
Charge!

A framework for higher-order separation logic in Coq

Jesper Bengtson, Jonas Braband Jensen, and Lars Birkedal

IT University of Copenhagen

Abstract. We present a comprehensive set of tactics for working with a
shallow embedding of a higher-order separation logic for a subset of Java
in Coq. The tactics make it possible to reason at a level of abstraction
similar to pen-and-paper separation-logic proof outlines. In particular,
the tactics allow the user to reason in the embedded logic rather than
in the concrete model, where the stacks and heaps are exposed. The
development is generic in the choice of heap model, and most of the
development is also independent of the choice of programming language.

1 Introduction

Higher-order separation logic [3] (HOSL) is an extension of separation logic that
allows for quantification over predicates in both the assertion logic (the logic of
pre and postconditions) and the specification logic (the logic of Hoare triples).
Higher-order separation logic has proved useful for modular reasoning about
programs that use shared mutable data structures and data abstraction, via
quantification over resource invariants, and for reasoning about various forms of
higher-order programming (higher-order functions, code pointers, interfaces in
object-oriented programming) [4,10,12,15,8,2].

This paper describes Charge!, a separation-logic verification tool that aims
to (1) prove full functional correctness of Java-like programs using higher-order
separation logic, (2) produce machine-checkable correctness proofs, (3) work as
close as possible to how informal separation logic proofs are carried out on pen
and paper, and (4) automate tedious first-order reasoning where possible.

The first and second goal virtually mandate that we build the tool inside an
existing proof assistant for higher-order logic such as Coq. All other tools with
these properties that we know of [6,16,11,1] have been built this way; building
them from the ground up instead would be a very ambitious undertaking.

To achieve the third goal, it is important that the user has the feeling of rea-
soning in the program logic, rather than in the model of the logic. For separation
logic, this entails reasoning about the linear fragments of the logic, like on paper,
rather than reasoning about concrete machine states, such as the stack or the
heap, and disjointness properties of various heap fragments. In our own earlier
work [2], based on a shallow embedding of higher-order separation logic in the
Coq proof assistant, this goal was achieved and the programs were verified with-
out the user ever seeing an explicit heap or a stack in the proof context. However,

2 Jesper Bengtson, Jonas B. Jensen, and Lars Birkedal

as the built-in tactics of Coq are not designed to handle the linear fragments of
separation logic, our proofs were long, tedious, and to a large degree focusing
mainly on rewriting the proof state modulo associativity and commutativity of
separating conjunction.

In this article, we improve on that work and present a comprehensive set
of tactics for working with a shallow embedding of a higher-order separation
logic for a subset of Java. The tactics make it possible to reason at a level of
abstraction similar to pen and paper proofs. In particular, the tactics allow the
user to reason in the embedded logic rather than in the concrete model, where
the stacks and heaps are exposed. The use of these tactics significantly reduce
the size of the proofs compared to our earlier development [2].

The remainder of this paper is structured as follows. In Section 2, we discuss
how we deal with program variables in Charge! – how the relation between logical
variables and program variables is made as transparent as possible in a proof
assistant. In Section 3, we present an extended example of how a user can prove
correctness of an implementation of binary search trees using Charge!. Then, in
Section 4 we present the most prominent tactics in our development and discuss
how they affect the goal states in Coq. Sections 5 covers specifics on how the
tactics are implemented and Section 6 touches on how Charge! can be adapted
to new languages. Section 7 covers related work, and Section 8 concludes.

This paper is structured top-down: we only include the definitions that are
required for the exposition and focus on describing what the tactics do before
going into how they do it. The interested reader can find all of the core definitions
of the assertion and specification logics as well as examples on how these are
used to verify object-oriented programs in [2]. Our Coq development can be
downloaded from http://itu.dk/research/charge.

2 Program variables

A key to approaching pen-and-paper style of reasoning is to handle program
variables naturally. We feel that the variables-as-resource approach [13] is too
unnatural for this purpose. The approach of McCreight [11], while practical,
also looks very different from pen-and-paper proofs. Our philosophy is that a
user must be able to blur the boundaries between logical variables and program
variables, as is often done on paper, in a proof assistant. In this section we discuss
how we make this blurring formal.

It is typical in a richly typed separation logic to distinguish between program
variables, whose values are restricted to the types offered by the programming
language, and logical variables, which can be lists, functions, and other types
offered by the logic. Program variables occurring in triples {P}c{Q} refer to
local (stack) variables in c. For example, the heap-write rule can be written

{x.f ˙7→ e} x.f := e′ {x.f ˙7→ e′}

Here, x : var is a program variable name, typically a pointer to an object,
e, e′ : expr are programming language expressions, and f : field is a field name.

Charge! 3

The expression x.f ˙7→ e reads that the expression e can be found at the memory
address x.f . There are free program variables in these assertions since x is itself
a program variable, and e and e′ may contain program variables.

In pen-and-paper theories of Hoare logic, it is often imagined that the frag-
ment of mathematics required for the proof, such as the theory of lists, is recre-
ated inside the assertion logic in a version where program variables may occur in
assertions. When encoding this in a proof assistant, it is not enough to imagine
it, and actually doing it would be far too much work. We want to reuse existing
theories as they are, and we want to build new theories without being concerned
about program variables before there even is a program.

This includes the theory of heap assertions, which is independent of program
variables [17,11] even though the two are very often defined together and become
inseparable [1,8]. One primitive in this theory is the points-to predicate (7→) :
val → field → val → (heap → Prop)1, where val is the type of data values for
the programming language under consideration. To use the points-to predicate
in pre and postconditions, like we saw in the heap-write rule above, we lift it to
(˙7→) : expr → open field → expr → open (heap → Prop).

An open T is intuitively a T that may have free program variables:

open T , stack → T stack , var → val expr , open val

In general, the operator liftn will lift constants and functions of type

(T1 → · · · → Tn → U) into (open T1 → · · · → open Tn → open U). Unfolding
the definition of the lifted points-to predicate (˙7→) makes the write-rule read

{(lift3 (7→)) (ve x) (lift0 f) e} x.f := e′ {(lift3 (7→)) (ve x) (lift0 f) e′}

where ve is the injection from variable names to expressions. Further unfolding
the definitions of lift3 and ve, the rule reads

{λs. (s x).f 7→ (e s)} x.f := e′ {λs. (s x).f 7→ (e′ s)}

Note that this is only an exposition – the user will never see an explicit stack
in the proof context. We see that nothing very deep is involved in this treat-
ment of program variables, but it offers some very convenient properties. First,
it avoids an explicit mentioning of stacks s. Second, the property of substitu-
tions that (e1.f ˙7→ e2){e/x} = e1{e/x}.f ˙7→ e2{e/x} follows from the definition of
the lifting and is independent of the definition of 7→. As long as all operators
in an assertion are lifted, substitutions will propagate automatically over the
connectives and be applied when they reach the program variables – Coq does
this computationally, hence it is very fast, and the tactics do not have to reason
about any meta-theoretical properties of substitution.

1 For the sake of exposition, we assume that our heap assertions are of type heap →
Prop. See [2] for the full definition.

4 Jesper Bengtson, Jonas B. Jensen, and Lars Birkedal

3 Example

To introduce our tactics, we use a library of binary search trees. The specification
and the code in this example are transliterations of the sorted bintree example
that comes with the VeriFast tool [9]. By stepping through a method of the
library command by command, we demonstrate how our tactics modify the goal
of the proof assistant while allowing the user to reason strictly at the level of
the assertion logic – in this section there are no explicit stacks, there are no
explicit heaps, and there are no explicit substitutions. They are all present in
the background, but they are hidden from the user.

The library has methods init(x) for creating a singleton tree, contains(t, x)
for membership query and add(t, x) for adding a single element. We specify the
methods in terms of the representation predicate tree(t, b), which describes the
memory footprint of a tree with root pointer t and contents b, with b : bintree
defined as b , empty | node n b b, where n is an integer. We also create a
predicate indorder of type bintree → Prop that holds if b is a proper search tree,
and a function t cont of type bintree → Z→ bool that assumes that b is a search
three and checks for membership of a value in the standard way. We also have a
TreeRec-predicate that describes the footprint of a binary search tree

TreeRec t b ,
match b with
| empty ⇒ t = null
| node v bl br ⇒ t.value 7→v ∗ ∃l. ∃r. t.left 7→l ∗ t.right 7→r ∗

TreeRec l bl ∗ TreeRec r br
end

where t is a pointer to the heap, and b is of type bintree. The connective ∗ is the
standard separating conjunction where p ∗ q reads that p is true for one part of
the heap, and q is true for another disjoint part of the heap. Finally, we use this
definition to define tree t b , TreeRec t b ∧ inorder b. The library is specified as
follows, where ḟ x1 · · · xn means (liftn f) x1 · · · xn, and C::m(#»x) 7→ {p} {q}
means that the class C contains a method m, with arguments #»x , that has a
specification with the precondition p and the postcondition q.

Tree spec , ∀b.
Tree::init(x) 7→ {>̇} { ˙tree ret (˙node x ˙empty ˙empty)} ∧
Tree::contains(t, x) 7→ { ˙tree(t, ḃ)} { ˙tree(t, ḃ) ∧̇ ret =̇ ˙t cont(ḃ, x)} ∧

Tree::add(t, x) 7→ {
˙tree(t, ḃ) ∧̇ b 6= ˙empty ∧̇ ˙t cont(ḃ, x) =̇ ˙false}

{ ˙tree(t, ˙tree add(ḃ, x))}

This is a predicate in our specification logic; for a full disclosure, see [2]. It
lists the methods of a specification as well as their pre and their postconditions.
The program variable ret in the postconditions store the return value of the
method. In this example, we focus on verifying the contains-method. We need

Charge! 5

the following lemmas

TreeRec null , ∀b. (TreeRec null b ` TreeRec null b ∧ b = empty)

TreeRec not null , ∀t b. t 6= null → (TreeRec t b ` TreeRec t b ∧ b 6= empty)

Both lemmas follow directly from the definition of TreeRec. The connectives in
the predicates are not lifted. The contains-method is defined as follows.

contains(t, x) =
if t =̇ null then ret := false else
v := t.value; if x =̇ v then ret := true

else if x <̇ v then l := t.left; ret := t.contains(l, x)
else r := t.right; ret := t.contains(r, x)

The operators in the conditional statements are lifted from Coq’s standard li-
brary. To demonstrate how our tactics operate on this method, we step through
the proof one command at a time. After some initial boiler-plate setup, our state
looks as follows. For the exposition, we omit lifting constants such as ḃ.

b : bintree

{ ˙tree t b}if t =̇ null then ret := false else . . .{ ˙tree t b ∧̇ ret =̇ ˙t cont b x}

We denote the postcondition of this triple with P. Using the forward-tactic gen-
erates two sub-goals – one for each branch of the if-statement.

b : bintree
1 {

˙tree t b ∧̇
t =̇ null

}
ret := false{P}

b : bintree
2 {

˙tree t b ∧̇
t ˙6= null

}
v := t.value; . . . {P}

We start by proving subgoal 1. There is only one command, and applying the
forward-tactic provides the following proof obligation.

b : bintree n : Z H : inorder b
TreeRec null b ` false = t cont b n

A few things have happened here. First of all, since the only command in the
triple has been evaluated, the user is left with an assertion logic entailment to
prove, the stack has been applied, and all liftings have been evaluated. Secondly,
the program variable x has been replaced with an integer n, representing its
value on the stack. Thirdly, the equivalence t = null has been applied. Finally,
the tree-predicate has been evaluated and its non-spatial components (that do
not depend on the heap) have been placed in the context. To prove the goal, we
must infer that b is empty. The command sl_apply TreeRec_null applies the
lemma TreeRec null using forward-reasoning and places the non-spatial parts of
the consequent in the context.

b : bintree n : Z H : inorder b H1 : b = empty

TreeRec null b ` false = t cont b n

The command sl_auto then solves the goal. We now proceed to prove goal 2. We
cannot immediately apply the forward-tactic as the precondition does not assert

6 Jesper Bengtson, Jonas B. Jensen, and Lars Birkedal

what t.value is on the heap. The command unfold tree; triple_nf unfolds
the tree-predicate and places the non-spatial predicate inorder b in the context.

b : bintree H : inorder b

{ ˙TreeRec t b ∧̇ t ˙6= null}v := t.value; . . .{P}

More precisely, triple_nf places the goal in a normal form; this is discussed in
more detail in sections 4 and 5.3. The command sl_apply TreeRec_not_null

applies the lemma TreeRec not null in a forward-reasoning style to the precondi-
tion of the triple, again moving the non-spatial components of the consequent of
the lemma to the context. Remember that the lemma is defined as an assertion
logic formula, and its connectives are not lifted.

b : bintree H : inorder b H1 : b 6= empty

{ ˙TreeRec t b ∧̇ t ˙6= null}v := t.value; . . .{P}

The command destruct b; [congruence| clear H1] does case-analysis on
b. The proof for the case where b is empty is trivial as there is a contradiction in
H1. For the remaining case, H1 is not needed and is cleared from the context.

v : Z b1 : bintree b2 : bintree H : inorder (˙node v b1 b2){
˙TreeRec t (˙node v b1 b2)

∧̇ t ˙6= null

}
v := t.value;
B

{
˙tree t (˙node v b1 b2) ∧̇

ret =̇ ˙t cont (˙node v b1 b2) x

}
We denote the postcondition of this triple with P ′, and the rest of the program B.
The forward-tactic can now be applied as reducing TreeRec provides the content
of t.value.

v : Z b1 : bintree b2 : bintree x1 : val x2 : val
H : inorder (node v b1 b2){

t.value ˙7→v ∗̇ t.left ˙7→x1 ∗̇ t.right ˙7→x2 ∗̇ ˙TreeRec x1 b1 ∗̇
˙TreeRec x2 b2 ∧̇ (v =̇ v ∧̇ t ˙6= null)

}
B{P ′}

Here the TreeRec-predicate has been unfolded and its existentially quantified
variables have been extracted to the context. We denote the context of this goal
with C and the spatial component of the precondition with S. The forward-tactic,
following the structure of the code, again splits the conditional into two cases.
For space reasons, we only cover the first case.

C
{S ∧̇ (x =̇ v ∧̇ v =̇ v ∧̇ t ˙6= null)}ret := true{P ′}

Since there is only one command in the triple, applying the forward-tactic leaves
the user to prove the following entailment.

C k : val H2 : k 6= null(
k.value7→v ∗ k.left 7→x1 ∗ k.right 7→x2
∗ TreeRec x1 b1 ∗ TreeRec x2 b2

)
`
(

tree k (node v b1 b2) ∧
true = t cont (node v b1 b2) v

)

Charge! 7

Here, the program variable t is evaluated to k, and x is replaced by v as they are
equivalent. To prove the entailment we must prove that t cont (node v b1 b2) v
holds, which it does by definition. Moreover, to prove that tree k (node v b1 b2)
holds we must prove that inorder (node v b1 b2) holds, which we have from
the context, and that TreeRec k (node v b1 b2) holds, which assuming that we
instantiate the existential quantifiers of TreeRec correctly, is provable directly
from the hypothesis of the entailment. The tactic sl_simpl solves the goal.

The rest of the proof follows the same pattern and is not more complicated.
For the recursive method call, the precondition is proven as a separate assertion
logic entailment, but also that follows the same pattern.

One of the main points of the trace above is to demonstrate what is not
there as much as what is there. There are three notable things that are not in
the trace: there are no visible stacks, there are no visible heaps, and there are
no visible substitutions. They are all present, and they all play important roles,
but they are never exposed to the user.

4 Tactics

For the rest of the paper, we will split assertions into three different categories:
spatial assertions that depend on both the heap and the stack, denoted by t, u,
or v, pure assertions that depend only on the stack, denoted by p, q, or r, and
propositional assertions that depend on neither the heap nor the stack, denoted
by P , Q, or R. We will denote assertions that can be either spatial, pure, or
propositional with a, b, or c. Propositional assertions can be viewed as the stan-
dard Prop-sort in Coq. There are injections from propositional assertions to pure
assertions to spatial assertions, but we leave these implicit in the presentation.

Like most custom-made tactics, we make use of existential variables in Coq.
An existential variable is a variable in Coq’s meta-logic. It has a type, but it has
not yet been assigned a value. It can be thought of as a hole in the proof waiting
to be filled. Existential variables will be preceded by a ? (for instance ?x, ?y, or
?z). A valid proof can have no uninstantiated existential variables.

Tactics are split into two sub-categories – those that operate on the assertion
logic, and those that operate on Hoare-triples. Both types of tactics require, and
enforce, that the goal is in a normal form. Neither the premise of an entailment
nor the precondition of a triple may contain existential quantifiers or proposi-
tional assertions; if they do, they are extracted to the Coq context. Moreover, in
the case of triples, pure and spatial assertions are kept separate. More formally,
the following goals are in normal form

−−−→
H : P

{(t1 ∗ · · · ∗ tn) ∧ (p1 ∧ · · · ∧ pm)}c{a}

−−−→
H : P

t1 ∗ · · · ∗ tn ` a

where
−−−→
H : P are the premises (zero or more) in the Coq-context. In both cases,

t1 to tn and p1 to pm are atomic, i.e. they contain no further occurrences of ∗
and ∧ respectively. We say that t1 ∗ · · · ∗ tn is a linear assertion. The reason that

8 Jesper Bengtson, Jonas B. Jensen, and Lars Birkedal

pure assertions are kept in the precondition for triples and not in entailments is
that pure and propositional assertions are indistinguishable in the assertion logic
– the stack has already been fully applied and all liftings have been computed.
In Section 5.3 we cover how to rewrite a goal to normal form.

4.1 Tactics on the assertion logic

All of the tactics for the assertion logic are language and memory-model inde-
pendent. We achieve this by using the notion of separation algebras by Calcagno
et al. [5]. For a full exposition, see [2], but in a nutshell, as long as the user
provides a memory model that satisfies the axioms of separation algebras, all of
the following tactics can be applied.

sl simpl This tactic attempts to simplify an entailment. All modifications to
the goal are safe in the sense that the tactic will not make a goal unprovable. It
assumes that the goal is in normal form, and given an entailment t ` a does the
following simplifications:

– Split a into a spatial component u and a propositional component P . Split
the goal and simplify t ` u and t ` P independently.

– For each sub-formula of u, step through t to see if it is present there as well.
If so, remove it from both assertions.

– Remove every sub-formula of P that is present in the Coq-context.

– If u contains an existential quantifier, replace it with an existential variable
and rerun the simplification. However, this step rolls back unless the simpli-
fier manages to solve the assertion under the binder completely; an incorrect
guess of the existential variable can otherwise lead to an unprovable goal.

The reason that the goal is split in the first step, and before the spatial
components are simplified, is that the spatial components are often needed to
prove propositional assertions. If the spatial simplification is done before the
split, the tactic can make the goal unprovable.

The sl simpl tactic is parametric on another tactic that guides the simplifier
when instantiating existential variables. This tactic dictates what safe instan-
tiations are, i.e., which instantiations are allowed even if the entire assertion
under the quantifier cannot be discharged by the tactic. As a default, this tac-
tic is the fail-tactic; it will never succeed, and no instantiation is considered
safe. However, for our Java-fragment, we allow the simplifier to instantiate ex-
istential variables if either they are checked for equality under the binder, or if
they appear in the range of a pointsto-predicate. For instance, the entailment
o.f 7→v ` ∃x y. o.f 7→x ∗ i.g 7→w ∧ x = y is simplified to true ` i.g 7→w even
though the goal is not solved completely.

Charge! 9

sl auto This tactic is a more aggressive version of sl simpl. It unfolds the defini-
tion of the available representation predicates, and simplifies commonly occur-
ring sub-expressions using rewriting tactics. Finally it runs sl simpl. This heuris-
tic can put the goal in an unprovable state, and the tactic will never be applied
automatically by any of the other tactics.

sl apply Standard tactics in Coq like apply or rewrite do not work in the desired
way when reasoning with entailments. In Section 3, we use lemmas TreeRec null
and TreeRec not null to modify the proof goal, but neither the goal nor the
lemmas are in a form that apply or rewrite can use in the intended way. The
tactic sl apply is designed to allow for forward reasoning in the following manner:

Assume that we have a goal with an entailment in normal form
−−−→
H : P → t ` a

and a lemma L that we wish to apply that has the form ∀ #»x . S1
#»x → · · ·Sn #»x →

(b #»x ` c #»x) where the variables #»x can be of any Coq type. The first step of
the tactic is to replace all universally-quantified variables in L with existential
variables and to split b and c into its spatial and propositional components,
leaving the lemma in the form S1 → · · ·Sn → (u ∧ Q ` v ∧ R) where b a` u ∧ Q,
c a` v ∧ R, and all quantifiers #»x have been replaced by existential variables
that are free in u, v, Q, R, and S1 to Sn. The next step is to frame u out of t,
i.e., find a t′ such that t a` u ∗ t′. If this is successful, the tactic will leave the
user to prove the following goals

−−−→
H : P H1 : R

v ∗ t′ ` a

−−−→
H : P

t ` Q

−−−→
H : P

t ` S1

· · ·
−−−→
H : P

t ` Sn
where the first goal is the result of the original goal state after the application
of L, and the rest are the proofs of the propositional premises of L. If the tactic
is unable to find t′, it will fail. The existential variables that are introduced in
place of the quantifiers #»x are typically unified by Coq when t′ is obtained or
when Q or S1 to Sn are proven. Uninstantiated variables are left in the goal.
This behaviour is similar to the eapply-tactic in Coq.

4.2 Tactics on triples

Unlike entailments, the predicates in triples contain program variables. A typical
triple can have the form {t ∗̇ u ∧̇ p}c{b} where ∗̇ and ∧̇ are the lifted versions of
∗ and ∧ respectively, as described in Section 2. One of the more common rules
in separation logic is the rule of consequence, which allows the pre and post-
conditions of a triple to be rewritten. Since triples operate on lifted assertions,
and entailments operate on standard ones, our rule of consequence has a slightly
different form than the standard one.

∀s. (a s ` a′ s) {a′}c{b′} ∀s. (b′ s ` b s)
RoC{a}c{b}

By applying a stack s to the lifted assertions, we obtain standard assertions.
Even though this rule exposes the stack s, it is only used in intermediate steps
of the tactic and the user will never see an explicit stack.

10 Jesper Bengtson, Jonas B. Jensen, and Lars Birkedal

sl apply We extend the sl apply-tactic from Section 4.1 to work on triples as
well as entailments. The general idea is to allow forward-reasoning by rewriting
the precondition of a triple using the rule of consequence and the sl apply-tactic
for entailment. However, the tactics described so far are not sufficient. To demon-
strate, we attempt to rewrite the triple {(a −̇∗ b) ∗̇ a ∗̇ d}c{e} to {b ∗̇ d}c{e} us-
ing a modus ponens rule for −∗ that states that ∀a b. (a −∗ b) ∗ a ` b. Remember
that the connectives are not lifted in the lemmas we apply.

???
b s ∗ d s ` ?x s −∗–mp

(a s −∗ b s) ∗ a s ∗ d s ` ?x s
∀–I

∀s. (((a −̇∗ b) ∗̇ a ∗̇ d) s ` ?x s)

...
{?x}c{?y}

Refl.
?y s ` e s

∀–I∀s. (?y s) ` (e s)
RoC

{(a −̇∗ b) ∗̇ a ∗̇ d}c{e}

Applying the rule of consequence generates the existential variables ?x and
?y for the pre and the postcondition respectively. Instantiating ?y is straight-
forward, and follows immediately by reflexivity of `. Instantiating ?x is more
problematic. First, we introduce the stack s; the stack then propagates over the
lifted connectives resulting in assertions with corresponding un-lifted connec-
tives. Coq does this automatically. We then apply the modus-ponens lemma. To
conclude, we need to unify ?x with b ∗̇ d, in effect reversing the computation
that un-lifted the connectives. This, however, Coq is not able to do automatically
– the proof does go through if the user manually instantiates ?x but for large
proofs this quickly becomes tedious. We require a tactic that will transform the
assertion b s ∗ d s to (b ∗̇ d) s. How we solve this is described in Section 5.2.

forward The forward-tactic is the work horse tactic of Charge!. Given a triple
{p}c1; · · · ; cn{q} the tactic symbolically executes the command c1, given that its
requisites are met by the precondition p, rewriting p to a new predicate p′. The
user is left to prove either the triple {p′}c2; · · · ; cn{q}, or, if the triple initially
had only one command, the entailment p′ ` q. The tactic only works for goals
in normal form.

charge The charge-tactic is the tactic that gives our framework its name. The
tactic repeatedly applies the forward-tactic until either forward fails or provides
the user with more than one subgoal to prove.

5 Tactic building blocks

We have several automatic heuristics that solve frequently occurring sub-goals of
our tactics. The tactics sl simpl and sl apply use a framing tactic that attempts to
find one occurrence of a spatial formula in another and remove that instance; the
sl apply-tactic for triples require a tactic that lifts all connectives of an assertion;
finally, most tactics require that triples and entailments are in normal form,
hence we have a tactic that transforms a goal to normal form. These tactics
work using a combination of hint-databases and reflective tactics.

Charge! 11

5.1 Framing

In order to frame the spatial assertion u out of t, we have to find a t′ such
that t a` t′ ∗ u. This is achieved by rewriting t modulo commutativity and
associativity of ∗. Since we know that t is spatial, we do not have to cover the
cases of there being any pure assertions or occurrences of standard conjunction
in t. The first step is to define a predicate Frame t u t′ , t a` t′ ∗ u that holds
if framing u out of t results in t′. This predicate is then inserted into the proof
wherever framing is required. In the derivation

Frame t u ?x

...
?x ∗ u ` a

t ` a
an existential variable ?x is introduced, and the job of the framing tactic is to
find a solution for the predicate Frame t u ?x, instantiating ?x in the process.
The following inference rules accomplish this, assuming that t is linear, which
the normal form guarantees.

Frame t true t

Frame u t u′′ Frame u′′ t′ u′

Frame u (t ∗ t′) u′
t = u

Frame (t ∗ t′) u t′

Frame t′ u t′′

Frame (t ∗ t′) u (t ∗ t′′)
t = u

Frame t u true

We add these rules in a left-to-right priority order to a hint database. The
Coq auto-tactic is then used to solve the predicate.

5.2 Lifting connectives

Coq will reduce any term in the form (ḟ a1 · · · an) s to f (a1 s) · · · (an s), but
as is demonstrated in Section 4.2, we need a tactic to reverse this computation.
Similarly to framing, we have a predicate Lift a b , a = b that in effect is a
wrapper for standard Leibniz-equality. This predicate is then inserted into the
proof derivations where required. For instance, in Section 4.2 we need to lift the
term b s ∗ d s to (b ∗̇ d) s when using the sl apply-tactic in a triple. Inserting the
Lift-predicate in the derivation accomplishes this

Lift (b s ∗ d s) (?x s)

b s ∗ d s `?x s
· · ·

and similarly to the Frame-predicate, the tactics instantiate the existential vari-
able ?x when proving the predicate. We add the following inference rules to a
hint database in order to prove occurrences of the Lift-predicate.

Lift (s x) ((ve x) s)

Lift a1 (x1 s) · · · Lift an (xn s)

Lift (f a1 · · · an) ((ḟ x1 · · · xn) s) Lift a a

12 Jesper Bengtson, Jonas B. Jensen, and Lars Birkedal

The first rule reverse a variable lookup on the stack; the second lifts any n-ary
function; the final one is the base case that will fire when everything is lifted as
far as possible. In our formalisation, we have one hint for every arity of function.
We also have hints for a few other cases, like un-applied substitutions, quantifiers,
and if-then-else-statements.

5.3 Normal form

Most tactics require that the goal is in normal form. Recall that the normal form
ensures that, whether the goal is a triple or an entailment, that all existential
variables and propositional assertions in the precondition have been extracted
to the Coq-context. We create a tactic that given an assertion a, obtains a spa-
tial assertion t, a pure assertion p, and a propositional assertion P , such that
a a` ∃ #»x . (t #»x ∧ p #»x) ∧ P #»x where neither t, p, or P , contain any existential
quantifiers. When such an assertion is in the precondition of an entailment or a
triple, extracting the existentially quantified variables and propositional asser-
tions to the Coq context is straightforward. The tactic that converts an assertion
to normal form is a mix of reflective tactics, and hint-databases.

A deep embedding of assertions We create a Galina term that represents
an assertion in normal form. The normal form requires that all existentially
quantified variables are at the top level – this means that we must reason about
open terms in order to describe the spatial, pure, and propositional predicates
that appear under the binders. In effect, these assertions will be n-ary functions
where n is the number of free logical variables in the assertion. We parametrise
the deep embedding with a list of types corresponding to the types that have
been existentially quantified so far. That list of types is converted to a tuple and
the n-ary assertions are converted to unary ones that take one member of this
tuple type, rather than a sequence of members of each binding type.

The type exs Ts takes a list of types Ts and returns a tupled version of that
list (exs [] = (), exs [Z, val , bool] = (Z, (val , (bool , ()))), et c.). An open term
is a tuple of three lists: ts, of type list (exs Ts → (heap → Prop)), and ps and Ps
of type list (exs Ts → Prop). Intuitively, ts is a list of spatial terms separated
by the ∗-operator, and ps and Ps are lists of pure and propositional terms
respectively, separated by the ∧-operator. We will use the notation 〈ts, ps, Ps〉
for such a tuple and give it the type deep asn Ts, where Ts is the list of types
that the components of the tuple are parametrised on. Note that the type of the
lists for pure and propositional assertions are of the same type since we cannot
distinguish between these types of assertions in the assertion logic. Finally, we
create a function [T]d that given a term d of type deep asn (T :: Ts) closes the
term and returns a term of the type deep asn Ts. Moreover, we will use π1 and π2
to denote projection of the first and the second element out of tuples respectively.
To demonstrate, the deep embedding of the assertion ∃x y. o.f 7→x ∗ i.g 7→w ∧
x = y is [val][val]〈[λt. o.f 7→(π1 t), λt. i.g 7→w]∗, [], [λt. π1 t = π1(π2 t)]〉

Charge! 13

Transforming an assertion to normal form The transformation of asser-
tions to normal form is done using hint databases. The first step is to create an
evaluation function eval of type deep asn Ts → exs Ts → (heap → Prop) that
given an open term in normal form and a tuple instantiating the free variables,
returns an equivalent assertion. We will write JdKx for eval d x . Next, we define
the following assertion NF d a x , JdKx a` a x that holds if JdKx evaluates to
a x, given two open assertions, one deeply embedded d and one shallowly embed-
ded a, and a tuple x that instantiates the free variables of d and a. This assertion
is then inserted into proof trees when an assertion needs to be transformed to
normal form. For instance, the following derivation puts the precondition of a
triple in normal form.

NF ?y (a s) ()

a s ` J?yK()

Lift (J?yK()) (?x s)

J?yK() `?x s
Trans.

a s `?x s ∀–I∀s. (a s `?x s)

...
{?x}c{?y}

Refl.
?z s ` b s ∀–I∀s. (?z s ` b s)

RoC{a}c{b}

The evaluation order of the predicates is important. Proving the predicate
NF ?y (a s) () instantiates ?y, obtaining an assertion in normal form. Proving
the predicate Lift (J?yK()) (?x s) in turn instantiates ?x and lifts all connectives,
allowing us to prove the triple, but with the precondition in normal form.

The next step is to create the hint-database that proves occurrences of the
NF-predicate. We create two merge functions merge nf sc and merge nf and ,
both of type deep asn Ts → deep asn Ts → deep asn Ts and written with the
infix operators ©∗ and ©∧ respectively. The merger functions and the evaluation
function are designed such that the following inferences hold.

NF da a x NF db b x

NF (da©∗ db) (λy. a y ∗ b y) x

NF da a x NF db b x

NF (da©∧ db) (λy. a y ∧ b y) x

∀y : T. NF d (λz. a (π1 z) (π2 x)) (y, x)

NF ([T]d) (λz. ∃y : T. a y z) x NF 〈[t], [], []〉 t x

NF 〈[], [p], []〉 p x NF 〈[], [], [P]〉 P x

The design of the merging functions is a bit intricate. When merging the
terms da and db, their top level existential quantifiers are traversed and added
in sequence to the resulting term. The difficulty comes when merging the two
open terms – this requires a bit of work, and is left out for space reasons.

Recall that we cannot distinguish between pure and propositional assertions
in the assertion logic, i.e. J〈[], [p], []〉Kx a` J〈[], [], [p]〉Kx. When turning a propo-
sitional assertion to normal form, the tactics will check if there syntactically
exists a stack in the assertion – if so, it is classified as pure, otherwise as propo-
sitional. It is important that this classification is correct or a pure assertion can
end up in the Coq-context, rather than in the precondition of a triple.

14 Jesper Bengtson, Jonas B. Jensen, and Lars Birkedal

6 Custom Hoare triples

The core of Charge! is designed to be language independent – the majority of
the tactics are usable regardless of language or memory model. Once a language
is defined, and all meta-theoretical properties have been proven, adapting the
language to Charge! is relatively straightforward. In this section we demonstrate
how to incorporate a standard read-rule from separation logic into Charge!. In
separation logic, the Hoare-triple for the read rule often has the form

x 6= y x /∈ fv e

{y.f 7→e}x := y.f{y.f 7→e ∧ x = e}
Read

and stores the value of the expression e found at the memory location y.f in the
program variable x. There is also a side condition stating that x must not be a
free variable in e and disjoint from y. This rule provides a minimal footprint of
the read-command, but is often not directly usable as it requires the goal to be
in a very specific form.

In [2] we provided an alternative read-rule that does not require the precon-
dition to be of a certain shape, or impose any freshness conditions on x.

a ` y.f 7→e
{a}x := y.f{∃v. a{v/x} ∧ x = e{v/x}}

ReadEnt

When this rule is used, we need to prove that y.f 7→e can be inferred from a.
This is typically done by framing y.f 7→e out of a. The substitutions perform the
alpha-renamings required to enforce the side-conditions of the Read-rule. We
use the tactics from Section 5 to create a new version of the rule that assumes
that the goal is in normal form before it is applied, and ensures that the goal
stays in normal form.

∀s. ∃u v ps. (p s→ Frame (a s) ((s y).f 7→v) u) ∧
Lift v (e s) ∧ PureBase (λt. (p{π1 t/x}) s) ps ∧s

[val]〈[(λt. a{π1 t/x} s)]∗,
[(λt. s x = e{π1 t/x} s) :: ps, []〉]

{

()

= ?b s

{a ∧ p}x := y.f{?b}
ReadNF

This rule is a bit intimidating, but solvable by the tactics described so far. When
applied, the quantifiers are introduced and existential variables created for the
existentially quantified variables. We assume that the postcondition of the triple
is an existential variable. If this is not the case, the rule of consequence can be
used to obtain an existential variable for the postcondition. The Frame-predicate
corresponds to the premise of the ReadEnt-rule, and the pure facts p can be
used when proving the predicate. The range of the pointsto-predicate v, which is
instantiated when Frame is proven, is then lifted using the Lift-predicate instan-
tiating the expression e in the process. The predicate PureBase p ps instantiates
ps to the empty list if p reduces to true, and [p] otherwise – this is to avoid clut-
tering up the precondition with true-predicates. The evaluation of the normal
form evaluates to the postcondition of ReadEnt. All of our triple-rules are in
a similar form.

Charge! 15

7 Related Work

Adapting proof assistants to reason in separation logic has been proposed be-
fore. Some of the earliest work is an unpublished article by Appel [1] where he
creates a family of tactics that reasons about a small imperative language. The
core philosophy is the same as ours – the user should be able to reason in the
separation logic, not in its model, and there should never be an explicit stack or
a heap in the proof context.

In later work, McCreight expanded on Appel’s ideas and created a compre-
hensive set of tactics for verifying Cminor programs using separation logic in Coq
[11]. This seminal piece of work drastically cut down proof script sizes, yet their
approach differs from ours. In McCreight’s work, the user will find the heap in the
proof context. Where we have an entailment of the form a ∗ b ` c ∗ d, McCreight
unfolds the definition of entailment exposing the heap (a ∗ b) m → (c ∗ d) m,
and the antecedent of the implication is then moved to the Coq context. The
reason this approach works fine is that the definition of ∗ is never unfolded and
even though the heap is exposed, the user never has to reason about sub-heaps
or their disjointness-properties. One of the main motivations of our work was
that we wanted to see whether or not it is possible to retain the simplicity of
McCreight’s tactics while keeping with the overall philosophy of Appel’s ideas
and strictly reason inside the separation logic. We claim that we have achieved
this. One point of comparison is that all three formalisations have verified the
standard in-place list reversal algorithm. In [1], Appel uses 200 lines and 795
words to verify this program by count of wc; McCreight uses 68 lines and less
than 400 words [11]. We use 25 lines and 105 words. These numbers do not
include the definition of the program, just the proofs themselves.

Other work includes the Bedrock framework by Chlipala [6]. Similar to
Charge!, Bedrock strives to automate the tedium of program verification us-
ing separation logic in Coq. The focus on Bedrock lies on low level languages,
including support to work with hardware registers.

Another interactive approach is Holfoot, by Tuerk [16], which verifies Small-
foot specifications inside HOL4. This approach is similar to ours in that the core
of Holfoot also builds on the theories of abstract separation algebras by Calcagno
et al. [5]. Holfoot also has impressive automation results, but to the best of our
knowledge does not handle object-oriented programs or nested triples [14].

Another Coq-framework for separation logic by Dockins et al. is the MSL-
library [7]. It provides extensive meta-theoretical results of separation algebras
of different flavours, however it currently has very few tactics.

One very prominent tool for program verification is VeriFast [9]. VeriFast
allows the user to write, specify, and compile C and Java-programs and prove
their correctness. The approach is mostly interactive and, as the name suggests,
fast. However, the tool provides no formal proof of program correctness. The
binary tree example presented in Section 3 is taken from the VeriFast web-site.

16 Jesper Bengtson, Jonas B. Jensen, and Lars Birkedal

8 Conclusion

We have developed Charge! – a comprehensive framework for verifying the cor-
rectness of Java-like programs using higher-order separation logic in Coq. Our
tactics allow the user to focus on the actual program verification, as opposed to
manually proving all of the tedious and repetitive steps that proofs of full func-
tional program correctness typically require. Moreover, the work-flow is very
close to the style of reasoning used for pen-and-paper proof outlines in sep-
aration logic, allowing users to freely exchange logical variables and program
variables in the assertion logic predicates. Charge! is memory-model indepen-
dent, and the modular design of the tactics makes adding new language features
and commands simple and straightforward.

References

1. A. W. Appel. Tactics for separation logic, Draft of January 2006.
http://www.cs.princeton.edu/∼appel/papers/septacs.pdf.

2. J. Bengtson, J. Jensen, F. Sieckowski, and L. Birkedal. Verifiying object-oriented
programs with higher-order separation logic in Coq. In Proceedings of ITP, 2011.

3. B. Biering, L. Birkedal, and N. Torp-Smith. BI hyperdoctrines and higher-order
separation logic. In Proceedings of ESOP, pages 233–247, 2005.

4. B. Biering, L. Birkedal, and N. Torp-Smith. BI-hyperdoctrines, higher-order sep-
aration logic, and abstraction. ACM Trans. Program. Lang. Syst., 29(5), 2007.

5. C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation
logic. In Proceedings of LICS, pages 366–378, 2007.

6. A. Chlipala. Mostly-automated verification of low-level programs in computational
separation logic. In PLDI, pages 234–245, 2011.

7. R. Dockins, A. Hobor, and A. W. Appel. A fresh look at separation algebras and
share accounting. In The 7th Asian Symposium on Programming Languages and
Systems, pages 161–177. Springer ENTCS, 2009.

8. M. Dodds, S. Jagannathan, and M. J. Parkinson. Modular reasoning for determin-
istic parallelism. In Proceedings of POPL, 2011.

9. B. Jacobs and F. Piessens. The verifast program verifier. CW Reports CW520,
Department of Computer Science, K.U.Leuven, August 2008.

10. N. R. Krishnaswami, J. Aldrich, L. Birkedal, K. Svendsen, and A. Buisse. Design
patterns in separation logic. In Proceedings of TLDI, pages 105–116, 2009.

11. A. McCreight. Practical tactics for separation logic. In Proceedings of TPHOLs,
pages 343–358, 2009.

12. A. Nanevski, A. Ahmed, G. Morrisett, and L. Birkedal. Abstract predicates and
mutable ADTs in hoare type theory. In In Proc. of ESOP, pages 189–204, 2007.

13. M. J. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in Hoare logic.
In Proceedings of LICS, pages 137–146. IEEE, 2006.

14. J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare triples and
frame rules for higher-order store. In Proceedings of CSL, 2009.

15. K. Svendsen, L. Birkedal, and M. Parkinson. Verifying generics and delegates. In
Proceedings of ECOOP, pages 175–199, 2010.

16. T. Tuerk. A Formalisation of Smallfoot in HOL. In In proceedings of TPHOLs,
LNCS, pages 469–484, 2009.

17. C. Varming and L. Birkedal. Higher-order separation logic in Isabelle/HOLCF.
Electr. Notes Theor. Comput. Sci., 218:371–389, 2008.

	Charge!
	Introduction
	Program variables
	Example
	Tactics
	Tactics on the assertion logic
	sl_simpl
	sl_auto
	sl_apply

	Tactics on triples
	sl_apply
	forward
	charge

	Tactic building blocks
	Framing
	Lifting connectives
	Normal form
	A deep embedding of assertions
	Transforming an assertion to normal form

	Custom Hoare triples
	Related Work
	Conclusion

