
The dial a ride problem (DARP)
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The dial a ride problem (DARP)

Work in progress! Most of the material presented in this
talk is from:

Jean-François Cordeau, A Branch-and-Cut Algorithm for

the Dial-a-Ride Problem, technical report CRT-2004-23.

Some material is new and is based on joint work with
Jean-François Cordeau and Gilbert Laporte (Canada Research
Chair in Distribution Management, HEC Montréal).

About myself

• Stefan Røpke (sropke@diku.dk)

• PhD student at DIKU

• Interested in solving routing problems using metaheuristics
and exact optimization methods.
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The dial a ride problem

The problem

• Door-to-door transportation of elderly and disabled per-
sons (the users).

• Several users are transported in the same vehicle (think
of a mini-bus).

• The users specify when they wish to be picked up and
when the they have to be at their destination. Such a
transportation task is denoted a request.

• The users do not specify an exact time of day, but a time
window. Example: Instead of requesting a pickup at 9:11
the users request a pickup between 9:00 and 9:30.

• Often the user only specify either the pickup or delivery
time window. An operator would assign the other time
window.
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The dial a ride problem

• Users don’t like to be taken on long detours even if it helps the

overall performance of the transportation system. Consequently a

maximum ride time constraint is specified for each request.

P1


P2


D1


D2


• Time windows are not enough for ensuring that the maximum ride

time constraint is enforced. Example: pickup [8:00; 8:15], delivery

[8:45; 9:00], max ride time 45 minutes. Pickup at 8:00 and delivery

at 9:00 violates max ride time constraint. Pickup time window

could be shrunk to [8:15; 8:15]. This would ensure that ride time

constraint is enforced, but it rules out perfectly good solutions like

pickup at 8:05 and delivery at 8:45.

• Each vehicle has a certain capacity (only a limited amount of seats).

• The vehicles have to start and end their tours at a given start and

end terminal.

• Objective: minimize driving cost subject to the constraints men-

tioned above.

• Problem is NP-Hard.
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DARP example
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Possible solution:
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Branch and Bound

• Minimization problem. Main ingredients: lower and upper
bound.

• High level algorithm:

1. Set of subproblems (SoS) = { Entire problem }
2. Remove subproblem S from SoS
3. Find lower and upper bound (LB and UB) for S
4. if UB < global UB (GUB) then GUB = UB
5. if LB < GUB then split S into two subproblems

and add them to SoS
6. if SoS 6= ∅ then goto step 2, else return GUB
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DARP formal definition (Graph

problem)

Notation:

n Number of requests.

P= {1, . . . , n} Pickup locations

D = {n + 1, . . . , 2n} Delivery locations

N= P ∪ D ∪ {0, 2n + 1} The set of all nodes in the graph. 0 and 2n+1 are

the start and end terminal respectively. Request i

consist of pickup i and delivery n + i.

K Set of vehicles

G= (N, A) Directed graph on which the problem is defined.

A is the set of edges.

Q Capacity of a vehicle

qi Amount loaded onto vehicle at node i. qi =

qn+i.

[ei, li] time window of node i

di > 0 duration of service at node i

L Max ride time of a request.

cij Cost of traveling from node i to node j. It is

Assumed that cij satisfies the triangle inequality.

tij Time needed for going from node i to node j. It is

assumed that tij satisfies the triangle inequality.
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Standard model (DARP1)

Decision variables

Binary variables
xk

ij 1 iff the kth vehicle goes straight from node i to node j.
Fractional variables
Bk

i When vehicle k starts visiting node i
Qk

i The load of vehicle k after visiting node i.
Lk

i The ride time of request i on vehicle k.
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Standard model (DARP1)

Objective:

min

k∈K i∈N j∈N

c
k
ijx

k
ij

Every request is served exactly once:

k∈K j∈N

x
k
ij = 1 ∀i ∈ P

Same vehicle services pickup and delivery:

j∈N

x
k
ij −

j∈N

x
k
n+i,j = 0 ∀i ∈ P, k ∈ K

Every vehicle leaves the start terminal:

j∈N

x
k
0j = 1 ∀k ∈ K

The same vehicle that enters a node leaves the node:

j∈N

x
k
ji −

j∈N

x
k
ij = 0 ∀i ∈ P ∪ D, k ∈ K

Every vehicle enters the end terminal:

i∈N

x
k
i,2n+1 = 1 ∀k ∈ K
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Standard model (DARP1)

Setting and checking visit time:

B
k
j ≥ (B

k
i + di + tij)x

k
ij ∀i ∈ N, j ∈ N, k ∈ K

ei ≤ B
k
i ≤ li ∀i ∈ N, k ∈ K

Linearization of first equation (Mk
ij is a large constant):

B
k
j ≥ B

k
i + di + tij − M

k
ij(1 − x

k
ij) ∀i ∈ N, j ∈ N, k ∈ K

Setting and checking ride time:

L
k
i = B

k
n+i − (Bk

i + di) ∀i ∈ P, k ∈ K

L
k
i ≤ L ∀i ∈ N, k ∈ K

Setting and checking vehicle load:

Q
k
j ≥ (Q

k
i + qj)x

k
ij ∀i ∈ N, j ∈ N, k ∈ K

Q
k
i ≤ Q ∀i ∈ N, k ∈ K

Binary variables:

x
k
ij ∈ {0, 1} ∀i ∈ N, j ∈ N, k ∈ K
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Preprocessing

• Shrink time windows. For example if li = 10, ln+i =
20, di = 2 and ti,n+i = 12 then li can be reduced to 6.

• Remove edges from G that cannot be part of a feasible
solution.

• Some examples

– Edges that are impossible because of time windows
– Edges of the type (n + i, i)∀i ∈ P
– Edges of the type (0, n+i)∀i ∈ P and (i, 2n+1)∀i ∈

P
– Edges that are impossible because of ride time con-

straints. Edge (i, j) can be removed if j 6= n + i
and the trip i → j → n + i violates the ride time
constraint of request i

• Preprocessing is fast and easy to do, but can have a
significant impact on the running time of the algorithm.
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Some results

• Solving (DARP1) using CPLEX 8.0 on 2.5 Ghz Pentium
4

Instance Bound CPU (min) Nodes Opt

a2-16 *294.25 0.01 23 294.25

a2-20 *344.83 0.05 313 344.83
a2-24 *431.12 1.42 10,868 431.12
a3-18 *300.48 0.41 3,596 300.48

a3-24 *344.83 76.59 310,667 344.83
a3-30 472.17 240.00 515,931 494.85

a3-36 570.26 240.00 504,553 583.19
a4-16 *282.68 21.49 145,680 282.68

a4-24 359.52 240.00 442,000 375.02
a4-32 427.65 240.00 189,900 485.50
a4-40 462.21 240.00 65,000 557.69

a4-48 466.7 240.00 40,400 668.82

b2-16 *309.41 0.21 5,815 309.41
b2-20 *332.64 0.01 26 332.64

b2-24 *444.71 2.76 32,399 444.71
b3-18 *301.64 1.29 12,223 301.65
b3-24 *394.51 7.27 42,950 394.51

b3-30 *531.44 189.74 574,281 531.45
b3-36 588.44 240.00 447,474 603.79

b4-16 *296.96 2.44 20,189 296.96
b4-24 *369.36 59.31 175,495 369.36

b4-32 460.78 240.00 222,600 494.82
b4-40 570.37 240.00 153,400 656.63
b4-48 577.64 240.00 50,000 673.81
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Preprocessing pays off

• Some examples (Cplex 9.0 on 3.0Ghz Pentium 4).

Preprocessing No preprocessing
CPU (min) Nodes CPU (min) Nodes

a2-20 0.07 332 0.31 1500
b3-24 3.91 16773 30.37 80161

• (DARP1) had O(|N |2|K|) binary variables. If we could
get rid of the k index on the xk

ij variables then the number

of binary variables could be reduced to O(|N |2), which
hopefully would make the problem easier to solve.

• (DARP2) - model where the k index is stripped from
all variables. The variables have the same meaning as
in (DARP1), they are just no longer associated with a
specefic vehicle.
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Compact model (DARP2)

Objective:

min
i∈N j∈N

cijxij

One vehicle enters every user node and one vehicle leaves every user

node:

j∈N

xij = 1 ∀i ∈ P

i∈N

xij = 1 ∀j ∈ P

Setting and checking visit time:

Bj ≥ (Bi + di + tij)xij ∀i ∈ N, j ∈ N

ei ≤ Bi ≤ li ∀i ∈ N

Setting and checking ride time:

Li = Bn+i − (Bi + di) ∀i ∈ P

Li ≤ L ∀i ∈ N

Setting and checking vehicle load:

Qj ≥ (Qi + qj)xij ∀i ∈ N, j ∈ N

Qi ≤ Q ∀i ∈ N (1)

Binary variables:

xij ∈ {0, 1} ∀i ∈ N, j ∈ N
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Compact model (DARP2)

• Problem: The model does not guarantee that the pickup
and delivery of a request are performed by the same
vehicle. To ensure this we first define the set S consisting
of all node subsets S ⊂ N such that there is at least one
request i for which i ∈ S but n + i /∈ S.

• Now the following set of equations (precedence con-

straints) ensure that each pickup/delivery pair is served
by the same vehicle.

i∈S j∈N\S

xij ≥ 1 ∀S ∈ S

The equation simply express that one edge should leave the set (we

have to leave the set in order to visit n + i).

Example 1:

P3


P1
 P2


D1


D2


D3


0
 2n+1


P3


P1
 P2


D1


D2


D3


0
 2n+1


S
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Compact model (DARP2)

Example 2 (precedence is also ensured by the constraint):

2n+1


P1
 D2

D1


P2


P3


D3


0


S


• New problem: S grows exponentially with n. Constraints must be

generated dynamically.

• Given fractional solution x̄ a violated precedence constraint can be

found using the following algorithm.

1. Construct a weighted graph Ḡ = (N, Ā) where Ā =

{(i, j) ∈ A; x̄ij > 0. Each edge (i,j) in Ā has an asso-

ciated weight wij = x̄ij

2. for all i in P do

(a) Find the minimum cut between i and n + i in Ḡ

(b) If the weight of the minimum cut is less than 1 then a violated

inequality has been found

• The correctness of the algorithm follows easily

– If the weight of minimum cut is less than 1 then the cut identifies

a set S that violates the inequality

– If the weight of minimum cut is greater than or equal to 1 for all i

then we can show by contradiction that no precedence constraint

will be violated.
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Comparing DARP1 to DARP2

• DARP1: Certain extra constraints are easier to represent
like:

– Heterogenous fleet
– Route duration constraints

• DARP1 can be solved directly using CPLEX, DARP2
needs special implementation.

• DARP2 is expected to solve problems faster
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Valid inequalities

� � � � � � � � � � 	 � 
 � 	 � � � �
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Valid inequalities - some examples

Subtour elimination constraints

ki

j

xij + xji + xjk + xkj + xki + xik ≤ 2

Lifting for directed case:

k

i j2

xij + 2xji + xjk + xki ≤ 2

Lifting for DARP case:

k

n+j

i j

n+k

2

xij + 2xji + xjk + xki + xn+j,i + xn+k,i ≤ 2

General expression and more liftings described in paper.

Separation algorithms?
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Generalized order constraints

n+i

i

n+j

j

n+k

k

xi,n+j + xn+j,i + xj,n+k + xn+k,j + xk,n+i + xn+i,k ≤ 2

Lifting for directed case:

n+i

i j

n+j n+k

k

xi,n+j+xn+j,i+xj,n+k+xn+k,j+xk,n+i+xn+i,k+xij+xi,n+k ≤ 2

Separation algorithms?
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Capacity constraints

∑

i∈S

∑

j∈N\S

xij ≥

⌈

q(S)

Q

⌉

∀S ⊆ P ∪ D

q(S) =
∑

i∈S qi

+1


+3


-1


+2


S


Max. vehicle


capacity = 4


Separation algorithms?
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Infeasible path constraints

If the path i1 → i2 → . . . → ih is infeasible because
of time window or ride time constraints (or a combination)
then the following inequality is valid:

h−1
∑

i=1

xi,i+1 ≤ h − 2

Can be separated in polynomial time.
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Even more compact model (DARP3)

Using some of the inequalities just presented, we can get
rid of the Bi, Qi and Li variables.

min
∑

i∈N

∑

j∈N

cijxij

∑

j∈N

xij = 1 ∀i ∈ P

∑

i∈N

xij = 1 ∀j ∈ P

∑

i∈S

∑

j∈N\S

xij ≥ 1 ∀S ∈ S

Infeasible path inequality that ensures that time window, capacities and

ride time constraints are obeyed. P is the set of all infeasible
paths. Each path in P is stored as a set of edges.

∑

(i,j)∈E∗

xij ≤ |E∗| − 1 ∀E∗ ∈ P

xij ∈ {0, 1} ∀i ∈ N, j ∈ N
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Computational results

See other slide
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Conclusion

• A more compact model in terms of number of binary
variables was profitable.

• Getting rid of the “superflous” fractional variables didn’t
improve running time.

• We have just scratched the surface. There are more to
tell, and even more to discover.

• Plenty of open algorithmic questions - how to design good
separation routines?
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