
Weak Equivalences in Psi-calculi

Magnus Johansson Jesper Bengtson Joachim Parrow Björn Victor

Dept. of Information Technology, Uppsala University, Sweden

Abstract

Psi-calculi extend the pi-calculus with nominal
datatypes to represent data, communication channels, and
logics for facts and conditions. This general framework
admits highly expressive formalisms such as concurrent
higher-order constraints and advanced cryptographic
primitives. We here establish the theory of weak bisimula-
tion, where the τ actions are unobservable. In comparison
to other calculi the presence of assertions poses a signif-
icant challenge in the definition of weak bisimulation, and
although there appears to be a spectrum of possibilities we
show that only a few are reasonable. We demonstrate that
the complications mainly stem from psi-calculi where the
associated logic does not satisfy weakening.

We prove that weak bisimulation equivalence has the ex-
pected algebraic properties and that the corresponding ob-
servation congruence is preserved by all operators. These
proofs have been machine checked in Isabelle. The notion
of weak barb is defined as the output label of a communi-
cation action, and weak barbed equivalence is bisimilarity
for τ actions and preservation of barbs in all static contexts.
We prove that weak barbed equivalence coincides with weak
bisimulation equivalence.

1 Introduction

In our earlier work [3] we introduced psi-calculi: a
framework for advanced mobile process calculi. These ac-
commodate applications with complex data structures and
their operations, and high level logics for use in conditional
constructs. Extensions of the pi-calculus are not new as
such, but psi-calculi provide a single general and paramet-
ric framework with a clean theory and machine-checked
proofs. In [3] we presented the labelled semantics, strong
bisimulation congruence and algebraic properties; its im-
plementation in the theorem prover Isabelle was presented
in [4]; a fully abstract symbolic semantics appeared in [15].

In the present paper we establish the theory of weak (or
observational) equivalences for psi-calculi. These equiva-
lences abstract from the internal behaviour of the processes

and are essential for applications, e.g. in simplifying de-
scriptions in a modular way, and in verifying implementa-
tions against more abstract specifications. Interactions be-
tween internal components are disregarded unless they af-
fect the externally visible behaviour. If the weak equiva-
lence is compositional then the abstract specification can
also be used as a part when building even larger systems,
and this facilitates modular construction and reasoning.

The canonical weak equivalence is often considered to
be barbed bisimulation congruence [16, 19] which is de-
fined using the possible interactions, often called barbs, and
reductions, closing under all contexts to form a congru-
ence. Although natural and easy to understand this univer-
sal quantification of contexts makes the relation hard to use
in proofs. It is a known hard problem to define weak equiv-
alences that abstract from as much detail as possible and
yet are both compositional and computationally tractable.
A standard approach is to use weak bisimulations, where a

single transition a−→ is simulated by a sequence of transi-
tions where the internal τ actions are considered invisible,
a so called weak transition a==⇒ . In the pi-calculus several
alternatives have been investigated for weak bisimulation,
e.g. open, late and early; the latter coincides with barbed
equivalence [19].

Weak bisimulation has been studied for some exten-
sions of the pi-calculus, but the results are not conclusive
and a general framework is lacking. In the case of spi-
calculus [2] the weak labelled bisimulations are rather com-
plex and the spectrum of equivalences includes framed [2],
alley [6, 7, 5], fenced [12], trellis [6], and hedged [8],
where framed coincides with hedged [5, 8] and fenced
with trellis [13]. For the applied pi-calculus, the weak la-
belled bisimulation defined in [1] does not coincide with
barbed equivalence and turns out to be non-compositional
unless further restrictions on the calculus are imposed (as
remarked in [3]). The explicit fusion calculus [20] de-
fines weak barbed equivalence which is compositional but
computationally awkward because of a universal quantifi-
cation over contexts. Extensions of the pi-calculus for con-
straint programming have been defined e.g. in [11] (the
π+-calculus) and [10] (the CC-Pi calculus). The first de-

1

fines only barbed equivalence; the second defines only
(strong) labelled bisimulation which turns out to be non-
compositional (also as remarked in [3]).

In this paper we present a labelled weak bisimulation for
psi-calculi. We formally establish its algebraic properties,
including compositionality. The general framework of psi-
calculi allows non-monotonic logics where a formula which
holds at one point may be falsified by a transition, as in e.g.
the “retract” construct of CC-Pi [9]. While adding expres-
sive power, the non-monotonicity also poses new and un-
expected challenges for weak bisimulation. With the pos-
sibility of new assertions (statements about data) appear-
ing after any transition, “obvious” laws such as P

.
≈ τ.P

become invalid. Intuitively this is because P may contain
a retract that invalidates an action of its environment. As
an example, consider an agent P which through a retract
jams an internal communication in Q, so that P | Q can-
not progress. The agent τ . P represents a state where the
jamming has not yet started. Consequently Q can progress
in the constellation τ . P | Q. In other words, P and τ . P
have demonstrably different effects on their environment:
the τ prefix might postpone a jamming and thereby allow
other actions. This is in contrast to the situation in the stan-
dard pi-calculus where τ . P | Q can have no more actions
than P | Q. We prove that if monotonicity is enforced, by
a logical weakening law saying that whatever is true stays
true, this situation cannot arise and the definition of weak
bisimulation can be significantly simplified.

We finally introduce a weak barbed bisimulation where
the observations, or barbs, are simply the immediately avail-
able output actions. This results in a more intuitively obvi-
ous definition. We prove that it coincides with weak la-
belled bisimulation. In this way the intuitively attractive
barbed equivalence is given the powerful proof technique
of labelled bisimulation which does not require closure un-
der all contexts.

Overview. In the next section we review the basic defini-
tions of syntax, semantics, and strong bisimulation of psi-
calculi. In Section 3 we present the first variant of weak
bisimulation. This is intended for psi-calculi where logi-
cal weakening holds, and results in a relatively traditional
bisimulation definition. In Section 4 we present the second
more general variant of weak bisimulation, applicable to all
psi-calculi, and explain and motivate it by examples. Sec-
tion 5 presents our results on algebraic properties and com-
positionality, and the related notion of weak congruence.
In Section 6 we introduce the notions of barb and barbed
bisimulation equivalences, and prove that this equivalence
coincides with weak bisimilarity. Finally in Section 7 we
conclude and describe ongoing and future work.

2 Psi-calculi

This section is a brief recapitulation of psi-calculi; for a
more extensive treatment including motivations and exam-
ples see [3].

We assume a countably infinite set of atomic names N
ranged over by a, b, . . . , z. Intuitively, names will represent
the symbols that can be scoped, and also represent symbols
acting as variables in the sense that they can be subject to
substitution. A nominal set [18, 14] is a set equipped with a
formal notion of what it means for a name x to occur in an
element A of the set, written x ∈ n(A) (often pronounced
as “x is in the support of A”). We write a#X , pronounced
“a is fresh for X”, for a 6∈ n(X), and if A is a set of names
we write A#X to mean ∀a ∈ A . a#X . A nominal data
type is a nominal set equipped with a set of operators on it.

A psi-calculus is defined by instantiating three nominal
data types and four operators:

Definition 1 (Psi-calculus parameters). A psi-calculus re-
quires the three (not necessarily disjoint) nominal data
types: the (data) terms T, ranged over by M,N , the con-
ditions C, ranged over by ϕ, the assertions A, ranged over
by Ψ, and the four operators:

.↔: T×T→ C Channel Equivalence
⊗ : A×A→ A Composition
1 : A Unit
`⊆ A×C Entailment

We assume that there exists a simultaneous substitution
functionX[ã := M̃] for any term, assertion or conditionX .
The binary functions above will be written in infix. Thus,
if M and N are terms then M .↔ N is a condition, pro-
nounced “M and N are channel equivalent” and if Ψ and
Ψ′ are assertions then so is Ψ⊗Ψ′. We say that a term is a
channel if it is channel equivalent to something. Also we
write Ψ ` ϕ, “Ψ entails ϕ”, for (Ψ, ϕ) ∈ `.

We say that two assertions are equivalent, written Ψ '
Ψ′ if they entail the same conditions, i.e. for all ϕ we have
that Ψ ` ϕ ⇔ Ψ′ ` ϕ. We impose certain requisites on
the sets and operators. In brief, channel equivalence must
be symmetric and transitive, ⊗ must be compositional with
regard to ', and the assertions with (⊗,1) form an abelian
monoid. For details see [3].

In the following ã means a finite (possibly empty) se-
quence of names, a1, . . . , an. The empty sequence is writ-
ten ε and the concatenation of ã and b̃ is written ãb̃. When
occurring as an operand of a set operator, ãmeans the corre-
sponding set of names {a1, . . . , an}. We also use sequences
of terms, conditions, assertions, etc., in the same way.

A frame F can intuitively be thought of as an assertion
with local names: it is of the form (νb̃)Ψ where b̃ is a se-
quence of names that bind into the assertion Ψ. We use F,G

2

to range over frames. We overload Ψ to also mean the frame
(νε)Ψ and ⊗ to mean composition on frames defined by
(νb̃1)Ψ1⊗(νb̃2)Ψ2 = (νb̃1b̃2)(Ψ1⊗Ψ2) where b̃1#b̃2,Ψ2

and vice versa. We also write (νc)((νb̃)Ψ) to mean (νcb̃)Ψ.
Alpha equivalent frames are identified. We define F ` ϕ

to mean that there exist an alpha variant (νb̃)Ψ of F such
that b̃#ϕ and Ψ ` ϕ. We also define F ' G to mean that
for all ϕ it holds that F ` ϕ iff G ` ϕ. Intuitively a con-
dition is entailed by a frame if it is entailed by the assertion
and does not contain any names bound by the frame. Two
frames are equivalent if they entail the same conditions.

Definition 2 (Psi-calculus agents). Given valid psi-calculus
parameters as in Definition 1, the psi-calculus agents,
ranged over by P,Q, . . ., are of the following forms.

M N.P Output
M(λx̃)N.P Input
case ϕ1 : P1 [] · · · [] ϕn : Pn Case
(νa)P Restriction
P |Q Parallel
!P Replication
(|Ψ|) Assertion

In the Input M(λx̃)N.P we require that x̃ ⊆ n(N) is a
sequence without duplicates, and the names x̃ bind occur-
rences in both N and P . Restriction binds a in P . An as-
sertion is guarded if it is a subterm of an Input or Output.
In a replication !P there may be no unguarded assertion in
P , and in case ϕ1 : P1 [] · · · [] ϕn : Pn there may be no un-
guarded assertion in any Pi. We identify alpha-equivalent
agents.

Some notational conventions: We define the agent
0 as (|1|). We sometimes abbreviate the agent
case ϕ1 : P1 [] · · · [] ϕn : Pn as case ϕ̃ : P̃ , or if n = 1
as if ϕ1 then P1. In psi-calculi where a condition > ex-
ists such that Ψ ` > for all Ψ we write P + Q to mean
case > : P [] > : Q. In some examples where prefix ob-
jects are unimportant we elide them, writing e.g. M.P for
MN.P . We introduce the prefix form τ.P through a com-
munication over a restricted channel.1

The frame F(P) of an agent P is defined inductively as
follows:

F(M(λx̃)N.P) = F(M N.P)
= F(case ϕ̃ : P̃) = F(!P) = 1

F((|Ψ|)) = (νε)Ψ
F(P |Q) = F(P) ⊗ F(Q)
F((νb)P) = (νb)F(P)

1Formally, let Ma be a term that contains the name a. Define τ.P =
(νa)(Ma.P |Ma.0) for a#P in psi-calculi where ∀Ψ.Ψ ` Ma

.↔ Ma

and for all other terms N we have that ∀Ψ.Ψ 0 Ma
.↔ N . This

is the generalisation of the usual definition of τ in pi-calculus: τ.P =
(νa)(a.P |a.0) for a#P .

The actions ranged over by α, β are of the following
three kinds: Output M (νã)N where α ⊆ n(N), Input
M N , and Silent τ . Here we refer to M as the subject
and N as the object. We define bn(M (νã)N) = ã, and
bn(α) = ∅ if α is an input or τ . We also define n(τ) = ∅ and
n(α) = n(M) ∪ n(N) for the input and output actions. As
in the pi-calculus, the output M (νã)N represents an action
sendingN alongM and opening the scopes of the names ã.
Note in particular that the support of this action includes ã.
Thus M (νa)a and M (νb)b are different actions.

Definition 3 (Transitions). A transition is of the kind

Ψ B P
α−→ P ′, meaning that in the environment Ψ the

agent P can do an α to become P ′. The transitions are de-

fined inductively in Table 1. We write P α−→ P ′ without

an assertion to mean 1 B P
α−→ P ′.

Agents, frames and transitions are identified by alpha
equivalence. In a transition the names in bn(α) bind into
both the action object and the derivative, therefore bn(α) is
in the support of α but not in the support of the transition.
This means that the bound names can be chosen fresh, sub-
stituting each occurrence in both the object and the deriva-
tive.

Definition 4 (Strong bisimulation). A strong bisimulation
R is a ternary relation between assertions and pairs of
agents such thatR(Ψ, P,Q) implies all of

1. Static equivalence: Ψ⊗F(P) ' Ψ⊗F(Q)

2. Symmetry: R(Ψ, Q, P)

3. Extension of arbitrary assertion:
∀Ψ′.R(Ψ⊗Ψ′, P,Q)

4. Simulation: for all α, P ′ such that bn(α)#Ψ, Q there
exists a Q′ such that

Ψ B P
α−→ P ′ =⇒ Ψ B Q

α−→ Q′∧R(Ψ, P ′, Q′)

We define P .∼Ψ Q to mean that there exists a bisimulation
R such thatR(Ψ, P,Q), and write .∼ for .∼1.

Definition 5 (Strong congruence). P ∼Ψ Q means that for
all x̃, M̃ it holds P [x̃ := M̃] .∼Ψ Q[x̃ := M̃], and we write
P ∼ Q for P ∼1 Q.

In [3] we explore the algebraic properties of∼, in partic-
ular we prove it a congruence for any psi-calculus.

3 Weak bisimulation

We introduce weak bisimulation equivalence,
.
≈, with

the intuition that τ actions are invisible. This notion is stan-
dard in many variants of the pi-calculus, but in our frame-
work it poses unexpected challenges. As an example, con-
sider the law P

.
≈ τ.P . This law looks obvious and indeed

3

IN
Ψ `M .↔ K

Ψ B M(λỹ)N.P KN [ey:=eL]−−−−−−−→ P [ỹ := L̃]
OUT

Ψ `M .↔ K

Ψ B M N.P
KN−−−→ P

CASE
Ψ B Pi

α−→ P ′ Ψ ` ϕi
Ψ B case ϕ̃ : P̃ α−→ P ′

COM
Ψ⊗ΨP⊗ΨQ `M

.↔ K ΨQ⊗Ψ B P
M (νea)N−−−−−−→ P ′ ΨP⊗Ψ B Q

KN−−−→ Q′

Ψ B P |Q τ−→ (νã)(P ′ |Q′)
ea#Q

PAR
ΨQ⊗Ψ B P

α−→ P ′

Ψ B P |Q α−→ P ′|Q
bn(α)#Q SCOPE

Ψ B P
α−→ P ′

Ψ B (νb)P α−→ (νb)P ′
b#α,Ψ

OPEN
Ψ B P

M (νea)N−−−−−−→ P ′

Ψ B (νb)P M (νea∪{b})N−−−−−−−−−→ P ′
b#ea,Ψ,M
b ∈ n(N)

REP
Ψ B P | !P α−→ P ′

Ψ B !P α−→ P ′

Table 1. Structured operational semantics. Symmetric versions of COM and PAR are elided. In the
rule COM we assume that F(P) = (νb̃P)ΨP and F(Q) = (νb̃Q)ΨQ where b̃P is fresh for all of Ψ, b̃Q, Q,M
and P , and that b̃Q is similarly fresh. In the rule PAR we assume that F(Q) = (νb̃Q)ΨQ where b̃Q is
fresh for Ψ, P and α. In OPEN the expression ã∪ {b} means the sequence ã with b inserted anywhere.

holds for weak bisimulation in the pi-calculus. But in psi-
calculi in general it would imply that parallel composition
does not preserve

.
≈. Consider a situation where it holds

that 1 ` ϕ and F(P) 6` ϕ. In other words, F(P) makes
condition ϕ false. Now consider

P | if ϕ then Q and τ.P | if ϕ then Q

Here only the right hand side has the possibility of acting
like Q. Therefore the left and right hand sides are not in
general equivalent. If parallel preserves

.
≈ then it follows

that P and τ.P are not always equivalent.
The root of this issue is that the frame of P can falsify

the condition ϕ. There are some circumstances where this
might happen; an example is if the assertions represent con-
straint stores and the constraint system admits retracts. Sup-
pose that P represents a retract ofϕ. A system sitting in par-
allel with P cannot infer ϕ, and therefore if ϕ then Q will
have no action. But a system in parallel with τ . P might
infer ϕ. Only when this agent executes its action τ and as-
serts the retract will if ϕ then Q become blocked. Thus P
and τ . P cannot be deemed equivalent: the parallel context
of if ϕ then Q can tell the difference by proceeding only in
company with the latter.

In many natural instances of psi-calculi this situation
cannot arise. For example, if the logics involved are mono-
tonic there can be nothing similar to a retract: formally,
frame composition ⊗ is interpreted as conjunction of in-
formation, and a logical weakening law is assumed, saying
that a conjunction cannot entail less than its conjuncts. In

our framework this is represented as an extra requisite:

weakening: Ψ ` ϕ ⇒ Ψ⊗Ψ′ ` ϕ

Since (⊗,1) is a monoid we have 1⊗Ψ ' Ψ for all Ψ, and
with weakening this implies 1 ` ϕ ⇒ Ψ ` ϕ, in other
words, no assertion can falsify any condition. With this req-
uisite the law P

.
≈ τ . P indeed holds, and it turns out that

the definition of weak bisimulation is significantly simpler.
We shall therefore begin by exploring weak bisimulation for
psi-instances with weakening, and later generalise to the sit-
uation without weakening.

Our approach is to adjust Definition 4 (strong bisimu-
lation) so that τ actions can be inserted or removed when
simulating a transition. Clause 1 in the definition, that P
and Q are statically equivalent, is adjusted so that if P can
make conditions true, then Q can make them true possibly
after performing some τ actions. Clauses 2 and 3 are un-
changed. Clause 4 (simulation) is split in two parts. If the
action α to be simulated is τ then Q should simulate by do-
ing zero or more τs. If it is a visible (i.e. non-τ) action
then Q simulates by doing an arbitrary number of τ actions
before and after the α action.

We define Ψ B P ==⇒ P ′ to mean that there exist
P1, . . . Pn where P = P1, P ′ = Pn, and Ψ B Pi

τ−→
Pi+1 for all i in [1, n − 1], allowing the case where n = 1

and P = P ′. The weak transition Ψ B P
α==⇒ P ′ is

defined as Ψ B P ==⇒ P ′′ and Ψ B P ′′
α−→ P ′′′ and

Ψ B P ′′′ ==⇒ P ′. We also define P ≤Ψ Q, pronounced
P statically implies Q, to mean that ∀ϕ. Ψ⊗F(P) ` ϕ ⇒
Ψ⊗F(Q) ` ϕ. We write P ≤ Q for P ≤1 Q.

4

Definition 6 (Simple weak bisimulation). A simple weak
bisimulationR is a ternary relation between assertions and
pairs of agents such thatR(Ψ, P,Q) implies all of

1. Weak static implication: There exists Q′ such that

Ψ B Q ==⇒ Q′ and P ≤Ψ Q′ andR(Ψ, P,Q′).

2. Symmetry: R(Ψ, Q, P)

3. Extension of arbitrary assertion:
∀Ψ′.R(Ψ⊗Ψ′, P,Q)

4. Weak simulation: for all α, P ′ such that bn(α)#Ψ, Q
and Ψ B P

α−→ P ′ it holds

if α = τ : ∃Q′. Ψ B Q ==⇒ Q′ ∧ R(Ψ, P ′, Q′)

if α 6= τ : ∃Q′. Ψ B Q
α==⇒ Q′ ∧ R(Ψ, P ′, Q′)

We define P
.
≈
s

Ψ Q to mean that there exists a simple weak
bisimulation R such that R(Ψ, P,Q), and write P

.
≈
s
Q

for P
.
≈
s

1 Q.

The one point which may not be immediately obvious
is Clause 1, weak static implication, where the conjunct
R(Ψ, P,Q′) may be surprising. It states thatQmust evolve
to a Q′ that is statically implied by P , and also bisimilar to
P . This last requirement may seem unnecessarily strong,
but in fact without it the resulting simple weak bisimulation
equivalence would not be preserved by the parallel operator.
To prove this, let

.
≈
′
be defined as simple weak bisimulation

above but without the conjunct R(Ψ, P,Q′) in Clause 1.
Let there be an assertion Ψ and condition ϕ such that Ψ ` ϕ
and 1 6` ϕ, and let L,M,N be distinct terms. Consider the
following agents (the diagrams illustrate agents informally):

P = (|Ψ|) | (τ.M.0 + τ.N.0)
Q = τ.((|Ψ|)|M.0) + τ.((|Ψ|)|N.0)
R = if ϕ then L.0

The transitions from P and Q are identical, only their
frames differ in that F(P) = Ψ and F(Q) = 1. With our
original definition P 6

.
≈
s
Q, since there is no appropriate Q′

for Clause 1. In contrast we have P
.
≈
′
Q since Q τ−→ Q′

implies F(Q′) = F(P). But to simulate P |R L−→ P |0
from Q|R the only possibilities are Q|R L==⇒ (|Ψ|)|M.0|0
and Q|R L==⇒ (|Ψ|)|N.0|0. Neither of these can continue

to simulate P |0 which can perform both actions M and N .
Therefore P |R 6

.
≈
′
Q|R.

Simple weak bisimulation is the natural weak counter-
part of Definition 4. For all psi-calculi that satisfy the weak-
ening requisite it is sufficient. As we demonstrate in the fol-
lowing section, without weakening the simple weak bisim-
ulation is in general not preserved by parallel composition
and also not transitive; therefore a more elaborate definition
is required in these cases.

4 Psi-calculi without weakening

We now generalise to psi-calculi without the weakening
requisite. It turns out that the definition of weak labelled
bisimulation needs to be adjusted in Clauses 1 and 4, where
the interplay of assertions and transitions is quite subtle. We
proceed to give the full definition of weak labelled bisimu-
lation and a proof that it coincides with

.
≈
s

for psi-calculi
with weakening, followed by a series of examples motivat-
ing the need for the added complexities.

Definition 7 (Weak bisimulation). A weak bisimulation R
is a ternary relation between assertions and pairs of agents
such thatR(Ψ, P,Q) implies all of

1. Weak static implication:

∀Ψ′∃Q′′, Q′.
Ψ B Q ==⇒ Q′′ ∧ P ≤Ψ Q′′ ∧
Ψ⊗Ψ′ B Q′′ ==⇒ Q′ ∧ R(Ψ⊗Ψ′, P,Q′)

2. Symmetry: R(Ψ, Q, P)

3. Extension of arbitrary assertion:
∀Ψ′.R(Ψ⊗Ψ′, P,Q)

4. Weak simulation: for all α, P ′ such that bn(α)#Ψ, Q
and Ψ B P

α−→ P ′ it holds

if α = τ : ∃Q′. Ψ B Q ==⇒ Q′ ∧ R(Ψ, P ′, Q′)
if α 6= τ : ∀Ψ′∃Q′′, Q′′′.

Ψ B Q ==⇒ Q′′′ ∧ P ≤Ψ Q′′′ ∧
Ψ B Q′′′

α−→ Q′′ ∧
∃Q′. Ψ⊗Ψ′ B Q′′ ==⇒ Q′ ∧ R(Ψ⊗Ψ′, P ′, Q′)

We define P
.
≈Ψ Q to mean that there exists a weak bisim-

ulation R such that R(Ψ, P,Q) and write P
.
≈ Q for

P
.
≈1 Q.

Theorem 8. For psi-calculi that satisfy weakening,
.
≈
s

and.
≈ coincide.

5

The proof has been verified in Isabelle. Proof sketch for
Clause 4: In one direction, every weak bisimulation with
weakening is also a simple weak bisimulation (just take
Ψ′ = 1). For the other direction we must show that in psi-
calculi that satisfy weakening, every simple weak bisimula-
tion is a weak bisimulation. We explain how the additional
requirements of clause 4 in weak bisimulation are satisfied.

First, use Clause 1 to find Q† such that Ψ B Q ==⇒ Q†

and P ≤Ψ Q† and R(Ψ, P,Q†). Using the latter with

Clause 4 we get that Ψ B Q†
α==⇒ Q′ with R(Ψ, P ′, Q′),

and since Ψ B Q ==⇒ Q† we get a corresponding

Ψ B Q
α==⇒ Q′, where the first part of the weak transition

passes through Q†. Now use the lemma (which requires

weakening) P ≤Ψ Q and Ψ B Q
α−→ Q′ ⇒ P ≤Ψ Q′.

This gives the conjunct P ≤Ψ Q′′′ in Clause 4. Next use

the lemma Ψ B P
α−→ P ′ ⇒ Ψ⊗Ψ′ B P

α−→ P ′

(which also requires weakening). This means that the
part “Ψ⊗Ψ′ B Q′′ . . .” follows from the simpler Clause 4
(which has the same without “⊗Ψ′ ”). Finally the last con-
junct R(Ψ⊗Ψ′, P ′, Q′) follows from R(Ψ, P ′, Q′) of the
simpler Clause 4, and Clause 3.

We now proceed to motivate the added complexity of
Clause 4.

Example: the use of P ≤Ψ Q′′′. We shall demonstrate
that with a simplification omitting P ≤Ψ Q′′′ in Clause 4,
i.e., if we do not take into account the conditions that hold at
the point of executing the visible part of a simulation, then
equivalence is not in general preserved by parallel. Let

.
≈
′

be defined with this simplification. Choose an instance with
an assertion Ψ and condition ϕ such that Ψ 6` ϕ and 1 ` ϕ,
i.e., Ψ makes ϕ false. Consider the agents

P = τ.((|Ψ|) |M.0) +M.(|Ψ|)
Q = τ.((|Ψ|) |M.0)
R = if ϕ then M.N.0

Here P
.
≈
′
Q. To see this, consider the only transition

that differs between the agents, namely P
M−→ (|Ψ|).

This can be simulated by Q
τ−→ (|Ψ|) |M.0 = Q′′′

and Q′′′
M−→ (|Ψ|)|0. But in composition with R,

we have through the second branch of P that P |R τ−→
(|Ψ|)|N.0. This cannot be weakly simulated by Q|R since

Q|R τ−→ (|Ψ|) |M.0 |R which has no N transition.
Therefore P |R 6

.
≈
′
Q|R and

.
≈
′

is not preserved by parallel.

Example: the quantification ∀Ψ′. Next we motivate the
quantification of Ψ′ in the subclause α 6= τ of weak simu-
lation, showing that without it, again equivalence would not
be preserved by parallel. Let

.
≈
′

be defined with this sim-
plification. Let Ψ and ϕ be such that 1 ` ϕ and Ψ 6` ϕ and
let

P = M. if ϕ then τ.P ′
Q = P + if ϕ then M.P ′

R = M.(|Ψ|)

Here P
.
≈
′
Q. Clearly we have Q|R τ−→ P ′|(|Ψ|)

through the second branch of Q. This cannot be weakly

simulated by P |R. Here the only transition is P |R τ−→
if ϕ then τ.P ′ | (|Ψ|) which has no further transition. There-
fore P |R 6

.
≈
′
Q|R and

.
≈
′

is not preserved by parallel.

Example: quantifier order of Ψ′ and Q′. Next we moti-
vate the order of the quantifiers, showing that if we com-
mute the quantifiers ∀Ψ′ and ∃Q′ the resulting “equiva-
lence” would not be transitive. Let

.
≈
′

be defined with
these quantifiers commuted. Let all Qi for i = 1, 2, 3
be distinct but weakly equivalent, and let ϕ,¬ϕ be two
conditions that partition the assertions in two disjoint sets
{Ψ. Ψ ` ϕ ∧Ψ 6` ¬ϕ} and {Ψ. Ψ 6` ϕ ∧Ψ ` ¬ϕ}. Let >
be a condition that is entailed by all assertions, and let

U = case ϕ : τ.Q1 [] ¬ϕ : τ.Q2

V = case ϕ : τ.Q1 [] ¬ϕ : τ.Q2 [] > : τ.Q3

Here U
.
≈ V . The rightmost branch in Ψ B V

τ−→ Q3

is simulated by one of the two branches in U (which one
depends on Ψ). Let

P = M.Q1 +M.U
Q = M.U
R = M.V

6

Our point is that although P
.
≈ R

.
≈ Qwe have P

.
≈
′
R and

R
.
≈
′
Q, but not P

.
≈
′
Q. The crucial difference between

the equivalences is explained as follows. P
.
≈ Q holds be-

cause the only nontrivial simulation is for Q to simulate the
first branch of P . This is done by first doing M leading to
U , and then for all Ψ′ continuing to either Q1 or Q2, de-
pending on whether Ψ′ ` ϕ or not. Here the quantification
order is important. If the final bisimulation clause would
read ∃Q′∀Ψ′ . . . then Q cannot simulate the first branch of
P and therefore P 6

.
≈
′
Q. Note that P

.
≈
′
R since the only

nontrivial case is again for R to simulate the first branch of
P . This can be done through the third branch leading toQ3.
This holds for any Ψ′.

Example: quantifier order of Ψ′ and Q′′. In Clause 4,
the quantifier order is ∀Ψ′∃Q′′. Let

.
≈
′

be defined with the
alternative order ∃Q′′∀Ψ′. The difference is highlighted by
the following example. Let ϕ and ¬ϕ be two conditions
such that for any assertion exactly one of them is entailed,
as in the previous example. Let

P = M.Q′ +Q
Q = M.if ϕ then τ.Q′

+M.if ¬ϕ then τ.Q′

Here P
.
≈ Q and P 6

.
≈
′
Q. To see this consider how Q can

simulate P M−→ Q′. Using
.
≈, for all Ψ′ we must find a Q′′

such that Q M−→ Q′′ and Q′′ ==⇒ Q′. This holds, since
the choice ofQ′′ may depend on Ψ′. Using

.
≈
′

we must find
one Q′′ suitable for all Ψ′, and there is none.

As it turns out
.
≈
′

is a viable definition, in the sense that
it is transitive and preserves parallel. But from an observa-
tional point of view it is hard to argue that P and Q should
be different — in essence that would give the observer the
power to observe that a conditional branch has been passed.
The difference between

.
≈ and

.
≈
′

is reminiscent of the dif-
ference between late and early equivalence, and as we shall
see in Section 6 the weak barbed bisimulation corresponds
to

.
≈ and not to

.
≈
′
.

Example: quantifiers in Clause 1. Keeping the simpler
Clause 1 from Definition 6 will also yield an equivalence

.
≈
′

that preserves parallel. A distinguishing example is similar
to the one above. Again, let ϕ and ¬ϕ be two conditions
such that for any assertion exactly one of them is entailed.

Let Ψ be an assertion such that 1 ≤ Ψ and Ψ 6≤ 1 and
Ψ⊗Ψ ' 1.

P = (|Ψ|) | (τ . if ϕ then τ.Q′ + τ . if ¬ϕ then τ.Q′
Q = τ . ((|Ψ|) | if ϕ then τ.Q′)

+ τ . ((|Ψ|) | if ¬ϕ then τ.Q′)

Here we assume that Q′ is weakly bisimilar to (|Ψ|) | Q.
Then P

.
≈ Q. The critical argument is that in Clause 1,

depending on whether Ψ′⊗Ψ ` ϕ or not, Q can evolve to
either (|Ψ|) | if ϕ then τ.Q′ or (|Ψ|) | if ¬ϕ then τ.Q′, in
either case reaching an agent with a frame Ψ. It can then
continue to (|Ψ|) | Q′

.
≈ (|Ψ⊗Ψ|) | Q

.
≈ Q. In contrast

P 6
.
≈
′
Q, since Q cannot evolve to an agent that both has

Ψ as frame and is bisimilar to P . Again, it is hard to argue
that they should be different from an observational point of
view, and they are indeed weakly barbed equivalent.

5 Algebraic properties

In this section we establish results about weak bisimu-
lation equivalence and the related congruence. First, note
that weak bisimulation is not preserved the case construct.
The reasoning is analogous to why weak bisimulation is
not preserved by the operator + in CCS or the pi-calculus:
τ .0

.
≈ 0 but a .0+τ .0 6

.
≈ a .0+0. If the left-hand process

does its τ action, the right-hand can only simulate by stand-
ing still. In the next step, the right-hand can do the action a
which the left-hand can no longer simulate. This problem is
solved in a standard way: in the simulation clause of bisim-
ulation where α = τ , Qmust simulate the τ action made by
P with a τ chain containing at least one τ action.

Weak bisimulation is also not preserved by input pre-
fixes, again for the same reason as in the pi-calculus. Clos-
ing the relation is under substitution in the same way as is
done for strong bisimulation leads to the definition of weak
congruence, denoted ≈c.
Definition 9 (Weak congruence). P and Q are weakly Ψ-
congruent, written P ≈cΨ Q, if P

.
≈Ψ Q and they also

satisfy weak congruence simulation:

for all P ′ such that Ψ B P
τ−→ P ′ it holds:

∃Q′. Ψ B Q
τ==⇒ Q′ ∧ P ′

.
≈Ψ Q′

and similarly with the roles of P and Q exchanged. We
define P ≈c Q to mean that for all Ψ, and for all x̃, M̃ of
equal length it holds that P [x̃ := M̃] ≈cΨ Q[x̃ := M̃].

7

An expected result is:

Theorem 10. If P ∼Ψ Q then P ≈cΨ Q.

With this and the results in [3] it is straightforward to
infer:

Theorem 11 (Structural laws).

P ≈c P | 0
P | (Q |R) ≈c (P |Q) |R

P |Q ≈c Q | P
(νa)0 ≈c 0

P | (νa)Q ≈c (νa)(P |Q) if a#P
M N.(νa)P ≈c (νa)M N.P if a#M,N

M(λx̃)N.(νa)P ≈c (νa)M(λx̃)(N).P if a#x̃,M,N

case ϕ̃ : (̃νa)P ≈c (νa)case ϕ̃ : P̃ if a#ϕ̃
(νa)(νb)P ≈c (νb)(νa)P

!P ≈c P | !P

As noted, weak bisimilarity preserves all operators ex-
cept case and input prefix:

Theorem 12. For all Ψ:

1. P
.
≈Ψ Q =⇒ P |R

.
≈Ψ Q |R.

2. P
.
≈Ψ Q =⇒ (νa)P

.
≈Ψ (νa)Q.

3. P
.
≈Ψ Q =⇒ !P

.
≈Ψ !Q.

4. P
.
≈Ψ Q =⇒M N.P

.
≈Ψ M N.Q.

5. (∀L̃. P [ã := L̃]
.
≈Ψ Q[ã := L̃]) =⇒

M(λã)N.P
.
≈Ψ M(λã)N.Q.

Weak congruence is aptly named:

Theorem 13. Weak congruence ≈c is preserved by all op-
erators.

We have also proved the usual τ laws:

Theorem 14.

1. P
.
≈ τ . P in psi-calculi with weakening.

2. P + τ . P ≈c τ . P .

3. α . τ . P ≈c α . P in psi-calculi with weakening.

4. α . P + α . (τ . P +Q) ≈c α . (τ . P +Q).

As noted in the beginning of Section 3, Theorem 14(1) is
not valid in general for psi-calculi that do not satisfy weak-
ening. The same holds for Theorem 14(3), for a similar
reason. In contrast, the remaining τ laws (2 and 4) are valid
also in calculi without weakening.

The results in this section have been proved using the
interactive theorem prover Isabelle.

6 Barbed equivalence

We here introduce a straightforward notion of barbed
equivalence, and demonstrate that it coincides with weak
labelled bisimilarity. The barbed equivalence is defined in
a traditional manner [16, 19] and is more intuitively obvi-
ous than the technically intricate Definition 7. At the same
time, the barbed equivalence definition is not very practical
for proofs since it embodies an explicit universal quantifica-
tion over contexts. The result that the equivalences coincide
means that we bestow the intuitively correct notion with the
practical proof method of labelled bisimulations.

Barbed equivalence is derived from a few basic princi-
ples based on an informal notion of an observer. The first is
to identify what are the barbs, or immediate observations,
of an agent. In this paper the barbs will simply be the out-
put actions: an agent has the barb K (νã)N precisely if a
has a transition with that label. The second is to identify
what it means for an agent to reduce, or evolve, to another

agent. We choose the transitions τ−→ to represent this. In
other words, for the purpose of barbed equivalence we use
the same semantics as in Table 1. Finally we identify what
kind of contexts an observer may use. We here follow the
work on barbed equivalence in the applied pi-calculus [1]
and consider the static contexts, aka evaluation contexts,
built from parallel composition and restriction. This mo-
tivates the following definitions:

Definition 15 (Barbs and reductions).

1. P has the barb K (νã)N , written P ↓K (νea)N , if

∃P ′. 1 B P
K (νea)N−−−−−→ P ′. Here names in ã bind oc-

currences in N , and alpha equivalent barbs are iden-
tified.

2. P reduces to P ′, written P −→ P ′, if P τ−→ P ′,

and P ==⇒ P ′ means 1 B P ==⇒ P ′ (so ==⇒ is
the reflexive transitive closure of −→).

3. P has the weak barb K (νã)N , written P ⇓K (νea)N ,

if ∃P ′. P ==⇒ P ′ and P ′ ↓K (νea)N .

Definition 16 (Weak barbed equivalence). Weak barbed
equivalence, written

.
≈b, is the largest equivalence relation

on agents satisfying:

1. Barb similarity: P ↓K (νea)N ⇒ Q ⇓K (νea)N

2. Reduction simulation:
P −→ P ′ ⇒ ∃Q′. Q ==⇒ Q′ and P ′

.
≈b Q′.

3. Closed under static contexts:
∀R, ã. (νã)(P | R)

.
≈b (νã)(Q | R).

8

The main theorem of this section is :

Theorem 17. P
.
≈b Q if and only if P

.
≈ Q.

Proof. The (⇐)-direction is immediate. Barb similarity
and reduction simulation follow directly from Clause 4 in
the definition of weak bisimulation, and closure under static
contexts is proved using Theorem 12(1) and (2). The (⇒)-
direction is more involved. The idea is to show

.
≈b to be

a weak bisimulation by constructing contexts which expose
transitions. The proof requires a minimum of expressive-
ness for the psi-calculus. It uses a set of channels written
Ma that do not occur in any process under consideration. In
other words, Ψ `Ma

.↔Ma, and for all other terms N we
have that Ψ 0 Ma

.↔ N . The proof also uses conditions
ϕP for agents P with the property F ` ϕP if and only if
F(P) ≤ F , for any frame F . In other words, ϕP is a con-
dition that can be used to test if the environment is exactly
the frame of P . If the terms Ma and conditions ϕP are not
available in a psi-calculus, then they must be added for the
proof of the theorem to hold. The details are outlined in
Appendix A.

We here comment briefly on alternatives for the defini-
tion of weak barbed equivalence. As far as we know, pre-
vious barbed equivalences do not include the object of an
action in the barb. In contrast, we include the whole label
including the object. The necessity for this is illustrated by
a psi-calculus where there are no assertions except 1 and
no conditions, and where both k and f(k) are terms but not
channels, and M is a channel. Consider:

R = (νk)M f(k) + (νk)Mk
S = (νk)M f(k)

R and S are not bisimilar since S cannot simulate
R

M (νk)k−−−−−→ 0. But if objects are not included in the barbs
they are barbed bisimilar: there is no context C[·] such that
C[R] and C[S] have different barbs. The only thing a con-
text could do is interact with R or S by performing an input
of kind M(λx̃)N.T . The only input pattern that matches
(νk)k is (λx)x and this also matches (νk)f(k). Observe
that the pattern (λε)k does not match (νk)k because of the
side condition ã#Q in the COM rule.

An alternative to including objects in the barbs could
be to require a condition name(x) that is entailed only
if x is a name. In that case a parallel composition with
M(x) . if name(x) then . . . distinguishes between P and
Q.

Note that input actions are not needed as barbs. Includ-
ing such barbs would not change the proof of the theorem.
We conjecture that the output subjects can be excluded in
barbs, but removing them complicates the proof.

A consequence of Definition 16 is that the closure under
static contexts recurs: after a reduction the agents are re-
quired to be barbed bisimilar and again satisfy Clause 3. In

this we have followed [1]. An alternative is to close under
contexts at top level, i.e., Clause 3 is omitted from the recur-
sive definition, and barbed congruence is defined as barbed
equivalence in all contexts. This is the approach in the orig-
inal work on barbs [16, 19]. The proofs become quite in-
volved and use contexts with infinite sums. This technique
is not available in psi-calculi since we require all terms to
have finite support.

Finally, an alternative is to close under all contexts (and
not merely static contexts). Since input contexts can be used
to effect a substitution on any free name, this is akin to a
recurring closure under arbitrary substitutions, and would
correspond to a smaller equivalence, probably similar to
the hyperequivalence of [17]. Consider an example from
the polyadic pi-calculus, which as explained in [3] is a psi-
calculus with 1 as the only assertion. We elide unimportant
objects.

R = (νxy)a〈x, y〉 . (x | y)
S = (νxy)a〈x, y〉 . (x . y + y . x)

R and S are weakly bisimilar. If arbitrary substitutions re-
cur in a barbed equivalence R and S will not be barbed

equivalent. To see this consider R | a(xy) −→ x | y
simulated by S | a(xy) −→ x . y + y . x. Closure under
all contexts means that ay | a(x) . (x | y) should be barbed
bisimilar to ay | a(x) . (x . y + y . x), but the former can
reduce twice to reach an inert state without barbs, whereas
the latter after a reduction has a barb y.

7 Conclusion

We have presented two definitions of weak labelled
bisimulation for psi-calculi: one is simple and traditional
and the other is more involved. They coincide for calculi
where the weakening assumption holds, and therefore the
simpler definition is preferable in those cases. In other cal-
culi they can be different, and the more complicated defini-
tion turns out to be necessary. Algebraic properties includ-
ing compositionality have been established, and the proofs
are mechanized in the interactive theorem prover Isabelle.

To strengthen the motivations of the definitions we have
established the connection between weak labelled bisimula-
tion and weak barbed bisimulation. The latter gives a more
intuitive understanding of the equivalence, since it is based
on observations (barbs) and closure of contexts. The result
that the equivalences coincide constitutes an independent
confirmation of weak labelled bisimulation.

In earlier work we presented a fully abstract symbolic
version of strong bisimulation for psi-calculi with weak-
ening [15]. In order to be practically useful this result
should be extended to weak bisimulation. A more ambi-
tious project is to extend proof mechanisation in Isabelle to
include barbed equivalence.

9

We intend to build tools for bisimulation checking in in-
stances of psi-calculi. For this, an algorithm for deciding
weak symbolic bisimulation needs to be developed and im-
plemented; an attractive approach would be to integrate it
as an oracle in Isabelle.

References

[1] M. Abadi and C. Fournet. Mobile values, new names,
and secure communication. In Proceedings of POPL
’01, pages 104–115. ACM, Jan. 2001.

[2] M. Abadi and A. D. Gordon. A calculus for crypto-
graphic protocols: The Spi calculus. Journal of Infor-
mation and Computation, 148(1):1–70, 1999.

[3] J. Bengtson, M. Johansson, J. Parrow, and B. Vic-
tor. Psi-calculi: Mobile processes, nominal data, and
logic. In Proceedings of LICS 2009, pages 39–48.
IEEE, 2009.

[4] J. Bengtson and J. Parrow. Psi-calculi in Isabelle.
In S. Berghofer, T. Nipkow, C. Urban, and M. Wen-
zel, editors, Proc. of TPHOLs 2009, volume 5674 of
LNCS, pages 99–114. Springer, Aug. 2009.

[5] M. Boreale. Erratum of Proof techniques for cryp-
tographic processes. Unpublished manuscript, Aug.
2004.

[6] M. Boreale, R. De Nicola, and R. Pugliese. Proof tech-
niques for cryptographic processes. In Proceedings
of LICS ’99, pages 157–166. IEEE, Computer Society
Press, July 1999.

[7] M. Boreale, R. De Nicola, and R. Pugliese. Proof tech-
niques for cryptographic processes. SIAM Journal on
Computing, 31(3):947–986, 2002.

[8] J. Borgström. Equivalences and Calculi for Formal
Verifiation of Cryptographic Protocols. PhD thesis,
EPFL, Lausanne, 2008.

[9] M. G. Buscemi and U. Montanari. CC-Pi: A
constraint-based language for specifying service level
agreements. In R. De Nicola, editor, Proceedings
of ESOP 2007, volume 4421 of LNCS, pages 18–32.
Springer, 2007.

[10] M. G. Buscemi and U. Montanari. Open bisimu-
lation for the concurrent constraint pi-calculus. In
S. Drossopoulou, editor, Proceedings of ESOP 2008,
volume 4960 of LNCS, pages 254–268. Springer,
2008.

[11] J. F. Diaz, C. Rueda, and F. D. Valencia. Pi+-calculus:
A calculus for concurrent processes with constraints.
CLEI Electronic Journal, 1(2), 1998. Proceedings of
CLEI’97, Valparaiso, Chile.

[12] A. S. Elkjær, M. Höhle, H. Hüttel, and K. Overgård.
Towards automatic bisimilarity checking in the spi
calculus. In C. S. Calude and M. J. Dinneen, edi-
tors, Combinatorics, Computation & Logic, volume
21(3) of Australian Computer Science Communica-
tions, pages 175–189. Springer, Jan. 1999.

[13] U. Frendrup, H. Hüttel, and J. Nyholm Jensen. Two
notions of environment sensitive bisimilarity for spi-
calculus processes. Unpublished manuscript, 2001.

[14] M. Gabbay and A. Pitts. A new approach to abstract
syntax with variable binding. Formal Aspects of Com-
puting, 13:341–363, 2001.

[15] M. Johansson, B. Victor, and J. Parrow. A fully ab-
stract symbolic semantics for psi-calculi. In Proceed-
ings of SOS 2009, 2009.

[16] R. Milner and D. Sangiorgi. Barbed bisimulation. In
W. Kuich, editor, Proceedings of ICALP ’92, volume
623 of LNCS, pages 685–695. Springer, 1992.

[17] J. Parrow and B. Victor. The fusion calculus: Ex-
pressiveness and symmetry in mobile processes. In
Proceedings of LICS ’98, pages 176–185. IEEE, Com-
puter Society Press, July 1998.

[18] A. M. Pitts. Nominal logic, a first order theory of
names and binding. Information and Computation,
186:165–193, 2003.

[19] D. Sangiorgi. Expressing Mobility in Process Alge-
bras: First-Order and Higher-Order Paradigms. PhD
thesis, LFCS, University of Edinburgh, 1993. CST-
99-93 (also published as ECS-LFCS-93-266).

[20] L. Wischik. Explicit Fusions: Theory and Implemen-
tation. PhD thesis, Computer Laboratory, University
of Cambridge, 2001.

10

A Proof of P
.
≈b Q implies P

.
≈ Q

This proof uses the result that P
.
≈ Q ⇒ P

.
≈b Q.

In particular this allows us to use the structural laws from
Section 5 also for

.
≈b.

As mentioned in Section 6, the idea is to show
.
≈b to

be a weak bisimulation by constructing elaborate contexts
which expose transitions. The proof requires a minimum
of expressiveness for the psi-calculus in the following three
ways. Firstly, it uses a set of channels written Ma, where
a ∈ n(Ma), that do not occur in any agent under consid-
eration. In other words, Ψ ` Ma

.↔ Ma, and for all other
termsN we have that Ψ 0 Ma

.↔ N . Secondly, it uses con-
ditions ϕP for agents P with the property F ` ϕP if and
only if F(P) ≤ F , for any frame F . In other words, ϕP is
a condition that can be used to test if the environment is ex-
actly the frame of P . Thirdly, it assumes that sequences of
names, ã, are among the terms. If the terms Ma and ã, and
the conditions ϕP are not available in a psi-calculus, then
they must be added for the proof of the theorem to hold.

We first give a few lemmas used in the main proof.

Lemma 18 (Rewrite subject).

Ψ B P
M (νea)N−−−−−−→ P ′

∧ F(P) = (νb̃P)ΨP

∧ Ψ⊗ΨP ` K
.↔M

∧ b̃P#Ψ, P,K,M

=⇒ Ψ B P
K (νea)N−−−−−→ P ′

The symmetric lemma where P does an input is omitted.

Proof. A straightforward induction on the length of the
derivation of the transition.

Lemma 19. F(P) ` ϕ⇒ F(P | if ϕ then R) ` ϕ.

Proof. Trivial since F(if ϕ then R) = 1 and F(P)⊗1 =
F(P).

Lemma 20. If P | K(λã)N .Mc N ==⇒ Mc (νea)N−−−−−−→ P ′

and c#P,K,N then P ==⇒ K (νea)N−−−−−→ P ′.

Proof. The only way for P |K(λã)N.McN to do the output
Mc (νã)N is to reduce over K because of the properties of

Mc. In other words there exists P ′ such that P ==⇒ P ′

and P ′ L (νea)N−−−−−→ P ′′. It must be the same N as in the
input pattern since otherwise the transition Mc (νea)N−−−−−−→ P ′

would have some other object. Let F(P ′) = (νb̃P ′)ΨP ′ ,
where b̃P ′#P,L,K(λã)N.Mc N . The COM rule gives us
that 1⊗ΨP ′⊗1 ` L .↔ K, and by Lemma 18 we get that

P ′
K (νea)N−−−−−→ P ′′.

Lemma 21. If P ⇓K (νea)N and P
.
≈b Q then Q ⇓K (νea)N .

Proof. P ⇓K (νea)N if P ==⇒ P ′ ↓K (νea)N . The proof
is by induction on the length of the reduction sequence

P ==⇒ P ′. Base case follows from barbed bisimilarity,
and inductive steps from reduction simulation.

Lemma 22. If (νb)P ⇓K (νea)N then there exists P ′ such

that P ==⇒ P ′ and (νb)P ′ ↓K (νea)N .

Proof. The only way to infer a reduction from (νb)P is via
rule SCOPE. This means that every reduction from (νb)P

to the strong observation is of form (νb)P ′′ −→ (νb)P ′′′.
So we get that there exists P ′ such that (νb)P ′ ↓K (νea)N .

Rule SCOPE gives us that P ′′ −→ P ′′′. This gives us that

P ==⇒ P ′.

Lemma 23. If (νb)P ⇓K (νea)N then P ⇓K (νea\{b})N .

Proof. By Lemma 22 we get that there exists P ′ such that

P ==⇒ P ′ and (νb)P ′ ↓K (νea)N . If b ∈ ã the transi-
tion from (νb)P ′ is derived by OPEN, and this rule gives
us that P ′ ↓K (νea\{b})N . If b /∈ ã the transition is de-
rived by SCOPE and it holds trivially that P ′ ↓K (νea\{b})N .

Since P ==⇒ P ′ and P ′ ↓K (νea\b)N we have that
P ⇓K (νea\{b})N .

Some of the following lemmas use a special static con-
text which we now define:

Eea,x[·] = (νã)([·] |Mx ã).

Lemma 24. P ⇓K (νea)N if and only if

Eeb,x[P] | Mx(λb̃)̃b.K(λã)N.My N ⇓My (νea∪ec)N where

c̃ = (̃b ∩ n(N)) \ ã and x, y#P,K, b̃. Here ã ∪ c̃ means
the sequence ã with the names in c̃ inserted anywhere.

Proof. For the (⇒)-direction, expand the definitions and
follow the transitions. For the (⇐)-direction, we know that
since Eeb,x[P] |Mx(λb̃)̃b.K(λã)N.My N ⇓My (νea∪ec)N this
agent must reduce over both Mx and K. Following the
reduction over Mx we get to (νb̃)(P | K(λã)N.My N).
Lemma 23 gives us that P | K(λã)N.My N ⇓My (νea)N .
By Lemma 20 we then get that P ⇓K (νea)N .

Lemma 25. P
.
≈b Q if and only if Eeb,x[P]

.
≈b Eeb,x[Q]

where x#P,Q, b̃.

Proof. The (⇒)-direction follows directly by definition
since the relation is closed under static contexts. For the
(⇐)-direction we show that P

.
≈b Q as follows:

1. Same barbs: Assume that P ↓K (νea)N . This im-
plies that P ⇓K (νea)N . By Lemma 24 we get that

11

Eeb,x[P] | Mx(λb̃)̃b.K(λã)N.My N ⇓My (νea∪ec)N ,

where c̃ = (̃b ∩ n(N)) \ ã. Since Eeb,x[P]
.
≈b Eeb,x[Q]

we get that alsoEeb,x[P]|Mx(λb̃)̃b.K(λã)N.MyN
.
≈b

Eeb,x[Q] | Mx(λb̃)̃b.K(λã)N.My N (the
relation is closed under all static con-
texts). By Lemma 21 we then get that
Eeb,x[Q] | Mx(λb̃)̃b.K(λã)N.My N ⇓My (νea∪ec)N
and by Lemma 24 we get that Q ⇓K (νea)N .

2. Reduction simulation: This follows directly since the
reductions of P and Eeb,x[P] coincide.

3. Closed under static contexts: We must show that
C[P]

.
≈b C[Q] for all contexts of form (νc̃)([·] | R).

If we can show that Eeb,y[C[P]]
.
≈b Eeb,y[C[Q]] we are

done. We show this by finding a context C ′[·] such
that C ′[Eeb,x[P]]

.
≈b Eeb,y[C[P]]. By transitivity we

then get the desired result. The context to use is

C ′[·] = (νc̃)([·] |Mx(λb̃)̃b.(My b̃ |R))

Putting Eeb,x[P] in the hole this becomes

C ′[Eeb,x[P]] =
(νc̃)((νb̃)(Mx b̃ | P) |Mx(λb̃)̃b.(My b̃ |R))

After one reduction this becomes

(νc̃)(νb̃)(P |My b̃ |R)

which is equivalent to

Eeb,y[C[P]] = (νb̃)(My b̃ | (νc̃)(P |R))

by Theorem 11.

Lemma 26. If (νb)P ==⇒ (νb)P ′ then P ==⇒ P ′.

Proof. The only way to infer a reduction from (νb)P is via
rule SCOPE. This means that every reduction from (νb)P

to (νb)P ′ is of form (νb)P ′′ −→ (νb)P ′′′. Rule SCOPE

gives us that P ′′ −→ P ′′′ for each such reduction. This

gives us that P ==⇒ P ′.

Lemma 27. If (νã)(P |Mc ã) ==⇒ (νã)(P ′ |Mc ã) and

c#P then P ==⇒ P ′.

Proof. By repeatedly applying Lemma 26 we get that

P |Mc ã ==⇒ P ′ |Mc ã. Since c#P no communication
between P and the agentMc ã is possible, so each reduction

P ′′ |Mc ã −→ P ′′′ |Mc ã in the reduction sequence must
have been derived with PAR. Since F(Mc ã) = 1 this gives

us that P ′′ −→ P ′′′. This gives us that P ==⇒ P ′.

For the main proof it is easier to work with a slight vari-
ant of the definition of weak bisimulation:

Definition 28 (Weak context bisimulation). A weak context
bisimulationR is a binary relation between pairs of agents
such thatR(P,Q) implies all of

1. Weak static implication:

∀Ψ∃Q′′, Q′.
Q ==⇒ Q′′ ∧ P ≤ Q′′ ∧
Q′′ | (|Ψ|) ==⇒ Q′ | (|Ψ|) ∧
R(P | (|Ψ|), Q′ | (|Ψ|))

2. Symmetry: R(Q,P)

3. Extension of arbitrary assertion:
∀Ψ.R(P | (|Ψ|), Q | (|Ψ|))

4. Weak simulation: for all α, P ′ such that bn(α)#Q and

P
α−→ P ′ it holds

(a) if α = τ :
∃Q′. Q ==⇒ Q′ ∧ R(P ′, Q′)

(b) if α 6= τ : ∀Ψ∃Q′′, Q′′′.
Q ==⇒ Q′′′ ∧ P ≤ Q′′′ ∧
Q′′′

α−→ Q′′ ∧
∃Q′. Q′′ | (|Ψ|) ==⇒ Q′ | (|Ψ|)
∧ R(P ′ | (|Ψ|), Q′ | (|Ψ|))

We define P
.
≈
′
Q to mean that there exists a weak context

bisimulationR such thatR(P,Q).

Lemma 29.
Ψ B P

α−→ P ′ ∧ bn(α)#Ψ iff P | (|Ψ|) α−→ P ′ | (|Ψ|)
Proof. The (⇒) direction follows directly from rule PAR.
For the (⇐) direction we observe that the transition must
be derived with rule PAR (an assertion has no transitions),
and this rule gives us that Ψ B P

α−→ P ′∧bn(α)#Ψ.

Lemma 30. P ≤Ψ Q iff P | (|Ψ|) ≤ Q | (|Ψ|)
Proof. Follows from the definition of F(P) and the defini-
tions of ≤Ψ and ≤.

Lemma 31. P
.
≈
′
Q if and only if P

.
≈ Q.

Proof. Construct the relationsR = {(Ψ, P,Q) : P |(|Ψ|)
.
≈
′

Q | (|Ψ|)} and R′ = {(P | (|Ψ|), Q | (|Ψ|)) : P
.
≈Ψ Q} and

show that they are weak and weak context bisimulations,
respectively. The proof uses Lemmas 29 and 30.

We now turn our attention to the main proof. We use the
candidate relation Rl = {(P,Q) : P

.
≈b Q} and show it

to be a weak context bisimulation. We must show that all
clauses in Definition 28 follow from Definition 16. These
clauses are Weak static implication, Symmetry, Extension
of arbitrary assertion, and Weak simulation.

12

Weak static implication We have that F(P) ` ϕP by
definition. Let Ψ′ be an arbitrary assertion, and let R =
Mb | if ϕP then τ . (Ψ′ |Mb). Since P

.
≈b Q we also have

that P |R
.
≈b Q |R. Here P |R can reduce twice:

P |R −→−→ P |Ψ′

Since P | Ψ′ 6↓Mb
and P | R

.
≈b Q | R we know that there

exists T such that Q |R ==⇒ T , T 6↓Mb
, and P |Ψ′ .

≈b T ,
or in other words, there exists Q′′ and Q′ such that

Q |R ==⇒ Q′′ |Mb | if ϕP then τ . (Ψ′ |Mb)

−→ Q′′ |Mb |Ψ′ |Mb

−→ Q′′ |Ψ′

==⇒ Q′ |Ψ′

and P |Ψ′ .
≈b Q′ |Ψ′. In other words, ∀Ψ′∃Q′′, Q′.Q ==⇒

Q′′, P ≤ Q′′, Q′′ |Ψ′ ==⇒ Q′ |Ψ′, and P |Ψ′ .
≈ Q′ |Ψ′.

Symmetry Follows immediately since Definition 16 is
symmetric.

Extension of arbitrary assertion Follows immediately
since Definition 16 is closed under all evaluation contexts
after each step.

Weak simulation

Case P τ−→ P ′: Follows immediately from Defini-
tion 16.

Case P K (νea)N−−−−−→ P ′: We have that F(P) ` ϕP
by definition. From Definition 16 clause 3 we
get that for all static contexts C[·], C[P]

.
≈b

C[Q]. Let Ψ′ be an arbitrary assertion and
let R = case ϕP : K(λã)N.((|Ψ′|) |Mc ã), where
c#P,Q,K,N, ã,Ψ′. In particular we then have that

P |R
.
≈b Q |R.

Trivially we have that F(P) ` ϕP and by Lemma 19
we also have that

F(P |R) ` ϕP .

This agent has the reduction

P |R −→ (νã)(P ′ | (|Ψ′|) |Mc ã).

By Clause 2 in Definition 16 we know that
Q | R can weakly simulate this reduction. Since
(νã)(P ′ |(|Ψ′|) |Mc ã) ↓Mc (νea)ea this simulating reduc-
tion must reduce to something that also has the barb

Mc (νã)ã. Since Mc does not occur in Q and is not
channel equivalent to anything else, all reductions that
lead to an agent with the barb Mc must reduce over

K: ∃Q′′′, Q′′ such that Q | R ==⇒ Q′′′ | R −→
(νã)(Q′′ | (|Ψ′|) |Mc ã) (since the term Mc cannot oc-

cur in Q this also gives us that Q ==⇒ Q′′′). The
derivation of the last reduction is:

COM

1⊗ΨQ′′′⊗1 ` L .↔ K

1⊗1 B Q′′′
L (νea)N−−−−−→ Q′′

ΨQ′′′⊗1 B R
KN−−−→ (|Ψ′|) |Mc ã

1 B Q′′′ |R τ−→ (νã)(Q′′ | (|Ψ′|) |Mc ã)
ea#Q

We here assume that F(Q′′′) = (νb̃Q′′′)ΨQ′′′ such
that b̃Q′′′#K,L,Q′′′, R. By Lemma 18 we learn

that 1⊗1 B Q′′′
K (νea)N−−−−−→ Q′′, where the object

must be (νã)N since otherwise we would not have
that (νã)(Q′′ | (|Ψ′|) | Mc ã) ↓Mc (νea)ea. We get
that ΨQ′′′ ` ϕP since otherwise R’s transition
would not be possible, and since b̃Q′′′#R also
that F(Q′′′) ` ϕP . We know that ∃Q′ such that

(νã)(Q′′ | (|Ψ′|) |Mc ã) ==⇒ (νã)(Q′ | (|Ψ′|) |Mc ã)
and (νã)(P ′ | (|Ψ′|) |Mc ã)

.
≈b (νã)(Q′ | (|Ψ′|) |Mc ã).

We now turn to see how the requirements of Clause 4b
in Definition 28 follow from this. We have that
P

K (νea)N−−−−−→ P ′. Since Ψ′ was arbitrarily chosen we

have that ∀Ψ′∃Q′′′, Q′′ such thatQ ==⇒ Q′′′. We also
have that F(P) ` ϕP and F(Q′′′) ` ϕP , or in other
words that P ≤ Q′′′. From above we also have that
Q′′′

K (νea)N−−−−−→ Q′′, and thatQ′′ | (|Ψ′|) ==⇒ Q′ | (|Ψ′|)
(using Lemma 27 to get rid ofMcã and the restriction),
and that P ′ | (|Ψ′|)

.
≈b Q′ | (|Ψ′|) (using Lemma 25).

Finally, because of the construction of the candidate
relation we have thatRl(P ′ | (|Ψ′|), Q′ | (|Ψ′|)).

Case P K N−−−→ P ′: This proof is very similar to the one for
bound output, but we use the context

C[·] = [·] | case ϕP : K N.((|Ψ′|) |Mc)

instead. This means that there are no restrictions on
the derivative of the reduction of C[P], which gives us
a slightly simpler problem. Apart from this the proof
is the same.

13

