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Abstract. We suggest &€alculus for Mobile Ad Hoc Networks, CMAN. A node in a network is a process equipped
with a location, it may communicate with other nodes usyrgchronous spatially oriented broadcast where only

the current neighbors receive the message. Nodes may auoisty change their neighbor relationship and thereby
change the network topology. We define a natural reductioraséics and strong and weak reduction congruences
as well as a labeled transition semantics and prove strodgnaak contextual bisimulation respectively to be
sound and complete co-inductive characterizations of the corresponding cédn congruences. For the subset
of connection closed networks we show a significantly simpler co-inductive cltegzation. Finally, we apply
CMAN on a small example of a cryptographic routing protocol.

1 Introduction

The use of wireless networks is becoming more and more irapbdue to the increasing and widespread use of com-
municating mobile devices. The application area for wseleetworks is broad, spanning from ambient intelligence,
wireless local area networks, sensor networks, and cehiefavorks for mobile telephony.

Our work is devoted to a particular kind of wireless netwotke so calledvobile Ad Hoc Networks (MANETS).
MANETS are self organizing wireless networks without calited access points or any other central control com-
ponents. Hence they do not contain a pre-deployed infretsirel for routing messages. An ad hoc network may be
formed when a collection of mobile nodes join together aneagn how to route messages for each other over
possibly multiple hops.

The communication primitive for wireless devices is messagadcast. However in contrast to the conventional
technology in wired local area networks, say the Ethernbere broadcasted messages reach every node in the net-
work, then for wireless networks broadcasspgtially oriented meaning that messages will only reach those nodes
within the communication range (the cell) of the emittinglaoAnother difference between wired and wireless net-
work technology is that interference is a much harder anérseproblem in wireless systems. Also, in wireless
networks communication links between entities cannot ybaze considered bidirectional.

Calculi for broadcast systems were first studied by Prasatianvork on the CBS calculus [16] and later in
a mobile setting by Ene and Muntean in tbve calculus [5], and by Ostrovsky, Prasad, and Taha in HOBS. [15]
Recently wireless broadcast systems have been studiedrizyaa Hankin in CBS# [13] and by Merro in CMN [8].

In the former calculi broadcast scopériansitivein that if two nodes? and@ both can communicate with a third node
thenP and(@ can also communicate with each other whereas this is notssagly the case for CBS# and CMN. The
calculus CWS [9] by Mezzetti and Sangiorgi also studies hg® broadcast but at a much lower level of abstraction,
in particular they take the phenomenon of interferenceactmunt.

Another characteristic of MANETS is that nodes may be molnite only do they enter and leave the network,
but also they autonomously change localities and therebypgd their connections and hence the topology of the
network. Mobility of processes has been addressed by mdaylicdike 7 [11], Mobile Ambients [3], Seal [4], and
Homer [7], and some even take the notion of spatially orig@ntammunication into account like Mobile Ambients and
Hennessy and Riely'®x [17]. However only very limited work has so far been devotedalculi for broadcast and
mobility, like b and HOBS, and to our knowledge the only reported work on didlmuspatially oriented broadcast
and mobility is CBS# and CMN.

The goal of our work is to define @alculus for Mobile Ad Hoc Networks (CMAN) that facilitates mobility and
spatially oriented broadcast. As in CMN we adopt that comication between nodes in a network is carried out on

* Supported by grant no. 272-05-0258 from the Danish Reseegehcy.



bidirectional links, and further we assume that nodes intevork may move arbitrarily as in both CBS# and CMN.
We shall refrain from dealing with interference in this pape

The neighborhood relation in CBS# is dealt with at the seindenel, the semantics is parameterized and quan-
tified over a set of configurations (graphs). In CMN and CWSrthighborhood relation is taken care of by a metric
function that tells if two physical locations are close eglotio communicate. Here instead we cholmggcal loca-
tionsand follow to some extent the ideas by De Nicola et al. [14irgtthe topology be explicitly part of the network
syntax and letting the topology change as a consequencengiudational steps. We choose as a key design principle
of our calculus that the specification of a node’s controldwétur must be independent of and not intermixed with its
neighborhood coordination as this would render modelsércticulus unnecessarily complex.

We follow the approach from CBS# and CMN (and CWS) lettingdalwast be spatially oriented, but in contrast
to CBS#, where broadcast messages may be received afteingechnetwork topology, we let broadcast as in
CMN beatomic in the sense that all neighbors at the time of the broadcagtpaly those, can listen to and receive
the broadcasted message. Another similarity with CMN i$ #ea allow broadcasted messages to be lost for some
potential recipients. However, opposite to CMN where boaatlis carried out on channels that may be restricted, we
let broadcasted messages be transmitted on an unrestrietidm.

One important factor of motivation is that we want to be aldentodel cryptographic routing protocols for
MANETS, like ARAN [18]. For that reason we choose to adopt tadgerm) language as the one known from the
Applied r-Calculus [2].

A node, |p]f, in our calculus is modeled as a (sequentbcess p located at some (logicalpcation ! and
connected to other nodes at locatiendA location is an abstract name that cannot be referred bgade’s process.
Nodes put together in parallel constitutaeiwork, say

P=pl" Il Lk Il Lr)n

where the current topology is that the node at locatjdp |7, is connected to the node at location | ¢!, (and vice
versa). The node at locationis disconnected from any other node. Mobility is obtainedalsimple reduction, say
that the node at locatiom autonomously moves and becomes (bidirectionaiynected to the node at locatioh

)i 1 Ll I Lt N )7 I Ladin I L)l @)
Similarly, nodes may arbitrarilglisconnect, say
LS I Lo I LrJe N L7 I L) I L) (2)

A node containing a process).p may broadcast and a node with{z).q can receive a broadcasted mess&ya-
chronous spatially oriented broadcast is realized by aroadcast reduction labelled by the location of the emitting
node, say

LI 1 L@)-qlb, | L) )5, N o)™ I Ladt/x} ), (I Lr{t /2, ()
where the node at locatidrbroadcasts to all nodes to which it is connected in the ctitogology, or similarly
Le)-p) 7™ I L@)-alm | L@)r)s o Lodi™ | L(@)-alin || Lr{t/a} )5 4)

where the broadcasted message to orisafeighbors, in this case the node at locationis lost. As a special case, a
disconnected node in a network may broadcast without anygteaing

L@)-pli | L&@)-alm | L@)rln N Lo)i | L(@) gl (| L) 7 )0 (5)

A novel contribution of our work is that we choose to work watfamily of broadcast reductions, one for each locality
in the network. This allows an external observer to obsdrgéddcality (node) in charge of the synchronous broadcast.

However, since it may be unrealistic for an observer to ceolverwhole network we introduce the notion of a
hidden node, i.e. a node with the location name restricted. A hidden nsagvk. | (t).r |, may connect to other nodes
extruding its location name,

L@)-p)7™ I Lalin Il kL) r e N vk (L(2)-p) Il Lalin || L) ]E) (6)



and subsequently send (receive) messages to (from) ithlaig, e.g.

vk.([(2)-p)" || Lalin | L®)r]k) \ovk-(p{t/a} T | Ll | L7 ]R) ()

but the emission from a hidden node cannot be observed bytameak observer, hence the reduction (7) is not a
broadcast reduction.

As in the seminal work on barbed bisimulation [12, 10] wevettb have an as simple as possible reduction seman-
tics and to allow an external global observer to have minibakrvability, in our case: reductiohs; for broadcast,
and reductionsy, for connections, disconnections, and broadcast from hidueles. Similar to the semantics of
CMN and CBS# we choose to abstract from observability of madbility. Indistinguishability under these observa-
tions gives rise to natural strong and weak equivalenceshnihiturn induces natural strong and weak congruences
over networks, i.e. the strong and weak equivalences iroaliexts closed under structural congruence. In the present
paper we show how to obtain a labeled transition semantids that (early contextual) strong and weak bisimulation
aresound andcomplete co-inductive characterizations of the the strong and wedkction congruences respectively.

The paper is organized as follows: The language of CMAN isg@méed in Section 2. The reduction semantics and
the natural reduction congruences follows in Section 3&cti®n 4 we provide the labeled transition system semantics
and give the co-inductive characterizations of the redactiongruences. Then, for a sub-calculus of CMAN, in
Section 5 we demonstrate a considerably simpler charaatem of the reduction congruence. We end the paper with
a simple example of a cryptographic routing protocol andrecksion. Proofs are to be found in the appendix.

2 Syntax

As already touched upon above a network in CMAN consists oiesaccomposed in parallel, some nodes may be
hidden, and each node is a sequential process at some almtedion connected to other locations.

Our process definition is similar to the one in [1], a variahthe Applied w-Calculus (A) [2]. Ax is a simple
extension of ther-Calculus [11] with value passing, primitive functionsdalerm equations.

2.1 Terms

Terms are defined relative to an infinite setnafmes A ranged over by, an infinite set ofvariables X ranged over
by x, and two disjoint finite setsF andg, of constructor anddestructor symbols ranged over bffandg respectively.
Formally, destructors are defined to be partial functioesthe application of a destructor to a tuple of terms is only
defined in case the tuple matches one of the destructorsrigéiquations (we refer the reader to [1]).

Then the set of terms is defined as follows:

ssita=mnla| ft, . tk) | (B, )

wheref is a constructor symbol with arity. We let7 denote the set of all terms with no variables.

2.2 Processes

As mentioned above, processes in CMAN are based on the grooastructs fromd7. We choose although to omit
the notion of achannel, letting everyone able to listen be a potential receivehefliroadcasted messagéle assume
a set of process variablésranged over by. The set of processes is defined by the grammar:

p,q =0 {&)p|(x).p|if (t=35)thenpelseq|letx=tinp|
letx =g(ty,...,t;) inpelseq|vnp|z|reczp .
The process$ is the inactive processt).p may output and in so doing become The proceséz).p bindsx in p and
may input a ternt and replace all free occurrencesoin p by ¢. The processf t = s then p else q is a standard

conditional. The local definitioet x = ¢ in p binds the variable: in p and executep with all free occurrences
of x replaced byt. The processet = = g(t1,...,tx) in p else ¢ also bindse in p, if the destructor application

1 Another approach would be to broadcast on a given channael@sIN andbr.



g(t1,...,tx) evaluates to a termthenz is bound tot in p, otherwise the process beconged he processn.p binds
the namer in p and restricts: to p. Finally, rec z.p is a recursively defined process wheee » bindsz in p. ?

We letp{t/x} denote the procegswhere any free occurrence ofis substituted by (taking care that names in
are not bound ip by the use of-conversion if needed). Likewisg{q/~} denotes the procepsvherez is substituted
by ¢. The set offree namesin a proces® is denoted by (p), and itsfree variables are denoted byv(p). A process
p is (variable)closed if fu(p) = (). P denotes the set of all closed processes and as usual weydeotesses up to
a-equivalence.

2.3 Networks

Assume a finite set dbcation names_ ranged over by andk. We assumé/' N L = () and letm range ove/N'U L. We
let o range over sets of location names and:léenote the empty set. The set of networks is defined by thergeam

PQR==0]pl7 |vmP|P|Q .

The networkd denotes the empty networkp |7 is a singleton network with the node at locatiocontaining the
proces® and connected to nodesdnvm. P is the networkP with the (location or term) name hidden, and finally
P || Q is the parallel composition of the two networksand(. * As a shorthand we allow to writd,;¢; P; for the
parallel composition of all networks;, i € I.

We let the hiding operator have higher precedence thanlpezamposition. We writd p|; instead of| p|s. When
m = {my,...,m;} we writemm for m U {m} and we writevm instead ofvm, ...vm,;. We write ol instead of
o U {l} and letoo’ denote the union of disjoint setsando’.

The set offree namesin a networkP, denoted byfn(P), is defined as expected and so is the sdteafvariables
fu(P). We letP{t/xz} denote the networ® where all free occurrences ofin P is substituted by (taking care that
names int are not bound inP usinga-conversion if needed). The set foée locations in a networkP, denoted by
fi(P), is inductively defined byfi(|p|7) = {l}, Alvm.P) = fi(P)\{m}, andfi(P || Q) = A(P)UA(Q). The set of
free connectionsin a networkP, denoted byc(P), is inductively defined byfc(|p|7) = o, fe(vm.P) = fe(P)\{m},
andfc(P || Q) = fe(P) U fe(Q). Finally, the set of free locations and connections in a petwP is denoted by
fie(P) = fi(P) U fe(P).

As a syntactical convention we allow to wrif@g;, meaning that the node iR (if any) with location namé is
connected to a node with location natend symmetrically nodein P (if any) is connected tb Formally we define
Pigr, inductively by:0jex = 0, and(|p)7 Jiar = [p)7", ([p)7)ier = Lp)7' and(p)7, hier = p)5, if m & {1k},
(P || Pigk = Pk | Pliok, (vm.Pigr = vm.(Per) if m & {l,k}. Similarly, we letP,c;, denote the network
wherek is not connected to node and vice versa. We |ét® k£ and! © k have higher precedence than the hiding
operator.

2.4 Well-formedness

We say that a networ is well-formed if each node inP is not connected to itself and if each free locatiorAns
unique. Formally, well-formedness is inductively defingd b

— |pJ{ is well-formed ifl & o.
— P | Qis well-formed if P and@ are well-formed and ifi(P) N 1(Q) = 0.
— vm.P is well-formed if P is well-formed.

In the sequel we consider only the set of well-formed netwaikd we identify networks up tdpha-equivalence.
The set of well-formed and variable closed networks is deshbyN.

2 Notice, that in the present version of CMAN we have left outgfial composition and replication of processes.
3 As in [14] we have no operator for having an unbounded numbeeiwvork nodes.



letx=tinp =p p{t/z} if (t=1) then p else q=p p

if t=s)thenpelseq =p q, ift#s rec z.p =p p{rec z.p/z}
letx = g(t1,...,t;) inpelse g =p p{t/z} , ifgltr,...,.t:;) =1
letx =g(t1,...,t:) inpelseq =p q, ifg(ts,...,t:) notdefined

Table 1. Structural congruence, processes.

plo=p rle=e|r (PP P" =P (P || P")
)7 = 1al7 ,ifp=pgq lvn.p]i = vn.|p]7
vmom'.P =vm/vm.P vm.P||Q=vm.(P| Q) ,ifm¢m(Q)Uflc(Q)

Table 2. Structural congruence, networks.

3 Reduction Semantics

We provide our calculus with a reduction semantics definesligh the use of evaluation contexts, structural congru-
ence, and reduction rules.

As usual we say that a binary relati@ on P is acongruenceif p R ¢ impliesC(p) R C(q) for any process
contextC. Structural congruence df, =p, is the least congruence and equivalence relation thabgedlunder-
conversion and the rules in Table 1. Likewise, we say thabarlirelatior’R onIN is acongruenceif P R P’ implies
vm.P R vm.P' forallm,andP || Q R P’ || Q for all Q with f1(Q) N (fi(P) U fi(P’")) = 0. Structural congruence
onN, =, is the least congruence and equivalence relation thabsedlundew-conversion and the rules in Table 2.

3.1 Reduction Rules

We define a reduction,; C N x N for eachl € £ as the least relation closed under structural congrueracallel
composition, and satisfying the rules in Table 3. Also, wérde\, C N x N as the least relation closed under
structural congruence, parallel composition, and regtricand satisfying the rules in Table 3. We ltet* denote the
reflexive and transitive closure of.

A reduction due to ruledpn) in Table 3 signifies that a bidirectional connection wittiire network has taken
place, and likewise a reduction due th{) means that a disconnection has happened.

A reduction due to rulelrd) means that the node at locatibeynchronously broadcasts a message to neighbors
to which it is currently connected and which are capablestéiiing. Notice that the rulérd) captures that broadcast
is an atomic step, hence no node outside the range of tharemitbde at the time of transmission can ever receive
the broadcasted message. Also note that broadcasted messayg be lost, i.e. not only will neighbors to whitts
connected but which are not listening for sure lose the ngessaut also connected neighbors that are listening are not
guaranteed to receive the emitted message as demonstyatstlistion (4) in the Introduction.

Rule (res) allows broadcasting from non-hidden localities to be oleele, and dually ruleiide) makes emission
from hidden nodes unobservable. For reduction examplegfeethe reader to (1) — (7) in the Introduction.

3.2 Reduction Congruences

Based on the reductions above we introduce a natural stirahg also a weak congruence for CMAN.

We say that a binary relatioR on N is strong reduction closed if wheneverP R Q thenP X\, P’ implies the
existence of somé&’ such that) \, Q' andP’ R @', andP \,; P’ implies the existence of sonig' such@ \,; Q’
andP’ R @'. Likewise, we say that a binary relatidd on N is weak reduction closed if wheneverP R (@ then
P X\, P’ implies the existence of sontg’ such thatQ \,* Q' andP’ R @Q’, andP \,; P’ implies the existence of

some®’ such@ “\*\,;\\* Q" andP’' R Q'.



(con)

(dis)

)7 1l Ll ™\ )i ) La)g pI75 I La)e N )7 I La)E

(b?”d) oo’ oml oo’ oml
L&)-p)77 || Hmeo [(2)pm )7 N )77 || Hmeo [pm{t/z} 0"
(res)LP, m#£1 (hide)LP,

vm.P \, vm.P vi.P \, vl.P

Table 3. Reduction rules.

Definition 1. A symmetric relation R on N is a strong reduction bisimulatioif it is strong reduction closed and if

PR Qimplies fi(P) = fi(Q).

Definition 2. A symmetric relation R on N is a weak reduction bisimulatioif it is weak reduction closed and if

P R Qimpliesfi(P) = fi(Q).

Strong and weak reduction bisimulation are equivalenciogls.

Notice that in reduction bisimulations the location naméhef (non-hidden) broadcasting location is observable,
however we do not use barbs as for instance in [12], but idstegke broadcasting from a node a locaticay be
observable through reductions of typg;. As usual weak reduction bisimulation abstracts from maécomputation,
in our case change of connectivity and broadcast from hiddeles.

Definition 3. A relation R on N is a strong reduction congruenggit is a strong reduction bisimulation and a
congruence.

We let~ denote the largest strong reduction congruence.

Definition 4. Arelation R on N is a weak reduction congruendt is a weak reduction bisimulation and a congru-
ence.

We let2 denote the largest weak reduction congruence.

4 Labeled Transition System Semantics

In order to give an alternative co-inductive characteitratf the weak reduction congruenég,we provide a labeled
transition system semantics of our calculus. We begin viithgemantics for plain processes and proceed with the
semantics for networks.

4.1 Process Semantics
Let the set oprocess actions, Ap, ranged over by be defined by:
A u=(t) | vi(t)

wheret € 7. The action(t) describes that the terms received by a process and the acti@r{t) denotes the emission
of the termt¢ with names inz bound. Ifn = () we write (t) instead ofv()(t). We letfn()\) (bn())) denote the bound
(free) names in.

The operational semantics for processes is defined as @&thtvahsition systeniP, Ap, —) where— C P x
Ap x P is the least set defined by the rules in Table 4 and closedhyThe rule put) states that the proceés.p
can broadcast the tert(in) states thatx).p can receive any termand let it be substituted for any free occurrence
of = in p. The rule(res) is the usual rule for restriction. The rulepen) takes care of extrusion of restricted names.



) (in) —5———
(t)p——p (@).p % p{t/z}

/ vii(t)

bp—D
——— ngMmA)Ubn(}) (open) P
yn.p — vn.p vn.p — Pl

A
—_—
(res) P P

n € fm(t)\n

Table 4. Transition Rules, Processes.

4.2 Networks Semantics

The set oetwork actions A ranged over by is defined by:
an=p0y Bu=1|lovalt) |la(t) | T yu=Ib| vl | l<k | T

wheret € 7. Actions are grouped into broadcast and mobility actiongjea over by and~ respectively. The action
[ denotes that the node at locatibhas completed a broadcast computation. The aétion (t) is an output action,
it means that the node at locatibmay broadcast the messageith names inz bound to the nodes with locations
in o. The action/z(¢) is an input action, meaning thatmay be received from the node at locatibhy the nodes
with locations ing. The actioni> (v1.l>) means that the (hidden) node at locatiomay move. Finally, the action
[ < k indicates that the two nodes at locatidrend k respectively are disconnecting. As usualenotes an internal
computation.

For convenience we writern.l> for > if m = 0, likewise if i = {I} we write vmn.l> for vi.l>. We letbn(a)
(fn(«)) denote the bound (free) namesinand we lethl(«a) (fi(«)) denote the bound (free) locationsdn

The operational semantics for networks is defined by a ldhied@sition systeniN, A, —) where— C Nx AxN
is the least relation satisfying the rules in Table 5 and @ttorg the symmetric counterparts of the three rul@g.ch),
(pary), and(par»).

The rule ¢rd) in Table 5 states that a node at locatianay broadcast its message to any node with locatien in
Rule (lose) represents that broadcast messages may be arbitratilpémes with locations in’ will not receive the
message broadcasted byHence we may have:

klm

Pr= () pl " plim and P e
The two rules fecy) and (ec2) show how broadcasted terms may be received by nodes, ergayeave:

Im(n

Klm(n)
Qv = L@l I @)l ™™ lgfn/a} I | r{n/a})h = Qa
The actual synchronization between broadcast and receptimessages is shown isyfuch), for instance:

) Rn)

Pl QY p)im 1 Qs and Py ()l B p gt || /e )R,

The rules ppen,) and (close) make sure that extrusion of bound names is treated propédire ¢lose) signals the
completion of a broadcasting session. As an example of tdtref an application of ruledpen,) we may take:

Elmun (n} L m

P =uvn.P plit

and assuming ¢ fn(Q1), taking care to avoid name clashing in thgr(ch) rule, we may apply the rulec{ose) to
obtain:

P Qr s on(Lp)im 1 Qo)

The rule par,) is a standard rule for concurrency, say:

S L/} | L)l



va(t) P TUU’Lﬁ)(t) P » ﬁ) p/

(brd) (recl)—m?k 0, T

Tovi(t) (ZOSG) Tovn(t)
)7 "—" )7 pr—"P

P @ P’ 0 lﬂ)) Q/ p ieﬂt) P’
= (close)ii
PP ¢ J

(recz)

p-Lp P
(hide) —————— (open ) ———r—
vl.P — vl.P vn.p 7 pr

Tovn(t)y
—3" P
n € fn(t)\

iff"ﬂ@) P’ Q lﬂ) Ql .

(synch) AN Q) =cnf(Q) =0

lova(t)

PlQ — P

Pl p

—————— AB)NAUQ) =bn(B)Nfr(Q) =0
PllQ—FP|Q

(pary)

r-Lp

(res1) ———— m & fi(B) U fn(B) U bn(B)

vm.P LN vm.P’

Table 5. Transition Rules, Network Broadcast.

and beyond taking care to avoid name clash it implies foaimse:

Py || () )k, P

becausen is a free location in botllm (n) and|(z).r]*,, hence the side condition ipdr,) enforces networks not
to externally broadcast messages to nodes it already osntakewise, §ynch) enforces:

Pl H Ql 7L) )

becausen € fi(Q1).
The rule(resy) is defined as usual, bitide) is a new special rule added for the same reason as the rul¢heith
same name in Table 3, i.e. to hide broadcast from hidden néldege for instance:

vk.(P || Q1) == vkon.([p]i" || Q2)

is the result of letting the hidden node at locatioim P,’ complete a broadcast communication.

Mobility of nodes is obtained through the rules,) and (dis;) and their respective synchronization rulesi(,)
and (dis2) in Table 6. The ruledon,) states that a node at a free locatianay connect to any other node as demon-
strated by the ruledpny). As an example:

) = ol lalk 22 lalk . and [p) | lalx == [p)F || La)} -

Dually, (dis1) states that a node at locatidénvith a neighbor at locatiok may disconnect fronk and in so doing
removek from the set of connections of the node. The mutual discdioreof bidirectionally connected nodes is
taken care of by the rulel{s-). For instance,

Il Lalh 22 Lg)e s and [p)F || La)t == Lp)i || La)k -



- di - @@
lp)§ 2 p)7 o) X5 1p)7

PP QL

(diSQ) p
PlQ—r
(openg) EEL ey P P ¢ fi(7) U bi()
Open _— TeS _— m
YoapUE p Y ompP - vm.p' 7 7
P p
(pars)———L )1 fe(@) = 0

PlQ—P|Q

Table 6. Transition Rules, Network Mobility.

Special care must be given to hidden nodes. The rutesn(), (par,y), and (ons) allow the location names for
hidden nodes to be properly extruded, in particular takiage ¢o avoid clashes between bound location names and
free locations and connections. As an example, assuming,

vi.|p)i 5 [p) and vipli | Lalk == vi(lp)f | L)) -

lllustrating the use ofifar,) we may have:

vl p)i || Lalk 25 (o) | L

and from gonz) we may then getifn ¢ {I, k},

vl Lplo |l LgJe | vimelrfm == vmd (o)™ | Lals I 7)) -

The rule (es») is defined as usual.
The close correspondence between the reduction semantickalabeled transition system semantics is demon-
strated by the lemmas below.

Lemmal. P ——= P'iff P\ P’

Lemma?2. P _iE Piff PN, P.

4.3 Bisimulation Semantics

Below we give co-induction characterizations, a strong amwdeak bisimulation, of the strong and weak reduction
congruences respectively. Our characterizations follmsontextual style as found in e.g. [4, 14].

To assist in the definitions below we introduce a shorth@nyl4,q,;, for a family of variable closed networks
defined by the grammar:

(1) Agept 2= neo | (x).pm |50

For any(z) Ayay With (2) Agq; = neo |(2).pm |57 We write Ayq {t/x} for the networkil, e | prm {t/z} |7m!.
Strong bisimulation is defined as follows.



Definition 5. A binary relation R on N isa strong simulationf P R @Q implies fi(P) = fi(Q) and for all p € P,

1.if P P then 3Q".Q — Q' and P’ R Q'

lovi(t

2. if P P then Vo'. o' C 0. ¥(x) Agrgn. 7t O fr((z) Agran) = 0. 3.
Q Il () Agrgr —— Q andvii.(P' || Apei{t/z}) R @
3. if P2 P then Vo'. o' Nol = 0, Q.

’

QI L{-plf” —= @ and P’ | [pJ7” R Q'
4. if P"Y P then YV k. k ¢ fi(P) Um. Vo. o N1k = 0. 3Q'.
Q| lp)7 — @ and vin.(P' || [p)7)ier R Q'
5. if P X5 P then Vo. k & 0. 30"
Q| lp)7' — Q" and P"| |pJf R Q'
R isa strong bisimulation if both R and R ~! are strong simulations.

Let ~ be the largest strong bisimulation.

The notion of strong bisimulation in a broadcasting frameéwas defined by Definition 5 is a key contribution
of this paper and deserves some comments. Requirement @ defimition is standard. Requirement 2 demands that
an open broadcast communication to nodes at locatioimsthe environment by a node at some visible location
in P must be matched by a completed broadcast communication lngde at the same locatidnin @, when@
is put in parallel with any potential receivers. Requirein@states that if nodes at locationsn P may receivet
from a broadcasting node at locatioim the environment, the® composed with any such node may let the node
emitt and complete a broadcast communication withand in so doing? and the node together become a network
that can match the reception bby the nodes at in P. Requirement 4 states that if a (possibly hidden) nodg in
(bidirectionally) connects to an external node at somehftesationk then@ an the new external node can make an
internal computation and then matéhbeing connected to the node at locatienFinally, requirement 5 demands
that if the node at locatiohin P is about to disconnect from locatidnin its environment, the® in an environment
with a single node at locatiohthat is connected tbcan make an internal computation, and matcand the node at
locationk together in parallel when the two are disconnected.

Notice that all but the first requirements in Definition 5 aom@xtual because they are demands on the network
execution environment to receive broadcasted messaggsiole external input of data terms, to connect with new
fresh localities, and to disconnect from environmentahtmns respectively.

Theorem 1. ~ isa congruence.

Let == be the reflexive and transitive closure-6f> and define== by == —»=Cs.
Weak bisimulation is defined as below.

Definition 6. A binary relation R on N isa weak simulationf P R @ implies fi(P) = fi(Q) and for all p € P,
1.if P "= P then 3Q".Q = Q' and P’ R Q'
2. if P -5 P then 3Q'. Q == Q' and P' R Q'
3. if P7Y P then Vo' o' Nal =0, 30
QI Lit-ply” = @ and P | [pl7” RQ/
4. if P"% P/ then YV k. k ¢ fi(P) Um. Yo. o N1k = 0. 3Q'.
Qll lplg = Q and vin.(P" || [p)?)ier R Q'
5. if P 5 P/ then Vo. k € 0. 3Q'.
Q| lp)f == Q" and P'| |p]7 RQ'

10



R isaweak bismulation if both R and R~ are weak simulations.

Let = be the largest weak bisimulation.

The requirements in Definition 6 are obvious weak genertdiza of the requirements in Definition 5. However,
one exception being Requirement 2 since it only considemgpteted broadcast transitions and not messages broad-
casted to the environment as in e.g.

lovn(t)

2. if P —" P then Vo'.0' Co.V(2)Asrar. N fa((z)Asrg) = 0. 3Q’.
Q || (2)Aprgr == Q' andvin.(P' || Aprgu{t/z}) R Q'

In the appendix we show that Requirement 2 in Definition 6 camterchanged with the stronger requirement above
leading to an equivalent definition of weak bisimulation.

Theorem 2. = isa congruence.

Because- (x) is a congruence it is sufficient to establish that a strorepfgy bisimulation is strong (weak) reduction
closed in order to show C ~ (=~ C %), this follows from Lemma 1 and 2. Then in order to shew= ~ (~ = &) it
just remains showing (=) to be a strong (weak) bisimulation. For details we referdaaler to the appendix.

Theorem 3. ~ = ~,
Theorem 4. ~ = ==,

Because the establishment of bidirectional connectiodslanonnections are unobservable in a weak bisimulation
semantics the following lemma holds:

Lemma 3. If [, k € fi(P) then Pig, =~ Piok.

Itis not difficult to show thats is a weak bisimulation, and as an example we may show thatogive network is
weak bisimilar to a hidden node with an inactive processfize vk.|0];, becausk U R~1! is a weak bisimulation
up to= where

R={(wm.(0 || P),vmk.(|0)k | P)oar) | mUo C fI(P), k & fl(P)}

letting P, be defined by(. .. (P, ak) - - )i,k Whenevew = {l,...,1;}.

5 Connection Closed Networks

The definitions of strong and weak bisimulation are contaebadund therefore it is hard to prove bisimulation equiva-
lence between networks. For the classafnection closed networks however it turns out that our framework becomes
significantly simpler.

We say that a networl is connection closed if each node khis connected only to other nodes withih i.e.
if fe(P) C fi(P). For instance, all networks in the examples (1) — (7) in theobfuction are connection closed, but
|07 is not. We letN . denote the subset & of connection closed networks.

Let a binary relation ofN . be ac-congruenceif it is closed by hiding and by (well-formed) parallel congion
of networks inN., and let structural c-congruence be the least c-congrummd¢equivalence relation AN, closed
undera-conversion and the rules in Table 2.

Similar to Definition 3 we define a strong congruence over ection closed networks.

Definition 7. A symmetric relation R on N, is a strong reduction c-congruendeit is strong reduction closed, a
c-congruence, and if P R @ implies fi(P) = fi(Q).

We let~ be the largest strong reduction c-congruence.
As in Definition 4 we define a weak congruence abstracting frdernal computation, but now only over connec-
tion closed networks.

Definition 8. A symmetric relation R on N. is a weak reduction c-congruendkit is weak reduction closed, a c-
congruence, and if P R @ implies fi(P) = fi(Q).

11



We let=,. be the largest weak reduction c-congruence.

Like strong and weak reduction congruences was charaetebiy strong and weak bisimulation respectively we
may also characterize strong and weak reduction c-congeugna co-inductively defined bisimulation.

Let Ry, range over networks ilN. wherek € fi(Ry).

Definition 9. A binary relation R on N, isa strong c-simulatiofif P R @ implies fi(P) = fi(Q) and
if P—5 P then 3Q".Q — Q' and P’ R Q'
if P—% P then 3Q). Q == Q' and P’ R Q'
if P"™ P’ then YRy, € No.fI(Ry) N (A(P)Um) = 0.3Q".
Q|| R — Q' and vin.(P" || Ri)ior R Q'
R isastrong c-bisimulation if both R and R ~! are strong c-simulations.
Let ~. be the largest strong c-bisimulation.
Definition 10. A binaryrelation R on N isaweak c-simulationif P R @ implies fi(P) = fi(Q) and
if P— P then 3Q". Q == Q' and P’ R Q'
if P—% P then 3Q'.Q == Q' and P' R ¢
if P"2Y P’ then YRy, € No.fi(Re) N (A(P) Um) = 0. 3Q".
Q|| Re == Q" and vin.(P' || Rp)ior R Q'
R isaweak c-bisimulation if both R and R ~! are weak c-simulations.

Let ~. be the largest weak c-bisimulation.
One may show that. and=:. are c-congruences and that

Theorem 5. ~, = ~,
Theorem 6. =2, = ~,

As an example, we may then (writiqg) for (¢).0) showvk.| (n).(n) |k =, vk.[(n)]x || vI.|(n)]; because

{ (vmk.([(n)-(n) |k (| @owr, vmkl.(L(n) |k || (LM |1 | @)orat)osar),
(wmk.([(m) ]k | @)oer, vmkl.(L(n) ]k | ([0)i | @)orat)orak),
(k. ([0]k || @)ook, vikl.([0]k || ([0)i [| @)oret)sek)
|oUoy Uos C AI(Q) }

is a weak c-bisimulation up to structural c-congruence.

6 An Example: ARAN

As mentioned in the Introduction a key motivation for our warto establish a framework that allows to reason about
security properties for MANETS. In [6] an attack on the cographic routing protocol ARAN [18] was identified
and below we recapture the principles of this attack.

The goal of ARAN is to ensure secure requests for routing ih@dnetworks by making requests and replies be
signed and checked in every hop, hence messages canncateel @ihd therefore the protocol is claimed to be safe in
that no false routing information can be imposed by malisioodes. The basic idea of the protocol is that a receiver of
a message is obliged to check its signature and if the megsagerectly signed the signature is removed and signed

12



Po ©f Uny.let Teers = sign(pk(ni), sk(no)) in p1

p1 2 let Tsreqg = sign(rdp, sk(n1)) in {(Tsreq, Teert))-(x).p2

D2 dof et x1 = fst(zx) in let x2 = snd(x) in let x3 = get(x1) in p3
D3 def if rep = x3 then let Tyey = get(z2) in pa

pa S let 3y = check (Tpey, 2, Pk(n0)) in if T4 = ok then ps

D5 = x5 = check(rep, x1, Trey) in if x5 = ok then (success)

Qo ©f Uns.let Teers = sign(pk(ns), sk(no)) in (z).q1

o et 21 = fst(z) in let x2 = snd(x) in qo
Q2 2ot et x3 = get(x1) in if rdp = x3 then let Tyey = get(x2) in gs
a3 ' let x4 = check(Trey, T2, pk(no)) in if x4 = ok then ((sign(rep, sk(n3z)), Tcert))

Table 7. ARAN processes.

by the node itself before the new message is forwarded. $isisraed that all valid nodes in the network a priori have a
private public key pair and a certificate and also that thdiplby of the certificate authority is known to every node.

In order to illustrate the attack it is sufficient to considaty a network consisting of three nodes: the initiator of a
route request, the destination of the request, and an attakdke attacker is not a valid node and hence it has not been
authorized by the certificate authority.

The simplified ARAN protocol we consider goes as follows: Tiéator broadcasts a signed requegp to its
neighbors and awaits a signed repép in return, if the reply is successfully returned the intidbroadcastsuccess.
Hence the destination must be an immediate neighbor in éodarroute to exist. The destination of the route request
on the other hand waits for a signed route request, checkg thgroperly signed and if so returns a signed reply to
the initiator. Upon reception of the reply the initiator igates the signed message.

To model the cryptographic primitives, 1€bk, pk, sk, sign} be a set of constructor symbols and{eteck, get}
be a set of destructor symbols whe¥ehas arity 0, wherget, pk, andsk have arity 1, wheraign has arity 2, and
wherecheck has arity 3. We lepk(n) be the constructor for a public key based on some seedd we letsk(m) be
a private (secret) key based on the seed he application of the constructeign

sign(pk(n), sk(m))

then denotes the signing of the public key(n) with the secret keyk(m). We let the destructorgheck andget be
defined by:
check(t, sign(t, sk(s)),pk(s)) = ok , get(sign(t,sk(s))) =t

That is, checking the signature of a messagéth the public key matching the private key by which the naggs
was signed yields the result. The destructoget simply returns the contents of a signed message. By covent
introduce two auxiliary destructorit andsnd, that returns the first and second element of a pair resgdetiv

As shorthands for the process expressions, whengisf, we abbreviateéf ¢ = s then p else g by if t =
s then p, we writelet x = g(t1,...,t;) in pinstead oflet = = g(t1,...,tx) in p else g, and also, as before we
write (¢t) for (t).q.

The simplified one shot version of the ARAN protocol is defihgd

A=wvno.(lpoli |l lao]x)

wherepg andqg are defined in Table 7. The processdefines the behaviour of the initiator of the protocol, apd
defines the behaviour of the destination.
The intruder, which in this example can only relay messageatefined as a hidden node by:

I =vm.rec z.(x){x).z]m . (8)

Observe, that since the intruder is a hidden node broadgestimessages frothcannot be observed.
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A correctness criterion for the ARAN protocol is as statedwbthat the routing messages must be validated in
each and every hop, in that each hop should always be betvegtified nodes only. For instance, it must not be
possible for a non-certified node (an intruder) to be part\dla route in ARAN. This criterion may be checked by
verifying as to whether the protocol is unaffected by rugrtimgether with an intruder doing relays as defined by (8).

The composition ofd and the intruder can do the following computation:

AT L vng.vny.vm.(|(x).p2 |7 || Lgo)r || [(t).rec z.(z)(x).2)},) = P, 9)

where

t = (sign(rdp, sk(n1)), sign(pk(n1), sk(ng))) .
We argued # A || I, and hence demonstrate that the simple version of the ARA&Kbpol is not robust and therefore
subject of attack from an intruder doing relaylscan match the weak output transition (9) above by the fourasov

A= gy ([(@)p2)i | Lao)i) =@
AL Qiak

A= vngwna (@) pali || Lvns-E)]k) = Q@
A=l Qe

wheret’ = (sign(rdp, sk(ns)), sign(pk(ng), sk(no))).

Clearly P % @ becauseP —~. which cannot be matched ly. Notice that the in-equivalence follows due to
computations byP where the intruder is part of a route from the initiator to dlestination wherea@ is a state where
the request has been lost. Becal’sg () alsoP # Qg due to Lemma 3 sinc® = Qo

The final part of the proof is due to the fact that the sfate@here the intruder got the request can be followed by
a computation in which the message is lost when the intrueiéopms a (hidden) broadcaét,e.

P — vno.vny.(vm.([(@)-p2]" || Lao ) || [rec z.(z)(x).2]3,)) = P" .

T

Then, since i’ the destination cannot escape being able to broadcasudebar allR € {R | Q' = R} =

{Q', Q"1 } it holds thatR L, and sincel”’ 7& it turns out that? % Q’. It then follows from Lemma 3 that also
P % Q') becaus€)’ = Q')

7 Conclusion

We have defined a broadcasting calculus, CMAN, for MANETS$ #lugoports synchronous spatially oriented broad-
cast and dynamic changes of the network topology. CMAN ispmpd with a natural reduction semantics and con-
gruence, and a co-inductive sound and complete bisimulati@racterization. The characterization is shown to be
particularly simple for connection closed networks. CMABstbeen applied on a small example of a cryptographic
routing protocol. A major advantage of CMAN is that it persriirect description of features of MANETS that would
be hard do describe in classical calculi.

In the future the process language of CMAN should be extendtcdconcurrency, and we consider also extending
the network language with a replication like construct silkiws to reason about infinitely many (copies of) instances
of nodes. Also, it would be of interest to understand how #raantics should be altered to cater for unidirectional
communication links.

As of now nodes are allowed to move around arbitrarily cotingdo any other node, however that freedom may
seem to be too liberal for many applications, and hence thalityocapabilities may be restricted in our future work
by imposing more structure on the networks.

Finally, a challenging topic would be to continue the worlof to formalize and reason about security properties
for MANETS, and in particular to investigate to what extdrd turrent behavioural equivalences are sufficient to cater
for more extensive security analysis.

4 Alternatively the intruder could disconnect from the iattr and then make the broadcast to an empty set of receivers.
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A Appendix

This appendix contains the proofs of the Theorems and Lenofrag theory.

A.1 Proof of Lemma 1 and Lemma 2

Below is a series of lemmas that show how the reduction anthbieded transition system semantics relate.
Lemma 1 follows from Lemma 15 and 16, and Lemma 2 follows freemima 13 and 14.

Lemma 4. For any processp € P, p =p vin.gwhereq =0, ¢ = (x).¢/, or ¢ = (t).¢' for somen, ¢, x, and t.

Proof By induction on the structure of € P. O

Lemmabs. p VA p iff p=p van'.(t).q and p’ =p vi’.(t).q for some g and 7’ withn C fn(t) and 2’ N fn(t) = 0.

Proof The 'only if’ direction follows by induction in the derivain of p VA p’, and the 'if’ direction follows because
vai' (8).q ™ vi’ (t).q and since-> is closed by=p. O

Lemma 6. p ), p iff p=p vi.(z).q and p’ =p ¢{t/x} for somen wheren N fn(t) = 0.

Proof The 'only if’ direction follows by induction in the derivain of p =), p’, and the 'if’ direction follows because
2, is closed by=p and becausen.(z).q 4, q{t/z} whenn N fn(t) = 0. O

Lemma7. If P - P’ and P = Q then there exists Q’ suchthat @ —— Q' and P’ = Q’.
Proof Suppose” = Q. We must show the property
P -2 Plimplies3Q’. Q - Q' and P' = Q' (10)

It's obvious that (10) is preserved byconversion and also by reflexivity, symmetry, and tramsjti(recall= is closed
by a-conversion and it is an equivalence relation).
One may show by induction in the depth of the inferenc&of*~ P’ that (10) is closed by parallel composition
and by restriction (recatk is defined to be a congruence).
Finally we show (10) is closed by the rules in Table 2, alsorajuction in the depth of the inference Bf— P’.
O

From Lemma 7 it is immediate that:

Corollary 1. = isastrong bisimulation.

Lemmas8. P "= priff "

P=vimn. (0] || (2)Aerar || Q)

and ' n
P =vi ([p){7° || Awenft/z} || Q)

for somem, p, o', 0", (z) Ay g1, and Q wheren = fu(t) Nm, m = m\n,mNol =0,ando N fA(P) = (.
Proof: The 'only if’ direction follows by induction in the inferere of P fovf) P’, Lemma5is used in the base case.
The if’ direction follows from Lemma 7 since

lovi(t)

vin. ()0l || (@) Ao || Q) v ([p)77 7 | Avran{t/z} || Q)
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Lemma 9. P Y= P/iff P = vin.((2)Aves || Q) and P’ = vinn.(Ape{t/z} || Q) for some i, () Age, and Q
whereclNm =P and! & fi(P).

Proof: Similar to the proof of Lemma 8. O

Lemma 10. P -2 P/ iff P = P’ and P = vinn.([p|? || Q) for some m, p, o, and Q where [ & rin.

Proof Similar to the proof of Lemma 8, but makes use of Lemma 6 imstdd.emma 5. O

Lemma 11. P "= p/iff P = vi.P’ and P’ = vin.(|p]{ || Q) for somen, p, o, and Q wherel & m.

Proof: Similar to the proof of Lemma 8. O
Lemma12. P ‘5= priff P = vin.(p|* | Q) and P’ = vin.(|p]? || Q) for some 1, p, o, and Q where
lknm=0,andk & f(P).

Proof: Similar to the proof of Lemma 8. O
Lemma13. P R PimpliesP \,; P'.

Proof: Suppose” SN P’. The proofis by induction in the derivation of the trangitiB 1 P

The case wher® —5 P’ is inferred from the ruléclose) follows from Lemma 8, the remaining cases follows by
induction. O

Lemma 14. P \; P’ implies P — Q for some Q suchthat Q = P’

Proof: SupposeP \,; P’. The proof is by induction in the derivation &f \,; P’, and making use of Lemma 7 in
caseP \,; P’ is obtained closing by.

If P\,; P’ isdue tothe ruleird) the result follows due to Lemma 8 and the Its-rul®§e). The remaining cases
follows by induction. O

Lemma 15. P —— P’ impliesP \, P'.

Proof Suppose® —— P’. The proof is by induction in the derivation of the trangitiB —— P’.

The case wher® —— P’ is inferred by the rule/ide) follows due to Lemma 13, and whéh —— P’ is inferred
by rules ¢ons) the result follows due to Lemma 10 and 11Af—— P’ is inferred from rule {is>) the result follows
from Lemma 12.

Finally, if the transition® —— P’ follows by one of the rulesiar,) and (par,) (or their symmetric counter parts),
or by one of the rulesres;) and (ress) the lemma holds by induction becausgis closed by restriction and parallel
composition. O

Lemma 16. P\, P’ implies P —— ( for some Q suchthat Q = P’.

Proof SupposeP \, P'. If P\, P’ is because of the rulghide) the result follows due to Lemma 14. The case where
P N, P’ is due to rulg(dis) follows due to the Its-rulesdis;) and(disz). If P\, P’ is due to rule(con) the result
follows from the lts-ruleg con) and(cons).

The closing by parallel composition and restriction folilay the lts-rule$par, ) and(par,) (and their symmetric
counter parts) and biyes; ) and(resz). The closing by= follows due to Lemma 7. O

A.2 Proof of Lemma 3

In order to prove Lemma 3 we show tHatis a weak bisimulation where
R={(Pax Piex) | PEN, and i,k € fi(P)} U~

The result follows becaus@q, — P, and alsoPjo, — Pie, Whenevel, k € fi(P). O
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A.3  Open output bisimulation

In order to show thats is a congruence we give an alternative characterization tfiat is more adequate in our

proofs. Alternatively to consider only completed broaddeansitions, i.e. transitions on the forf P, we

define instead aapen output bisimulation depending on data broadcast to the environment, i.e. weahsitions of

laun()

the typeP —" P’ into account.

Definition 11. A binary relation R on N is a weak open outpusimulation if P R @ implies fi(P) = fi(Q) and for
alpeP,

1.if P "5 P then 3Q".Q = Q' and P' R Q'

laun(

2. if P P’ then Vo'. o' Co.V(2)Asrgr- N fr((2)Asrgr) = 0. 3Q’.

QI () Agrer = Q' andvii.(P' || Apei{t/z}) R Q'
3. if P TN Pt then Vo'. o' Mol = 0, 3Q".
QI L))" =5 @ and P || |p)i” R Q'
4. if P2Y P/ then Y k. k & Ai(P) U, Yo. o Nk = 0. 3Q'.
Q Il [p)f = Q' and vin.(P' || [p)7)iex R Q'
5. if P25 P then Vo k ¢ 0. 3Q".
QI plf! = Q and P'| [p) R Q

R isa weak open output bisimulation if both R and R~ are weak open output simulations.

Let =, be the largest weak output open bisimulation.
Weak output open bisimulation up tois used in the proof of Theorem 2.

Definition 12. A binary relation R on N is a weak open output simulationupto = if P R @ implies fi(P) = fi(Q)
andfor all p € P,

1.if P P then 3Q". Q = Q' and P' =R= Q'

ldvn<

Do

Sif P P’ then Yo'. o' C 0.¥(2)Ag a1 N fr((2) Aorar) = 0. 3Q".
Q| (2)Aper = Q' and vir.(P' || AL{t/z}) =R= Q'

3. szlG—t?P'then VYo' o' Naol =0, 3Q’.

QI L(t)plr” == @' and P' || |pJ7” =R= ¢
4. ifpuﬂbpl then YV k. k & fl(P)Um.Vo.ocNmk =(.3Q’.
Q |l lplg == Q" and vim.(P" | [p|))ier =R=Q’
if P55 P then Yok ¢ 0. 3Q).
Q |l lp)f' == Q" and P'|| |p]] =R= Q'

o

R is a weak open output bisimulation up to = if both R and R ~! are weak open output simulations up to =.
Lemma 17. If R isa weak open output bisimulation up to = then =R = is a weak open output bisimulation.

Proof SupposeR is a weak open output bisimulation up 8. We only show that=R= is a weak open output
simulation, the proof of=R=)~! being a weak open output simulation is similar.

LetP = P, R Q; = Q. Suppose® — P’. We only consider one of the cases where: vm.l>, the other cases
are immediate or similar.
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If P ™% P’ then, due to Lemma 7, there existg such that?, “% p,’ andP’ = P,’. Then, since?; R Q1,
forallp € P, forall k ¢ fi(P) U, and for allo with o N7k = () there exist%),’ such tha), || |p]{ == Q" and

vin. (P || [p)7)ier =R= Q1

Becauses is a congruence we have

vin.(P" || [p)fhier = vin. (P || [p] hion

and
Ql lpli =@ | p]7

From Lemma 7 we infer that there exigp$ such that

Qllrli =@

and@,’ = Q'. Hence, sinces is transitive,

vin.(P' || [p)iar = Q'

O
Likewise we may define the notion of a strong (weak) bisimafat{or c-bisimulation) up te= and show that
wheneverR is a strong (weak) bisimulation (or a c-bisimulation) upstdhen=R= is a strong (weak) bisimulation
(or c-bisimulation).

Theorem 7. ~ = =~,,.
Proof We show~ C ~, and~,C ~.

Case k, C =) To obtainNO C ~ we show thats,, is a weak bisimulation up tee. Suppose® =, Q. It's enough to
show only that itP - P’ then there exist®) =4 Q' suchthatt’ = ~, = Q.
AssumeP —- » P/, then there exists levi)

Q || (z)Acgyy = Q' such that

P"” with P’ = vn.P”. Hence, becausf =, @, there exists

vin.(P" || Aecgi{t/z}) =0 Q'

Sinceq || (z)A.q; = Q there exists, due to Lemma@,:l> Q" such that)’ = Q”. Then we obtain as desired
because

vi.P" = vi (P" || Acgi{t/z}) =0 Q' = Q"
Case & C =,) In order to show~ C =, we prove thatz is a weak open output bisimulation up ta Suppose

lovn.(t)

P =~ Q. It is sufficient to show only that i —"" P’ then for allo’ with ¢’ C ¢ and for all(x) Ay With
N fn((z)As ) = 0 there exist®)’ such tha || (z) Ay q = Q' andvn.(P' || Aprgi{t/x}) =~= Q.
AssumeP " pr_ Theno N fI(P) = 0 dueto Lemma 8. Let’ C o and let

(@) Aorgr = [(@) )7 |- L@)pi] 7!

be such thati N fn((z)As a1) = 0. Sincel € fi(P) it follows due to Lemma 10 thaP 2, P. Then because
P =~ (@ and sincé; ¢ fi(P) there exist%); such that) || |(x )plj;’ll’ == @, and

Pr=(P| [(@)p1)]en = Q1
(Observethat; = P || |(z )pljl 71l hecause’ = Pigy, ) Likewise, P; b, P; so there exist§);1 such that

Qill L@) P ][ = Qin
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and 1
P =P || [(@)pit1]] ™ =~ Qigr

lita
fori=1,...,k — 1. From the steps above it follows that

By =P || (2) Ao a

Then because )
l -
P (2)Ag g1 — vi.(P" || Agguf{t/a})

alsoP, — P,/ for someP,’ with vin.(P" || Agrgi{t/z}) = Py’ due to Lemma 7. Then, sind®. ~ Q there
exists@},’ such that),, N Q' and

vi(P' | Apen{t/z}) =~ Qi
The final part of the proof is to observe that, due to Lemma 7,

Qll () Ara == @

for someQ’ with Q' = Q;,’ because

QI () A =Q || @)l I - [(@)pi )7

and
QI L@)p )7 I - L) pe 7
= Qu || L@) w2l || - L(2).pi) T
= Q2 || [(@)-ps) 1| - [(2).pe )+
= Qu
L Qv

from which we get:

vi(P' || Ag{t/z}) =~ = Q'

A.4 Proof of Theorem 1 and 2

Below we only show the proof of Theorem 2. The proof of Theofiei:isimilar and simpler.
Because of Theorem 7 we only need to show thatis a congruence. In order to do so it’s sufficient, due to
Lemma 17, to show thaR is a weak open output bisimulation uptowhere

R ={(m.(P || Q),vm.(P'[| Q) | P =, P"andfi(P) N fi(Q) = 0}

We only show here thaR is a weak open output simulation up g the proof ofR~! being a weak open output
simulation up tcs is similar.

Letvim.(Py | Q) R vin.(Py || Q). Supposesm.(P; || Q) —— R. The proof proceeds by induction in the
derivation ofvm.(P; || Q) -~ R.

Case 1 v =7) Supposern.(P; | Q) — R.
Case 1.1 kide) The case wherem. (P, || Q) - R because?, || Q —— R/, 1 € m, andR = vin.R’ follows

by induction because then there exists sdPnel @ e R with R = vi.R”.
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Case 1.2 tes;) and (res) Supposesi.(Py || Q) — R because?; | Q — R’, andR = vin.R'.
Case 1.2.1¢ony) Suppose; || Q —— R’ because

PP p and QU
m N’ =m0 fAc(Q) =m" N fle(P) =0, and
R =vi"m' (P || Q)met
From Lemma 10 and 11 we inf€ = vm”.Q’ with eitherm” = {m} orm” =0, and

Q" =vm".(lp)7 | Qo)

for somem’’, p, o, andQy wherem & m'”. SinceP; =, P, there exists,’ such that
Pyl ply, = P

and
vi' (P || [plg)iem =o P2’

From (ress) and par,) we infer
vinwm v (P || |p)S, || Qo) == v v (P || Qo)
Assumingm’” N fle(P) = 0 andm”” N (fle(P2) U fn(Ps)) = 0 (usinga-conversion if needed) we get
vin.(Py || Q) = vinvm” v (Py || )7, | Qo)
Hence, because of Lemma 7, there exidt$ such that
vin. (P || Q) = P

and
v v (P || Qo) = P

Finally, since
R = vinm” v (vin (P || [p]7, )iem || Qo)

assumingn’”’ N (fAc(Py) U fn(Py)) = 0 andm’ N (m™” U f1(Qo)) = O (usinga-conversion if needed)
we obtain
R=R=DP,"

Case 1.2.2is2) The case wher, | Q —— R’ because

Plﬁpl and QﬁQ/

andR’' = P’ | Q' is similar to case 1.2.1 above.

Case 1.2.3The case wher®, | Q —— R’ because’, —— P’ (orQ - Q')andR' = P\’ || Q (or
R = P, || Q) is immediate.
Case 2 (¢ = lovn(t)) Supposem.(P; || Q) v p becauseD1 | Q W0 R andR = vi'.R' where, due
to multiple applications of the rulesds; and (openl) mnn =0,m = m\n forn, = mnN fr(t), and
n=mn'Uny. Also,al Nm = 0.

laun lo'a v/

Case 2.1 [pse) The case wheré; || Q ' R’ because of a transitioR; || Q
induction.

' R’ follows by
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ovi/ (t) loo’ v/ (t 15’ (t)

Case 2.2 §ynch) SupposeP; || Ql —" R because?, — ) P, Q — Q' andR' = P || Q' where
' N fr(Q) =0ande N A(Q) = 0.
From Lemma 9 we infer
Q = vmo.((z)Asrai || Qo)
for somemy, (z) Ay g, andQo wheres’ Ny = 0. We assume (using-conversion if needed) thatNmg =

0.
BecauseP;, =, P, for anyc” wheres” C o and for any(z) Ay g wheren’ N fn((x)Ayqi) = 0 there
existsP,’ such that

Py || () Aonar || (2)Agres == Py
with
vit (P || Aorai{t/z} || Awai{t/z}) =0 P
Hence, i
vinving. (P || (€)Agna || (2)Asran || Qo) == vinving (P2 || Qo)
Assuming (usinge-conversion if neededh N (flc(P2)Ufn(P,)) = 0 andmoN(flc((z) Agr 1) Ufn((2) Asrgr)) =

0 we have
vin.(P2 || Q) || () At = vinvmg. (P || (2)Aor g || (2)Asrer || Qo)

Then, due to Lemma 7, there exigts’ such that

vin.(Py || Q) || (2)Agrgy == P

andV’ﬁ’l.V’ﬁ’lo.(Pgl H QQ) = PQH.
Assuming (usingy-conversion if neededjo N (fn(P1) U fle(P1) Un') = 0 and thatn U (fle((z) Agrgr) U
fn((z)Asr 1)) = 0, then since

vin.(R || Agreu{t/x}) = vinano.(vit' (P || Aorai{t/a} || Awer{t/2}) || Qo)
we get as desired
VfL(R || Ag//@l{t/x}) =R= PQ”
Case 2.3This case covers the rule symmetric to the ruleich).

lovn/|( 7' (t) loo’vi/ (t)
—

SupposeP; || @ v because?, — P/, Q
R' =P || Q. From Lemma 8 it follows that

QW Nfn(P)=10,0nfi(P) =0, and

r_r 111

Q = wing-([{0)-p)77 77 || (2)Agrar || Qo)

and

1 111

Q" = v ([p)777 7 |l Aerai{t/x} || Qo)

for somermny, p, o”/, ¢, () Ay g1, andQo wheren = 1y N fn(t), m1 = mo \ 7, Mo Noo’l = B, and
oo’ N fi(Q) = (). Because’; ~, P there exists?,’ such that

r_r 111

Py | LplgT 7 L Py (11)

and

r_1r 11

Sinceca” N fi(P) = 0, then from (11) we infer

11

oo'd" o T oo’ o 1 oo’ o T
Py || [{t)-pli = B || ()77 " — P | [p)]7 ™ = P

for someP,', P,?, and somer, with (due to rulediss) oo C o’ U fi(P,). Leto, C o. For any(z) Ay, g
with 7 N fn((2) A, g1) = 0 let

1o 111

B =vinving.(Py || [()-p)77 77 || (@) Aoren || (2) Aoy || Qo)
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Due to )
P || [()p) 777 L P2 | )7
and because
(@) Asrer || () Avyer T2 Agai{t/a} || Asyar{t/a)
we infer, i
P = vinwing. (P || Agrai{t/z} | Aoyai{t/z} || Qo) = Py

Assumingmg N (fn(P2) U fle(P)) = 0 andmg N (fn((z)As, gi) U fle((x) Ag, 1)) = @ (Usinga-conversion
if needed), we get
vin.(Py || Q) || (2)Acye1 = P2

Then there exist®,””, due to Lemma 7, such that

vin.(Po || Q) || () Ao, 1 == P2

andP,"” = R,". Then, lettingQ1 = Aorai{t/x} || Ao,ai{t/z} || Qo, we have

1o 111

vii.(R || Ag,er{t/x}) = vinvio.(P || [p)777 7 || Q1)

assumingno N (fn(Pr) U fle(Pr)) = B andmo N (fn((z)As, 1) U fle((2) Asyg1)) = 0 (Usinga-conversion
if needed) we get
vi.(R || Ag,ei{t/z}) =R= P

l(n/n lovi/ (t)

Case 2.4 par,) The case wher@; || Q 'R because’y, — ' P/, andR’ = P’ || Q wherei/ N
m(Q) =0ando N fi(Q) = 0 is similar to the cases above
Case 2.5The case wher®, || Q {0 becaus® " @7 andR = Py || @ whered’ N fn(P1) = 0

ando N fi(P;) = 0 is similar to the cases above.

Case 3 (¢ = I5(t)) Supposeiin.(P; || Q) 7Y R. Thenpy || @ T R, i1 (o1 U fu(t)) = 0, andR = vin.R'.
Letp € P and lets’ be such thab’ N al 0. We assumen N (fn(p) U ¢’) = O (usinga-conversion if needed).

Case 3.1 fecy) SupposeP; || Q 70 R becauseP1 1) P Q 73 Q' o = o109, andR’ = P/ || Q'.

BecauseP; ~, P, for anyp, for anys’ with ¢/ N ol = (), we have

Py || {8 p] 7 =5 Py (12)

and
P1 H L JO’10'20' %0 P2/

From (12) we infer, sinces N fi(P) = 0,
o100’ _ T oo0”’ 1 og0’ T
Py || [{t)p)77*7 == B || () 0] — B2 [p)7*T = P

for someP,, P,%, and some” with (due to ruledis,) "’ C o’ U fi(P,). Due to

"

020 7 [ex (T//
P [0 p] 7> — R | p)7

and becaus® ' ¢’ we conclude

B L0p) 1@ 5 PR | ) | @

and hence _
vin.(Py || [(1)0)7727 || Q) == vin (B || Q')
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Since , /
vin (P || [(6)-p)7* 77 | Q) = v (P || Q) || L(8).p)7* 727

there exists, due to due to Lemma 7, soRaé such that

~ (71(72(7 l
vin.(Py || Q) || [(t)-p]; = B’
andP,” = P, and therefore ,
Vﬁ%(Pl' 1Q) | [p]7*7*7 =R=R,"
lo(t)

Case 3.2 par,) The case wheré; || Q ) R because’, —
immediate.

Case 3.3The case wher@, | Q — R’ becaus@ 79 QR =P || Q,ando N fi(P) = Dis trivial.
Case 4 (v = vi'.I>) Supposem.(P, || Q) "™ R.
Case 4.1 fess) Supposern.(P; || Q) "™ Rbecause?, || Q "™¥ R/, mnm’ = 0,1 ¢ i, andR = vin.R'.

Case 4.1. 1;Qar2) Suppose?; || Q "™ R’ because?, "™ P, andR = P’ | Q. Letk & fi(P) U
A(Q)Um'. BecauseP, =, P, forall p € P, and for allo with o N7’k = () there exists?’ such that

PR =P | Q andocnfi(Q) =0is

lo(t)

P | plf = P

andvin’.(Py' || |p)$)ier ~0 P»'. Hence,

vin.(Py || [p]f | Q) == vin.(R" || Q)

and since
v (P || Q) || lp)i = v (P2 || [p)7 || Q)
assumingn N (fn(p) U ok) = O (usinga-conversion if needed) then, because of Lemma 7, theresexist
P,” such that
vin(Py || Q) || )7 = R

andvim.(P,’ || Q) = P". Finally, since

(R [p)@ier = vin.(vi (P || [p)7 ek || Q)

we conclude that
v (R || |p|7)iex =R= P

Case 4.1.2The case wher®, || Q "™ R’ becauseQ vl 0 andR! = P, || Q' is immediate.

v/ .I>

Case 4.2 ppen,) The case wherem.(P; | Q) —> R becauseP; || @ ", R, 1€ m, andR = vit'.R'
wheremn’ = m \ {i} is similar to case 4.1 above.

Case 5 ¢ =< k) Similar to Case 4.1 above.

A.5 Proofof Theorem 3 and 4

Below we only give the proof of Theorem 4. The proof of Theo/@ia similar.

In order to shows C it is sufficient to show that- is weak reduction closed because from Theorem 1 we know
~ is a congruence. That is weak reduction closed follows from Lemma 13, 14, 15, and 16

The remaining part of the proof establishes @¥at ~. It's sufficient to show that is a weak bisimulation.

Lemma 18. = is a weak bismulation.
Proof We only prove= to be a weak simulation, the proof ! being a simulation is similar.
Let P, = P,. Suppose’?, — P,’.
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Case 1 & = 7): The case wher® —— P,’ is immediate due to Lemma 15 and 16.

Case 2 ¢ = ): The case wher®; —l> P,’ is immediate due to Lemma 13, 14, and 16.
Case 3 (« =I5 (t)): Suppose Ll P,’. Due to Lemma 9,

P =vm.((z)Avq || Q)

and
P =vin(Ase{t/z} || Q)
for somerm, () Ay, andQ wheresl N7 = () andl ¢ fi(P1). Because: is a congruence, for any |77,

’

Pyl [(6)p)77 = Po || [(8)p)7”

Assumingm N (fn(t) U’ U fa(p)) = 0 (usinga-conversion if needed), then because

P @)p)77 N P ol

there exists?,’ such that
Py || [{t)p]77 NN\ P

and
P )77 =R

Then, due to Lemma 16 and 14, there exi3t$ such that

B || [(t)pl{” == P

andP,” = P,’. Hence
P pl7” = PR

becauses C 2. ~
Case 4 (v = vin.lb): Suppose?, "% Py'. Letk ¢ fi(Py), letok N = . For anyp we have

Py p)fi — v (P || [p)§ ek
and therefore
Pyl ) Novm (P p) D)k
due to Lemma 15. SincB, || |p|7 = P» || |p]7 there exists
P lpli N @

with vim. (P || |p|2)ier = Q. From Lemma 16, there exis€®’ such thatP, || |p|?! == Q' andQ = Q.
Hence, because C &

vin (P || [p))ier = Q'
Case 5 (¢ =l < k) Similar to Case 4.

A.6 Proof of Theorem 5 and 6
Below we only show the proof of Theorem 6. The proof of TheoEeisi similar and simpler.

Lemma 19. ~ isa c-congruence.
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Proof We must show thats, is closed by restriction and by well-formed parallel conipos of networks inN..
Hence, let

R={(vm.(P| Q),vm.(P"|| Q)| P~. P, Q €N, andfi(P)NA(Q) =0}
We proveR to be a weak c-bisimulation up te. Here we just show tha® is a weak c-simulation, the proof & !

being a weak c-simulation is similar.
Let vin.(P; | Q)Ruvm.(Py || Q), and supposern.(P; || Q) —— R. The proof proceeds by induction on the

derivation ofvm.(P; || Q) - R and is similar to but simpler than the proof of Theorem 2.
Case 1 & = 7): Suppose/m.(P, || Q) — R.

Case 1.1 pide): The case wherem.(P; | Q) — R because?; || Q L. R\l € m, andR = v R’ follows
by induction.
Case 1.2 tes;) and (resy) Supposem.(P; || Q) — Rbecausé’, | Q — R andR = vi.R'.

Case 1.2.1¢ony) SupposeP; | Q —— R’ because
P P and QT Q)

fle(Q) =m” N fle(Py) =0, and

3
)
§z
Il

=
)

R =vi"m/ (P || Q)me

From Lemma 10 and 11 we infer € f1(Q’) and@ = vm”.Q’. Hence from aboved (Q') N (fi(Py) U
m') = (). SinceP; ~. P, there exists>’ such that

P Q = P/

and
vi! (P || @ )iom ~e P2’

From (ress) and (par,) we infer
vinvim (P || Q') == vin.vm” . Py’
Sincen” N fi(P2) = 0 we get
vin(Py || Q) = vinwi (Py | Q')
Hence, because of Lemma 7, there exi3t$ such that

I/ﬁ”b.(Pg H Q) :T> PQ”

and
v (P || Q') = Py
Finally, since
R =vimwmn” . (vin (P || @ )iem)
we obtain

R=R=PR,"

Case 1.2.2{is2) The case isn'tan issue sinfgP;) N fe(Q) = 0.
Case 1.2.3The case wher®, | Q — R’ becauseP, — P’ (orQ —— Q')andR' = P\’ || Q (or
R = P, || Q) is immediate.
Case 2 ( = [) The case is immediate becaygg P;,) N flic(Q) = 0.
Case 3 (¢ = vm/.I>) Supposem.(P; || Q) vl g, Let R, € N.suchthafi(R,)N(fi(vm.(P1 || Q))Um’) = 0.

Case 3.1 fess) Supposern.(P; || Q) "™ Rbecause?, || Q "™¥ R/, mnm’ = 0,1 ¢ i, andR = vin.R'.
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Case 3.1.1far,) Suppose?; || @ "™ R’ because?, "™ P\’ andR' = P’ || Q. Because®; ~, P
there exists?’ such that
P, || Ry = P

andvi/.(Py' || Ri)isr ~. P2'. Hence,
vin.(Py || Ry, || Q) = vin.(P' || Q)

and since
vin.(P || Q) || Ry = vim.(P2 || Ry || Q)

then, because of Lemma 7, there exiBté such that
vin(Ps | Q) || Ry == P"
andvim.(P,' || Q) = P". Finally, since
vi' (R || Rihion = vin.(vi’ (P || Riier || Q)

we conclude that
vi' (R || Ri)igr =R= P,

Case 3.1.2The case wher®, || Q "™ R’ becaus®) """ @’ andR’ = P, || Q' is immediate.

Case 3.2 bpen,) The case wherem.(P; || Q) "™ R because?; || Q = R/, 1 € i, andR = v .R'
whererm’ = m \ {l} is similar to case 3.1 above.

a

Because-. (=) is a c-congruence and also strong (weak) reduction closedalLemma 13, 14, 15, and 16 it
follows that~, C ~, (~. C =,).
In order to prove~, C ~. (&, C =) it’s sufficient to show that-. (=,.) is a strong (weak) c-bisimulation.

Lemma 20. =2, is a weak c-bisimulation.

Proof Similar to the proof of Lemma 18. a
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