, i.e. they denote the same process. The
approach used for CCS and SCCS, taking two agents to be equivalent if their
derivation trees are strong bisimilar [2], will identify agents that only differ on
whether some infinite computations are admissible or not, in particular €t is
identified with 0t for any term ¢. Moreover, both et and 6t should be solutions
to the equation

r=(l:x+1t), (1)

so process equations will not anymore have unique solutions, as it is the case

for CCS and SCCS (with guarded recursion).

In [1] Milner proposes a behavioural preorder called fortification, which is de-
signed such that (1) it induces an equivalence which distinguishes the two
notions of delay and coincides with strong bisimulation for “standard” agents,
(2) recursive processes are least fixed points of the associated process equations
and (3) the equivalence is a congruence with respect to all the operators of the
language (assuming guarded recursion). This approach works reasonably, but
is not completely satisfactory. As pointed out by Aczel in [3], the fortification
equivalence makes some non desirable identifications of agents due to the fact
that infinite computations are treated separately from finite computations. To
illustrate this, one may consider the extension of strong bisimulation equiva-
lence, obtained by requiring that for any two related states, the two sets of
infinite action sequences labeling admissible infinite computations from each
of the states must be identical. The resulting equivalence is included in fortifi-
cation equivalence. Now, the two agents d(a: 0+ 60) and €(a: 0+ 60) (where
0 is the agent without any actions) have both a derivation tree with the shape
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where the underlying agents of black nodes are either the original agent or
the agent 60, for which 1% is the only admissible infinite action sequence, and
the underlying agents of white nodes are the agent 0, which has no action
sequences at all. Consequently, the obvious isomorphism between the deriva-
tion trees of the two agents is a bisimulation satisfying the extra requirement



given above, and thus the two agents are fortification equivalent. However, the
first agent can delay infinitely remaining able to perform an a-action at any
time, while the second agent must reach a state in which it cannot perform an
a-action. The alternative proposed in [3] is a final-coalgebra semantics, giving
rise to a bisimulation which indeed distinguishes the two agents given above.
This bisimulation is closely related to the eztended bisimulation introduced
by Hennessy and Stirling in [4] for general transition systems, which is essen-
tially fair CTL*-bisimulation [5,6], except being formulated for edge labeled
structures.

The present paper is a revised version of a paper appearing in Proceedings
of CTCS’99 and the material also appears as a chapter in the authors PhD-
thesis [7]. Its background is the work on presenting models for concurrency
categorically as initiated by Winskel and Nielsen [8] and developed further in
the work on bisimulation from open maps [9] and presheaf models for concur-
rency [10-13]. Our goal is to extend the categorical approach (in which the
issue of infinite computations and fairness has been absent so far) to models
for infinite computations. As quality check, we want to apply the models to
give both operational and denotational semantics for SCCS with finite de-
lay, and capture a true branching equivalence that avoids the non-intuitive
identifications of fortification. As we will see, this goal can indeed be met.

One of the forces of describing models for concurrency within the language of
category theory is that different models suitable for different purposes, can be
formally related to each other. E.g. in [8] the category of synchronisation trees
suitable for giving denotational semantics to CCS-like process calculi is shown
to be a coreflective subcategory of the category of transition systems suited
for operational semantics. Another force was added by the notion of bisimula-
tion from open maps introduced in [9]. Here one gets an abstract behavioural
equivalence by choosing a path category, or to be a bit more general [14],
a functor from a category of path shapes to the model at issue, identifying
the observable computations (in [9] assumed to be the inclusion of a subcate-
gory). The open maps approach gained ground through the further develop-
ment [10,11,15,13,16] of the presheaf models for concurrency also proposed
in [9]. Here one starts with a path category P (of non-empty path shapes)
and then takes the category P of presheaves over P as model. The categorical
justification [10,16] for doing this, is the fact that Jg : P, — P, the strict
extension of the well-known Yoneda embedding, is the free connected-colimit
completion of the category P, obtained by adding a new initial object to P.
By the embedding Jp any presheaf model P comes with a canonical notion
of bisimulation from open maps. In [11,13,10] it is shown that presheaf models
themselves can be related within a category in which arrows are connected-
colimit preserving functors, that such functors in fact preserve the canonical
bisimulation and general techniques for their construction are provided.



Perhaps the simplest example of a presheaf model is the one equivalent to
the category of (Act) labeled synchronisation trees, which is obtained from
the path category of all finite, non-empty sequences of actions ordered by
the usual prefix ordering. As shown in [9,16,11], the typical constructions of
a CCS-like language can be expressed as functors preserving the canonical
equivalence. As suggested in [9], it is natural to approach a generalisation
of the categorical models to models for infinite computations, by studying
presheaves, or sheaves, over the category of prefix ordered finite and infi-
nite action sequences. In the present paper we show that with the help of a
simple Grothendieck topology this gives indeed a suitable model for infinite
computations, not as a category of sheaves, but as a category of separated
presheaves [17]. A careful generalisation of the models of synchronisation trees
and transition systems lifts the relationship between the “standard” finitary
models to the infinitary models and gives a concrete representation of the
presheaf model for infinite computations as generalised synchronisation trees,
coreflective in a category of generalised transition systems. The generalised
transition systems are defined as instances of the general transition systems
of [4], and it turns out that the extended bisimulation defined in [4] coincides
with the abstract bisimulation obtained from open maps. We end by showing
how to express Milner’s [18] operational semantics of SCCS with finite delay
in the generalised transition systems and give a denotational semantics in the
presheaf model which we prove to be fully abstract with respect to extended
bisimulation.

In all of the steps above we greatly benefit from the categorical presentation.
Unbounded non-determinism is represented simply by (infinite) coproducts.
By utilizing the general techniques from [10] we get very simple definitions of
the denotations for all basic operators, for which congruence properties follow
almost for free. As meanings of recursion we take final coalgebras, correspond-
ing to greatest fixed points and the denotation of finite delay et is taken to
be the initial algebra corresponding to the least fixed point of the process
equation (1) given above. The categorical relationships between the different
models and the general theory of bisimulation from open maps reduce the
problem of relating the two semantics, proving full abstraction, to finding a
specific open map within the category of generalised transition systems.

A number of papers [3,19,20,4,21] have already proposed denotational seman-
tics for SCCS with finite delay, and in doing this, models for non-deterministic
processes with infinite computations. As mentioned above, the approach we
take is closely related to the work of Aczel in [3] and Hennessy and Stirling
in [4]. The approach in [3] aims at a more general notion of fairness than finite
delay. This appears to be at the cost that the admissible infinite computations
are identified in a rather syntax dependent way, as opposed to our use of initial
algebras and final coalgebras. The semantics given in [19] is fully abstract with
respect to the fortification equivalence, so it makes the non-intuitive identifi-



cations mentioned above. Moreover, it only covers bounded non-determinism
as obtained from terms in which only a binary sum is allowed. The semantics
of [20] is based on the fortification equivalence too. It is worth noting that for
the models given in [19-21] the approximation order between elements is de-
fined such that meanings of recursion can be given by least fixed points. This
requires a reverse order between infinite computations, that is, the larger a
process the fewer infinite computations it can make.

The structure of the paper is as follows. In Sec. 1 we give some preliminary
definitions and recall the categorical concepts used in the paper. In Sec. 2 we
recall the calculus SCCS [1], the finite delay operator and how to derive a
fair parallel [18]. In Sec. 3 we introduce respectively the new presheaf model
and the transition system models for infinite computations. Section 4 is de-
voted to the bisimulation obtained from open maps and its relationship to
the extended bisimulation of [4]. In Sec. 5 we formulate Milner’s operational
semantics of SCCS with finite delay in terms of the generalised transition sys-
tems introduced in Sec. 3 and in Sec. 6 we give the presheaf semantics and
the full abstraction result. Comments on future work is given in Sec. 7. The
appendixes contain details on Grothendieck topologies and the proof of full
abstraction.

1 Preliminaries

We assume a fixed set Act of actions. Let Act™ and Act¥ refer to the sets of
respectively all finite and all infinite sequences of actions. We let Fin and Inf
refer to the two partial orders (Actt, <) and (Act™ U Act®, <), where < is the
standard prefix order. These two partial orders will play the key role as path
categories of presheaf models for the observation of respectively finite and
possibly infinite computations. We will let roman letters range over elements
(of some set) and Greek letters range over sequences of elements (of some set).
Let |a| denote the length of a sequence . For o, o/ such that |a| < w we write
aco/ for the composition of the two sequences. If j € w and |a| > j + 1, let
a(j) = apoy ... oy, i.e. the sequence of the first j + 1 actions of . If § € ST
and S < ain ST USY, we will write § <; « for § is finite and below .

1.1 Categories of Transition Systems and Synchronisation Trees

We here repeat the definition of transition systems given in [8] and morphisms
between such, which we will generalise to infinite computations in Sec. 3.2.

Definition 1 A transition system T with label set Act is a quadruple (St, ir, =T



, Act), where

e St is a set of states,
e i1 € St is the initial state and
o —7C Sr x Act X St is a transition relation.

As usual we write s 7 s for 3(s,a,s') €= and let do((s,a, s’)) = s,

co((s,a, s’)) =4, act((s, a, 5')) = a. The set of (finite or infinite) computa-
tions are given by

Comp(T) = {¢p €= U —=7| V0 < j < |d|.co(pj—1) = do(¢;)},
and we let Compin(T) = Comp(T)N —7. The set of runs is given by
Run(T) = {¢ € Comp(T) | do(o) = ir},

and we let Rungin(T) = Run(T)N = and Run,;(T) = Run(T)N —%. We
say a transition system is reachable if any state is reachable from the initial
state. A synchronisation tree is a transition system for which any state is
reachable from the initial state by a unique sequence of transitions.

Transition systems (with label set Act) form the objects of a category TS,
with arrows being simulations.

Definition 2 A simulation from a transition system T = (St,ir, —T, Act)
to a transition system T' = (Stv, 7, =+, Act) is a mapping o: St — St of
states, such that

e o(ir) =i and
o s = 8 implies that o(s) =g o(s').

We let ST refer to the full subcategory of TS with objects the synchronisation
trees (with label set Act).

As shown in [8], the category ST is a coreflective subcategory of the cate-
gory TS of transition systems; the inclusion ST — TS has a right adjoint
unf: TS — ST which acts on objects by unfolding the transition system.

Definition 3 Let T be a transition system with label set Act. Then the un-
folding of T' is the synchronisation tree

unf (T) = (Runyin(T), €, {(¢, a, ¢(s,a, S')) | ¢(s,a,s") € Rung,(T)}, Act),

where € is the empty transition sequence. Let m: T — T' be a morphism
between two transition systems with underlying map o: Sy — Sp. Then
unf(m): unf(T) — unf(T') is the synchronisation tree morphism with un-



derlying map o.: Rungin(T) — Rungn(T") given by o.(¢) = ¢, such that
¢ = ¢'| and for all i < |@|, if ¢; = (s,a,5) then ¢} = (o(s),a,0(s")).

1.2 Bisimulation from Open Maps and Presheaf Models for Concurrency

The categorical presentation of models for concurrency comes with a general
notion of bisimulation from open maps introduced in [9]. Given a model M,
the idea is to identify a functor P: P — M from a category of path shapes to
the model M, identifying the observable computations (in [9] assumed to be
the inclusion of a subcategory). A map f: X — Y in M is then defined to
be P-open (P-open or just open if the embedding is clear from the context)
if whenever for a morphism m: P — @ in P and morphisms p: PP — X and
q: PQ — Y such that the diagram

pp-2— » X

Pml ho lf

POy

commutes, there exists a morphism A: PQQ — X as indicated by the dotted
line, making the two triangles commute. Two objects X and Y are then defined
to be P-bisimilar if they are related by a span of P-open maps

A
YN
X Y .

For Bran: Fin, < TS being the obvious embedding, mapping an action se-
quence to the corresponding single-branch transition system, it was shown
in [9] that Bran-bisimulation coincides with Park and Milner’s strong bisim-
ulation on labeled transition systems [22,1]. In subsequent work [23], a range
of known bisimulations have been characterised as open map bisimulations.
However, the freedom in how to choose the path-category seemed somehow
unsatisfying.

In [9], presheaf categories were suggested as abstract models for concurrency,
equipped with a canonical notion of bisimulation equivalence. For P a small
category, the category P of presheaves over P has as objects all functors
X: P® — Set (where Set is the category of sets and functions) and as ar-
rows natural transformations between such. Let us briefly repeat from [10,16]
the categorical justification for taking presheaf categories as models for con-
currency. We write P, for the category obtained by adding a (new) initial
object L to P and y;;L: P, — P for the strict extension of the well known



Yoneda embedding Vp: P — |3, taking 1 to the initial, i.e. constant empty,
presheaf. Then )p : P, < P is the free connected-colimit completion of Py;
it is the category obtained (up to equivalence) by freely adding all colimits of
connected diagrams to P, and any functor F': P — Q for Q a category having
all connected colimits, can be extended freely (as a left Kan extension [24]) to
a connected-colimit preserving functor Fy: P—Q making the diagram

o
g

PJ_C—>§

N
Q

commute. The embedding Vp : P, < P provides a canonical choice of path

shapes for a presheaf model |3, and thus a canonical notion of bisimulation.
As recalled below, the category Fin is indeed equivalent to the category of
synchronisation trees given above, and the canonical bisimulation is the usual
strong bisimulation. By replacing sequences with partial orders one obtain
models and bisimulations generalising event-structures and history-preserving
bisimulation, see e.g. [9].

Remark 4 In [9], focus was put on path categories with an initial object L and
rooted presheaves, that is, presheaves for which X (L) is the singleton set. The
canonical bisimulation was then taken to be that given by span of surjective
Ve -open maps. It is easy to verify that the category of rooted presheaves
over P is equivalent to the category P. Moreover, surjective YVp -open maps
between rooted presheaves in I/DI corresponds via the equivalence exactly to
Yp  -open maps in P.

The following proposition [25,13,10] is one of the most important results about
open map bisimulation in presheaf models.

Proposition 5 Let F: P—-Q be a connected-colimit preserving functor and
m: X =Y a)Yp -open map in P. Then Fm: FX — FY is a Yq, -open map

It follows that connected-colimit preserving functors between presheaf cate-
gories preserve the canonical notion of bisimulation. To appreciate this result,
note that it has been shown that most of the typical constructions of CCS-like
and Dataflow languages can be expressed as (component-wise) connected-
colimit preserving functors [11,12,16], for which it follows directly from the
above result that the canonical bisimulation is a congruence.

Below we repeat briefly the concrete representation of presheaves as transition
systems as given in [26].



Notation 6 For q < p in a partial order P, let [q,p]: ¢ — p denote the unique
arrow from q to p in P viewed as a category and [p,q|: p — q the unique arrow
from p to q in P°P. For a partial order P, a presheaf X : P°® — Set, objects
g < pinP and an element x € X (p) we will employ the standard notation [17],
writing x - [q, p| for the element X ([p, q])x. This element is referred to as the
restriction of x to q.

For a presheaf X in ?E, its corresponding synchronisation tree is constructed
from the category of elements [17]. The set of states is given by the elements
of X with an initial state added and the transition relation is defined from the
restriction action of the presheaf.

Definition 7 For a presheaf X in Fiﬁ, the synchronisation tree corresponding
to X is given by EI(X) = (S, 1, —, Act), where

S = {(a,x) | @ € Fin and x € X(a)} u{i}, and
— = {((a, z),a,(aa, ") | ' -[o, aa] = :v} U{(,a,(a,z)) | a€ Act A z € X(a)}.

1.3 Initial Algebras and Final Coalgebras

Below we recall the categorical analogues of pre- and post-fixed points [27].

Definition 8 Let F': P — P be an endofunctor. A co-algebra for F' is a pair
(p,m) of an object and a morphism of P such that m: p — F(p). Dually,
an algebra for F is a pair (p,m) such that m: F(p) — p. The co-algebras of
F form the objects of a category Feoarg, with arrows f: (p,m) — (¢, n) being
arrows f:p— q of P such that

P—F(p

)
|

¢—F(q)

e

commutes. Dually, algebras for F' form the objects of a category Fag.

Initial and final objects in Fag and Feoag are the categorical analogues of
minimal and maximal fixed points of F'.

Lemma 9 (Lambek) Let F': P — P be an endofunctor. If (p,m) is an ini-
tial algebra for F', i.e. an initial object in the category of F'-algebras, then
m: F(p) — p is an isomorphism. If (q,n) is another initial algebra for F,
then q is tsomorphic to p. The dual statement holds for final co-algebras. If F°
has an initial algebra, let pF denote the (unique up to isomorphism) initial
algebra. Similarly, let vF denote the final co-algebra of F if it exists.



The following lemma is a standard technique in proving existence of final
co-algebras.

Lemma 10 Let P be a category with terminal object T and F': P — P an
endofunctor on P. If the w°P-chain

T+ F(T)« FX(T) ...« F(T) + ...
has a limiting cone (P,{pp: P — F™(T)}new) and F preserves this limit, i.e.
(F(P),{!: F(P) = TYU{F(ps): F(P) = F""(T)}new)

is a limiting cone too, then the unique mediating morphism m: P — F(P) is
a final coalgebra.

The above lemma is the dual of the following lemma for construction of initial
algebras, as found in e.g. [27].

Lemma 11 Let P be a category with initial object L and F': P — P an endo-
functor on P. If the w-chain

L= FL)—=F(L)—...—> F(L) > ...

has a colimit P and F' preserves this colimit, then the unique mediating mor-
phism m: F(P) — P is an initial algebra.

2 Synchronous CCS with Finite Delay

In this section we recall Milner’s calculus SCCS [1] of synchronous CCS and
the finite delay operator [18] from which one can encode a CCS-like calculus
with a fair asynchronous parallel composition. Assume a distinguished element
1 € Act such that (Act, e, 1) is an Abelian? monoid with 1 being the identity.
The basic operators of SCCS are action prefixing, synchronous product, non-
deterministic choice and restriction. Formally, the terms are given by

tu=a:t ‘ t1 X 1o | Eielti ‘ t[A,

where a € Act, A C Act and I is an index set. With the basic operators we
can build processes with only finite behaviour. As usual, we will write 0 for
an empty sum, omit the summation sign for a unary sum and write t; + ¢ for
a binary sum.

2 ji.e. commutative

10



t; St Gen St D
art St ety Bt L ohx b xt,
t5t tlrecz.t/z] = t'

tA 5 ¢A (a€A), recz.t =t

Fig. 1. Operational semantics of SCCS

To be able to define processes with possibly infinite runs, we add a recursion
operator, extending the grammar by

tu=...|z|reca.t,

where x is a process variable and rec z. binds the variable x in £. We will let
T refer to the set of closed terms of the calculus SCCS.

The rules given in Fig. 1 defines the operational semantics of SCCS, from
which we get a derivation transition system for any closed term ¢ as defined
below. Note that in the synchronous product, both processes must perform an
action, and the resulting action is the monoid product of the two individual
actions. Recursion acts by unfolding and ¢[rec z.t/x] is the usual substitution
of rec z.t for the free variable x in ¢.

Definition 12 Let t be a term in T. Then the derivation transition system
for t is the (reachable) transition system D(t) = (S,t, —, Act), where S =
{t’ eT|t—* t'}, i.e. all states reachable from t by the relation — defined by
the rules in Fig. 1 and —;=— NS x Act x S.

In [1] a delay operator 6 was introduced in order to encode a CCS-like calculus
with the usual asynchronous parallel composition. For a process t, define 6t =
recz.(1:x+t). In the standard semantics, dt is the (unique up to bisimulation)
fixed point of the process equation

x~ (liz+t) . (4)
By defining asynchronous prefixing by
at=a:dt , (5)
one can encode an asynchronous parallel composition by
t|t= (0t xt")+ (t xdt') . (6)

As an economical way to be able to express that some infinite runs are in-
admissible, Milner introduces in [18] a finite, but unbounded delay operator e
(expectation). The idea was, that the finite delay could be taken as the only
operator giving rise to inadmissible infinite runs, in particular recursion gives
rise to admissible infinite runs. The immediate actions are the same for finite

11



- (Wait) and
€t — et et — 1

Fig. 2. Derivation Rules for Finite Delay

delay as for the derived delay operator, which can be described by the rules
given in Fig. 2. However, infinite waiting is ruled out as inadmissible. In other
words, fulfillment of the delay is always expected. We will formalize this in
Sec. 5 below. By replacing the derived delay operator by the finite delay oper-
ator in (5) and (6) above one now gets a fair asynchronous prefix and parallel
composition.

We will let SCCSe and 7, refer to respectively the calculus SCCS extended
with the finite delay operator ¢ and the set of closed terms of the extended
calculus.

In the next section we will introduce two closely related categorical mod-
els, suitable for giving respectively denotational and operational semantics in
which in-admissibility of infinite computations can be expressed.

3 Observing Infinite Computations

We approach a categorical model for infinite computations by studying presheaves,
and sheaves, over the path category Inf obtained by adding infinite paths to
the path category Fin. This fits with the spirit of [4], where experiments on
systems are allowed to consist of infinite computations. Categorically, it can
be seen as a completion of the path category with all directed colimits.

3.1 A Presheaf Model for Infinite Computations

A presheaf X : Inf?” — Set in Inf restricts to a presheaf in Fin by composing
it with the inclusion of Fin into Inf. Now, for a € Act, an element z € X(«)
will specify a unique infinite path in the synchronisation tree corresponding to
the restriction of X to Fin. To be more precise, if o € Act” and z € X (a) then
we will say that x is a limit point of the (infinite path given by the) elements
z [, for B <; q, i.e. the restrictions of x to finite sequences. We will repre-
sent that an infinite path is admissible by the presence of such a limit point,
and that it is tnadmissible by the absence of a limit point. With this interpre-
tation, the model is a bit too general; it allows an infinite path to have two or
even more limit points. We therefore take the subcategory of presheaves with
at most one limit point for any infinite sequence as our model. This category
is not as ad hoc as it might seem. Actually, it comes about as the category of

12



separated presheaves over Inf with respect to a simple Grothendieck topology
for Inf, which is often referred to as the sup topology. (In the standard termi-
nology, the infinite paths and limit points are respectively matching families
and (unique) amalgamations).

Definition 13 Let Sp(l/n\f) denote the separated presheaves, which is the full
subcategory of Inf with objects the presheaves X satisfying that for all « € Act”
and elements z,z' € X(a),

o (VB<jauzx-[f,al=2"f,a]) = z=2a (Separated)

We can recover the category Fin (i.e. of synchronisation trees) within I/n\f,
as being equivalent to the category Sh(inf) of sheaves over Inf for the same
topology. In our case, a separated presheaf is a sheaf if it has ezactly one limit
point for any infinite path. Thus, a sheaf will correspond to a synchronisation
tree in which any infinite path is admissible, i.e. a limit closed synchronisation
tree. But this is just the standard interpretation made explicit.

Proposition 14 The category Fin is equivalent to the category Sh(l/n\f), of
sheaves over Inf with respect to the sup topology.

Sheaves, separated presheaves and presheaves are known to be closely related
and rich in structure [17,28]. We will especially make use of the fact, that
they are related by a sequence of reflections, i.e. the inclusions Sh(l/n\f) —
Sp(inf) and Sp(inf) < Inf both have left adjoints (reflectors). In our case
the reflections are particularly simple. The reflector sp: Inf — Sp(l/n\f) acts by
unifying limit points that specify the same infinite path. The reflector from
Sp(Inf) to Sh(Inf) acts by completing with limit points of all infinite sequences.

We also have that the objects of Inf; under the strict extension of the Yoneda
embedding are sheaves.® Together with Prop. 14, this gives a formal relation-
ship between the path category Inf, the presheaf model Fin of finite observa-
tions and the models Sp(Inf) and Inf as summarized in the diagram below.

3 In fact the Grothendieck topology we use is the canonical topology for Inf [17],
which simply means that it is the largest topology such that all the representables
are sheaves.

13



Note that this also implies (a general fact) that the category Sp(InAf) has all
limits and colimits. In particular, it shows that limits are computed as in Inf
and similarly for colimits, except for being followed by the reflector, identifying
redundant limit points. As indicated in the diagram, we will let fin - inf refer
to the reflection between Fin and Sp(Inf) obtained via the equivalence between
Sh(inf) and Fin.

For more details on Grothendieck topologies, sheaves and separated presheaves
see [17]. The special, and simpler case for a Grothendieck topology on a par-
tially ordered set is given in the appendix, together with the definition of the
Grothendieck topology relevant for this paper.

3.2 Generalised Transition Systems and Synchronisation Trees

A generalised transition systems is a transition system in which the admis-
stble infinite computations are represented explicitly. More precisely, we take
a generalised transition system to be a transition system 7' together with a
set C C Comp(T) such that C' = C*, where C* C Comp(T) is the least set
including C' such that

Cl: if g, ¢ € C* and ¢p¢' € Comp(T) then ¢p¢' € C* (composition)
C2: if ¢¢' € C* and ¢ is finite then ¢, ¢’ € C* (pre- and suffix)
C3: Compsin(T) C C* (finite)

The two first conditions ensure that the definition fits with that of general
transition systems in [4]. The last condition restricts attention to the special
case where any finite computation is admissible.

Definition 15 A generalised transition system (synchronisation tree) G with
label set Act is a five-tuple (Sg, Admg,ic, —q, Act), such that

o T = (Sg,ig,—q, Act) is a transition system (synchronisation tree), and
e Admg C Comp(T) satisfies that Admg = Admg*®.

We refer to Admg as the set of admissible computations and say that G is
standard if Admg = Comp(T). We write fin(G) = (Sg, i, —a, Act) for the

underlying transition system of G.

Generalised transition systems (with label set Act) forms the objects of a
category GTS with morphisms defined as follows.

Definition 16 A morphism from a generalised transition system G to a gen-
eralised transition system G' is given by a map o: Sg — Sq such that
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[ ] O(ig) = i(;ﬂ,
o s 5 s implies that o(s) ¢ o(s') and
e 0(Admg) C Admer,

where 0, is the extension of o to (possibly infinite) transition sequences de-
fined by oo () = ¢, such that || = |¢'| and for all i < |¢|, if ¢; = (s,a,s)
then ¢} = (a(s), a, a(s’)).

We let GST refer to the full subcategory of GST with objects the generalised
synchronisation trees (with label set Act).

The following lemma gives some alternative definitions of morphisms between
generalised transition systems. In particular it shows that the morphisms of
GTS restrict to morphisms of the underlying transition systems, so the map
fin extends to a functor fin: GTS — TS.

Lemma 17 Let 0: S¢ — Sg be a map between the state sets of two gener-
alised transition systems G and G'. Then the following three conditions are
equivalent

1. 0: G — G" is a morphism of generalised transition systems,

2.0 o(ig) =ig and
® O (Admg) g Ade',

3.0 0: fin(G) = fin(G") is a morphism of transition systems and
o 0,(Admc\Compyi,(G)) C Admer,

In fact fin: GTS — TS is a reflector for the inclusion of TS into GTS that maps
a plain transition system to the corresponding standard generalised transition
system.

Proposition 18 The functor fin: GTS — TS is a left adjoint to the inclusion
inf: TS < GTS which maps a transition system T = (St,ir, —r, Act) to the
standard generalised transition system (St,ir, —7, Comp(T), Act) and maps
a transition system morphism to the generalised transition system morphism
with the same underlying map of states.

The coreflection between synchronisation trees and transition systems given
in Sec. 1 generalises to one between between GST and a category GTS.

Proposition 19 The inclusion functor GST — GTS has a right adjoint gunf: GTS —
GST such that the diagram

GST«™_GTs

ﬁnl ﬁnl
unf

ST«——TS
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commutes, where unf is the unfolding of transition systems defined in Sec. 1.
In fact all four squares in the diagram

gunf

GST_ T ,GTS

ﬁnl—{ ﬁnl—!
unf
ST T T

commaute.

We will now give a concrete representation of presheaves in Sp(l/n\f) as gener-
alised synchronisation trees.

To generalise the construction of a synchronisation tree from a presheaf we
gave in Sec. 1 we use the following property stated in the lemma below: In a
reachable generalised transition system, the set of admissible computations is
determined uniquely by the set of admissible infinite runs.

Lemma 20 Let T be a reachable transition system and C C Comp(T). If
C = C* then there exists a unique set A C Run(T)\Runyi,(T) such that
C=A".

We can now define a functor &I: Sp(inf) — GST generalising the functor
El: Fin — ST defined (on objects) in Sec. 1.

Definition 21 For a presheaf X in I/rﬁ‘, the generalised synchronisation tree
corresponding to X s given by

EUX) = (S,i,—, Act, Adm),

where

S = {(a,x) | a € Fin and z € X(a)} U {i},
—= {((a,x),a, (aa,z") | 2’ [, a] = x}U{(i,a, (a,2)) |a € Act Az € X(a)},
and

Adm = {(15 € Comp(T) | Ja € Act“Ix € X (). x is a limit point of ¢}

where “x is a limit point of ¢”, means thatVj € w.co(¢;) = (a(j),x-[a(j), a]).

From the embedding GBran, : Inf < GTS which maps a non-empty, finite
or infinite sequence « to the standard generalised transition system (in fact
generalised synchronisation tree) with exactly the one branch corresponding
to a, we get a canonical functor [9] from GTS to Inf, which maps a generalised
transition system G to the presheaf GTS[GBran,(—),G]. It is not difficult to
check that this will always give a separated presheaf.
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Lemma 22 Let G be a generalised transition system and GBrany: Inf —
GTS the embedding described above. Then GTS|GBran,(—),G] is a presheaf

in Sp(Inf).

The canonical functor gives the other direction of the equivalence forming the
concrete representation of Sp(Inf).

Theorem 23 The categories GST and Sp(l/n\f) are equivalent.

In the light of Thm. 23 above, the functors fin: GST — ST and nf: ST —
GST are just concrete representations of the reflection between Fin and Sp(Inf)
given in (7).

4 Extended Bisimulation from Open Maps

As described in Sec. 1, we get a canonical notion of bisimulation from Yy -
open maps in the presheaf category Inf. From Diagram (7) it follows that Yy -
bisimulation restricts to the subcategories Sh(Inf) and Sp(Inf) of sheaves and
separated presheaves. The category Inf; embeds into the category of gener-
alised transition systems by the functor GBran: Inf, — GTS, which is simply
the strict extension of GBran, : Inf — GTS given above. This gives us a no-
tion of Inf -bisimulation for generalised transition systems, which we show

coincides with extended bisimulation defined for general transition systems
in [4].

Remark 24 FEztended bisimulation is essentially fair CTL*-bisimulation [29,5],
except for being formulated for edge labeled structures. This means in partic-
ular, that extended bisimulation is decidable for finite generalised transition
systems for which the set of infinite paths are given by e.g a Buchi- or Muller-
condition [6].

We first give a characterisation of the Inf, -open maps of GTS that generalises
the “zig-zag” morphisms in [9)].

Proposition 25 LetT = (ST, i, =T, Ame, ACt) and U = (SU, U, —U, Ade, ACt)
be generalised transition systems and o: T — U. Then o is Fin  -open if and

only if for all reachable states s € St

o ifo(s) Sy s| then s 1 s, and o(s;) = 8| for some state s; € St,

and o s Inf | -open if and only if moreover

o if ¢’ € Admy and ¢' = o(s) Sy s %UségU...%USZan T
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then ¢ € Admy such that ¢ = s st Brse By Bys, ang ... and
forall j € w, o(s;) = s .

Now we give the definition of extended bisimulation from [4] reformulated as a
relation between two generalised transition systems (exploiting condition C3).

Definition 26 ([{]) Let T and T' be generalised transition systems. Then T
and T" are extended bisimilar if there exists a relation R C St X St such that
(ir,i1) € R and if (s,s'") € R then

El. if there exists a computation ¢ € Admy such that ¢g = s, then there
exists a computation ¢ € Admqr such that |¢p| = |¢'| and ¢y = s' and for
0<s< ‘(b‘, a’Ct(¢j) = aCt(¢;) and (¢J’¢;) € R,

E2. if there exists a computation ¢' € Admqr such that ¢y = s', then there
exists a computation ¢ € Admy such that || = |¢'| and ¢g = s and for

0 <j <|[@], act(¢;) = act(¢}) and (¢;, ;) € R,

Note that (by condition C3) extended bisimulation specialises to the standard
strong bisimulation on transition systems if E1 and E2 are restricted to se-
quences of length one. Also note that (by the conditions C1 and C2) one could
equivalently have formulated the bisimulation considering only sequences be-
ing infinite or of length one. From these considerations and Prop. 25 it follows
that extended bisimulation coincides with Inf -bisimulation for generalised
transition systems.

Proposition 27 Let G and G’ be generalised transition systems. Then G and
G' are Inf | -bisimilar if and only if G and G' are extended bisimilar.

It is an easy fact that Inf-bisimulation in GST under the equivalence coincides
with the canonical bisimulation in Sp(Inf), so we get the following corollary.

Corollary 28 Let X and X' be presheaves in Sp(Inf). Then X and X' are
Vg, -bisimilar if and only if EI(X) and EI(X') are extended bisimilar.

From the coreflection given in the previous section and Lem. 6 in [9] it follows

that two generalised transition systems are Inf -bisimilar if and only if their
unfoldings as generalised synchronisation trees are Inf  -bisimilar.

5 Operational Semantics

In this section we will express Milner’s operational semantics of SCCS with
finite delay [18] in terms of generalised transition systems.

The inadmissible infinite computations are identified in [18] via the notions
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t5t
(Wait) and ——"'— (Fulfill).

a

€t EN €nt1t €nt — 1!
Fig. 3. Derivation rules for annotated finite delay

of waiting computations, subagents and subcomputations, which we will recall
briefly. A computation t; — t; — t3 — ... of an agent %, is said to be waiting
if t; = et for all ¢ and every transition is inferred solely from the (Wait)
rule for finite delay. Agents a: ¢, recz.t, ¥jcrt; and et have only themselves
as subagent, t[A has the subagents of £ and ¢; x ¢ has the subagents of ¢;
and t3. Any computation of an agent ¢ is then inferred from computations
of the subagents, which are referred to as subcomputations. A computation
is defined to be admissible if it is finite or has no sequel (i.e. suffix) with an
infinite waiting subcompuation.

To be able to record if the (Wait) rule was used to infer an action of a subagent,
we annotate terms of the form et with a subscript number n € w, written ¢,t,
and replace the derivation rules of Fig. 2 by the rules in Fig. 3. The intuition
is that the number records for how long the agent has been delaying. We will
say that an agent t is waiting if t = €,t’ for some term ¢" and n > 1.

In the following we let 7. refer to the set of annotated closed terms of SCCSe
and we let €yt and et refer to the same agent. Note that any function with
domain 7 can be regarded as a function with domain 7, by discarding the
annotations.

We formalise the notion of subagent at a specific position as follows.

Definition 29 Define Pos = {1,2}*, a set of positions, and let nil € Pos
denote the empty sequence (the top position). Any term t in T define a partial
function t: Pos — T, given inductively (in the length of the position and the
structure of t) by

(t ift=a:t, t=recx.t', t = Sicit; ort = et' for some t,
t(nil) = S t'(nil)  ift =t'A,

lundef otherwise,

(t:(p) if t =t X to,

t(ip) = (t'(ip) it =1A,

(undef otherwise.

Now, we can define when an infinite computation is inadmissible.

Definition 30 An infinite computation to =3 t; =ty 33 ... derivable by the
rules in Fig. 1 and Fig. 3 is inadmissible if and only if there exist j € w
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and a position p € {1,2}* such that Vj' > j, t;(p) is waiting. We say that a
computation is admissible if it is not inadmaissible.

It is not difficult to verify that a computation is inadmissible by the definition
above if and only if it has a suffix with a waiting subagent which continues to
wait forever, so the definition of admissibility coincides with that of [18] which
we briefly gave in the beginning of the section.

The derivation transition systems for terms in 7. are generalised transition
systems with the set of admissible computations given by Def. 30 above.

Definition 31 Let t be a term in T.. Then the derivation transition system
for t is the reachable generalised transition system

O (t) = (S,t,—, Adm, Act) .

The set of states is the states reachable by the transition relation defined by
the rules in Fig. 1 and Fig. 3

S={t"|t->"t},
the transition relation is the restriction of — to states in S
—=— NS X Act X S,
and the set of admissible computations
Adm C C’omp((S, t, =4, Act))
is the set defined in Def. 30.

Remark 32 We do not need to record exactly how many steps an agent has
waited, just if it has waited zero, one or more than one step continuously. This
means that we could replace the first rule in Fig. 3 by the rule €,t N €min{n+1,2}t
and only allow the numbers 0, 1 and 2 in annotations. The latter set of rules
has the benefit of not giving rise to infinite graphs just because of the presence
of a finite delay. This is a key step toward proving decidability of the extended
bisimulation for a non trivial subset of SCCSe.

6 Presheaf Semantics

In this section we will see that the category of separated presheaves Sp(l/n\f)
is well suited to give denotational semantics to SCCSe.
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6.1 Semantics of Basic Operators

The denotation of sum is simply given by the coproduct in Sp(lﬁ). The de-
notations of the remaining basic operators, restriction, action prefix, and syn-
chronous product, can be obtained from the underlying functions on sequences
using the Kan extension (—), described in Sec. 1.

For A C Act, the restriction on sequences (—)JA: Inf — Inf, maps a sequence
« to the (possible empty) longest prefix of a belonging to A*. Formally, define
alA = o, where o/ € A* is the unique sequence o/ < « such that (o =
dad" = a ¢ A).

For a € Act, the action prefiz on sequences a: Inf; — Inf maps a (possibly
empty) sequence « to ac.

The synchronous product on sequences, ®: Inf x Inf — Inf is the extension of
the monoid product to sequences. Formally, for a, 5 € Inf, define v @ § = 7,
where 7 is the unique sequence such that |y| = min{|«/, ||} and v; = «; e f;.

It is easy to see that the above mappings are monotone, and thus functors be-
tween the partial orders viewed as categorles By (1mpllcltly) composing with

the embeddings V¢ : Inf; — Sp(inf) and Vin: Inf < Sp(Inf), we get func-
tors (=) [A: Inf — Sp(Inf), a: Inf, — Sp(Inf) and e: Inf x Inf — Sp(inf).
Applying the proper Kan extensions we get functors (—) [A;: Sp(lﬁ\f) —
Sp(InAf), a: Sp(lnf) — Sp(lnf) and e: Inf x Inf — Sp(l/n\f) Finally, we pre-
compose e Inf x Inf — Sp(lnf) with the (component wise connected colimit-
preserving [11]) functor w: Sp(Inf) x Sp(Inf) — — Inf x Inf defined (on objects)
by
w(X,Y) (e, f) = X () x Y(B) -

This gives us the following denotations of basic operators.

Basic operators: For closed terms ¢, ¢ and ¢;, define

I[Bierts] = BierZ[ti], (8)
TIa:t] = aZ]t], 9)
It x t'] = ey 0o w(Z[t], Z[t']), (10)
ItIA] = It A, (11)

The semantic functions are extended in the standard way to terms with free
variables in a set V, yielding functors

I[tlv: ] Se( (Inf) — Sp(Inf).

€Y
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Since the functors are build up from connected colimit preserving functors it
follows that they themselves are connected colimit preserving functors.

The first three definitions (8)-(10) above only give the denotation up to iso-
morphism. It is helpful, e.g. in showing correspondence with the operational
semantics, to give an explicit semantics [t] such that [t] = Z[t]. We will just
give the action on objects. The tags sum and X are used to indicate clearly

how an element came about, which we will use in App. B.

[tiA]a = {e | @ € A and e € [t]a}. (12)

[Sicrtila = {(sum i, (o, €)) | i € I and ¢ € [t;]a}. (13)
e if o= ad,

la:tJa = {(Z) otherwise, (14)

where |—|: Sp(Inf) < Sp(Inf,) is the obvious “lifting” functor, which can be
represented explicitly by

X]a = {{*} ifa=1, (15)

Xoa otherwise.

[t1 x to]a = {(B,e1) X (7, €2) |
B,7 € Inf.f @y =« and e; € [t;]5 and ey € [t2]7}-

6.2 Semantics of Recursion

For recursion we need to take care. Taking least fixed points, i.e. initial alge-
bras, as the meanings of recursion would not reflect that it is indeed admissible
to unfold a recursion infinitely. An example that illustrates this is given be-
low, where we see that the initial algebra of the functor corresponding to the
delay equation given in Sec. 2 will be the proper denotation of finite delay and
not the delay operator derived using recursion. The solution is to take final
co-algebras as the meanings of recursion.

Infinite recursion: For a term ¢ with one free variable z, define
I[recz.t] = vI|t] ,

i.e. (the object of) a final co-algebra of the endofunctor Z[t]: Sp(inf) —
Sp(l/n\f). For this to be well defined, we must show existence of final co-algebras
for all functors. We will use Lem. 10 given in Sec. 1 to construct final co-
algebras for all relevant endofunctors as limits of w?-chains. The definition is
then extended to processes with more than one variable in the usual way as a
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limit with parameters [24]. From the explicit definitions given in Eq. (12)-(16)
we can show that all basic operators preserve w-limits. From the general fact
that limits commute with limits [24] we get that recursion preserves w-limits
as well, i.e. if rec z.t has free variables then Z[rec z.t] preserves w-limits.

Lemma 33 Let t be a (possibly open) term of SCCS with free variables in V.
If
I[t]y: ] Se( (Inf) — Sp(inf)

€V
(is well defined and) preserves w°P-limits then

y: ] Sp(Inf) — Sp(inf)

€V

(is well defined and) preserves w-limits, and similarly for sum, prefix, syn-
chronous product and recursion.

As for the basic operators, we can give an explicit denotation of recursion
[recx.t] = Z[recz.t]. First we choose an explicit representation of a final
presheaf T by defining Ta = {x}. Now we use the explicit definition of limits
in the category Set to define

[recztla = {(e, €1, n,...) € [T | [ (T)anss = €n},  (17)

new

where 7: [t](T) — T is the natural transformation given by 7,(e) = * for any
e € [t](T)a. We have projections m,: [recz.t] — [¢]*(T) and by universality
we get an (explicit) isomorphism p;: [rec z.t] — [¢]([rec z.t]), such that

[rec z.¢] — [ H1(T) (18)

p{ /ﬂ%

[t]([rec =.1])

commutes for any n € w. Note that, in general if ¢ has free variables V & {z}
then p; and 7, are natural transformations.

We have now given semantics to all operators in SCCSe except for finite de-
lay. Already at this stage, it is clear that this semantics will not (in general)
correspond to the operational semantics given in Sec. 5. A simple example
showing this is provided by the term recx.x, which according to the opera-
tional semantics denotes the process that cannot perform any actions, which
is the initial object in Inf. It is not difficult to compute the appropriate limit
finding that Z]rec z.x] = T, that is, the final object in Inf. However, if we re-
strict the language to only allow guarded recursion, we can prove the desired
correspondence.
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6.3 Semantics of Finite Delay

As mentioned above, the denotation of finite delay comes about as the initial
algebra of the functor corresponding to the delay equation.

Finite delay: For a closed term ¢, define
T[et] = pZ[1:x +t],

i.e. (the object of) an initial algebra of the endofunctor Z[1:z+t]: Sp(inf) —
Sp(l/n\f). This initial algebra exists by Lem. 11 since the denotation of prefix-
ing preserves connected colimits and the denotation of sum all colimits. The
definition is extended to open terms (in which z is not free) as a colimit with
parameters.

From the explicit definition of colimits in Set, we find that we can take
[et]a = {(del n, (o, e)) |n €w, a=1"" and e € [[t]| o/} (19)

as explicit definition of finite delay on objects (again the tag del is used to
indicate clearly that the element arise from the denotation of a finite delay).
For § < a, define [et]([«, 5]) by

, f(del n, (8, e:[8,0)) if B=1"8
(del n, (a,e)) 18,a] = {(del m, (L, *)) £ 8= 1" form <n,

for n € w, a = 1" and e € [t]]o’

To guarantee that the denotation of recursion is still well-defined, we check
that the denotations of finite delay preserve wP-limits. This can be done from
the explicit definition given above.

Lemma 34 Let t be a (possibly open) term of SCCSe with free variables in
V. If

I(tly: ] Sp( (Inf) — Sp(Inf)

€V
(is well defined and) preserves w°P-limits then

I[et]y: ]] Sp( (Inf) — Sp(inf)

eV

(is well defined and) preserves w°P-limits.

This completes the definition of our denotational semantics of SCCSe in the
category of separated presheaves Sp(Inf).
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6.4 FExtended Bisimulation Congruence

From the fact that the denotations (in Inf) of all basic operators are buil
from (component-wise) connected colimit preserving functors, it follows that
they preserve open maps in Inf. Using the fact that the inclusion of Sp(l/n\f)
in Inf is full, together with proposition 5 in [9] we get that they preserve open
maps in Sp(l/n\f) as well. It is easy to show from the explicit definition that the
denotations of finite delay preserve open maps (alternatively one could use
the same technique as used in [11] for showing that denotations of recursions
(given by initial algebras) preserve open maps). This gives us the following
result.

Proposition 35 Eztended bisimulation is a congruence with respect to all
basic operators of SCCSe as well as finite delay.

When it comes to recursion we meet a problem, namely to identify the “right”
notion of bisimulation (from open maps) for denotations of open terms, that
is, functors between presheaf categories. In [11], the notion of open maps is
extended to natural transformations, which is said to be open if all components
are open maps. This is shown to be sufficient to guarantee that open map
bisimulation is a congruence with respect to the denotations of recursion (given
by initial algebras) in a CCS-like calculus, but it seems not to be sufficient to
give the desired congruence property for recursion given by final co-algebras.

In [13,10] it is observed that connected colimit preserving functors between
presheaf categories can be regarded as objects of a presheaf category and thus
comes with a canonical notion of open maps. This gives a slightly stronger
notion of open maps. However, we have not been able to show that the deno-
tations yield connected colimit preserving functors.

Consequently, the question of finding a notion of bisimulation for the denota-
tions of open terms, which is a congruence with respect to recursion, remains
an unsolved question.

6.5 Full Abstraction

Using the representation theorem in Sec. 3 we can express the denotational
semantics given above in terms of generalised synchronisation trees, defining
D.(t) = £I([t])- This allows us to relate the denotational semantics directly
to the operational semantics given in Sec. 5 within the category GTS. First
of all we will restrict attention to terms with only guarded recursion, for the
reason given in Sec. 6.2 above. Recall from e.g. [1] that a recursion recz.t is
guarded, if all free occurrences of x in t is guarded, that is, within a subterm
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a:t' of t for some action a € Act. Let T, refer to the set of all closed, possibly
annotated terms of SCCSe with only guarded recursion. We will say that a
term ¢ in 7, is standard if for all subterms e,t' it holds that n = 0. We will
then show, that if we quotient by open map bisimulation, the denotational
semantics for standard terms in 7, is in fact fully abstract with respect to
extended bisimulation. This means that for any two standard terms ¢ and ¢’
of 7,, the presheaves [t] and [t'] are bisimilar if and only if the generalised
transition systems O,(t) and O(t') arising from the operational semantics are
extended bisimilar.

The proof (see App. B for a more detailed proof outline) goes by showing that
there exists an Inf -open morphism of generalised transition systems from
D.(t) to O(t) for any term ¢ in 7.

Proposition 36 Let t be a standard term in T,. Then there exists an Inf, -
open morphism of generalised transition systems Fy: D (t) — Oc(t).

From the proposition above and Prop. 27 and Cor. 28 in Sec. 4 we can now
deduce the desired result.

Theorem 37 Let t and t' be terms in T,. Then [t] and ['] are open map
bisimilar if and only if O(t) and O(t') are extended bisimilar.

7 Conclusion and Future Work

This paper has two main contributions. The first is a generalisation of the
categorical models for concurrency as developed in [8-10], providing both a
generalised transition system and a presheaf model for infinite computations,
suitable for agents with a notion of fairness or inadmissible infinite compu-
tations. The generalised transition systems are instances of those proposed
in [4] and the extended bisimulation given there is shown to coincide with the
abstract bisimulation from span of open maps in our model. The second main
contribution is that we give both an operational semantics and a denotational
semantics for SCCS with finite delay, representing the notion of inadmissible
infinite computations precisely as the operational semantics in [18] and allow-
ing behaviours to be discriminated up to extended bisimulation. This notion
of bisimulation is a strictly finer, and as argued in the present paper and
in [3], more intuitive, equivalence than the one obtained from the fortification
preorder in [18], which except for [3] has been the basis for previous deno-
tational semantics of SCCS with finite delay [20,19,30]. Benefitting from the
categorical presentation, our semantics appears to give a conceptually simpler
treatment of infinite computations than the one in [3].
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A number of questions remains to be explored. An obvious question is if one
could generalise the finite delay to a fair recursion as in [30]. A notion of
open maps between denotations of open terms stronger than the one in [11]
is currently being explored, which hopefully is a congruence with respect to
recursion. We also hope to be able to extend the presheaf model for (finitary)
dataflow given in [12] to infinite computations along the lines of the present
paper, giving a model of dataflow in which fairness, and in particular fair
merge [31], can be expressed. We get a characteristic HML-like path logic [9]
for extended bisimulation from the open maps approach. This logic should be
compared to the characteristic logic given in [4] and an edge-labeled version of
the (fair) CTL* logic. Being essentially CTL*-bisimulation, extended bisimula-
tion is decidable for SCCSe processes giving rise to finite generalised transition
systems, if the characterisation of admissible infinite computations can be de-
scribed as a Muller condition. Finally, it would be interesting to explore if
there is any relationship between the present approach and the more tradi-
tional domain theoretical approach to fairness and countable non-determinism
as in e.g. [32].
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A Grothendieck topology for a partial order

Here we give the definitions from [17] of a Grothendieck topology for a category
P and the sup topology, specialised to the case where P is a partial order. Let
P be a partial order and p € P. Define pl= {p' € P | p' < p}. A sieve S on p
is then a set S C pl, i.e. a downwards closed set below p.

Definition 38 (Grothendieck topology for a partial order) A Grothendieck
topology for a partial order P, is a function J which assigns to each object p
of P a set J(p) of sieves on p, in such a way that

Cl: ple J(p), (mazimal sieve)
C2: if S € J(p) and g < p then gl NS € J(q), (stability)
C3: if S € J(p) and R is any sieve on p, such that ¢ NR € J(q) for all

g€ S, then R € J(p). (transitivity)
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Assume J is a topology for a partial order P. We will now describe when
a presheaf X : P°® — Set in P is a sheaf with respect to J. Assume p is an
element of P and S € J(p), i.e. a sieve covering p. A matching family for S
of elements of X is a function that assigns to each element ¢ € S an element
zqy € X(q) such that z,-[r,q] = z, for any r < ¢. Given such a matching
family, an element = € X (p) is an amalgamation, if = -[q,p| = z, for all ¢ € S.
Then X is respectively a separated presheaf or a sheaf with respect to J if for
any object p € P, any matching family for any sieve S € J(p) has respectively
at most one or a unique amalgamation.

Definition 39 (separated presheaves and sheaves) For a partial order

~ A~

P and a Grothendieck topology J on P, let Sp;(P) and Sh,(P) be the full
subcategories of P with objects respectively the separated presheaves and the
sheaves with respect to J. If the topology J is clear from the context, we will
Just write respectively Sp(P) and Sh(P).

For a sequence « in Inf (as defined in Sec. 1), a sieve on « is simply a prefix
closed set of sequences below a. We only use the sup topology on Inf, which
to each sequence « assigns the set {S | S is a sieve on o and || S = a}, i.e. of
all sieves that have « as supremum. It is easy to check that this satisfy the
conditions in Def. 38, and that it works for any partial order. This topology
is in fact the canonical topology for Inf, being the largest topology such that
Yt is a sheaf for any a.

Definition 40 (sup topology for Inf) For the partial order Inf, the sup topol-
ogy J is given by J(a) = {al, {08 | B <j a}}, for o € Inf.

Note that if « is finite then J(«) contains just the maximal sieve o on a.

B Proof of Full Abstraction

We will here give a more detailed proof outline for Prop. 36 of Sec. 6.5 as
repeated below. Recall that 7, refer to the set of all closed terms of SCCSe
with only guarded recursion and that a term is standard if for all subterms
enu”, n = 0. Let T refer to the set of, possible open, terms of SCCSe with
only guarded recursion.

Proposition 41 (Prop. 36 of Sec. 6.5) Let t be a standard term in T,.

Then there exists an Inf-open morphism of generalised transition systems
F;: D(t) — O(t).
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We will need some preliminary definitions. For ¢ a term in SCCSe, F'V (t) will
denote the set of free variables in t. As in [18]* we define gd(t), the guard-depth
of t by

z) = gd(a:t) =0,

Yierti) = sup{gd(t;) +1|ie I},

t1 X to) = max{gd(t1) + 1, gd(t2) + 1}, and
recz.t) = gd(tlA) = gd(et) = gd(t) + 1.

gd(
gd(
gd(
gd(

This is a well defined ordinal, but not necessarily a finite number because
sums can be infinite. As in [18] the following is a key property of gd for use in
inductive proofs in the guard depth of terms with only guarded induction.

Lemma 42 If x is guarded in t then gd(t[t'/x]) = gd(t).
Proof By a straightforward structural induction. O

For a term ¢ in T, we define sd(t), the subagent depth of t by

o sd(a:t) = sd(Eiert;) = sd(recx.t) = sd(et) =0,
o sd(ty X ta) =1+ max{sd(t;), sd(t2)}, and
o sd(t[A) =1+ sd(1).

This is simply the maximal depth of a subagent and thus always finite.

For a generalised transition system T = (S, 4, —, Adm, Act) and s € S we de-
fine the generalised transition system above s in T by Tyq = (Ssq, 8, —>sa, Admsa, Act),
where

o Sgu={s"]s—>"5},
o = =— N (Ssq X Act x S,q) and
o Admg, = Adm N —=X%.

For any term ¢ in 7, let D(t) = (Saw), (L, *), =+, Admagy, Act). Recall that
Say = {(a,e) | @ € Infand e € |[t]](a)} and * is the unique element of
1) (L). Let Oc(t) = (Sot), t, —, Admyy, Act). Note that if ¢’ is a closed term
and t is a term with one free variable, say z, then [t[t'/z]] = [¢t]([¢']). For ¢
a term in 7, and s = (a,e) € Sy define the height of s by h(s) = |a| € w.
Note that if ~A(s) = n then (L, *) =" s.

We are now ready to define the underlying maps of states f;: Sai) — So(r) for
the morphisms F;: D(t) — O(t).

* However, we use the convention from [33] that A 4 1 is the successor of .
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Definition 43 Let Sy = {(s,t) | s € Saw) and t € Ty}. Define f: Sp — T, by
well founded recursion as follows (writing fi(s) for f(s,t))

e fi(l,x)=t,

o fui(aa,e) = fi(a,e),

d fzielti (a, (Sum 8 S)) = fti(8)7

o frixt (0,51 X 89) = fr,(51) X fi,(s2),

o frecas(s) = fyrecaiso) (E(p)s) if h(s) >0,
o fua(s) = fi(s)A if h(s) >0,

o feut(17, (del ', (L, %)) = eniut,

. ffnt(lnla, (del n’,s)) = fi(s) if |a| > 0.

where py: [recx.t] — [t]([recx.t]) is the isomorphism defined in Sec.6.2 and
the well founded order on St is the lexicographical order given by (s1,t1) <
(s2,t2) if h(s1) < h(s2) or h(s1) = h(sqe) and gd(t1) < gd(t2).

It is not difficult to check from the definitions in Sec. 6 that f; is only applied
to states in Sg(;) on the right hand side of the defining equations above.

From the map f: Sp — 7, we get a collection of maps {f;: Sq) — T4 | t € Ty}
that are nicely related to each other.

Lemma 44 Let F = {f;: Squ) = Ty | t € Ty} be the collection of maps given
above. Then there exists a collection of isomorphisms of generalised synchro-
nisation trees {os: De(t),, — D€<ft(s)) | t €T, and s € Sy} such that if
s =7 s" in D(t) then

(fi(s) =t) = fu(s) = fu (Ut,s(sl))a (B.1)

Proof (Sketch) We proceed by induction in the height of the states s. First
we define oy 5: De(t),, = D. (ft(s)) for t € T, and s = (L, *) € Sy, i.e. for
all roots. Then D,(t),, = D.(t) and f;(s) =t so we can define 0,, = 1p_g).
We then define oy ,: Dc(t),, — D (ft(s)) for ¢ € Ty, s € Sqq) and h(s) =1 by
transfinite induction in gd(t). For the induction step, assume t € 7, s € Sy
and h(s) = n + 1. Then there exists a unique s, such that s, —; s and
h(sp) =n.For s =} s' define 0,5(5") = 04,(50),01.6, (5) (01,5, (8"))- It is not difficult
to verify that this indeed defines an isomorphism from D(t), to D, ( ft(s)).
Assuming fi(s) =t and fi(s,) = t" we get by induction fy (ot,sn (s)) =t" and

fi(s') = fur (Jt,sn(sl)) = fu (Ut",a't,sn (s) (Ut,sn(sl))) = fv (Ut,s(sl))- =

From the lemma below it follows that the maps just defined are the underlying
maps of Fin -open morphisms from fin(D.(t)) to fin(O(t)).
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Lemma 45 Let {fi: Sqwy = T4 | t € Ty} be the collection of maps given in
Def. 43 above. If fi(so) = to for so € Sg) then

(Elsl € S-S0 % 51 and fi(s1) = tl) if and only if tog > t; | (B.2)

where — is the transition relation given by the operational semantics in Fig. 1
and Fig.3.

Proof We first show by transfinite induction in gd(t) that
(Elsl € Sawy-(L, *) S 51 and fi(s)) = tl) if and only if t 5 ¢; .

Then (B.2) follows for so € Sg) and f;(so) = to by using (B.1) of Lem. 44. O

Corollary 46 The maps f; as given above defines fort € Ty a map fi: Sy —
Soty which is the underlying map of a Fin-open morphism from fin(D.(t)) to
fin(O(1)).

To show that the maps f; define maps of generalised transition systems we
show that they preserve admissible computations. For an infinite admissible
computation ¢ of D,(t) we can always find a non-empty prefix of the image of
¢ under f;, in which all initially waiting subagents are fulfilled.

Lemma 47 Lett be a term in Ty and ¢ € AdmgyyN —* an infinite admissible
computation of D(t). Assume ¢, = (Sp,Gn, Spt1) for n € w and fi(s,) = tn.

Then there exists n > 0 such that

Vp € Pos,Im < n.t,(p) is not waiting.
Proof Easy induction in sd(ty) using Lem. 44. O

It follows by a simple mathematical induction that f; preserves admissibility.

Lemma 48 Let t be a term in Ty. Then fio,(Admaw)) C Admey, where fi
is the extension of fi to computations defined as in Def. 15.

We can now conclude from Lem. 17, Cor. 46 and Lem. 48 that f; defines a
morphism of generalised transition systems.

Proposition 49 Lett be a term inTy. Then fi: Souy — Sy 18 the underlying
map of states of a morphism of generalised transition systems. We will let
F;: D(t) — O.(t) refer to this morphism.
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To show that F: D(t) — O.(t) is an Inf | -open morphism we need to check the
two zig-zag conditions of Prop. 25 in Sec. 4. As already mentioned above, the
first condition follows directly from Lem. 45. To show the second condition, it
suffices to show that f;: S, — Sa() reflects admissible computations, i.e. that
Admy .y © Admy), where Admy = froo (Admegy) = {¢ € Comp(De(t)) |
ftoo(®) € Admy }. The proof goes by structural induction in ¢ and for the case
t =recz.t’ we will add a term T to the calculus SCCSe and let 7," = T,U{T}.
The operational semantics is extended by adding the rule

—a — (GEACt)
T=T

As denotation of T we take the explicit terminal element of Sp(Inf), i.e.
[T]a = {*}. The map fr: Sqcry = Soc) and isos o7 5: De(T),, = De(fr(5))
for s € Syt) extending Def. 43 and Lem. 44 are defined in the obvious way,
ie. fr(s) =T for all s € Sorty and o7 (a4 (0, ) = (¢, ). We then use the
following property of the maps f; in connection with substitution.

Lemma 50 Let t be a term of T such that FV (t) = {z}. If m: [t'] — [t"]
15 a morphism such that if

Vs € Squ),Vp € Pos,Vn > 1
(Elu”.ftu (El(m)s)p = exu” = . fy(s)p = enu')

then

Vs € Saj /a)), VP € Pos,Vn > 1
(Elu".ft[tu/m] (EU[tIm)s)p = equ” = . fypj1(s)p = enu') :

Proof Assume that m: [t'] — [t"] is a morphism such that

Vs € Sq),Vp € Pos,Vn > 1
(Hu".ftu (El(m)s)p = e,u" = T .fy(s)p = enu'> :

By well founded induction we prove for s € Sy(y /o)) and t € T2 with FV (t) =
{z} that

Vp € Pos,Vn > I(Eiu”.ft[tu/w] (EU[tIm)s)p = eu” = T fyp 21 (s)p = enu') :

The well founded order is, as in Def. 43, given by (s1,t1) < (s9,t2) if h(s1) <
h(s2) or (h(Sl) = h(s2) A gd(t1) < gd(t2))- =

We only use the lemma in two special cases, giving the two corollaries below.
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Corollary 51 Let t' € T, and t € T, such that FV(t) = {z} and let
m: [t'] = [T] be the unique morphism to the terminal presheaf. Then

Vo € Comp(O.(t[t'/x])),
firr /21, (EU[tIM) e @) is inadmissible == fyp /s () is inadmissible.

For ¢ a standard term in 7° such that FV(t) = {z} we define t* = z and
t"th = ¢t/ x].

Corollary 52 Let t be a standard term in T such that FV(t) = {z} and
let py: [recx.t] — [t[recx.t/x]] be the isomorphism given in Sec. 6.2. Then
Vn € w, V¢ € Comp(O.(t"[recx.t/x])),

fortifrecat/a] o (EL[E]" Pty ) o ®) is inadmissible == finjreco.t/a),, (@) is inadmissible.

Proof By definition frecos(s) = firecat/a) (E1(pr)s) if h(s) > 0 and since ¢ is
a standard term we have Vp € Pos,ft[,ecx_t/x](J_, K)p = eu = n =0, so
we get that Vs € Syfrec 2.t/2) VP € PosVn > 1, fireca.t/a] (8l(pt)s)p = €eu —>

frecz.t(8)p = €,u and the desired result follows from Lem. 50 and Def. 30, by
noting that ¢"*![recz.t/z] = t"[t[rec x.t/z]/z] and [¢]" = [¢"]. O

Lemma 53 Lett be a term in T such that FV(t) = {x}. Then
implies

Vt, € ET,VTL € w, Admfd(t,) - Admd(t:) - Admfd(t"[t’/x]) - Admd(tn[t//w])

Proof By an easy induction in n. O
Proposition 54 Lett be a standard term in T, such that FV(t) C {x}. Then
Vt' c 7.:1T’ (Admfd(t,) g Admd(t,) — Admfd(t[t’/:v]) g Admd(t[t’/w]))-

Proof (Sketch) By structural induction in ¢, using Lem. 52, Lem. 51 and
Lem 53 above in the case for recursion. O

From the proposition above it follows that f;  reflects admissibility for any

closed term ¢, which was what we wanted to show.

Corollary 55 Let t be a standard term in T,. Then Admfd(t) C Admyg).
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