Formal Verification of the ARAN Protocol
Using the Applied w-Calculus

Jens Chr. Godskesen *

IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S, Denmark
jcg@itu.dk

Abstract. In this paper we carry out an analysis of the ARAN protocol
for secure routing in ad hoc networks. The protocol is modeled in the
Applied m-Calculus and the analysis is carried out using the verification
tool ProVerif. We conjecture that the protocol, despite its use of certifi-
cates and signing of messages, is erroneous. We propose an addendum to
the protocol that we claim to be a guard against the identified attack.

1 Introduction

The use of wireless networks is becoming more and more important due to the
increasing and widespread use of communicating mobile devices. Securing these
kinds of networks against missuses and attacks has therefore been the subject
of much research recently. In this paper we study mobile ad hoc networks which
are self organizing networks without centralized access points and a pre-deployed
infrastructure for routing messages. An ad hoc network may be formed when a
collection of mobile nodes join together and agree on how to route messages for
each other.

Most routing protocols for ad hoc networks, say the reactive protocols DSR [9]
and AODV [16], or the proactive protocols DSDV [15] and OLSR [17] are focusing
on providing routing services without considering security and hence inherently
all participants are assumed to be trusted. This may of course be unrealistic in
many environments, say a hostile environment like e.g. a military battle field, or
other information sensitive environments like a police or a safety-critical business
network.

Typical security problems caused by malicious nodes in an ad hoc network
are: redirection of network traffic (including denial-of-service attacks and tun-
neling), attacks where the adversary impersonates another node (spoofing), and
attacks using fabrication of false routing messages.

In order to alleviate these kind of problems recently secure routing proto-
cols for ad hoc networks have been proposed, for instance Secure AODV [20],
SEAD [8] (which is based on DSDV), SRP [14], ARIADNE [7], and ARAN [18].

* Supported by grant no. 272-05-0258 from the Danish Research Agency.

A lot of research has been devoted to automatic verification of cryptographic
protocols for ordinary fixed networks, probably most notably is the work done
by Lowe [10]. However, little emphasis has so far been put into showing correct-
ness of secure routing protocols for ad hoc networks. One exception although is
carried out in [11] where a manual proof of a flaw in SRP is established, but
automatic proofs for ad hoc network protocols (e.g. [5,3,19]) are to the best
of our knowledge only carried out for protocols not dealing with security. The
novelty of this paper is that we focus on automatic verification of secure routing
protocols for ad hoc networks.

In this paper we analyze the ARAN protocol by modeling it in the Applied
m-Calculus [2] and using the tool ProVerif [4]. We show that false routes can be
constructed by an adversary establishing a man-in-the-middle spoofing attack.
Finally, we remedy the problem proposing a solution of how to solve such kind
of attacks in ARAN.

2 The ARAN protocol

In the following we briefly describe the protocol being the subject of our studies.
The name of the protocol is Authenticated Routing for Ad hoc Networks (ARAN)
[18] and it is a proposal for a secure protocol for on-demand routing in ad hoc
networks.

The novelty of ARAN compared to the standard insecure routing protocols
is to make use of cryptographic certificates in each communication step between
participating nodes. Therefore the preliminary step of ARAN is a certification
process relying on a trusted certificate server T

In this initial process it is assumed that all nodes know the public key, K7,
of the trusted server T, and also it is assumed that any node in the network,
A, has a private and public key pair, K4~ and K4 respectively. The prelimi-
nary process essentially means that before entering the network each node must
securely authenticate its identity to 7', and by so doing obtain a certificate. A
certificate, cert 4, for a node A is defined by:

CCT‘tA = [ipA,KA+vtae]KT_)

where ip4 is the IP address of A, K47 its public key, and ¢ and e are timestamps
for the creation and expiration of the certificate respectively. The concatenation
of the elements is digitally signed by T'. !

2.1 Route discovery

After the preliminary certification step the validated nodes may begin their
authenticated route discoveries. A source node A begins the instantiation of a

! The notation [m]x denotes both the message m and the signature of m generated
by the key K.

route to a destination D by broadcasting a signed route discovery message (or
package) to its neighbors:

A = brdcast : [rdp,ipp,nalk,-,certy

where rdp denotes the type of the message, ipp the destination IP address, and
ny4 is a nonce; all signed by A. A’s certificate is appended to the signed part of
the message.

A node B receiving A’s request remembers the initiator and sets up a reverse
path back to A. Then B validates that A’s certificate has not expired and ex-
tracts the public key from it in order to validate the signature of the request. B
also checks, based on ip4 and n4 that it has not already processed the request
previously. 2 If all checks are passed B signs the first part of the request, appends
its own certificate, and broadcast a forwarded request message:

B — brdcast : [[rdp,ipp,nalk ,-]k,-,certa,certp

A neighbor C receiving B’s forwarded message validates A’s and B’s certificates
and signatures, checks that it hasn’t seen A’s request before, records B as its
predecessor in the back path, replaces B’s certificate with its own, and broadcasts
the request originally broadcasted by A but now as a forwarded request message
signed by itself:

C — brdcast : [[rdp,ipp,nalk ,-]k.-,certa,certc

Each node along the path to the destination repeats the step described above.
If the destination D receives a (forwarded) request messages from some node
E it validates the certificates and the signatures as described above, it also checks
that it has not answered the request before.
D then unicasts a signed reply messages along the reverse path back to E:

D — E :[rep,ipa,nalg,-,certp

where rep is the type of the message, ip4 is the IP address of the request initiator
A, and n 4 is the nonce being part of the request by A, and certp is D’s certificate,

E validates the certificate and the signature of D’s reply, signs the reply, and
unicasts the reply together with its certificate as a forwarded reply message to
its predecessor F' in the back path:

E — F :|[rep,ipa,nalk,-ky-,certp,certp

Following the pattern for the request messages, each node along the path back
to the source validates the (forwarded) reply message, records the sender as the

2 Tt is assumed that a nonce never reappears within the lifetime of the network so a
nonce together with A’s IP address uniquely identifies the request.

3 Note that there is no guarantee that the shortest path from the source to the desti-
nation is then selected.

forwarding node towards D, removes the senders certificate and signature, signs
the reply message itself, and adds its own certificate before forwarding the reply
message to its predecessor.

In order to avoid replay attacks each node along the back path checks the
nonce of the reply message. In addition to the above mentioned, ARAN also
contains features for route maintenance and key revocation. We shall not further
address these topics in this paper and for a detailed presentation we refer the
reader to [18].

3 The Applied w-Calculus

The Applied ©-Calculus [2] is a simple extension of the w-Calculus [13] with
value passing, primitive functions, and term equations. Hence in contrast to the
m-Calculus where only names are passed in the Applied 7-Calculus messages may
also consist of values constructed from names and functions. The modeling of
security protocols has been a major motivating example during the development
of the Applied 7-Calculus.

Since a complete presentation of the Applied 7-Calculus is outside the scope
of this paper we restrict the description below to the sub-calculus that has been
applied in our modeling of the ARAN protocol. The presentation is based on
the variant of the calculus given in [1], the same variant that is implemented in
the ProVerif tool [4] that is presented in Section 5.

3.1 Syntax

The syntax of the calculus is composed of terms (data) and processes. Terms are
defined relative to an infinite set of names, an infinite set of variables, and two
disjoint finite sets of constructor and destructor symbols. Each constructor and
destructor symbol is equipped with an arity.

As an example, let {ok, pk, sk, sign} be a set of constructor symbols and let
{check, get} be a set of destructor symbols where ok has arity 0 (i.e. a constant),
where get, pk, and sk have arity 1, where sign has arity 2, and where check has
arity 3. Constructors are used to build terms so ok is a term, and if s and t are
two names then

sign(pk(s), sk(t)) (1)
constitute a term. We may let pk(s) be the constructor for a public key based
on some seed s and we may let sk(t) be a private (secret) key based on the seed
t. The application of the constructor sign then denotes the signing of the public
key pk(s) with the secret key sk(t).

Destructor symbols do not appear in terms, instead a destructor based on
the arguments it is given may produce a new term. How destructors precisely
manipulate terms are defined by equations, each destructor is equipped with a
finite set of defining equations. For instance, we may let the destructors check
and get be defined by:

check(M, sign(M, sk(N)), pk(N)) = ok , get(sign(M,sk(N))) =M . (2)

That is, checking the signature of a message M with the public key matching the
private key by which the message was signed yields the result ok. The destructor
get simply returns the contents of a signed message.

Formally, destructors are defined to be partial functions, i.e. the application
of a destructor to a tuple of terms is only defined in case the tuple matches one
of the destructors defining equations (we refer the interested reader to [1]).

Given constructor and destructor symbols, an infinite set of names, and an
infinite set of variables the set of terms is defined as follows:

M,N ::= terms
a,b,c names
T,Y, 2 variables

f(My,...,My) constructor application

where f is a constructor symbol with arity k.

The processes in the Applied m-Calculus are mostly standard process con-
structs and naturally most of them are taken from the 7-Calculus. Based on the
set of terms defined above, including the infinite set of names, and the infinite
set of variables, the set of all processes is defined by the grammar:

PQ:= processes
0 inactive process
Pl@Q parallel composition
va.P name restriction
if M =N then P else Q) conditional
a(xy,...,zx).P message input
a(My,...,M).P message output
let x = M in P local definition

let x = g(My, ..., My) in Pelse Q destructor application

The process 0 is the inactive process and P || @ is the parallel composition
of P and Q. The process va.P binds the name a in P and restricts a to P.
if M = N then P else) is a standard conditional. The process a(x1, ..., x).P

binds z1,...,z in P and may input terms Ni,..., Ny on channel a and in so
doing replace all free occurrences of z; in P by N;,i =1,..., k. a{M,..., My).P
may output My, ..., My on channel a and become P. The local definition let x =

M in P binds the variable z in P and executes P with all free occurrences of
z replaced by M. The process let © = g(Mi, ..., M) in Pelse @ also binds x
in P, if the destructor application g(Mj, ..., M}) evaluates to a term then z is
bound to the result in P, otherwise the process becomes Q. 4

We let P{M,/z1,...,M;/z;} denote the process P where z1,...,z; are
substituted by My,..., M respectively. The set of free names in a process P
is denoted by fn(P), and its free variables are denoted by fv(P). A process P
is closed if fu(P) = (. P denotes the set of all closed processes. As usual we
identify processes up to a-equivalence.

4 By convenience we have chosen a polyadic variant of the Applied 7-Calculus, and
we have left out replication because it is not used in the present paper.

As shorthands, whenever @) is 0, we abbreviate if M = N then P else Q
by if M = N then P, we write let * = g(My,...,My) in P instead of
let © = g(My,...,My) in P else @, and also, we write a(M,..., My) for
a{My,..., Mp).Q.

3.2 Semantics

The operational semantics of processes in the Applied w-Calculus is standardly
given by a reduction relation, — C P x P, defined with respect to a struc-
tural congruence denoted by =. Formally, = C P x P is the least equivalence
relation that is also closed under parallel composition and name restriction,
where (P, ||,0) is a commutative monoid, and such that va.vb.P = vb.va.P and
va.(P || Q) = P || va.Q if a & fn(P).

The reduction relation — C P x P is the least relation closed under struc-
tural congruence, parallel composition, and name restriction, and also satisfying
the rules in Table 1. °

a(M,...,Mp).P| a(z1,...,2x).Q — P || Q{M:1/z,..., My /xr}

let © = g(Ma,...,My) in P else @ — P{M/x}, if g(My,...,M)=M
let x = g(Mi,...,My) in P else @ — Q , if g(Mu,..., M) is undefined
let t =M in P — P{M/z}

if M =N then Pelse @ — P, ifM=N

if M =N then Pelse @ — @, ifM#N

Table 1. Reduction Rules

To give an example, recall the constructors sign, pk, and sk and the destruc-
tor get from Section 3.1 above and let P and @ be defined by:

P etz = sign(t, sk(s)) in a(pk(s), z) (3)
Q= alwr,x2).let y = get(zs) in ala1,y) (4)

Then P — a{pk(s), sign(t, sk(s))) and
P || Q@ — a(pk(s), sign(t, sk(s))) || @ ()

— let y = get(sign(t, sk(s))) in a(pk(s),y) — a(pk(s),t)

® Notice that we have overloaded the use of the symbol = to both being part of the
syntax of process expressions and also denoting equality in the equational theory on
terms.

We say that a process P outputs M on channel a if there exists a sequence of
transitions P —* vay ...va;.(@a{Mq,...,My).P, || P»), a € {ai1,...,q}, and
M € {M,...,My}. % Hence, the process P defined by (3) above outputs on
channel a the public key pk(s) and the message sign(t, sk(s)) signed by the
corresponding secret key sk(s). The parallel composition P || @ in the example
(5) outputs the same as P on channel a as well as ¢ and the public key pk(s).

3.3 Secrecy

The authors of [1] define a notion of secrecy of data that turns out to be sufficient
for our purposes. They define secrecy relative to a finite set of names .S, the names
(including channel names) assumed to be known in advance by an adversary.
They let @ be an S-adversary if fn(Q) C S and proceed defining;:

Definition 1. P preserves the secrecy of M from S if and only if P || Q does
not output M on channel a for any S-adversary) and any a € S.

As an example, the process P defined by (3) does not preserve the secrecy
of pk(s) and sign(t, sk(s)) from {a} because it may send out the terms on a.
Also, P does not preserve the secrecy of the name ¢ from {a} because sending
out the composed term sign(t, sk(s)) may permit an {a}-adversary to compute
t and send it out on a as demonstrated by (5) above choosing @) defined by (4)
as the adversary. P does however preserve the secrecy of the seed s from any
S-adversary where s ¢ S because although s is part of the term sign(t, sk(s))
sent out on a no such S-adversary may compute s (modulo the computational
theory of our running example).

4 The ARAN model

In this section we provide a simplified model of the ARAN protocol as a process in
the Applied w-Calculus. One simplification being that we do not explicitly model
the preliminary phase of ARAN where certificates are distributed to nodes, in-
stead we assume all valid nodes a priori to be the owner of a certificate issued
by the trusted certificate server.

Another simplification we make is to assume that the validity of a certifi-
cate is not limited to a certain time interval, so we abstract from dealing with
timestamps in certificates. Also, as described in Section 2, in the checking of
recycling of messages the IP address of the owner of a certificate is an important
ingredient, however since we are not going to deal with recycling attacks in this
paper we choose to eliminate the IP address from a certificate. Hence we let a
certificate be only a signed public key as defined by (1) in Section 3.1. The model
makes use of two destructors, check and get, for dealing with certificates. Their
defining equations are given by (2) in Section 3.1.

The third and final restriction is that our simplified model of the ARAN
protocol is just a simple one-shot version of the protocol where only one request

6 *

—" is the transitive and reflexive closure of —».

and its reply are carried out, and to demonstrate the attack in Section 6 it turns
out to be sufficient to let only three nodes participate in the protocol, i.e. an
initiator Ag and a destination Cy with an intermediary node By that forwards
request and reply messages.

Formally we let the ARAN model be defined by:

Aran & vt.(Ao | Bo | Co) (6)

where the name ¢, being private to the protocol, is assumed to be the seed for
the keys of the trusted server issuing certificates.

Ao def vs.let Teere = sign(pk(s), sk(t)) in A;
Al déf let Tsreq = sign(rdp, Sk(S)) n a_1<xsreq7mcert)~a2(xla T2, 'T3)'A2

Ay et Tsrep = get(x1) in if rep = get(Tsrep) then As

As def let Tarey = get(x2) in if check(T drey, T2, pk(t)) = ok then A4
Ay def if check(rep, Torep, Takey) = 0k then As

As def et Tfhey = get(xs) in if check(Tpey,x3, pk(t)) = ok then Ag

£ .
Asg def if check(Zsrep, T1, Tpey) = 0k then az{success)

Fig. 1. The request initiator process Ag.

The route request initiator Ag is defined by the equations in Figure 1 where
s is a new secret name being the seed for the private and public keys, and x cey¢ is
Ag’s certificate. The request message is defined to be just the pair of the signed
identifier rdp and the certificate. We leave out the IP address of the destination
from the request message because the destination in our simple model is fixed
to be Cp. The reason why we leave out the nonce from a request is that they
are solemnly there to help detecting recycling of messages which we do not care
about in this paper.

The route discovery message is sent out on channel a;. The process then
waits for a triple (z1,z2,x3) of inputs on channel as. Expectedly the inputs are
in turn: i) a reply message signed by the destination and the forwarding process,
ii) a certificate from the destination, and iii) a certificate from the forwarding
process. First it is checked whether z; contains the identifier rep. Then the
destination certificate zo is validated and afterwards the signature of the reply
message is checked using the key from z,. Next, the certificate x3 is verified and
the key in z3 is used to validate the signed reply z;. The successful reception of
a reply is signaled by sending out success on channel as.

The names rdp, rep, and success are all free names of the model, and likewise
are the channel names ay, as, a3z as well as the channel names b; and bs used in
the remaining processes of the model.

The process By defined in Figure 2 is supposed to receive a pair, £; and z,
of a route discovery message sent on channel a; by Ag. It extracts the contents

Bo et s let Zeert = s1gn(pk(s), sk(t)) in a1(z1, z2).B1
B if rdp = get(x1) then let Tirey = get(z2) in B
B> def if check(Zikey, x2,pk(t)) = ok then Bs

Bs def if check(rdp,z1,Zikey) = 0k then By

Ba et 2orey = sign(w, sk(s)) in b1 (Lareq, T2, Teert)-b2(y1, y2).Bs
Bs ' if rep = get(y1) then let z g, = get(y2) in Bo
Bs = if check(Tarey, @2, pk(t)) = ok then By

def . L
By E let Tarep = sign(x1, sk(s)) in @2(Tarep, T2, Teert)

Fig. 2. The intermidiary process By.

of 1 and checks that it contains the identifier rdp, after which it verifies the
certificate x5 and validates that z; has been properly signed. Then it signs the
request z; itself and sends out its forwarded request message on channel b;.
On channel b, it awaits a reply message, y1 and yo. It checks that the reply
contains the identifier rep, validates the certificate y2, and finally, it signs the
reply message and outputs its forwarded reply message on as.

Co et s let Zeert = sign(pk(s), sk(t)) in bi(z1, z2,23).C1
Cr % Jet Tsreq = get(x1) 1n if 1dp = get(Tsreq) then Co

Cs def let Tigey = get(x2) in if check(ZTikey, 2, pk(t)) = ok then C3
Cs def if check(rdp, Tsreq, Tikey) = 0k then Cy
Cy def Jet Zfrey = get(xs) in if check(Tprey,x3, pk(t)) = ok then Cs

Cs def if check(ZTsreq, T1, Tirey) = 0k then Ez(sign(rep, $k(8)), T cert)

Fig. 3. The destination process Co.

The destination process Cy defined in Figure 3 expectedly receives a for-
warded request message, (r1,22,23) from By on channel by. It first tries to
extract the identifier rdp from x; (using the destructor get twice), then it veri-
fies the two certificates x5 and x3 and checks that the reply was properly signed,
and finally it returns its reply message on channel b,.

As for the request message also in the reply, the IP address of the receiver is
left out because the receiver is fixed. Also, for the same reason as for the request
messages since recycling is not an issue of analysis in this paper a nonce is not
part of the reply message.

5 ProVerif

The tool ProVerif [4] is an automatic verifier for cryptographic protocols. It is
based on logic programming. The tool is efficient in proving secrecy properties
of protocols, in particular because it, as stated in [4], avoids the state space
explosion problem thanks to an efficient solving algorithm.

In [1] the authors provide a translation from the variant of the Applied =-
Calculus considered in this paper to ProVerif such that e.g. secrecy as defined in
Section 3.3 can be verified automatically. In order to check whether a process P
preserves the secrecy of some message M from a set of names S one only needs
to specify P, the names S, the constructors and their arities, and the equations
for the destructors. Then the attacker may use the following capabilities to learn
more:

— For each constructor f of arity k, if the attacker knows My, ..., My then it
knows also f(M;, ..., M).

— For each destructor g and for each of its defining equations g(M, ..., M) =
M, if the attacker knows My, ..., M} then it knows also M.

— If the attacker knows channel a and if My,..., M} are sent on a, then the
attacker knows also M, ..., M.

— If the attacker knows channel a and Mj, ..., M} then the attacker may send
My, ..., M on a.

fun sk/1.

fun pk/1.

fun sign/2.

reduc get(sign(m,sk(x))) = m.

free a.

private free s,t.

let P = let x = sign(t,sk(s)) in out(a, (pk(s),x)).
process P

Fig. 4. A sample ProVerif specification.

The process P defined by (3) in Section 3.2 is written using ProVerif syntax
in Figure 4. We denote the three constructors sk, pk, and sign and their arities,
we give the equation for the destructor get. We define that the channel name a is
public and hence known by the adversary, but that the names s and ¢ are private
and thus not known by the adversary, and we specify the process P. Finally we
tell that P is the process for investigation.

Given the specification in Figure 4 and asking now ProVerif the query:

query attacker:t. (7)

10

meaning: “Will P preserve the secrecy of t from a” (or more intuitively: “Will
the attacker know the name t”) we are told confirmatively that:

An attack has been found.
RESULT not attacker:t is false.

If we replace the name t by the name s in (7) we get as expected the affirmative
answer:
RESULT not attacker:s is true.

6 Analysis

In this section we analyse the model of the ARAN protocol defined above in
Section 4 by equation (6).

As a beginning we validate that a request message can be send from Aq via
node By to Cy, and that the request is properly acknowledged by Cy as a reply
message returned in the opposite direction via By to Ag. We may show this
successful route request property indirectly by letting the attacker know only
about the channel name a3 and then check if it is told the secret success, i.e. we
ask ProVerif the query:

Q = attacker : success. (8)

ProVerif answers confirmatively: !Q is false.

Co' & vs.let xeo = sign(pk(s), sk(t)) in c1(z1, z2,23).C1’

Oy % Jet Tsreq = get(z1) in if rdp = get(Toreq) then C'

cy' € et Tikey = get(z2) in if check(Tipey, T2, pk(t)) = ok then Cs'
cy' & if check(rdp, T sreq, Tikey) = ok then Cy’

O et They = get(x3) in if check (T frey, T3, pk(t)) = ok then Cs’

s if check(Toreq, T1, Tfkey) = 0k then Ta{sign(rep, sk(s)), Tcert)

Fig. 5. A revised destination process Co’.

Next, suppose a situation in which the destination Cy has moved out of the
communication range with Ay and By. This we may catch indirectly by enforcing
that Cp has no channel names in common with the other nodes, e.g. by letting
the occurrences of the free names b; and by in Figure 3 be replaced by new free
names, say ¢; and ¢y respectively, as defined in Figure 5, and hence defining the
revised ARAN model, Aran’, by:

Aran’ € vt.(Ag | Bo | C)) . 9)
If we want to check as to whether the attacker may now take over the role
of the inaccessible destination Cy’ and generate false route request replies we

11

may let the channel names b; and b2 be public, thereby allowing the attacker
to communicate with the node By. Letting also as be public as before and
asking again the query defined by (8) ProVerif now reports: !Q) is true, hence
the attacker cannot generate false route request replies.

A slight modification to the seemingly safe changes to the ARAN model
defined above by (9) turns out to pave the means for spoofing attacks where
false routing information may occur. As before we expect that the destination
Cy' is outside the communication range of the other nodes in the network and
further we now also assume that the attacker is within the ranges of both By
and Cy'. In the revised model (9) this comes into effect by letting not only ag,
b1, and by but also the new free names in Figure 5, ¢; and ¢o, be public.

Asking then the query (8) ProVerif in this case answers: !Q) is false, i.e. it is
indeed possible, although the destination Cy' is out of range from the other nodes
in the network, to obtain a successful path from Ay to Cy'. From the diagnostic
information provided by ProVerif it follows that the attacker has carried out
a spoofing attack on the ARAN protocol, an attack where the adversary both
impersonates By and Cp'. It turns out that the attacker just relays messages
sent to and from By and Cy’, i.e. to be more precise: forwarded request messages
supposed to be send from By to Cy’ on channel b; are caught by the attacker
and send unchanged to Cy’ on channel ¢;, and likewise reply messages from Cjy’
sent out on ¢y are forwarded unaltered by the attacker on by to Bg. 7

In the next section we provide a solution to the attack.

7 A solution proposal

The communication primitive in mobile ad hoc networks is broadcasting, hence
any neighbor to a node can listen to all messages send by that node, at least if
we assume that communication between nodes is bi-directional.

The watchdog principle was introduced in [12] as a means to detect routing
misbehaviour between nodes. The watchdog idea is simply that when a node
X sends a packet to a node Y it records the message sent. If X overhears Y
forwarding its message then X knows that the messages has been successfully
forwarded, if X does not within a certain time interval overhear the forwarding
of its messages it registers that Y is acting erroneously.

We may adapt the watchdog idea similar to what has been done in [11] to
help detect the spoofing attack outlined above. That is, we kind of reverse the
checking in the watchdog such that a node X should instead check that it never
overhears messages identical to the ones it has sent out. If that happens X knows
that a neighbor is behaving in contradiction with the ARAN protocol.

To reduce the effect of malicious (or malfunctioning) nodes we suggest to ex-
tend the ARAN protocol such that any node X initiating or forwarding a request
message 1 overhears all neighbors and records the ones correctly forwarding r

" In order to forward a message from a source to a destination without revealing its
true identity the attacker must in real life impersonate the source by changing its
MAC or IP address to that of the source.

12

within a certain time limit ¢. ® Hence to each initiated or received request mes-
sage a node maintains a positive list of neighbors. The entries in the list may
be triples consisting of the IP address of the request initiator, the nonce of the
request, and the TP address of the successful neighbor. The checking of correct
forwarding may be carried out similarly to the current validation of forwarding
in ARAN.

If a reply for request r is returned the receiving node should check that the
reply is sent from a node in its positive list for r, and only if that is the case the
node forwards the reply itself. We conjecture that this extension to the ARAN
protocol will alleviate the relay attack outlined above.

However, although our suggested extension may work well for our demon-
strated relay attack, it will not suffice if two neighbors X and Y are first outside
each others transmission range when the reply message for a request r broad-
casted by X is returned, because then X may have Y in its positive list for r
and an attacker may therefore safely relay a reply from Y to X.

To overcome also this problem we suggest that a node should overhear the
forwarding of any of its reply messages and record it in a negative list if the
message is not forwarded according to the rules of ARAN, or if it does not
receive a challenge (described below) within ¢ time units. The entries in the list
may be pairs of the IP address of the request initiator and the nonce of the
request.

When a node X receives a forwarded reply

' =[[rep,ipa,nalk, -k, -, certp, certy (10)

it checks the message according to ARAN and if Y (i.e. (ipa,na,ipy)) is in its
positive list for the corresponding request then X sends back to Y the challenge

[ipAanA]Kxf, CGTtx,{n}Ker (11)

where n is a new nonce and {n} g, + is the encryption of n by the public key of
Y. X then awaits to have n sent back encrypted by its own public key. ° Y only
returns n in case 7' (i.e. (ipa,n4)) is not in its negative list and if it receives (11)
within ¢ time units after submitting (10). If X receives {n}; + then it proceeds
according to ARAN.

With these extensions to ARAN, if X receives (10) directly from V', and if Y’
is in X'’s positive list for the corresponding request, then the reply is forwarded
according to ARAN along the back path from X. Clearly, when X in this case
makes a challenge to Y it must happens fast enough to satisfy the time limit ¢.

Suppose instead that an attacker wants to exploit that X is not within Y’s
transmission range when the reply (10) is transmitted between the two. Since

8 Suppose X and Y cannot hear each other. The time limit ¢ should be devised such
that it is not possible within ¢ time units for a node A to: receive a message m from
X; move to let A and Y, but not A and X, be within transmission range; forward
m to Y and pick up Y’s forwarding of m, say m'; and finally move back to let X,
but not Y, be within A’s transmission range where then m’ is revealed to X.

® The public keys of X and Y may be retrieved from their certificates.

13

the attacker within ¢ time units cannot forward r' to X without Y listening
and in return obtain a proper challenge to display to Y then Y registers 7’ in
its negative list. Hence X never receives its nonce and never forwards r’ so the
attack fails.

8 Conclusion

In this paper we have applied the automatic verification tool ProVerif on an
Applied 7-Calculus model of the ARAN protocol for secure routing. To the best
of our knowledge we are the first to carry out formal automatic verification of
that kind of protocols.

We conjecture that the ARAN protocol, despite its use of certificates and
signing of messages, is erroneous in that an adversary may inject false routing
information by a man-in-the-middle spoofing attack. We propose an addendum
to the protocol that we claim to be a guard against the identified attack.

The attack was identified by a manual modification of the ARAN model
to impose the necessary node mobility. Ideally an automatic verification tool
should by itself identify the node movements that facilitates attacks, but that
seems to be a promising research direction. To help identifying this kind of
attacks a modeling language therefore should support explicit node mobility,
and broadcasting of messages should be a communication primitive. It seems
also to be advantageous to have an explicit notion of location and a supporting
metric in such a language since broadcasted messages have a limited transmission
range. Moreover, an explicit account of time in the language is needed in order
to support our needs for dealing with time constraints.

Perhaps equally important is that a revision of the standard Dolev-Yao at-
tacker model [6] is needed, it seems unfeasible that an adversary can overhear
all communication in ad hoc networks, but on the other hand the overheard
channels should be able to change over time.

As future work it would be of interest to verify our suggested solution.

References

1. Martin Abadi and Bruno Blanchet. Analyzing Security Protocols with Secrecy
Types and Logic Programs. Journal of the ACM, 52(1):102-146, January 2005.

2. Martin Abadi and Cedric Fournet. Mobile vales, new names, and secure commu-
nication. In Hanne Riis Nielson, editor, 28th ACM Symposium on Principles of
Programming Languages, pages 104-115, London, UK, January 2001. ACM.

3. Karthikeyan Bhargavan, Davor Obradovic, and Carl A. Gunter. Formal verification
of standards for distance vector routing protocols. J. ACM, 49(4):538-576, 2002.

4. Bruno Blanchet. An efficient cryptographic protocol verifier based on prolog rules.
In Steve Schneider, editor, 14th IEEE Computer Security Foundations Workshop,
pages 82-96, Cape Breton, Nova Scotia, Canada, June 2001. IEEE Computer So-
ciety Press.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

R. de Renesse and A.H. Aghvami. Formal verification of ad-hoc routing proto-
cols using spin model checker. In IEEE MELECON, pages 331-340, Dubrovnik,
Croatia, May 2004. IEEE Computer Society.

D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans. on
Information and Theory, 29(2):198-208, 1983.

Y. Hu, A. Perrig, and D. Johnson. Ariadne: A secure on-demand routing protocol
for ad hoc networks, 2002.

Yin-Chun Hu, David Johnson, and Adrian Perrig. SEAD: Secure efficient distance
vector routing for mobile wireless ad hoc networks. In Proceedings of MobiCom,
September 2002.

David B. Johnson, David A. Maltz, and Josh Broch. DSR: The dynamic source
routing protocol for multihop wireless ad hoc networks. In C.E. Perkins, editor,
Ad Hoc Networking, chapter 5, pages 139-172. Addison-Wesley, 2001.

G. Lowe. Breaking and fixing the needham-schroeder public-key protocol using
fdr. Software - Concepts and Tools, 17:93-102, 1996.

John Marshall, Vikram Thakur, and Alec Yasinsac. Identifying flaws in the secure
routing protocol. In Proceedings of The 22nd International Performance, Comput-
ing, and Communications Conference (IPCCC 2003), pages 167-174. IEEE, April
2003.

Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating routing misbe-
havior in mobile ad hoc networks. In MobiCom ’00: Proceedings of the 6th annual
international conference on Mobile computing and networking, pages 255-265, New
York, NY, USA, 2000. ACM Press.

Robin Milner. Communicating and Mobile Systems: the w-Calculus. Cambridge
University Press, May 1999.

P. Papadimitratos and Z.J. Haas. Secure routing for mobile ad hoc networks. In
Proceedings of the SCS Communication Networks and Distributed Systems Model-
ing and Simulation Conference (CNDS 2002), January 2002.

Charles Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers. In ACM SIGCOMM’94
Conference on Communications Architectures, Protocols and Applications, pages
234-244, 1994.

Charles E. Perkins and Elizabeth M. Royer. Ad hoc on-demand distance vector
routing. In Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems
and Applications, pages 90-100, February 1999.

Amir Qayyum, Laurent Viennot, and Anis Laouiti. Multipoint relaying: An effi-
cient technique for flooding in mobile wireless networks. Technical Report Research
Report RR-3898, INRIA, February 2000.

Kimaya Sanzgiri, Daniel LaFlamme, Bridget Dahill, Brian Neil Levine, Clay
Shields, and Elizabeth M. Belding-Royer. Authenticated routing for ad hoc net-
works. IEEE Journal on Selected Areas in Communication, special issue on Wire-
less Ad hoc Networks, 23(3):598-610, March 2005.

Oskar Wibling, Joachim Parrow, and Arnold Pears. Automated verification of ad
hoc routing protocols. In FORTE, pages 343-358, Madrid, 2004. IFIP Internation
Federation for Information Processing.

Manel Guerrero Zapata. Secure ad hoc on-demand distance vector routing. SIG-
MOBILE Mob. Comput. Commun. Rev., 6(3):106-107, 2002.

15

