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A Calculus for Mobile Ad Hoc Networks

Jens Chr. Godskesen?

IT University of Copenhagen
Rued Langgaards Vej 7

DK-2300 Copenhagen S, Denmark
jcg@itu.dk

Abstract. We suggest aCalculus for Mobile Ad Hoc Networks, CMAN. A node in a network is a process equipped
with a location, it may communicate with other nodes usingsynchronous spatially oriented broadcast where only
the current neighbors receive the message. Nodes may autonomously change their neighbor relationship and thereby
change the network topology. We define a natural reduction semantics and strong and weak reduction congruences
as well as a labeled transition semantics and prove strong and weak contextual bisimulation respectively to be
sound and complete co-inductive characterizations of the corresponding reduction congruences. For the subset
of connection closed networks we show a significantly simpler co-inductive characterization. Finally, we apply
CMAN on a small example of a cryptographic routing protocol.

1 Introduction

The use of wireless networks is becoming more and more important due to the increasing and widespread use of com-
municating mobile devices. The application area for wireless networks is broad, spanning from ambient intelligence,
wireless local area networks, sensor networks, and cellular networks for mobile telephony.

Our work is devoted to a particular kind of wireless networks, the so calledMobile Ad Hoc Networks (MANETS).
MANETS are self organizing wireless networks without centralized access points or any other central control com-
ponents. Hence they do not contain a pre-deployed infrastructure for routing messages. An ad hoc network may be
formed when a collection of mobile nodes join together and agree on how to route messages for each other over
possibly multiple hops.

The communication primitive for wireless devices is message broadcast. However in contrast to the conventional
technology in wired local area networks, say the Ethernet, where broadcasted messages reach every node in the net-
work, then for wireless networks broadcast isspatially oriented meaning that messages will only reach those nodes
within the communication range (the cell) of the emitting node. Another difference between wired and wireless net-
work technology is that interference is a much harder and severe problem in wireless systems. Also, in wireless
networks communication links between entities cannot always be considered bidirectional.

Calculi for broadcast systems were first studied by Prasad inthe work on the CBS calculus [16] and later in
a mobile setting by Ene and Muntean in thebπ calculus [5], and by Ostrovsky, Prasad, and Taha in HOBS [15].
Recently wireless broadcast systems have been studied by Nanz and Hankin in CBS# [13] and by Merro in CMN [8].
In the former calculi broadcast scope istransitive in that if two nodesP andQ both can communicate with a third node
thenP andQ can also communicate with each other whereas this is not necessarily the case for CBS# and CMN. The
calculus CWS [9] by Mezzetti and Sangiorgi also studies wireless broadcast but at a much lower level of abstraction,
in particular they take the phenomenon of interference intoaccount.

Another characteristic of MANETS is that nodes may be mobile, not only do they enter and leave the network,
but also they autonomously change localities and thereby change their connections and hence the topology of the
network. Mobility of processes has been addressed by many calculi, like π [11], Mobile Ambients [3], Seal [4], and
Homer [7], and some even take the notion of spatially oriented communication into account like Mobile Ambients and
Hennessy and Riely’sDπ [17]. However only very limited work has so far been devoted to calculi for broadcast and
mobility, like bπ and HOBS, and to our knowledge the only reported work on calculi for spatially oriented broadcast
and mobility is CBS# and CMN.

The goal of our work is to define aCalculus for Mobile Ad Hoc Networks (CMAN) that facilitates mobility and
spatially oriented broadcast. As in CMN we adopt that communication between nodes in a network is carried out on
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bidirectional links, and further we assume that nodes in a network may move arbitrarily as in both CBS# and CMN.
We shall refrain from dealing with interference in this paper.

The neighborhood relation in CBS# is dealt with at the semantic level, the semantics is parameterized and quan-
tified over a set of configurations (graphs). In CMN and CWS theneighborhood relation is taken care of by a metric
function that tells if two physical locations are close enough to communicate. Here instead we chooselogical loca-
tions and follow to some extent the ideas by De Nicola et al. [14] letting the topology be explicitly part of the network
syntax and letting the topology change as a consequence of computational steps. We choose as a key design principle
of our calculus that the specification of a node’s control behaviour must be independent of and not intermixed with its
neighborhood coordination as this would render models in the calculus unnecessarily complex.

We follow the approach from CBS# and CMN (and CWS) letting broadcast be spatially oriented, but in contrast
to CBS#, where broadcast messages may be received after a change of network topology, we let broadcast as in
CMN beatomic in the sense that all neighbors at the time of the broadcast, and only those, can listen to and receive
the broadcasted message. Another similarity with CMN is that we allow broadcasted messages to be lost for some
potential recipients. However, opposite to CMN where broadcast is carried out on channels that may be restricted, we
let broadcasted messages be transmitted on an unrestrictedmedium.

One important factor of motivation is that we want to be able to model cryptographic routing protocols for
MANETS, like ARAN [18]. For that reason we choose to adopt a data (term) language as the one known from the
Appliedπ-Calculus [2].

A node, bpcσ

l
, in our calculus is modeled as a (sequential)process p located at some (logical)location l and

connected to other nodes at locationsσ. A location is an abstract name that cannot be referred by thenode’s process.
Nodes put together in parallel constitute anetwork, say

P = bpcm

l ‖ bqcl

m ‖ brcn ,

where the current topology is that the node at locationl, bpcm

l
, is connected to the node at locationm, bqcl

m, (and vice
versa). The node at locationn is disconnected from any other node. Mobility is obtained bya simple reduction, say
that the node at locationn autonomously moves and becomes (bidirectionally)connected to the node at locationl,

bpcm

l ‖ bqcl

m ‖ brcn ↘ bpcmn

l ‖ bqcl

m ‖ brcl

n . (1)

Similarly, nodes may arbitrarilydisconnect, say

bpcmn

l ‖ bqcl

m ‖ brcl

n ↘ bpcn

l ‖ bqcm ‖ brcl

n . (2)

A node containing a process〈t〉.p may broadcastt and a node with(x).q can receive a broadcasted message.Syn-
chronous spatially oriented broadcast is realized by abroadcast reduction labelled by the location of the emitting
node, say

b〈t〉.pcnm

l ‖ b(x).qcl

m ‖ b(x).rcl

n ↘ l bpc
nm

l ‖ bq{t/x}cl

m ‖ br{t/x}cl

n , (3)

where the node at locationl broadcasts to all nodes to which it is connected in the current topology, or similarly

b〈t〉.pcnm

l ‖ b(x).qcl

m ‖ b(x).rcl

n ↘ l bpc
nm

l ‖ b(x).qcl

m ‖ br{t/x}cl

n , (4)

where the broadcasted message to one ofl’s neighbors, in this case the node at locationm, is lost. As a special case, a
disconnected node in a network may broadcast without anyonelistening

b〈t〉.pcl ‖ b(x).qcm ‖ b(x).rcn ↘ l bpcl ‖ b(x).qcm ‖ b(x).rcn . (5)

A novel contribution of our work is that we choose to work witha family of broadcast reductions, one for each locality
in the network. This allows an external observer to observe the locality (node) in charge of the synchronous broadcast.

However, since it may be unrealistic for an observer to coverthe whole network we introduce the notion of a
hidden node, i.e. a node with the location name restricted. A hidden node, sayνk.b〈t〉.rck, may connect to other nodes
extruding its location name,

b(x).pcm

l ‖ bqcl

m ‖ νk.b〈t〉.rck ↘ νk.(b(x).pcmk

l ‖ bqcl

m ‖ b〈t〉.rcl

k) , (6)
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and subsequently send (receive) messages to (from) its neighbors, e.g.

νk.(b(x).pcmk

l ‖ bqcl

m ‖ b〈t〉.rcl

k) ↘ νk.(bp{t/x}cmk

l ‖ bqcl

m ‖ brcl

k) , (7)

but the emission from a hidden node cannot be observed by an external observer, hence the reduction (7) is not a
broadcast reduction.

As in the seminal work on barbed bisimulation [12, 10] we strive to have an as simple as possible reduction seman-
tics and to allow an external global observer to have minimalobservability, in our case: reductions↘ l for broadcast,
and reductions↘ for connections, disconnections, and broadcast from hidden nodes. Similar to the semantics of
CMN and CBS# we choose to abstract from observability of nodemobility. Indistinguishability under these observa-
tions gives rise to natural strong and weak equivalences which in turn induces natural strong and weak congruences
over networks, i.e. the strong and weak equivalences in all contexts closed under structural congruence. In the present
paper we show how to obtain a labeled transition semantics such that (early contextual) strong and weak bisimulation
aresound andcomplete co-inductive characterizations of the the strong and weak reduction congruences respectively.

The paper is organized as follows: The language of CMAN is presented in Section 2. The reduction semantics and
the natural reduction congruences follows in Section 3. In Section 4 we provide the labeled transition system semantics
and give the co-inductive characterizations of the reduction congruences. Then, for a sub-calculus of CMAN, in
Section 5 we demonstrate a considerably simpler characterization of the reduction congruence. We end the paper with
a simple example of a cryptographic routing protocol and a conclusion. Proofs are to be found in the appendix.

2 Syntax

As already touched upon above a network in CMAN consists of nodes composed in parallel, some nodes may be
hidden, and each node is a sequential process at some abstract location connected to other locations.

Our process definition is similar to the one in [1], a variant of the Applied π-Calculus (Aπ) [2]. Aπ is a simple
extension of theπ-Calculus [11] with value passing, primitive functions, and term equations.

2.1 Terms

Terms are defined relative to an infinite set ofnames N ranged over byn, an infinite set ofvariables X ranged over
by x, and two disjoint finite sets,F andG, of constructor anddestructor symbols ranged over byf andg respectively.
Formally, destructors are defined to be partial functions, i.e. the application of a destructor to a tuple of terms is only
defined in case the tuple matches one of the destructors defining equations (we refer the reader to [1]).

Then the set of terms is defined as follows:

s, t ::= n | x | f(t1, . . . , tk) | (t1, . . . , ti) ,

wheref is a constructor symbol with arityk. We letT denote the set of all terms with no variables.

2.2 Processes

As mentioned above, processes in CMAN are based on the process constructs fromAπ. We choose although to omit
the notion of achannel, letting everyone able to listen be a potential receiver of the broadcasted message.1 We assume
a set of process variablesZ ranged over byz. The set of processes is defined by the grammar:

p, q ::= 0 | 〈t〉.p | (x).p | if (t = s) then p else q | let x = t in p |

let x = g(t1, . . . , ti) in p else q | νn.p | z | rec z.p .

The process0 is the inactive process.〈t〉.p may outputt and in so doing becomep. The process(x).p bindsx in p and
may input a termt and replace all free occurrences ofx in p by t. The processif t = s then p else q is a standard
conditional. The local definitionlet x = t in p binds the variablex in p and executesp with all free occurrences
of x replaced byt. The processlet x = g(t1, . . . , tk) in p else q also bindsx in p, if the destructor application

1 Another approach would be to broadcast on a given channel as in CMN andbπ.
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g(t1, . . . , tk) evaluates to a termt thenx is bound tot in p, otherwise the process becomesq. The processνn.p binds
the namen in p and restrictsn to p. Finally,rec z.p is a recursively defined process whererec z bindsz in p. 2

We letp{t/x} denote the processp where any free occurrence ofx is substituted byt (taking care that names int
are not bound inp by the use ofα-conversion if needed). Likewise,p{q/z} denotes the processp wherez is substituted
by q. The set offree names in a processp is denoted byfn(p), and itsfree variables are denoted byfv (p). A process
p is (variable)closed if fv(p) = ∅. P denotes the set of all closed processes and as usual we identify processes up to
α-equivalence.

2.3 Networks

Assume a finite set oflocation namesL ranged over byl andk. We assumeN ∩L = ∅ and letm range overN ∪L. We
let σ range over sets of location names and letε denote the empty set. The set of networks is defined by the grammar:

P, Q, R ::= 0 | bpcσ

l | νm.P | P ‖ Q .

The network0 denotes the empty network.bpcσ

l
is a singleton network with the node at locationl containing the

processp and connected to nodes inσ. νm.P is the networkP with the (location or term) namem hidden, and finally
P ‖ Q is the parallel composition of the two networksP andQ. 3 As a shorthand we allow to writeΠi∈IPi for the
parallel composition of all networksPi, i ∈ I.

We let the hiding operator have higher precedence than parallel composition. We writebpcl instead ofbpcε

l
. When

m̃ = {m1, . . . , mi} we write m̃m for m̃ ∪ {m} and we writeνm̃ instead ofνm1 . . . νmi. We writeσl instead of
σ ∪ {l} and letσσ′ denote the union of disjoint setsσ andσ′.

The set offree names in a networkP , denoted byfn(P ), is defined as expected and so is the set offree variables
fv (P ). We letP{t/x} denote the networkP where all free occurrences ofx in P is substituted byt (taking care that
names int are not bound inP usingα-conversion if needed). The set offree locations in a networkP , denoted by
fl(P ), is inductively defined by:fl(bpcσ

l
) = {l}, fl(νm.P ) = fl(P )\{m}, andfl(P ‖ Q) = fl(P )∪fl(Q). The set of

free connections in a networkP , denoted byfc(P ), is inductively defined by:fc(bpcσ

l
) = σ, fc(νm.P ) = fc(P )\{m},

and fc(P ‖ Q) = fc(P ) ∪ fc(Q). Finally, the set of free locations and connections in a network P is denoted by
flc(P ) = fl(P ) ∪ fc(P ).

As a syntactical convention we allow to writePl⊕k meaning that the node inP (if any) with location namel is
connected to a node with location namek, and symmetrically nodek in P (if any) is connected tol. Formally we define
Pl⊕k inductively by:0l⊕k = 0, and(bpcσ

l
)l⊕k = bpcσk

l
, (bpcσ

k
)l⊕k = bpcσl

k
, and(bpcσ

m)l⊕k = bpcσ
m if m 6∈ {l, k},

(P ‖ P ′)l⊕k = Pl⊕k ‖ P ′
l⊕k, (νm.P )l⊕k = νm.(Pl⊕k) if m 6∈ {l, k}. Similarly, we letPl	k denote the network

wherek is not connected to nodel, and vice versa. We letl ⊕ k andl 	 k have higher precedence than the hiding
operator.

2.4 Well-formedness

We say that a networkP is well-formed if each node inP is not connected to itself and if each free location inP is
unique. Formally, well-formedness is inductively defined by:

– bpcσ

l
is well-formed ifl 6∈ σ.

– P ‖ Q is well-formed ifP andQ are well-formed and iffl(P ) ∩ fl(Q) = ∅.
– νm.P is well-formed ifP is well-formed.

In the sequel we consider only the set of well-formed networks and we identify networks up toalpha-equivalence.
The set of well-formed and variable closed networks is denoted byN.

2 Notice, that in the present version of CMAN we have left out parallel composition and replication of processes.
3 As in [14] we have no operator for having an unbounded number of network nodes.
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let x = t in p ≡P p{t/x} if (t = t) then p else q ≡P p

if (t = s) then p else q ≡P q , if t 6= s rec z.p ≡P p{rec z.p/z}

let x = g(t1, . . . , ti) in p else q ≡P p{t/x} , if g(t1, . . . , ti) = t

let x = g(t1, . . . , ti) in p else q ≡P q , if g(t1, . . . , ti) not defined

Table 1.Structural congruence, processes.

P ‖ 0 ≡ P P ‖ Q ≡ Q ‖ P (P ‖ P ′) ‖ P ′′ ≡ P ‖ (P ′ ‖ P ′′)

bpcσ
l ≡ bqcσ

l , if p ≡P q bνn.pcσ
l ≡ νn.bpcσ

l

νm.νm′.P ≡ νm′.νm.P νm.P ‖ Q ≡ νm.(P ‖ Q) , if m 6∈ fn(Q) ∪ flc(Q)

Table 2.Structural congruence, networks.

3 Reduction Semantics

We provide our calculus with a reduction semantics defined through the use of evaluation contexts, structural congru-
ence, and reduction rules.

As usual we say that a binary relationR on P is a congruence if p R q impliesC(p) R C(q) for any process
contextC. Structural congruence onP, ≡P, is the least congruence and equivalence relation that is closed underα-
conversion and the rules in Table 1. Likewise, we say that a binary relationR onN is acongruence if P R P ′ implies
νm.P R νm.P ′ for all m, andP ‖ Q R P ′ ‖ Q for all Q with fl(Q) ∩ (fl(P ) ∪ fl(P ′)) = ∅. Structural congruence
onN, ≡, is the least congruence and equivalence relation that is closed underα-conversion and the rules in Table 2.

3.1 Reduction Rules

We define a reduction↘ l ⊆ N × N for eachl ∈ L as the least relation closed under structural congruence, parallel
composition, and satisfying the rules in Table 3. Also, we define ↘ ⊆ N × N as the least relation closed under
structural congruence, parallel composition, and restriction, and satisfying the rules in Table 3. We let↘∗ denote the
reflexive and transitive closure of↘.

A reduction due to rule (con) in Table 3 signifies that a bidirectional connection withinthe network has taken
place, and likewise a reduction due to (dis) means that a disconnection has happened.

A reduction due to rule (brd) means that the node at locationl synchronously broadcasts a message to neighbors
to which it is currently connected and which are capable of listening. Notice that the rule(brd) captures that broadcast
is an atomic step, hence no node outside the range of the emitting node at the time of transmission can ever receive
the broadcasted message. Also note that broadcasted messages may be lost, i.e. not only will neighbors to whichl is
connected but which are not listening for sure lose the message, but also connected neighbors that are listening are not
guaranteed to receive the emitted message as demonstrated by reduction (4) in the Introduction.

Rule (res) allows broadcasting from non-hidden localities to be observable, and dually rule (hide) makes emission
from hidden nodes unobservable. For reduction examples we refer the reader to (1) – (7) in the Introduction.

3.2 Reduction Congruences

Based on the reductions above we introduce a natural strong and a also a weak congruence for CMAN.
We say that a binary relationR on N is strong reduction closed if wheneverP R Q thenP ↘ P ′ implies the

existence of someQ′ such thatQ ↘ Q′ andP ′ R Q′, andP ↘ l P ′ implies the existence of someQ′ suchQ ↘ l Q′

andP ′ R Q′. Likewise, we say that a binary relationR on N is weak reduction closed if wheneverP R Q then
P ↘ P ′ implies the existence of someQ′ such thatQ ↘∗ Q′ andP ′ R Q′, andP ↘ l P ′ implies the existence of
someQ′ suchQ ↘∗↘ l↘∗ Q′ andP ′ R Q′.
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(con)
bpcσ

l ‖ bqcσ′

k ↘ bpcσk
l ‖ bqcσ′l

k

(dis)
bpcσk

l ‖ bqcσ′l
k ↘ bpcσ

l ‖ bqcσ′

k

(brd)
b〈t〉.pcσσ′

l ‖ Πm∈σb(x).pmcσml
m ↘ l bpc

σσ′

l ‖ Πm∈σbpm{t/x}cσml
m

(res)
P ↘ l P ′

νm.P ↘ l νm.P ′
m 6= l (hide)

P ↘ l P ′

νl.P ↘ νl.P ′

Table 3.Reduction rules.

Definition 1. A symmetric relation R on N is a strong reduction bisimulationif it is strong reduction closed and if
P R Q implies fl(P ) = fl(Q).

Definition 2. A symmetric relation R on N is a weak reduction bisimulationif it is weak reduction closed and if
P R Q implies fl(P ) = fl(Q).

Strong and weak reduction bisimulation are equivalence relations.
Notice that in reduction bisimulations the location name ofthe (non-hidden) broadcasting location is observable,

however we do not use barbs as for instance in [12], but instead make broadcasting from a node a locationl say be
observable through reductions of type↘ l. As usual weak reduction bisimulation abstracts from internal computation,
in our case change of connectivity and broadcast from hiddennodes.

Definition 3. A relation R on N is a strong reduction congruenceif it is a strong reduction bisimulation and a
congruence.

We let' denote the largest strong reduction congruence.

Definition 4. A relation R on N is a weak reduction congruenceif it is a weak reduction bisimulation and a congru-
ence.

We let∼= denote the largest weak reduction congruence.

4 Labeled Transition System Semantics

In order to give an alternative co-inductive characterization of the weak reduction congruence,∼=, we provide a labeled
transition system semantics of our calculus. We begin with the semantics for plain processes and proceed with the
semantics for networks.

4.1 Process Semantics

Let the set ofprocess actions, AP, ranged over byλ be defined by:

λ ::= (t) | νñ〈t〉

wheret ∈ T . The action(t) describes that the termt is received by a process and the actionνñ〈t〉 denotes the emission
of the termt with names iñn bound. Ifñ = ∅ we write〈t〉 instead ofν∅〈t〉. We letfn(λ) (bn(λ)) denote the bound
(free) names inλ.

The operational semantics for processes is defined as a labeled transition system(P,AP,→) where→ ⊆ P ×
AP × P is the least set defined by the rules in Table 4 and closed by≡P. The rule (out) states that the process〈t〉.p
can broadcast the termt. (in) states that(x).p can receive any termt and let it be substituted for any free occurrence
of x in p. The rule(res) is the usual rule for restriction. The rule(open) takes care of extrusion of restricted names.
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(out)
〈t〉.p

〈t〉
−→ p

(in)
(x).p

(t)
−→ p{t/x}

(res)
p

λ
−→ p′

νn.p
λ

−→ νn.p′
n 6∈ fn(λ) ∪ bn(λ) (open)

p
νñ〈t〉
−→ p′

νn.p
νñn〈t〉
−→ p′

n ∈ fn(t) \ ñ

Table 4.Transition Rules, Processes.

4.2 Networks Semantics

The set ofnetwork actions A ranged over byα is defined by:

α ::= β | γ β ::= l | lσνñ〈t〉 | lσ(t) | τ γ ::= l. | νl.l. | l / k | τ

wheret ∈ T . Actions are grouped into broadcast and mobility actions ranged over byβ andγ respectively. The action
l denotes that the node at locationl has completed a broadcast computation. The actionlσνñ〈t〉 is an output action,
it means that the node at locationl may broadcast the messaget with names iñn bound to the nodes with locations
in σ. The actionlσ(t) is an input action, meaning thatt may be received from the node at locationl by the nodes
with locations inσ. The actionl. (νl.l.) means that the (hidden) node at locationl may move. Finally, the action
l / k indicates that the two nodes at locationsl andk respectively are disconnecting. As usualτ denotes an internal
computation.

For convenience we writeνm̃.l. for l. if m̃ = ∅, likewise if m̃ = {l} we writeνm̃.l. for νl.l.. We letbn(α)
(fn(α)) denote the bound (free) names inα, and we letbl(α) (fl(α)) denote the bound (free) locations inα.

The operational semantics for networks is defined by a labeled transition system(N,A,→) where→⊆ N×A×N

is the least relation satisfying the rules in Table 5 and 6, omitting the symmetric counterparts of the three rules(synch),
(par 1), and(par2).

The rule (brd ) in Table 5 states that a node at locationl may broadcast its message to any node with location inσ.
Rule (lose) represents that broadcast messages may be arbitrarily lost, nodes with locations inσ′ will not receive the
message broadcasted byl. Hence we may have:

P1 = b〈n〉.pclm

k

klm〈n〉
−→ bpclm

k and P1
kl〈n〉
−→ bpclm

k .

The two rules (rec1) and (rec2) show how broadcasted terms may be received by nodes, e.g. wemay have:

Q1 = b(x).qck

l ‖ b(x).rck

m

klm(n)
−→ bq{n/x}ck

l ‖ br{n/x}ck

m = Q2 .

The actual synchronization between broadcast and reception of messages is shown in (synch), for instance:

P1 ‖ Q1
kε〈n〉
−→ bpclm

k ‖ Q2 and P1 ‖ b(x).rck

m

kl〈n〉
−→ bpclm

k ‖ br{n/x}ck

m .

The rules (open1) and (close) make sure that extrusion of bound names is treated properly, where (close) signals the
completion of a broadcasting session. As an example of the result of an application of rule (open1) we may take:

P1
′ = νn.P1

klmνn〈n〉
−→ bpclm

k ,

and assumingn 6∈ fn(Q1), taking care to avoid name clashing in the (synch) rule, we may apply the rule (close) to
obtain:

P1
′ ‖ Q1

k
−→ νn.(bpclm

k ‖ Q2) .

The rule (par1) is a standard rule for concurrency, say:

Q1
kl(n)
−→ bq{n/x}ck

l ‖ b(x).rck

m ,
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(brd)
p

νñ〈t〉
−→ p′

bpcσ
l

lσνñ〈t〉
−→ bp′cσ

l

(lose)
P

lσσ′νñ〈t〉
−→ P ′

P
lσνñ〈t〉
−→ P ′

(rec1)
p

(t)
−→ p′

bpcσk
l

kl(t)
−→ bp′cσ

l

(rec2)
P

lσ(t)
−→ P ′ Q

lσ′(t)
−→ Q′

P ‖ Q
lσσ′(t)
−→ P ′ ‖ Q′

(close)
P

lενñ〈t〉
−→ P ′

P
l

−→ νñ.P ′

(hide)
P

l
−→ P ′

νl.P
τ

−→ νl.P ′
(open1)

P
lσνñ〈t〉
−→ P ′

νn.P
lσνñn〈t〉
−→ P ′

n ∈ fn(t) \ ñ

(synch)
P

lσσ′νñ〈t〉
−→ P ′ Q

lσ′(t)
−→ Q′

P ‖ Q
lσνñ〈t〉
−→ P ′ ‖ Q′

ñ ∩ fn(Q) = σ ∩ fl(Q) = ∅

(par1)
P

β
−→ P ′

P ‖ Q
β

−→ P ′ ‖ Q
fl(β) ∩ fl(Q) = bn(β) ∩ fn(Q) = ∅

(res1)
P

β
−→ P ′

νm.P
β

−→ νm.P ′
m 6∈ fl(β) ∪ fn(β) ∪ bn(β)

Table 5.Transition Rules, Network Broadcast.

and beyond taking care to avoid name clash it implies for instance:

P1 ‖ b(x).rck

m

klm〈n〉
−→6 ,

becausem is a free location in bothklm〈n〉 andb(x).rck
m, hence the side condition in (par1) enforces networks not

to externally broadcast messages to nodes it already contains. Likewise, (synch) enforces:

P1 ‖ Q1
km〈n〉
−→6 ,

becausem ∈ fl(Q1).
The rule(res1) is defined as usual, but(hide) is a new special rule added for the same reason as the rule withthe

same name in Table 3, i.e. to hide broadcast from hidden nodes. Hence for instance:

νk.(P1
′ ‖ Q1)

τ
−→ νk.νn.(bpclm

k ‖ Q2) ,

is the result of letting the hidden node at locationk in P1
′ complete a broadcast communication.

Mobility of nodes is obtained through the rules (con1) and (dis1) and their respective synchronization rules (con2)
and (dis2) in Table 6. The rule (con1) states that a node at a free locationl may connect to any other node as demon-
strated by the rule (con2). As an example:

bpcl

l.
−→ bpcl , bqck

k.
−→ bqck , and bpcl ‖ bqck

τ
−→ bpck

l ‖ bqcl

k .

Dually, (dis1) states that a node at locationl with a neighbor at locationk may disconnect fromk and in so doing
removek from the set of connections of the node. The mutual disconnection of bidirectionally connected nodes is
taken care of by the rule (dis2). For instance,

bpck

l

l/k
−→ bpcl , bqcl

k

k/l
−→ bqck , and bpck

l ‖ bqcl

k

τ
−→ bpcl ‖ bqck .
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(con1)
bpcσ

l
l.
−→ bpcσ

l

(dis1)
bpcσk

l
l/k
−→ bpcσ

l

(con2)
P

νm̃.l.
−→ P ′ Q

νm̃′.k.
−→ Q′

P ‖ Q
τ

−→ νm̃′m̃.(P ′ ‖ Q′)l⊕k

m̃ ∩ m̃′ = m̃ ∩ flc(Q) = m̃′ ∩ flc(P ) = ∅

(dis2)
P

l/k
−→ P ′ Q

k/l
−→ Q′

P ‖ Q
τ

−→ P ′ ‖ Q′

(open2)
P

l.
−→ P ′

νl.P
νl.l.
−→ P ′

(res2)
P

γ
−→ P ′

νm.P
γ

−→ νm.P ′
m 6∈ fl(γ) ∪ bl(γ)

(par2)
P

γ
−→ P ′

P ‖ Q
γ

−→ P ′ ‖ Q
bl(γ) ∩ flc(Q) = ∅

Table 6.Transition Rules, Network Mobility.

Special care must be given to hidden nodes. The rules (open2), (par2), and (con2) allow the location names for
hidden nodes to be properly extruded, in particular taking care to avoid clashes between bound location names and
free locations and connections. As an example, assumingl 6= k,

νl.bpcl

νl.l.
−→ bpcl and νl.bpcl ‖ bqck

τ
−→ νl.(bpck

l ‖ bqcl

k) .

Illustrating the use of (par2) we may have:

νl.bpcl ‖ bqck

νl.l.
−→ bpcl ‖ bqck ,

and from (con2) we may then get ifm 6∈ {l, k},

νl.bpcl ‖ bqck ‖ νm.brcm

τ
−→ νm.νl.(bpcm

l ‖ bqck ‖ brcl

m) .

The rule (res2) is defined as usual.
The close correspondence between the reduction semantics and the labeled transition system semantics is demon-

strated by the lemmas below.

Lemma 1. P
τ

−→≡ P ′ iff P ↘ P ′.

Lemma 2. P
l

−→≡ P ′ iff P ↘ l P ′.

4.3 Bisimulation Semantics

Below we give co-induction characterizations, a strong anda weak bisimulation, of the strong and weak reduction
congruences respectively. Our characterizations followsthe contextual style as found in e.g. [4, 14].

To assist in the definitions below we introduce a shorthand,(x)Aσ⊕l, for a family of variable closed networks
defined by the grammar:

(x)Aσ⊕l ::= Πm∈σb(x).pmcσml
m

For any(x)Aσ⊕l with (x)Aσ⊕l = Πm∈σb(x).pmcσml
m we writeAσ⊕l{t/x} for the networkΠm∈σbpm{t/x}cσml

m .
Strong bisimulation is defined as follows.
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Definition 5. A binary relation R on N is a strong simulationif P R Q implies fl(P ) = fl(Q) and for all p ∈ P,

1. if P
τ

−→ P ′ then ∃Q′. Q
τ

−→ Q′ and P ′ R Q′

2. if P
lσνñ〈t〉
−→ P ′ then ∀σ′. σ′ ⊆ σ. ∀(x)Aσ′⊕l. ñ ∩ fn((x)Aσ′⊕l) = ∅. ∃Q′.

Q ‖ (x)Aσ′⊕l

l
−→ Q′ and νñ.(P ′ ‖ Aσ′⊕l{t/x}) R Q′

3. if P
lσ(t)
−→ P ′ then ∀σ′. σ′ ∩ σl = ∅, ∃Q′.

Q ‖ b〈t〉.pcσσ
′

l

l
−→ Q′ and P ′ ‖ bpcσσ

′

l
R Q′

4. if P
νm̃.l.
−→ P ′ then ∀ k. k 6∈ fl(P ) ∪ m̃. ∀σ. σ ∩ m̃k = ∅. ∃Q′.

Q ‖ bpcσ

k

τ
−→ Q′ and νm̃.(P ′ ‖ bpcσ

k
)l⊕k R Q′

5. if P
l/k
−→ P ′ then ∀σ. k 6∈ σ. ∃Q′.

Q ‖ bpcσl

k

τ
−→ Q′ and P ′ ‖ bpcσ

k
R Q′

R is a strong bisimulation if both R and R−1 are strong simulations.

Let∼ be the largest strong bisimulation.
The notion of strong bisimulation in a broadcasting framework as defined by Definition 5 is a key contribution

of this paper and deserves some comments. Requirement 1 in the definition is standard. Requirement 2 demands that
an open broadcast communication to nodes at locationsσ in the environment by a node at some visible locationl
in P must be matched by a completed broadcast communication by a node at the same locationl in Q, whenQ
is put in parallel with any potential receivers. Requirement 3 states that if nodes at locationsσ in P may receivet
from a broadcasting node at locationl in the environment, thenQ composed with any such node may let the node
emit t and complete a broadcast communication withQ, and in so doingQ and the node together become a network
that can match the reception oft by the nodes atσ in P . Requirement 4 states that if a (possibly hidden) node inP
(bidirectionally) connects to an external node at some fresh locationk thenQ an the new external node can make an
internal computation and then matchP being connected to the node at locationk. Finally, requirement 5 demands
that if the node at locationl in P is about to disconnect from locationk in its environment, thenQ in an environment
with a single node at locationk that is connected tol can make an internal computation, and matchP and the node at
locationk together in parallel when the two are disconnected.

Notice that all but the first requirements in Definition 5 are contextual because they are demands on the network
execution environment to receive broadcasted messages, toprovide external input of data terms, to connect with new
fresh localities, and to disconnect from environmental locations respectively.

Theorem 1. ∼ is a congruence.

Let
τ

=⇒ be the reflexive and transitive closure of
τ

−→ and define
l

=⇒ by
τ

=⇒
l

−→
τ

=⇒.
Weak bisimulation is defined as below.

Definition 6. A binary relation R on N is a weak simulationif P R Q implies fl(P ) = fl(Q) and for all p ∈ P,

1. if P
τ

−→ P ′ then ∃Q′. Q
τ

=⇒ Q′ and P ′ R Q′

2. if P
l

−→ P ′ then ∃Q′. Q
l

=⇒ Q′ and P ′ R Q′

3. if P
lσ(t)
−→ P ′ then ∀σ′. σ′ ∩ σl = ∅, ∃Q′.

Q ‖ b〈t〉.pcσσ
′

l

l
=⇒ Q′ and P ′ ‖ bpcσσ

′

l
R Q′

4. if P
νm̃.l.
−→ P ′ then ∀ k. k 6∈ fl(P ) ∪ m̃. ∀σ. σ ∩ m̃k = ∅. ∃Q′.

Q ‖ bpcσ

k

τ
=⇒ Q′ and νm̃.(P ′ ‖ bpcσ

k
)l⊕k R Q′

5. if P
l/k
−→ P ′ then ∀σ. k 6∈ σ. ∃Q′.

Q ‖ bpcσl

k

τ
=⇒ Q′ and P ′ ‖ bpcσ

k
R Q′
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R is a weak bisimulation if both R and R−1 are weak simulations.

Let≈ be the largest weak bisimulation.
The requirements in Definition 6 are obvious weak generalizations of the requirements in Definition 5. However,

one exception being Requirement 2 since it only considers completed broadcast transitions and not messages broad-
casted to the environment as in e.g.

2. if P
lσνñ〈t〉
−→ P ′ then ∀σ′. σ′ ⊆ σ. ∀(x)Aσ′⊕l. ñ ∩ fn((x)Aσ′⊕l) = ∅. ∃Q′.

Q ‖ (x)Aσ′⊕l

l
=⇒ Q′ andνñ.(P ′ ‖ Aσ′⊕l{t/x}) R Q′

In the appendix we show that Requirement 2 in Definition 6 can be interchanged with the stronger requirement above
leading to an equivalent definition of weak bisimulation.

Theorem 2. ≈ is a congruence.

Because∼ (≈) is a congruence it is sufficient to establish that a strong (weak) bisimulation is strong (weak) reduction
closed in order to show∼ ⊆ ' (≈ ⊆ ∼=), this follows from Lemma 1 and 2. Then in order to show∼ = ' (≈ = ∼=) it
just remains showing' (∼=) to be a strong (weak) bisimulation. For details we refer thereader to the appendix.

Theorem 3. ∼ = '.

Theorem 4. ≈ = ∼=.

Because the establishment of bidirectional connections and deconnections are unobservable in a weak bisimulation
semantics the following lemma holds:

Lemma 3. If l, k ∈ fl(P ) then Pl⊕k ≈ Pl	k.

It is not difficult to show that≡ is a weak bisimulation, and as an example we may show that the inactive network is
weak bisimilar to a hidden node with an inactive process, i.e. 0 ≈ νk.b0ck, becauseR ∪ R−1 is a weak bisimulation
up to≡ where

R= {(νm̃.(0 ‖ P ), νm̃k.(b0ck ‖ P )σ⊕k) | m̃ ∪ σ ⊆ fl(P ), k 6∈ fl(P )}

lettingPσ⊕k be defined by(. . . (Pl1⊕k) . . .)li⊕k wheneverσ = {l1, . . . , li}.

5 Connection Closed Networks

The definitions of strong and weak bisimulation are contextual and therefore it is hard to prove bisimulation equiva-
lence between networks. For the class ofconnection closed networks however it turns out that our framework becomes
significantly simpler.

We say that a networkP is connection closed if each node inP is connected only to other nodes withinP , i.e.
if fc(P ) ⊆ fl(P ). For instance, all networks in the examples (1) – (7) in the Introduction are connection closed, but
b0cm

l
is not. We letNc denote the subset ofN of connection closed networks.

Let a binary relation onNc be ac-congruence if it is closed by hiding and by (well-formed) parallel composition
of networks inNc, and let structural c-congruence be the least c-congruenceand equivalence relation onNc closed
underα-conversion and the rules in Table 2.

Similar to Definition 3 we define a strong congruence over connection closed networks.

Definition 7. A symmetric relation R on Nc is a strong reduction c-congruenceif it is strong reduction closed, a
c-congruence, and if P R Q implies fl(P ) = fl(Q).

We let'c be the largest strong reduction c-congruence.
As in Definition 4 we define a weak congruence abstracting frominternal computation, but now only over connec-

tion closed networks.

Definition 8. A symmetric relation R on Nc is a weak reduction c-congruenceif it is weak reduction closed, a c-
congruence, and if P R Q implies fl(P ) = fl(Q).

11



We let∼=c be the largest weak reduction c-congruence.
Like strong and weak reduction congruences was characterized by strong and weak bisimulation respectively we

may also characterize strong and weak reduction c-congruence by a co-inductively defined bisimulation.
Let Rk range over networks inNc wherek ∈ fl(Rk).

Definition 9. A binary relation R on Nc is a strong c-simulationif P R Q implies fl(P ) = fl(Q) and

if P
τ

−→ P ′ then ∃Q′. Q
τ

−→ Q′ and P ′ R Q′

if P
l

−→ P ′ then ∃Q′. Q
l

−→ Q′ and P ′ R Q′

if P
νm̃.l.
−→ P ′ then ∀Rk ∈ Nc.fl(Rk) ∩ (fl(P ) ∪ m̃) = ∅. ∃Q′.

Q ‖ Rk

τ
−→ Q′ and νm̃.(P ′ ‖ Rk)l⊕k R Q′

R is a strong c-bisimulation if both R and R−1 are strong c-simulations.

Let∼c be the largest strong c-bisimulation.

Definition 10. A binary relation R on Nc is a weak c-simulationif P R Q implies fl(P ) = fl(Q) and

if P
τ

−→ P ′ then ∃Q′. Q
τ

=⇒ Q′ and P ′ R Q′

if P
l

−→ P ′ then ∃Q′. Q
l

=⇒ Q′ and P ′ R Q′

if P
νm̃.l.
−→ P ′ then ∀Rk ∈ Nc.fl(Rk) ∩ (fl(P ) ∪ m̃) = ∅. ∃Q′.

Q ‖ Rk

τ
=⇒ Q′ and νm̃.(P ′ ‖ Rk)l⊕k R Q′

R is a weak c-bisimulation if both R and R−1 are weak c-simulations.

Let≈c be the largest weak c-bisimulation.
One may show that∼c and≈c are c-congruences and that

Theorem 5. 'c = ∼c

Theorem 6. ∼=c = ≈c

As an example, we may then (writing〈t〉 for 〈t〉.0) showνk.b〈n〉.〈n〉ck ≈c νk.b〈n〉ck ‖ νl.b〈n〉cl because

{ (νm̃k.(b〈n〉.〈n〉ck ‖ Q)σ⊕k, νm̃kl.(b〈n〉ck ‖ (b〈n〉cl ‖ Q)σ1⊕l)σ2⊕k),

(νm̃k.(b〈n〉ck ‖ Q)σ⊕k, νm̃kl.(b〈n〉ck ‖ (b0cl ‖ Q)σ1⊕l)σ2⊕k),

(νm̃k.(b0ck ‖ Q)σ⊕k, νm̃kl.(b0ck ‖ (b0cl ‖ Q)σ1⊕l)σ2⊕k)

| σ ∪ σ1 ∪ σ2 ⊆ fl(Q) }

is a weak c-bisimulation up to structural c-congruence.

6 An Example: ARAN

As mentioned in the Introduction a key motivation for our work is to establish a framework that allows to reason about
security properties for MANETS. In [6] an attack on the cryptographic routing protocol ARAN [18] was identified
and below we recapture the principles of this attack.

The goal of ARAN is to ensure secure requests for routing in adhoc networks by making requests and replies be
signed and checked in every hop, hence messages cannot be altered and therefore the protocol is claimed to be safe in
that no false routing information can be imposed by malicious nodes. The basic idea of the protocol is that a receiver of
a message is obliged to check its signature and if the messageis correctly signed the signature is removed and signed
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p0
def
= νn1.let xcert = sign(pk(n1), sk(n0)) in p1

p1
def
= let xsreq = sign(rdp, sk(n1)) in 〈(xsreq , xcert)〉.(x).p2

p2
def
= let x1 = fst(x) in let x2 = snd(x) in let x3 = get(x1) in p3

p3
def
= if rep = x3 then let xkey = get(x2) in p4

p4
def
= let x4 = check(xkey , x2, pk(n0)) in if x4 = ok then p5

p5
def
= let x5 = check(rep, x1, xkey) in if x5 = ok then 〈success〉

q0
def
= νn3.let xcert = sign(pk(n3), sk(n0)) in (x).q1

q1
def
= let x1 = fst(x) in let x2 = snd(x) in q2

q2
def
= let x3 = get(x1) in if rdp = x3 then let xkey = get(x2) in q3

q3
def
= let x4 = check(xkey , x2, pk(n0)) in if x4 = ok then 〈(sign(rep, sk(n3)), xcert )〉

Table 7.ARAN processes.

by the node itself before the new message is forwarded. It is assumed that all valid nodes in the network a priori have a
private public key pair and a certificate and also that the public key of the certificate authority is known to every node.

In order to illustrate the attack it is sufficient to consideronly a network consisting of three nodes: the initiator of a
route request, the destination of the request, and an attacker. The attacker is not a valid node and hence it has not been
authorized by the certificate authority.

The simplified ARAN protocol we consider goes as follows: Theinitiator broadcasts a signed requestrdp to its
neighbors and awaits a signed replyrep in return, if the reply is successfully returned the initiator broadcastssuccess.
Hence the destination must be an immediate neighbor in orderfor a route to exist. The destination of the route request
on the other hand waits for a signed route request, checks that it is properly signed and if so returns a signed reply to
the initiator. Upon reception of the reply the initiator validates the signed message.

To model the cryptographic primitives, let{ok , pk , sk , sign} be a set of constructor symbols and let{check , get}
be a set of destructor symbols whereok has arity 0, whereget, pk, andsk have arity 1, wheresign has arity 2, and
wherecheck has arity 3. We letpk(n) be the constructor for a public key based on some seedn, and we letsk(m) be
a private (secret) key based on the seedm. The application of the constructorsign

sign(pk (n), sk (m)) ,

then denotes the signing of the public keypk (n) with the secret keysk(m). We let the destructorscheck andget be
defined by:

check(t, sign(t, sk(s)), pk (s)) = ok , get(sign(t, sk (s))) = t .

That is, checking the signature of a messaget with the public key matching the private key by which the message
was signed yields the resultok . The destructorget simply returns the contents of a signed message. By convention we
introduce two auxiliary destructors,fst andsnd , that returns the first and second element of a pair respectively.

As shorthands for the process expressions, wheneverq is 0, we abbreviateif t = s then p else q by if t =
s then p, we write let x = g(t1, . . . , tk) in p instead oflet x = g(t1, . . . , tk) in p else q, and also, as before we
write 〈t〉 for 〈t〉.q.

The simplified one shot version of the ARAN protocol is definedby:

A = νn0.(bp0cl ‖ bq0ck) ,

wherep0 andq0 are defined in Table 7. The processp0 defines the behaviour of the initiator of the protocol, andq0

defines the behaviour of the destination.
The intruder, which in this example can only relay messages,is defined as a hidden node by:

I = νm.brec z.(x)〈x〉.zcm . (8)

Observe, that since the intruder is a hidden node broadcasting of messages fromI cannot be observed.
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A correctness criterion for the ARAN protocol is as stated above that the routing messages must be validated in
each and every hop, in that each hop should always be between certified nodes only. For instance, it must not be
possible for a non-certified node (an intruder) to be part of avalid route in ARAN. This criterion may be checked by
verifying as to whether the protocol is unaffected by running together with an intruder doing relays as defined by (8).

The composition ofA and the intruder can do the following computation:

A ‖ I
l

=⇒ νn0.νn1.νm.(b(x).p2c
m

l ‖ bq0ck ‖ b〈t〉.rec z.(x)〈x〉.zcl

m) = P , (9)

where
t = (sign(rdp, sk(n1)), sign(pk (n1), sk(n0))) .

We argueA 6≈ A ‖ I, and hence demonstrate that the simple version of the ARAN protocol is not robust and therefore
subject of attack from an intruder doing relays.A can match the weak output transition (9) above by the four moves:

A
l

=⇒ νn0.νn1.(b(x).p2cl ‖ bq0ck) = Q ,

A
l

=⇒ Ql⊕k ,

A
l

=⇒ νn0.νn1.(b(x).p2cl ‖ bνn3.〈t′〉ck) = Q′ ,

A
l

=⇒ Q′
l⊕k ,

wheret′ = (sign(rdp, sk(n3)), sign(pk (n3), sk (n0))).

Clearly P 6≈ Q becauseP
k

=⇒ which cannot be matched byQ. Notice that the in-equivalence follows due to
computations byP where the intruder is part of a route from the initiator to thedestination whereasQ is a state where
the request has been lost. BecauseP 6≈ Q alsoP 6≈ Ql⊕k due to Lemma 3 sinceQ = Ql	k.

The final part of the proof is due to the fact that the stateP where the intruder got the request can be followed by
a computation in which the message is lost when the intruder performs a (hidden) broadcast,4 i.e.

P
τ

−→ νn0.νn1.(νm.(b(x).p2cm

l
‖ bq0ck ‖ brec z.(x)〈x〉.zcl

m)) = P ′ .

Then, since inQ′ the destination cannot escape being able to broadcast, because for allR ∈ {R | Q′ τ
=⇒ R} =

{Q′, Q′
l⊕k} it holds thatR

k
−→, and sinceP ′ 6

k
=⇒ it turns out thatP 6≈ Q′. It then follows from Lemma 3 that also

P 6≈ Q′
l⊕k becauseQ′ = Q′

l	k.

7 Conclusion

We have defined a broadcasting calculus, CMAN, for MANETS that supports synchronous spatially oriented broad-
cast and dynamic changes of the network topology. CMAN is equipped with a natural reduction semantics and con-
gruence, and a co-inductive sound and complete bisimulation characterization. The characterization is shown to be
particularly simple for connection closed networks. CMAN has been applied on a small example of a cryptographic
routing protocol. A major advantage of CMAN is that it permits direct description of features of MANETS that would
be hard do describe in classical calculi.

In the future the process language of CMAN should be extendedwith concurrency, and we consider also extending
the network language with a replication like construct thatallows to reason about infinitely many (copies of) instances
of nodes. Also, it would be of interest to understand how the semantics should be altered to cater for unidirectional
communication links.

As of now nodes are allowed to move around arbitrarily connecting to any other node, however that freedom may
seem to be too liberal for many applications, and hence the mobility capabilities may be restricted in our future work
by imposing more structure on the networks.

Finally, a challenging topic would be to continue the work ofhow to formalize and reason about security properties
for MANETS, and in particular to investigate to what extent the current behavioural equivalences are sufficient to cater
for more extensive security analysis.

4 Alternatively the intruder could disconnect from the initiator and then make the broadcast to an empty set of receivers.
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A Appendix

This appendix contains the proofs of the Theorems and Lemmasof our theory.

A.1 Proof of Lemma 1 and Lemma 2

Below is a series of lemmas that show how the reduction and thelabeled transition system semantics relate.
Lemma 1 follows from Lemma 15 and 16, and Lemma 2 follows from Lemma 13 and 14.

Lemma 4. For any process p ∈ P, p ≡P νñ.q where q = 0, q = (x).q′, or q = 〈t〉.q′ for some ñ, q′, x, and t.

Proof By induction on the structure ofp ∈ P. 2

Lemma 5. p
νñ〈t〉
−→ p′ iff p ≡P νññ′.〈t〉.q and p′ ≡P νñ′.〈t〉.q for some q and ñ′ with ñ ⊆ fn(t) and ñ′ ∩ fn(t) = ∅.

Proof The ’only if’ direction follows by induction in the derivation ofp
νñ〈t〉
−→ p′, and the ’if’ direction follows because

νññ′.〈t〉.q
νñ〈t〉
−→ νñ′.〈t〉.q and since

λ
−→ is closed by≡P. 2

Lemma 6. p
(t)
−→ p′ iff p ≡P νñ.(x).q and p′ ≡P q{t/x} for some ñ where ñ ∩ fn(t) = ∅.

Proof The ’only if’ direction follows by induction in the derivation ofp
(x)
−→ p′, and the ’if’ direction follows because

λ
−→ is closed by≡P and becauseνñ.(x).q

(t)
−→ q{t/x} whenñ ∩ fn(t) = ∅. 2

Lemma 7. If P
α

−→ P ′ and P ≡ Q then there exists Q′ such that Q
α

−→ Q′ and P ′ ≡ Q′.

Proof SupposeP ≡ Q. We must show the property

P
α

−→ P ′ implies∃Q′. Q
α

−→ Q′ and P ′ ≡ Q′ (10)

It’s obvious that (10) is preserved byα-conversion and also by reflexivity, symmetry, and transitivity (recall≡ is closed
by α-conversion and it is an equivalence relation).

One may show by induction in the depth of the inference ofP
α

−→ P ′ that (10) is closed by parallel composition
and by restriction (recall≡ is defined to be a congruence).

Finally we show (10) is closed by the rules in Table 2, also by induction in the depth of the inference ofP
α

−→ P ′.
2

From Lemma 7 it is immediate that:

Corollary 1. ≡ is a strong bisimulation.

Lemma 8. P
lσνñ〈t〉
−→ ≡ P ′ iff

P ≡ νm̃.(b〈t〉.pcσσ
′
σ
′′

l ‖ (x)Aσ′⊕l ‖ Q)

and
P ′ ≡ νm̃′.(bpcσσ

′
σ
′′

l ‖ Aσ′⊕l{t/x} ‖ Q)

for some m̃, p, σ′, σ′′, (x)Aσ′⊕l, and Q where ñ = fn(t) ∩ m̃, m̃′ = m̃ \ ñ, m̃ ∩ σl = ∅, and σ ∩ fl(P ) = ∅.

Proof: The ’only if’ direction follows by induction in the inference ofP
lσνñ〈t〉
−→ P ′, Lemma 5 is used in the base case.

The ’if’ direction follows from Lemma 7 since

νm̃.(b〈t〉.pcσσ
′
σ
′′

l ‖ (x)Aσ′⊕l ‖ Q)
lσνñ〈t〉
−→ νm̃′.(bpcσσ

′
σ
′′

l ‖ Aσ′⊕l{t/x} ‖ Q)

2
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Lemma 9. P
lσ(t)
−→≡ P ′ iff P ≡ νm̃.((x)Aσ⊕l ‖ Q) and P ′ ≡ νm̃.(Aσ⊕l{t/x} ‖ Q) for some m̃, (x)Aσ⊕l, and Q

where σl ∩ m̃ = ∅ and l 6∈ fl(P ).

Proof: Similar to the proof of Lemma 8. 2

Lemma 10. P
l.
−→ P ′ iff P = P ′ and P ≡ νm̃.(bpcσ

l
‖ Q) for some m̃, p, σ, and Q where l 6∈ m̃.

Proof Similar to the proof of Lemma 8, but makes use of Lemma 6 instead of Lemma 5. 2

Lemma 11. P
νl.l.
−→≡ P ′ iff P ≡ νl.P ′ and P ′ ≡ νm̃.(bpcσ

l
‖ Q) for some m̃, p, σ, and Q where l 6∈ m̃.

Proof: Similar to the proof of Lemma 8. 2

Lemma 12. P
l/k
−→≡ P ′ iff P ≡ νm̃.(bpcσk

l
‖ Q) and P ′ ≡ νm̃.(bpcσ

l
‖ Q) for some m̃, p, σ, and Q where

lk ∩ m̃ = ∅, and k 6∈ fl(P ).

Proof: Similar to the proof of Lemma 8. 2

Lemma 13. P
l

−→ P ′ implies P ↘ l P ′.

Proof: SupposeP
l

−→ P ′. The proof is by induction in the derivation of the transition P
l

−→ P ′.

The case whereP
l

−→ P ′ is inferred from the rule(close) follows from Lemma 8, the remaining cases follows by
induction. 2

Lemma 14. P ↘ l P ′ implies P
l

−→ Q for some Q such that Q ≡ P ′.

Proof: SupposeP ↘ l P ′. The proof is by induction in the derivation ofP ↘ l P ′, and making use of Lemma 7 in
caseP ↘ l P ′ is obtained closing by≡.

If P ↘ l P ′ is due to the rule (brd ) the result follows due to Lemma 8 and the lts-rule (close). The remaining cases
follows by induction. 2

Lemma 15. P
τ

−→ P ′ implies P ↘ P ′.

Proof SupposeP
τ

−→ P ′. The proof is by induction in the derivation of the transition P
τ

−→ P ′.
The case whereP

τ
−→ P ′ is inferred by the rule (hide) follows due to Lemma 13, and whenP

τ
−→ P ′ is inferred

by rules (con2) the result follows due to Lemma 10 and 11. IfP
τ

−→ P ′ is inferred from rule (dis2) the result follows
from Lemma 12.

Finally, if the transitionP
τ

−→ P ′ follows by one of the rules (par1) and (par 2) (or their symmetric counter parts),
or by one of the rules (res1) and (res2) the lemma holds by induction because↘ is closed by restriction and parallel
composition. 2

Lemma 16. P ↘ P ′ implies P
τ

−→ Q for some Q such that Q ≡ P ′.

Proof SupposeP ↘ P ′. If P ↘ P ′ is because of the rule(hide) the result follows due to Lemma 14. The case where
P ↘ P ′ is due to rule(dis) follows due to the lts-rules(dis1) and(dis2). If P ↘ P ′ is due to rule(con) the result
follows from the lts-rules(con1) and(con2).

The closing by parallel composition and restriction follows by the lts-rules(par 1) and(par 2) (and their symmetric
counter parts) and by(res1) and(res2). The closing by≡ follows due to Lemma 7. 2

A.2 Proof of Lemma 3

In order to prove Lemma 3 we show thatR is a weak bisimulation where

R= {(Pl⊕k, Pl	k) | P ∈ N, and l, k ∈ fl(P )} ∪ ≈

The result follows becausePl⊕k

τ
−→ Pl	k and alsoPl	k

τ
−→ Pl⊕k wheneverl, k ∈ fl(P ). 2
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A.3 Open output bisimulation

In order to show that≈ is a congruence we give an alternative characterization of≈ that is more adequate in our

proofs. Alternatively to consider only completed broadcast transitions, i.e. transitions on the formP
l

−→ P ′, we
define instead anopen output bisimulation depending on data broadcast to the environment, i.e. we taketransitions of

the typeP
lσνñ〈t〉
−→ P ′ into account.

Definition 11. A binary relation R on N is a weak open outputsimulation if P R Q implies fl(P ) = fl(Q) and for
all p ∈ P,

1. if P
τ

−→ P ′ then ∃Q′. Q
τ

=⇒ Q′ and P ′ R Q′

2. if P
lσνñ〈t〉
−→ P ′ then ∀σ′. σ′ ⊆ σ. ∀(x)Aσ′⊕l. ñ ∩ fn((x)Aσ′⊕l) = ∅. ∃Q′.

Q ‖ (x)Aσ′⊕l

l
=⇒ Q′ and νñ.(P ′ ‖ Aσ′⊕l{t/x}) R Q′

3. if P
lσ(t)
−→ P ′ then ∀σ′. σ′ ∩ σl = ∅, ∃Q′.

Q ‖ b〈t〉.pcσσ
′

l

l
=⇒ Q′ and P ′ ‖ bpcσσ

′

l
R Q′

4. if P
νm̃.l.
−→ P ′ then ∀ k. k 6∈ fl(P ) ∪ m̃. ∀σ. σ ∩ m̃k = ∅. ∃Q′.

Q ‖ bpcσ

k

τ
=⇒ Q′ and νm̃.(P ′ ‖ bpcσ

k
)l⊕k R Q′

5. if P
l/k
−→ P ′ then ∀σ. k 6∈ σ. ∃Q′.

Q ‖ bpcσl

k

τ
=⇒ Q′ and P ′ ‖ bpcσ

k
R Q′

R is a weak open output bisimulation if both R and R−1 are weak open output simulations.

Let≈o be the largest weak output open bisimulation.
Weak output open bisimulation up to≡ is used in the proof of Theorem 2.

Definition 12. A binary relation R on N is a weak open output simulation up to ≡ if P R Q implies fl(P ) = fl(Q)
and for all p ∈ P,

1. if P
τ

−→ P ′ then ∃Q′. Q
τ

=⇒ Q′ and P ′ ≡R≡ Q′

2. if P
lσνñ〈t〉
−→ P ′ then ∀σ′. σ′ ⊆ σ. ∀(x)Aσ′⊕l. ñ ∩ fn((x)Aσ′⊕l) = ∅. ∃Q′.

Q ‖ (x)Aσ′⊕l

l
=⇒ Q′ and νñ.(P ′ ‖ A′

σ{t/x}) ≡R≡ Q′

3. if P
lσ(t)
−→ P ′ then ∀σ′. σ′ ∩ σl = ∅, ∃Q′.

Q ‖ b〈t〉.pcσσ
′

l

l
=⇒ Q′ and P ′ ‖ bpcσσ

′

l
≡R≡ Q′

4. if P
νm̃.l.
−→ P ′ then ∀ k. k 6∈ fl(P ) ∪ m̃. ∀σ. σ ∩ m̃k = ∅. ∃Q′.

Q ‖ bpcσ

k

τ
=⇒ Q′ and νm̃.(P ′ ‖ bpcσ

k
)l⊕k ≡R≡ Q′

5. if P
l/k
−→ P ′ then ∀σ. k 6∈ σ. ∃Q′.

Q ‖ bpcσl

k

τ
=⇒ Q′ and P ′ ‖ bpcσ

k
≡R≡ Q′

R is a weak open output bisimulation up to ≡ if both R and R−1 are weak open output simulations up to ≡.

Lemma 17. If R is a weak open output bisimulation up to ≡ then ≡R≡ is a weak open output bisimulation.

Proof SupposeR is a weak open output bisimulation up to≡. We only show that≡R≡ is a weak open output
simulation, the proof of(≡R≡)−1 being a weak open output simulation is similar.

Let P ≡ P1 R Q1 ≡ Q. SupposeP
α

−→ P ′. We only consider one of the cases whereα = νm̃.l., the other cases
are immediate or similar.
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If P
νm̃.l.
−→ P ′ then, due to Lemma 7, there existsP1

′ such thatP1
νm̃.l.
−→ P1

′ andP ′ ≡ P1
′. Then, sinceP1 R Q1,

for all p ∈ P, for all k 6∈ fl(P )∪ m̃, and for allσ with σ ∩ m̃k = ∅ there existsQ1
′ such thatQ1 ‖ bpcσ

k

τ
=⇒ Q1

′ and

νm̃.(P1
′ ‖ bpcσ

k)l⊕k ≡R≡ Q1
′

Because≡ is a congruence we have

νm̃.(P ′ ‖ bpcσ

k)l⊕k ≡ νm̃.(P1
′ ‖ bpcσ

k)l⊕k

and
Q ‖ bpcσ

k ≡ Q1 ‖ bpcσ

k

From Lemma 7 we infer that there existsQ′ such that

Q ‖ bpcσ

k

τ
=⇒ Q′

andQ1
′ ≡ Q′. Hence, since≡ is transitive,

νm̃.(P ′ ‖ bpcσ

k)l⊕k ≡ Q′

2

Likewise we may define the notion of a strong (weak) bisimulation (or c-bisimulation) up to≡ and show that
wheneverR is a strong (weak) bisimulation (or a c-bisimulation) up to≡ then≡R≡ is a strong (weak) bisimulation
(or c-bisimulation).

Theorem 7. ≈ = ≈o.

Proof We show≈ ⊆ ≈o and≈o⊆ ≈.

Case (≈o ⊆ ≈) To obtain≈o ⊆ ≈ we show that≈o is a weak bisimulation up to≡. SupposeP ≈o Q. It’s enough to

show only that ifP
l

−→ P ′ then there existsQ
l

=⇒ Q′ such thatP ′ ≡ ≈o ≡ Q′.

AssumeP
l

−→ P ′, then there existsP
lενñ〈t〉
−→ P ′′ with P ′ = νñ.P ′′. Hence, becauseP ≈o Q, there exists

Q ‖ (x)Aε⊕l

l
=⇒ Q′ such that

νñ.(P ′′ ‖ Aε⊕l{t/x}) ≈o Q′

SinceQ ‖ (x)Aε⊕l ≡ Q there exists, due to Lemma 7,Q
l

=⇒ Q′′ such thatQ′ ≡ Q′′. Then we obtain as desired
because

νñ.P ′′ ≡ νñ.(P ′′ ‖ Aε⊕l{t/x}) ≈o Q′ ≡ Q′′

Case (≈ ⊆ ≈o) In order to show≈ ⊆ ≈o we prove that≈ is a weak open output bisimulation up to≡. Suppose

P ≈ Q. It is sufficient to show only that ifP
lσνñ.〈t〉
−→ P ′ then for allσ′ with σ′ ⊆ σ and for all(x)Aσ′⊕l with

ñ ∩ fn((x)Aσ′⊕l) = ∅ there existsQ′ such thatQ ‖ (x)Aσ′⊕l

l
=⇒ Q′ andνñ.(P ′ ‖ Aσ′⊕l{t/x}) ≡ ≈ ≡ Q′.

AssumeP
lσνñ〈t〉
−→ P ′. Thenσ ∩ fl(P ) = ∅ due to Lemma 8. Letσ′ ⊆ σ and let

(x)Aσ′⊕l = b(x).p1c
σ1l

l1
‖ . . . b(x).pkc

σkl

lk

be such that̃n ∩ fn((x)Aσ′⊕l) = ∅. Sincel ∈ fl(P ) it follows due to Lemma 10 thatP
l.
−→ P . Then because

P ≈ Q and sincel1 6∈ fl(P ) there existsQ1 such thatQ ‖ b(x).p1c
σ1l

l1

τ
=⇒ Q1 and

P1 = (P ‖ b(x).p1c
σ1l

l1
)l⊕l1 ≈ Q1

(Observe thatP1 = P ‖ b(x).p1c
σ1l

l1
becauseP = Pl⊕l1 .) Likewise,Pi

l.
−→ Pi so there existsQi+1 such that

Qi ‖ b(x).pi+1c
σi+1l

li+1

τ
=⇒ Qi+1
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and
Pi+1 = Pi ‖ b(x).pi+1c

σi+1l

li+1
≈ Qi+1

for i = 1, . . . , k − 1. From the steps above it follows that

Pk ≡ P ‖ (x)Aσ′⊕l

Then because

P ‖ (x)Aσ′⊕l

l
−→ νñ.(P ′ ‖ Aσ′⊕l{t/x})

alsoPk

l
−→ Pk

′ for somePk
′ with νñ.(P ′ ‖ Aσ′⊕l{t/x}) ≡ Pk

′ due to Lemma 7. Then, sincePk ≈ Qk there

existsQk
′ such thatQk

l
=⇒ Qk

′ and

νñ.(P ′ ‖ Aσ′⊕l{t/x}) ≡ ≈ Qk
′

The final part of the proof is to observe that, due to Lemma 7,

Q ‖ (x)Aσ′⊕l

l
=⇒ Q′

for someQ′ with Q′ ≡ Qk
′ because

Q ‖ (x)Aσ′⊕l ≡ Q ‖ b(x).p1c
σ1l

l1
‖ . . . b(x).pkc

σkl

lk

and
Q ‖ b(x).p1c

σ1l

l1
‖ . . . b(x).pkc

σkl

lk

τ
=⇒ Q1 ‖ b(x).p2c

σ2l

l2
‖ . . . b(x).pkc

σkl

lk

τ
=⇒ Q2 ‖ b(x).p3c

σ3l

l3
‖ . . . b(x).pkc

σkl

lk

τ
=⇒ . . .

τ
=⇒ Qk

l
=⇒ Qk

′

from which we get:
νñ.(P ′ ‖ Aσ′{t/x}) ≡ ≈ ≡ Q′

2

A.4 Proof of Theorem 1 and 2

Below we only show the proof of Theorem 2. The proof of Theorem1 is similar and simpler.
Because of Theorem 7 we only need to show that≈o is a congruence. In order to do so it’s sufficient, due to

Lemma 17, to show thatR is a weak open output bisimulation up to≡ where

R = {(νm̃.(P ‖ Q), νm̃.(P ′ ‖ Q)) | P ≈o P ′ andfl(P ) ∩ fl(Q) = ∅}

We only show here thatR is a weak open output simulation up to≡, the proof ofR−1 being a weak open output
simulation up to≡ is similar.

Let νm̃.(P1 ‖ Q) R νm̃.(P2 ‖ Q). Supposeνm̃.(P1 ‖ Q)
α

−→ R. The proof proceeds by induction in the
derivation ofνm̃.(P1 ‖ Q)

α
−→ R.

Case 1 (α = τ ) Supposeνm̃.(P1 ‖ Q)
τ

−→ R.

Case 1.1 (hide) The case whereνm̃.(P1 ‖ Q)
τ

−→ R becauseP1 ‖ Q
l

−→ R′, l ∈ m̃, andR = νm̃.R′ follows

by induction because then there exists someP1 ‖ Q
lενñ〈t〉
−→ R′′ with R′ = νñ.R′′.
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Case 1.2 (res1) and (res2) Supposeνm̃.(P1 ‖ Q)
τ

−→ R becauseP1 ‖ Q
τ

−→ R′, andR = νm̃.R′.

Case 1.2.1 (con2) SupposeP1 ‖ Q
τ

−→ R′ because

P1
νm̃

′
.l.

−→ P1
′ and Q

νm̃
′′

.m.
−→ Q′

m̃′ ∩ m̃′′ = m̃′ ∩ flc(Q) = m̃′′ ∩ flc(P1) = ∅, and

R′ = νm̃′′m̃′.(P1
′ ‖ Q′)m⊕l

From Lemma 10 and 11 we inferQ ≡ νm̃′′.Q′ with eitherm̃′′ = {m} or m̃′′ = ∅, and

Q′ ≡ νm̃′′′.(bpcσ

m ‖ Q0)

for somem̃′′′, p, σ, andQ0 wherem 6∈ m̃′′′. SinceP1 ≈o P2 there existsP2
′ such that

P2 ‖ bpcσ

m

τ
=⇒ P2

′

and
νm̃′.(P1

′ ‖ bpcσ

m)l⊕m ≈o P2
′

From (res2) and (par2) we infer

νm̃.νm̃′′.νm̃′′′.(P2 ‖ bpcσ

m ‖ Q0)
τ

=⇒ νm̃.νm̃′′.νm̃′′′.(P2
′ ‖ Q0)

Assumingm̃′′ ∩ flc(P2) = ∅ andm̃′′′ ∩ (flc(P2) ∪ fn(P2)) = ∅ (usingα-conversion if needed) we get

νm̃.(P2 ‖ Q) ≡ νm̃.νm̃′′.νm̃′′′.(P2 ‖ bpcσ

m ‖ Q0)

Hence, because of Lemma 7, there existsP2
′′ such that

νm̃.(P2 ‖ Q)
τ

=⇒ P2
′′

and
νm̃.νm̃′′.νm̃′′′.(P2

′ ‖ Q0) ≡ P2
′′

Finally, since
R ≡ νm̃.νm̃′′.νm̃′′′.(νm̃′.(P1

′ ‖ bpcσ

m)l⊕m ‖ Q0)

assumingm̃′′′ ∩ (flc(P1) ∪ fn(P1)) = ∅ andm̃′ ∩ (m̃′′′ ∪ fl(Q0)) = ∅ (usingα-conversion if needed)
we obtain

R ≡R≡ P2
′′′

Case 1.2.2 (dis2) The case whereP1 ‖ Q
τ

−→ R′ because

P1
l/k
−→ P1

′ and Q
k/l
−→ Q′

andR′ = P1
′ ‖ Q′ is similar to case 1.2.1 above.

Case 1.2.3The case whereP1 ‖ Q
τ

−→ R′ becauseP1
τ

−→ P1
′ (or Q

τ
−→ Q′) andR′ = P1

′ ‖ Q (or
R′ = P1 ‖ Q′) is immediate.

Case 2 (α = lσνñ〈t〉) Supposeνm̃.(P1 ‖ Q)
lσνñ〈t〉
−→ R becauseP1 ‖ Q

lσνñ
′〈t〉

−→ R′ andR = νm̃′.R′ where, due
to multiple applications of the rules (res1 and (open1), m̃ ∩ ñ′ = ∅, m̃′ = m̃ \ ñ1 for ñ1 = m̃ ∩ fn(t), and
ñ = ñ′ ∪ ñ1. Also,σl ∩ m̃ = ∅.

Case 2.1 (lose) The case whereP1 ‖ Q
lσνñ

′〈t〉
−→ R′ because of a transitionP1 ‖ Q

lσσ
′
νñ

′〈t〉
−→ R′ follows by

induction.

21



Case 2.2 (synch) SupposeP1 ‖ Q
lσνñ

′〈t〉
−→ R′ becauseP1

lσσ
′
νñ

′〈t〉
−→ P1

′, Q
lσ

′(t)
−→ Q′, andR′ = P1

′ ‖ Q′ where
ñ′ ∩ fn(Q) = ∅ andσ ∩ fl(Q) = ∅.
From Lemma 9 we infer

Q ≡ νm̃0.((x)Aσ′⊕l ‖ Q0)

for somem̃0, (x)Aσ′⊕l, andQ0 whereσ′∩m̃0 = ∅. We assume (usingα-conversion if needed) thatñ′∩m̃0 =
∅.
BecauseP1 ≈o P2, for anyσ′′ whereσ′′ ⊆ σ and for any(x)Aσ′′⊕l whereñ′ ∩ fn((x)Aσ′′⊕l) = ∅ there
existsP2

′ such that

P2 ‖ (x)Aσ′′⊕l ‖ (x)Aσ′⊕l

l
=⇒ P2

′

with
νñ′.(P1

′ ‖ Aσ′′⊕l{t/x} ‖ Aσ′⊕l{t/x}) ≈o P2
′

Hence,

νm̃.νm̃0.(P2 ‖ (x)Aσ′′⊕l ‖ (x)Aσ′⊕l ‖ Q0)
l

=⇒ νm̃.νm̃0.(P2
′ ‖ Q0)

Assuming (usingα-conversion if needed)̃m0∩(flc(P2)∪fn(P2)) = ∅ andm̃0∩(flc((x)Aσ′′⊕l)∪fn((x)Aσ′′⊕l)) =
∅ we have

νm̃.(P2 ‖ Q) ‖ (x)Aσ′′⊕l ≡ νm̃.νm̃0.(P2 ‖ (x)Aσ′′⊕l ‖ (x)Aσ′⊕l ‖ Q0)

Then, due to Lemma 7, there existsP2
′′ such that

νm̃.(P2 ‖ Q) ‖ (x)Aσ′′⊕l

l
=⇒ P2

′′

andνm̃.νm̃0.(P2
′ ‖ Q0) ≡ P2

′′.
Assuming (usingα-conversion if needed)̃m0 ∩ (fn(P1) ∪ flc(P1) ∪ ñ′) = ∅ and thatm̃ ∪ (flc((x)Aσ′′⊕l) ∪
fn((x)Aσ′′⊕l)) = ∅, then since

νñ.(R ‖ Aσ′′⊕l{t/x}) ≡ νm̃m̃0.(νñ′.(P1
′ ‖ Aσ′′⊕l{t/x} ‖ Aσ′⊕l{t/x}) ‖ Q0)

we get as desired
νñ.(R ‖ Aσ′′⊕l{t/x}) ≡R≡ P2

′′

Case 2.3This case covers the rule symmetric to the rule (synch).

SupposeP1 ‖ Q
lσνñ

′〈t〉
−→ R′ becauseP1

lσ
′(t)

−→ P1
′, Q

lσσ
′
νñ

′〈t〉
−→ Q′, ñ′ ∩ fn(P1) = ∅, σ ∩ fl(P1) = ∅, and

R′ = P1
′ ‖ Q′. From Lemma 8 it follows that

Q ≡ νm̃0.(b〈t〉.pc
σσ

′
σ
′′

σ
′′′

l ‖ (x)Aσ′′⊕l ‖ Q0)

and
Q′ ≡ νm̃1.(bpc

σσ
′
σ
′′

σ
′′′

l ‖ Aσ′′⊕l{t/x} ‖ Q0)

for somem̃0, p, σ′′, σ′′′, (x)Aσ′′⊕l, andQ0 whereñ = m̃0 ∩ fn(t), m̃1 = m̃0 \ ñ, m̃0 ∩ σσ′l = ∅, and
σσ′ ∩ fl(Q) = ∅. BecauseP1 ≈o P2 there existsP2

′ such that

P2 ‖ b〈t〉.pcσσ
′
σ
′′

σ
′′′

l

l
=⇒ P2

′ (11)

and
P1

′ ‖ bpcσσ
′
σ
′′

σ
′′′

l ≈o P2
′

Sinceσσ′′ ∩ fl(P2) = ∅, then from (11) we infer

P2 ‖ b〈t〉.pcσσ
′
σ
′′

σ
′′′

l

τ
=⇒ P2

1 ‖ b〈t〉.pcσσ
′′

σ0

l

l
−→ P2

2 ‖ bpcσσ
′′

σ0

l

τ
=⇒ P2

′

for someP2
1, P2

2, and someσ0 with (due to ruledis2) σ0 ⊆ σ′′′ ∪ fl(P2). Let σ1 ⊆ σ. For any(x)Aσ1⊕l

with ñ ∩ fn((x)Aσ1⊕l) = ∅ let

P2
′′ = νm̃.νm̃0.(P2 ‖ b〈t〉.pcσσ

′
σ
′′

σ
′′′

l ‖ (x)Aσ′′⊕l ‖ (x)Aσ1⊕l ‖ Q0)
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Due to

P2
1 ‖ b〈t〉.pcσσ

′′
σ0

l

l
−→ P2

2 ‖ bpcσσ
′′

σ0

l

and because

(x)Aσ′′⊕l ‖ (x)Aσ1⊕l

lσ′′σ1−→ Aσ′′⊕l{t/x} ‖ Aσ1⊕l{t/x}

we infer,

P2
′′ l

=⇒ νm̃.νm̃0.(P2
′ ‖ Aσ′′⊕l{t/x} ‖ Aσ1⊕l{t/x} ‖ Q0) = P2

′′′

Assumingm̃0 ∩ (fn(P2)∪flc(P2)) = ∅ andm̃0 ∩ (fn((x)Aσ1⊕l)∪flc((x)Aσ1⊕l)) = ∅ (usingα-conversion
if needed), we get

νm̃.(P2 ‖ Q) ‖ (x)Aσ1⊕l ≡ P2
′′

Then there existsP2
′′′′, due to Lemma 7, such that

νm̃.(P2 ‖ Q) ‖ (x)Aσ1⊕l

l
=⇒ P2

′′′′

andP2
′′′ ≡ P2

′′′′. Then, lettingQ1 = Aσ′′⊕l{t/x} ‖ Aσ1⊕l{t/x} ‖ Q0, we have

νñ.(R ‖ Aσ1⊕l{t/x}) ≡ νm̃.νm̃0.(P1
′ ‖ bpcσσ

′
σ
′′

σ
′′′

l ‖ Q1)

assumingm̃0 ∩ (fn(P1) ∪ flc(P1)) = ∅ andm̃0 ∩ (fn((x)Aσ1⊕l) ∪ flc((x)Aσ1⊕l)) = ∅ (usingα-conversion
if needed) we get

νñ.(R ‖ Aσ1⊕l{t/x}) ≡R≡ P2
′′′′

Case 2.4 (par1) The case whereP1 ‖ Q
lσνñ

′〈t〉
−→ R′ becauseP1

lσνñ
′〈t〉

−→ P1
′, andR′ = P1

′ ‖ Q whereñ′ ∩
fn(Q) = ∅ andσ ∩ fl(Q) = ∅ is similar to the cases above.

Case 2.5The case whereP1 ‖ Q
lσνñ

′〈t〉
−→ R′ becauseQ

lσνñ
′〈t〉

−→ Q′, andR′ = P1 ‖ Q′ whereñ′ ∩ fn(P1) = ∅
andσ ∩ fl(P1) = ∅ is similar to the cases above.

Case 3 (α = lσ(t)) Supposeνm̃.(P1 ‖ Q)
lσ(t)
−→ R. ThenP1 ‖ Q

lσ(t)
−→ R′, m̃ ∩ (σl ∪ fn(t)) = ∅, andR = νm̃.R′.

Let p ∈ P and letσ′ be such thatσ′ ∩ σl = ∅. We assumẽm ∩ (fn(p) ∪ σ′) = ∅ (usingα-conversion if needed).

Case 3.1 (rec2) SupposeP1 ‖ Q
lσ(t)
−→ R′ becauseP1

lσ1(t)
−→ P1

′, Q
lσ2(t)
−→ Q′, σ = σ1σ2, andR′ = P1

′ ‖ Q′.
BecauseP1 ≈o P2, for anyp, for anyσ′ with σ′ ∩ σl = ∅, we have

P2 ‖ b〈t〉.pcσ1σ2σ
′

l

l
=⇒ P2

′ (12)

and
P1

′ ‖ bpcσ1σ2σ
′

l
≈o P2

′

From (12) we infer, sinceσ2 ∩ fl(P2) = ∅,

P2 ‖ b〈t〉.pcσ1σ2σ
′

l

τ
=⇒ P2

1 ‖ b〈t〉.pcσ2σ
′′

l

l
−→ P2

2 ‖ bpcσ2σ
′′

l

τ
=⇒ P2

′

for someP2
1, P2

2, and someσ′′ with (due to ruledis2) σ′′ ⊆ σ′ ∪ fl(P2). Due to

P2
1 ‖ b〈t〉.pcσ2σ

′′

l

l
−→ P2

2 ‖ bpcσ2σ
′′

l

and becauseQ
lσ2(t)
−→ Q′ we conclude

P2
1 ‖ b〈t〉.pcσ2σ

′′

l
‖ Q

l
−→ P2

2 ‖ bpcσ2σ
′′

l
‖ Q′

and hence

νm̃.(P2 ‖ b〈t〉.pcσ1σ2σ
′

l
‖ Q)

l
=⇒ νm̃.(P2

′ ‖ Q′)
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Since
νm̃.(P2 ‖ b〈t〉.pcσ1σ2σ

′

l
‖ Q) ≡ νm̃.(P2 ‖ Q) ‖ b〈t〉.pcσ1σ2σ

′

l

there exists, due to due to Lemma 7, someP2
′′ such that

νm̃.(P2 ‖ Q) ‖ b〈t〉.pcσ1σ2σ
′

l

l
=⇒ P2

′′

andP2
′′ ≡ P2

′ and therefore
νm̃.(P1

′ ‖ Q′) ‖ bpcσ1σ2σ
′

l
≡R≡ P2

′′

Case 3.2 (par1) The case whereP1 ‖ Q
lσ(t)
−→ R′ becauseP1

lσ(t)
−→ P1

′, R′ = P1
′ ‖ Q, andσ ∩ fl(Q) = ∅ is

immediate.
Case 3.3The case whereP1 ‖ Q

lσ(t)
−→ R′ becauseQ

lσ(t)
−→ Q′, R′ = P1 ‖ Q′, andσ ∩ fl(P1) = ∅ is trivial.

Case 4 (α = νm̃′.l.) Supposeνm̃.(P1 ‖ Q)
νm̃

′
.l.

−→ R.

Case 4.1 (res2) Supposeνm̃.(P1 ‖ Q)
νm̃

′
.l.

−→ R becauseP1 ‖ Q
νm̃

′
.l.

−→ R′, m̃∩m̃′ = ∅, l 6∈ m̃, andR = νm̃.R′.

Case 4.1.1 (par 2) SupposeP1 ‖ Q
νm̃

′
.l.

−→ R′ becauseP1
νm̃

′
.l.

−→ P1
′ andR′ = P1

′ ‖ Q. Let k 6∈ fl(P1) ∪
fl(Q) ∪ m̃′. BecauseP1 ≈o P2, for all p ∈ P, and for allσ with σ ∩ m̃′k = ∅ there existsP2

′ such that

P2 ‖ bpcσ

k

τ
=⇒ P2

′

andνm̃′.(P1
′ ‖ bpcσ

k
)l⊕k ≈o P2

′. Hence,

νm̃.(P2 ‖ bpcσ

k ‖ Q)
τ

=⇒ νm̃.(P2
′ ‖ Q)

and since
νm̃.(P2 ‖ Q) ‖ bpcσ

k ≡ νm̃.(P2 ‖ bpcσ

k ‖ Q)

assumingm̃ ∩ (fn(p) ∪ σk) = ∅ (usingα-conversion if needed) then, because of Lemma 7, there exists
P2

′′ such that
νm̃.(P2 ‖ Q) ‖ bpcσ

k

τ
=⇒ P2

′′

andνm̃.(P2
′ ‖ Q) ≡ P2

′′. Finally, since

νm̃′.(R ‖ bpcσ

k)l⊕k ≡ νm̃.(νm̃′.(P1
′ ‖ bpcσ

k)l⊕k ‖ Q)

we conclude that
νm̃′.(R ‖ bpcσ

k)l⊕k ≡R≡ P2
′′

Case 4.1.2The case whereP1 ‖ Q
νm̃

′
.l.

−→ R′ becauseQ
νm̃

′
.l.

−→ Q′ andR′ = P1 ‖ Q′ is immediate.

Case 4.2 (open2) The case whereνm̃.(P1 ‖ Q)
νm̃

′
.l.

−→ R becauseP1 ‖ Q
l.
−→ R′, l ∈ m̃, andR = νm̃′.R′

wherem̃′ = m̃ \ {l} is similar to case 4.1 above.
Case 5 (α = l / k) Similar to Case 4.1 above.

2

A.5 Proof of Theorem 3 and 4

Below we only give the proof of Theorem 4. The proof of Theorem3 is similar.
In order to show≈ ⊆ ∼= it is sufficient to show that≈ is weak reduction closed because from Theorem 1 we know

≈ is a congruence. That≈ is weak reduction closed follows from Lemma 13, 14, 15, and 16.
The remaining part of the proof establishes that∼= ⊆ ≈. It’s sufficient to show that∼= is a weak bisimulation.

Lemma 18. ∼= is a weak bisimulation.

Proof We only prove∼= to be a weak simulation, the proof of∼=−1 being a simulation is similar.
Let P1

∼= P2. SupposeP1
α

−→ P1
′.
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Case 1 (α = τ ): The case whereP1
τ

−→ P1
′ is immediate due to Lemma 15 and 16.

Case 2 (α = l): The case whereP1
l

−→ P1
′ is immediate due to Lemma 13, 14, and 16.

Case 3 (α = lσ(t)): SupposeP1
lσ(t)
−→ P1

′. Due to Lemma 9,

P1 ≡ νm̃.((x)Aσ⊕l ‖ Q)

and
P1

′ ≡ νm̃.(Aσ⊕{t/x} ‖ Q)

for somem̃, (x)Aσ⊕l, andQ whereσl ∩ m̃ = ∅ andl 6∈ fl(P1). Because∼= is a congruence, for anybpcσσ
′

l
,

P1 ‖ b〈t〉.pcσσ
′

l
∼= P2 ‖ b〈t〉.pcσσ

′

l

Assumingm̃ ∩ (fn(t) ∪ σ′ ∪ fn(p)) = ∅ (usingα-conversion if needed), then because

P1 ‖ b〈t〉.pcσσ
′

l ↘ l P1
′ ‖ bpcσσ

′

l

there existsP2
′ such that

P2 ‖ b〈t〉.pcσσ
′

l ↘∗↘ l↘
∗ P2

′

and
P1

′ ‖ bpcσσ
′

l
∼= P2

′

Then, due to Lemma 16 and 14, there existsP2
′′ such that

P2 ‖ b〈t〉.pcσσ
′

l

l
=⇒ P2

′′

andP2
′′ ≡ P2

′. Hence
P1

′ ‖ bpcσσ
′

l
∼= P2

′

because≡ ⊆ ∼=.

Case 4 (α = νm̃.l.): SupposeP1
νm̃.l.
−→ P1

′. Let k 6∈ fl(P1), let σk ∩ m̃ = ∅. For anyp we have

P1 ‖ bpcσ

k

τ
−→ νm̃.(P1

′ ‖ bpcσ

k )l⊕k

and therefore
P1 ‖ bpcσ

k ↘ νm̃.(P1
′ ‖ bpcσ

k)l⊕k

due to Lemma 15. SinceP1 ‖ bpcσ

k
∼= P2 ‖ bpcσ

k
there exists

P2 ‖ bpcσ

k ↘∗ Q

with νm̃.(P1
′ ‖ bpcσ

k
)l⊕k

∼= Q. From Lemma 16, there existsQ′ such thatP2 ‖ bpcσl

k

τ
=⇒ Q′ andQ ≡ Q′.

Hence, because≡ ⊆ ∼=,
νm̃.(P1

′ ‖ bpcσ

k )l⊕k
∼= Q′

Case 5 (α = l / k) Similar to Case 4.

2

A.6 Proof of Theorem 5 and 6

Below we only show the proof of Theorem 6. The proof of Theorem5 is similar and simpler.

Lemma 19. ≈c is a c-congruence.
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Proof We must show that≈c is closed by restriction and by well-formed parallel composition of networks inNc.
Hence, let

R = {(νm̃.(P ‖ Q), νm̃.(P ′ ‖ Q)) | P ≈c P ′, Q ∈ Nc, andfl(P ) ∩ fl(Q) = ∅}

We proveR to be a weak c-bisimulation up to≡. Here we just show thatR is a weak c-simulation, the proof ofR−1

being a weak c-simulation is similar.
Let νm̃.(P1 ‖ Q)Rνm̃.(P2 ‖ Q), and supposeνm̃.(P1 ‖ Q)

α
−→ R. The proof proceeds by induction on the

derivation ofνm̃.(P1 ‖ Q)
α

−→ R and is similar to but simpler than the proof of Theorem 2.

Case 1 (α = τ ): Supposeνm̃.(P1 ‖ Q)
τ

−→ R.

Case 1.1 (hide): The case whereνm̃.(P1 ‖ Q)
τ

−→ R becauseP1 ‖ Q
l

−→ R′, l ∈ m̃, andR = νm̃.R′ follows
by induction.

Case 1.2 (res1) and (res2) Supposeνm̃.(P1 ‖ Q)
τ

−→ R becauseP1 ‖ Q
τ

−→ R′ andR = νm̃.R′.

Case 1.2.1 (con2) SupposeP1 ‖ Q
τ

−→ R′ because

P1
νm̃

′
.l.

−→ P1
′ and Q

νm̃
′′

.m.
−→ Q′

m̃′ ∩ m̃′′ = m̃′ ∩ flc(Q) = m̃′′ ∩ flc(P1) = ∅, and

R′ = νm̃′′m̃′.(P1
′ ‖ Q′)m⊕l

From Lemma 10 and 11 we inferm ∈ fl(Q′) andQ ≡ νm̃′′.Q′. Hence from above,fl(Q′) ∩ (fl(P1) ∪
m̃′) = ∅. SinceP1 ≈c P2 there existsP2

′ such that

P2 ‖ Q′ τ
=⇒ P2

′

and
νm̃′.(P1

′ ‖ Q′)l⊕m ≈c P2
′

From (res2) and (par2) we infer

νm̃.νm̃′′.(P2 ‖ Q′)
τ

=⇒ νm̃.νm̃′′.P2
′

Sincem̃′′ ∩ fl(P2) = ∅ we get

νm̃.(P2 ‖ Q) ≡ νm̃.νm̃′′.(P2 ‖ Q′)

Hence, because of Lemma 7, there existsP2
′′ such that

νm̃.(P2 ‖ Q)
τ

=⇒ P2
′′

and
νm̃.νm̃′′.(P2

′ ‖ Q′) ≡ P2
′′

Finally, since
R ≡ νm̃.νm̃′′.(νm̃′.(P1

′ ‖ Q′)l⊕m)

we obtain
R ≡R≡ P2

′′′

Case 1.2.2 (dis2) The case isn’t an issue sincefc(P1) ∩ fc(Q) = ∅.
Case 1.2.3The case whereP1 ‖ Q

τ
−→ R′ becauseP1

τ
−→ P1

′ (or Q
τ

−→ Q′) andR′ = P1
′ ‖ Q (or

R′ = P1 ‖ Q′) is immediate.

Case 2 (α = l) The case is immediate becauseflc(P1) ∩ flc(Q) = ∅.

Case 3 (α = νm̃′.l.) Supposeνm̃.(P1 ‖ Q)
νm̃

′
.l.

−→ R. LetRk ∈ Nc such thatfl(Rk)∩(fl (νm̃.(P1 ‖ Q))∪m̃′) = ∅.

Case 3.1 (res2) Supposeνm̃.(P1 ‖ Q)
νm̃

′
.l.

−→ R becauseP1 ‖ Q
νm̃

′
.l.

−→ R′, m̃∩m̃′ = ∅, l 6∈ m̃, andR = νm̃.R′.
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Case 3.1.1 (par 2) SupposeP1 ‖ Q
νm̃

′
.l.

−→ R′ becauseP1
νm̃

′
.l.

−→ P1
′ andR′ = P1

′ ‖ Q. BecauseP1 ≈c P2

there existsP2
′ such that

P2 ‖ Rk

τ
=⇒ P2

′

andνm̃′.(P1
′ ‖ Rk)l⊕k ≈c P2

′. Hence,

νm̃.(P2 ‖ Rk ‖ Q)
τ

=⇒ νm̃.(P2
′ ‖ Q)

and since
νm̃.(P2 ‖ Q) ‖ Rk ≡ νm̃.(P2 ‖ Rk ‖ Q)

then, because of Lemma 7, there existsP2
′′ such that

νm̃.(P2 ‖ Q) ‖ Rk

τ
=⇒ P2

′′

andνm̃.(P2
′ ‖ Q) ≡ P2

′′. Finally, since

νm̃′.(R ‖ Rk)l⊕k ≡ νm̃.(νm̃′.(P1
′ ‖ Rk)l⊕k ‖ Q)

we conclude that
νm̃′.(R ‖ Rk)l⊕k ≡R≡ P2

′′

Case 3.1.2The case whereP1 ‖ Q
νm̃

′
.l.

−→ R′ becauseQ
νm̃

′
.l.

−→ Q′ andR′ = P1 ‖ Q′ is immediate.

Case 3.2 (open2) The case whereνm̃.(P1 ‖ Q)
νm̃

′
.l.

−→ R becauseP1 ‖ Q
l.
−→ R′, l ∈ m̃, andR = νm̃′.R′

wherem̃′ = m̃ \ {l} is similar to case 3.1 above.

2

Because∼c (≈c) is a c-congruence and also strong (weak) reduction closed due to Lemma 13, 14, 15, and 16 it
follows that∼c ⊆ 'c (≈c ⊆ ∼=c).

In order to prove'c ⊆ ∼c (∼=c ⊆ ≈c) it’s sufficient to show that'c (∼=c) is a strong (weak) c-bisimulation.

Lemma 20. ∼=c is a weak c-bisimulation.

Proof Similar to the proof of Lemma 18. 2
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