The dial a ride problem (DARP)

The dial a ride problem (DARP)

Work in progress! Most of the material presented in this talk is from:

Jean-François Cordeau, A Branch-and-Cut Algorithm for the Dial-a-Ride Problem, technical report CRT-2004-23.

Some material is new and is based on joint work with Jean-François Cordeau and Gilbert Laporte (Canada Research Chair in Distribution Management, HEC Montréal).

About myself

- Stefan Røpke (sropke@diku.dk)
- PhD student at DIKU
- Interested in solving routing problems using metaheuristics and exact optimization methods.

The dial a ride problem

The problem

- Door-to-door transportation of elderly and disabled persons (the users).
- Several users are transported in the same vehicle (think of a mini-bus).
- The users specify when they wish to be picked up and when the they have to be at their destination. Such a transportation task is denoted a request.
- The users do not specify an exact time of day, but a time window. Example: Instead of requesting a pickup at 9:11 the users request a pickup between 9:00 and 9:30.
- Often the user only specify either the pickup or delivery time window. An operator would assign the other time window.

The dial a ride problem

- Users don't like to be taken on long detours even if it helps the overall performance of the transportation system. Consequently a maximum ride time constraint is specified for each request.

- Time windows are not enough for ensuring that the maximum ride time constraint is enforced. Example: pickup [8:00; 8:15], delivery [8:45; 9:00], max ride time 45 minutes. Pickup at 8:00 and delivery at 9:00 violates max ride time constraint. Pickup time window could be shrunk to $[8: 15 ; 8: 15]$. This would ensure that ride time constraint is enforced, but it rules out perfectly good solutions like pickup at 8:05 and delivery at 8:45.
- Each vehicle has a certain capacity (only a limited amount of seats).
- The vehicles have to start and end their tours at a given start and end terminal.
- Objective: minimize driving cost subject to the constraints mentioned above.
- Problem is NP-Hard.

DARP example

(D4)
\square

(P4)

Possible solution:

Branch and Bound

- Minimization problem. Main ingredients: lower and upper bound.
- High level algorithm:

1. Set of subproblems $(S o S)=\{$ Entire problem $\}$
2. Remove subproblem S from $S o S$
3. Find lower and upper bound $(L B$ and $U B)$ for S
4. if $U B<$ global $U B(G U B)$ then $G U B=U B$
5. if $L B<G U B$ then split S into two subproblems and add them to $S o S$
6. if $S o S \neq \emptyset$ then goto step 2, else return $G U B$

DARP formal definition (Graph problem)

Notation:

n	Number of requests.
$P=\{1, \ldots, n\}$	Pickup locations
$D=\{n+1, \ldots, 2 n\}$	Delivery locations
$N=P \cup D \cup\{0,2 n+1\}$	The set of all nodes in the graph. 0 and $2 n+1$ are
	the start and end terminal respectively. Request i
	consist of pickup i and delivery $n+i$.
K	Set of vehicles
$G=(N, A)$	Directed graph on which the problem is defined.
Q	Capacity of a vehicle
q_{i}	Amount loaded onto vehicle at node $i . \quad q_{i}=$
$\left[e_{i}, l_{i}\right]$	time window of node i
$d_{i}>0$	duration of service at node i

Standard model (DARP1)

Decision variables

Binary variables
$x_{i j}^{k} 1$ iff the k th vehicle goes straight from node i to node j. Fractional variables
B_{i}^{k} When vehicle k starts visiting node i
Q_{i}^{k} The load of vehicle k after visiting node i.
L_{i}^{k} The ride time of request i on vehicle k.

Standard model (DARP1)

Objective:

$$
\min \sum_{k \in K} \sum_{i \in N} \sum_{j \in N} c_{i j}^{k} x_{i j}^{k}
$$

Every request is served exactly once:

$$
\sum_{k \in K} \sum_{j \in N} x_{i j}^{k}=1 \quad \forall i \in P
$$

Same vehicle services pickup and delivery:

$$
\sum_{j \in N} x_{i j}^{k}-\sum_{j \in N} x_{n+i, j}^{k}=0 \quad \forall i \in P, k \in K
$$

Every vehicle leaves the start terminal:

$$
\sum_{j \in N} x_{0 j}^{k}=1 \quad \forall k \in K
$$

The same vehicle that enters a node leaves the node:

$$
\sum_{j \in N} x_{j i}^{k}-\sum_{j \in N} x_{i j}^{k}=0 \quad \forall i \in P \cup D, k \in K
$$

Every vehicle enters the end terminal:

$$
\sum_{i \in N} x_{i, 2 n+1}^{k}=1 \quad \forall k \in K
$$

Standard model (DARP1)

Setting and checking visit time:

$$
\begin{aligned}
B_{j}^{k} \geq\left(B_{i}^{k}+d_{i}+t_{i j}\right) x_{i j}^{k} & \forall i \in N, j \in N, k \in K \\
e_{i} \leq B_{i}^{k} \leq l_{i} & \forall i \in N, k \in K
\end{aligned}
$$

Linearization of first equation ($M_{i j}^{k}$ is a large constant):

$$
B_{j}^{k} \geq B_{i}^{k}+d_{i}+t_{i j}-M_{i j}^{k}\left(1-x_{i j}^{k}\right) \quad \forall i \in N, j \in N, k \in K
$$

Setting and checking ride time:

$$
\begin{array}{ll}
L_{i}^{k}=B_{n+i}^{k}-\left(B_{i}^{k}+d_{i}\right) & \forall i \in P, k \in K \\
L_{i}^{k} \leq L & \forall i \in N, k \in K
\end{array}
$$

Setting and checking vehicle load:

$$
\begin{array}{ll}
Q_{j}^{k} \geq\left(Q_{i}^{k}+q_{j}\right) x_{i j}^{k} & \forall i \in N, j \in N, k \in K \\
Q_{i}^{k} \leq Q & \forall i \in N, k \in K
\end{array}
$$

Binary variables:

$$
x_{i j}^{k} \in\{0,1\} \quad \forall i \in N, j \in N, k \in K
$$

Preprocessing

- Shrink time windows. For example if $l_{i}=10, l_{n+i}=$ $20, d_{i}=2$ and $t_{i, n+i}=12$ then l_{i} can be reduced to 6 .
- Remove edges from G that cannot be part of a feasible solution.
- Some examples
- Edges that are impossible because of time windows
- Edges of the type $(n+i, i) \forall i \in P$
- Edges of the type $(0, n+i) \forall i \in P$ and $(i, 2 n+1) \forall i \in$ P
- Edges that are impossible because of ride time constraints. Edge (i, j) can be removed if $j \neq n+i$ and the trip $i \rightarrow j \rightarrow n+i$ violates the ride time constraint of request i
- Preprocessing is fast and easy to do, but can have a significant impact on the running time of the algorithm.

Some results

- Solving (DARP1) using CPLEX 8.0 on 2.5 Ghz Pentium 4

Instance	Bound	CPU (min)	Nodes	Opt
a2-16	$* 294.25$	0.01	23	294.25
a2-20	$* 344.83$	0.05	313	344.83
a2-24	$* 431.12$	1.42	10,868	431.12
a3-18	$* 300.48$	0.41	3,596	300.48
a3-24	$* 344.83$	76.59	310,667	344.83
a3-30	472.17	240.00	515,931	494.85
a3-36	570.26	240.00	504,553	583.19
a4-16	$* 282.68$	21.49	145,680	282.68
a4-24	359.52	240.00	442,000	375.02
a4-32	427.65	240.00	189,900	485.50
a4-40	462.21	240.00	65,000	557.69
a4-48	466.7	240.00	40,400	668.82
b2-16	$* 309.41$	0.21	5,815	309.41
b2-20	$* 332.64$	0.01	26	332.64
b2-24	$* 444.71$	2.76	32,399	444.71
b3-18	$* 301.64$	1.29	12,223	301.65
b3-24	$* 394.51$	7.27	42,950	394.51
b3-30	$* 531.44$	189.74	574,281	531.45
b3-36	588.44	240.00	447,474	603.79
b4-16	$* 296.96$	2.44	20,189	296.96
b4-24	$* 369.36$	59.31	175,495	369.36
b4-32	460.78	240.00	222,600	494.82
b4-40	570.37	240.00	153,400	656.63
b4-48	577.64	240.00	50,000	673.81

Preprocessing pays off

- Some examples (Cplex 9.0 on 3.0 Ghz Pentium 4).

	Preprocessing		No preprocessing	
	CPU (min)	Nodes	CPU (min)	Nodes
a2-20	0.07	332	0.31	1500
b3-24	3.91	16773	30.37	80161

- (DARP1) had $O\left(|N|^{2}|K|\right)$ binary variables. If we could get rid of the k index on the $x_{i j}^{k}$ variables then the number of binary variables could be reduced to $O\left(|N|^{2}\right)$, which hopefully would make the problem easier to solve.
- (DARP2) - model where the k index is stripped from all variables. The variables have the same meaning as in (DARP1), they are just no longer associated with a specefic vehicle.

Compact model (DARP2)

Objective:

$$
\min \sum_{i \in N} \sum_{j \in N} c_{i j} x_{i j}
$$

One vehicle enters every user node and one vehicle leaves every user node:

$$
\begin{aligned}
& \sum_{j \in N} x_{i j}=1 \quad \forall i \in P \\
& \sum_{i \in N} x_{i j}=1 \quad \forall j \in P
\end{aligned}
$$

Setting and checking visit time:

$$
\begin{aligned}
\quad B_{j} \geq\left(B_{i}+d_{i}+t_{i j}\right) x_{i j} & \forall i \in N, j \in N \\
e_{i} \leq B_{i} \leq l_{i} & \forall i \in N
\end{aligned}
$$

Setting and checking ride time:

$$
\begin{array}{ll}
L_{i}=B_{n+i}-\left(B_{i}+d_{i}\right) & \forall i \in P \\
L_{i} \leq L & \forall i \in N
\end{array}
$$

Setting and checking vehicle load:

$$
\begin{array}{ll}
Q_{j} \geq\left(Q_{i}+q_{j}\right) x_{i j} & \forall i \in N, j \in N \\
Q_{i} \leq Q & \forall i \in N \tag{1}
\end{array}
$$

Binary variables:

$$
x_{i j} \in\{0,1\} \quad \forall i \in N, j \in N
$$

Compact model (DARP2)

- Problem: The model does not guarantee that the pickup and delivery of a request are performed by the same vehicle. To ensure this we first define the set \mathcal{S} consisting of all node subsets $S \subset N$ such that there is at least one request i for which $i \in S$ but $n+i \notin S$.
- Now the following set of equations (precedence constraints) ensure that each pickup/delivery pair is served by the same vehicle.

$$
\sum_{i \in S} \sum_{j \in N \backslash S} x_{i j} \geq 1 \quad \forall S \in \mathcal{S}
$$

The equation simply express that one edge should leave the set (we have to leave the set in order to visit $n+i$).

Example 1:

Compact model (DARP2)

Example 2 (precedence is also ensured by the constraint):

- New problem: \mathcal{S} grows exponentially with n. Constraints must be generated dynamically.
- Given fractional solution \bar{x} a violated precedence constraint can be found using the following algorithm.

1. Construct a weighted graph $\bar{G}=(N, \bar{A})$ where $\bar{A}=$ $\left\{(i, j) \in A ; \overline{x_{i j}}>0\right.$. Each edge (i, j) in \bar{A} has an associated weight $w_{i j}=\overline{x_{i j}}$
2. for all i in P do
(a) Find the minimum cut between i and $n+i$ in \bar{G}
(b) If the weight of the minimum cut is less than 1 then a violated inequality has been found

- The correctness of the algorithm follows easily
- If the weight of minimum cut is less than 1 then the cut identifies a set S that violates the inequality
- If the weight of minimum cut is greater than or equal to 1 for all i then we can show by contradiction that no precedence constraint will be violated.

Comparing DARP1 to DARP2

- DARP1: Certain extra constraints are easier to represent like:
- Heterogenous fleet
- Route duration constraints
- DARP1 can be solved directly using CPLEX, DARP2 needs special implementation.
- DARP2 is expected to solve problems faster

Valid inequalities

Valid inequalities - some examples

Subtour elimination constraints

$$
x_{i j}+x_{j i}+x_{j k}+x_{k j}+x_{k i}+x_{i k} \leq 2
$$

Lifting for directed case:

$$
x_{i j}+2 x_{j i}+x_{j k}+x_{k i} \leq 2
$$

Lifting for DARP case:

$$
x_{i j}+2 x_{j i}+x_{j k}+x_{k i}+x_{n+j, i}+x_{n+k, i} \leq 2
$$

General expression and more liftings described in paper.
Separation algorithms?

Generalized order constraints

$x_{i, n+j}+x_{n+j, i}+x_{j, n+k}+x_{n+k, j}+x_{k, n+i}+x_{n+i, k} \leq 2$

Lifting for directed case:

$$
x_{i, n+j}+x_{n+j, i}+x_{j, n+k}+x_{n+k, j}+x_{k, n+i}+x_{n+i, k}+x_{i j}+x_{i, n+k} \leq 2
$$

Separation algorithms?

Capacity constraints

$$
q(S)=\sum_{i \in S} \sum_{j \in N \backslash S} x_{i j} \geq\left\lceil\frac{q(S)}{Q}\right\rceil \quad \forall S \subseteq P \cup D
$$

Separation algorithms?

Infeasible path constraints

If the path $i_{1} \rightarrow i_{2} \rightarrow \ldots \rightarrow i_{h}$ is infeasible because of time window or ride time constraints (or a combination) then the following inequality is valid:

$$
\sum_{i=1}^{h-1} x_{i, i+1} \leq h-2
$$

Can be separated in polynomial time.

Even more compact model (DARP3)

Using some of the inequalities just presented, we can get rid of the B_{i}, Q_{i} and L_{i} variables.

$$
\begin{gathered}
\min \sum_{i \in N} \sum_{j \in N} c_{i j} x_{i j} \\
\sum_{j \in N} x_{i j}=1 \quad \forall i \in P \\
\sum_{i \in N} x_{i j}=1 \quad \forall j \in P \\
\sum_{i \in S} \sum_{j \in N \backslash S} x_{i j} \geq 1 \quad \forall S \in \mathcal{S}
\end{gathered}
$$

Infeasible path inequality that ensures that time window, capacities and ride time constraints are obeyed. \mathcal{P} is the set of all infeasible paths. Each path in \mathcal{P} is stored as a set of edges.

$$
\begin{aligned}
& \sum_{(i, j) \in E^{*}} x_{i j} \leq\left|E^{*}\right|-1 \forall E^{*} \in \mathcal{P} \\
& x_{i j} \in\{0,1\} \quad \forall i \in N, j \in N
\end{aligned}
$$

Computational results

See other slide

Conclusion

- A more compact model in terms of number of binary variables was profitable.
- Getting rid of the "superflous" fractional variables didn't improve running time.
- We have just scratched the surface. There are more to tell, and even more to discover.
- Plenty of open algorithmic questions - how to design good separation routines?

