

The dial a ride problem (DARP)

Work in progress! Most of the material presented in this talk is from:

Jean-François Cordeau, *A Branch-and-Cut Algorithm for the Dial-a-Ride Problem*, technical report CRT-2004-23.

Some material is new and is based on joint work with Jean-François Cordeau and Gilbert Laporte (Canada Research Chair in Distribution Management, HEC Montréal).

About myself

- Stefan Røpke (sropke@diku.dk)
- PhD student at DIKU
- Interested in solving routing problems using metaheuristics and exact optimization methods.

The dial a ride problem

The problem

- Door-to-door transportation of elderly and disabled persons (*the users*).
- Several users are transported in the same vehicle (think of a mini-bus).
- The users specify when they wish to be picked up and when the they have to be at their destination. Such a transportation task is denoted a *request*.
- The users do not specify an exact time of day, but a time window. Example: Instead of requesting a pickup at 9:11 the users request a pickup between 9:00 and 9:30.
- Often the user only specify either the pickup or delivery time window. An operator would assign the other time window.

The dial a ride problem

• Users don't like to be taken on long detours even if it helps the overall performance of the transportation system. Consequently a maximum ride time constraint is specified for each request.

- Time windows are not enough for ensuring that the maximum ride time constraint is enforced. Example: pickup [8:00; 8:15], delivery [8:45; 9:00], max ride time 45 minutes. Pickup at 8:00 and delivery at 9:00 violates max ride time constraint. Pickup time window could be shrunk to [8:15; 8:15]. This would ensure that ride time constraint is enforced, but it rules out perfectly good solutions like pickup at 8:05 and delivery at 8:45.
- Each vehicle has a certain capacity (only a limited amount of seats).
- The vehicles have to start and end their tours at a given start and end terminal.
- Objective: minimize driving cost subject to the constraints mentioned above.
- Problem is NP-Hard.

DARP example

Possible solution:

Branch and Bound

- Minimization problem. Main ingredients: lower and upper bound.
- High level algorithm:
 - 1. Set of subproblems $(SoS) = \{$ Entire problem $\}$
 - 2. Remove subproblem ${\cal S}$ from SoS
 - 3. Find lower and upper bound (LB and UB) for S
 - 4. if UB < global UB (GUB) then GUB = UB
 - 5. if LB < GUB then split S into two subproblems and add them to SoS
 - 6. if $SoS \neq \emptyset$ then goto step 2, else return GUB

DARP formal definition (Graph problem)

Notation:

n	Number of requests.		
$P = \{1, \dots, n\}$	Pickup locations		
$D = \{n+1, \dots, 2n\}$	Delivery locations		
$N=P\cup D\cup\{0,2n+1\}$	The set of all nodes in the graph. 0 and $2n\!+\!1$ are		
	the start and end terminal respectively. Request i		
	consist of pickup i and delivery $n + i$.		
K	Set of vehicles		
G=(N,A)	Directed graph on which the problem is defined.		
	A is the set of edges.		
Q	Capacity of a vehicle		
q_i	Amount loaded onto vehicle at node i_{\cdot} q_i =		
	q_{n+i} .		
$[e_i, l_i]$	time window of node i		
$d_i > 0$	duration of service at node i		
L	Max ride time of a request.		
c_{ij}	Cost of traveling from node i to node j . It is		
	Assumed that c_{ij} satisfies the triangle inequality.		
t_{ij}	Time needed for going from node i to node j . It is		
	assumed that t_{ij} satisfies the triangle inequality.		

Standard model (DARP1)

Decision variables

Binary variables

 x_{ij}^k 1 iff the kth vehicle goes straight from node i to node j. Fractional variables

 B_i^k When vehicle k starts visiting node i

 Q_i^k The load of vehicle k after visiting node i.

 L_i^k The ride time of request *i* on vehicle *k*.

Standard model (DARP1)

Objective:

$$\min\sum_{k\in K}\sum_{i\in N}\sum_{j\in N}c_{ij}^k x_{ij}^k$$

Every request is served exactly once:

$$\sum_{k \in K} \sum_{j \in N} x_{ij}^k = 1 \quad \forall i \in P$$

Same vehicle services pickup and delivery:

$$\sum_{j \in N} x_{ij}^k - \sum_{j \in N} x_{n+i,j}^k = 0 \quad \forall i \in P, k \in K$$

Every vehicle leaves the start terminal:

$$\sum_{j \in N} x_{0j}^k = 1 \quad \forall k \in K$$

The same vehicle that enters a node leaves the node:

$$\sum_{j \in N} x_{ji}^k - \sum_{j \in N} x_{ij}^k = 0 \quad \forall i \in P \cup D, k \in K$$

Every vehicle enters the end terminal:

$$\sum_{i \in N} x_{i,2n+1}^k = 1 \quad \forall k \in K$$

Standard model (DARP1)

Setting and checking visit time:

$$B_j^k \ge (B_i^k + d_i + t_{ij}) x_{ij}^k \quad \forall i \in N, j \in N, k \in K$$
$$e_i \le B_i^k \le l_i \qquad \qquad \forall i \in N, k \in K$$

Linearization of first equation $(M_{ij}^k$ is a large constant):

$$B_j^k \ge B_i^k + d_i + t_{ij} - M_{ij}^k (1 - x_{ij}^k) \quad \forall i \in N, j \in N, k \in K$$

Setting and checking ride time:

$$L_{i}^{k} = B_{n+i}^{k} - (B_{i}^{k} + d_{i}) \quad \forall i \in P, k \in K$$
$$L_{i}^{k} \leq L \qquad \forall i \in N, k \in K$$

Setting and checking vehicle load:

$$Q_j^k \ge (Q_i^k + q_j) x_{ij}^k \quad \forall i \in N, j \in N, k \in K$$
$$Q_i^k \le Q \qquad \qquad \forall i \in N, k \in K$$

Binary variables:

$$x_{ij}^k \in \{0,1\} \quad \forall i \in N, j \in N, k \in K$$

Preprocessing

- Shrink time windows. For example if $l_i = 10, l_{n+i} = 20, d_i = 2$ and $t_{i,n+i} = 12$ then l_i can be reduced to 6.
- Remove edges from G that cannot be part of a feasible solution.
- Some examples
 - Edges that are impossible because of time windows
 - Edges of the type $(n+i,i) \forall i \in P$
 - Edges of the type $(0,n\!+\!i)\forall i\in P$ and $(i,2n\!+\!1)\forall i\in P$
 - Edges that are impossible because of ride time constraints. Edge (i, j) can be removed if $j \neq n + i$ and the trip $i \rightarrow j \rightarrow n + i$ violates the ride time constraint of request i
- Preprocessing is fast and easy to do, but can have a significant impact on the running time of the algorithm.

Some results

Solving (DARP1) using CPLEX 8.0 on 2.5 Ghz Pentium

Instance	Bound	CPU (min)	Nodes	Opt
a2-16	*294.25	0.01	23	294.25
a2-20	*344.83	0.05	313	344.83
a2-24	*431.12	1.42	10,868	431.12
a3-18	*300.48	0.41	3,596	300.48
a3-24	*344.83	76.59	310,667	344.83
a3-30	472.17	240.00	515,931	494.85
a3-36	570.26	240.00	504,553	583.19
a4-16	*282.68	21.49	145,680	282.68
a4-24	359.52	240.00	442,000	375.02
a4-32	427.65	240.00	189,900	485.50
a4-40	462.21	240.00	65,000	557.69
a4-48	466.7	240.00	40,400	668.82
b2-16	*309.41	0.21	5,815	309.41
b2-20	*332.64	0.01	26	332.64
b2-24	*444.71	2.76	32,399	444.71
b3-18	*301.64	1.29	12,223	301.65
b3-24	*394.51	7.27	42,950	394.51
b3-30	*531.44	189.74	574,281	531.45
b3-36	588.44	240.00	447,474	603.79
b4-16	*296.96	2.44	20,189	296.96
b4-24	*369.36	59.31	175,495	369.36
b4-32	460.78	240.00	222,600	494.82
b4-40	570.37	240.00	153,400	656.63
b4-48	577.64	240.00	50,000	673.81

Preprocessing pays off

• Some examples (Cplex 9.0 on 3.0Ghz Pentium 4).

	Preproces	ssing	No preprocessing	
	CPU (min)	Nodes	CPU (min)	Nodes
a2-20	0.07	332	0.31	1500
b3-24	3.91	16773	30.37	80161

- (DARP1) had $O(|N|^2|K|)$ binary variables. If we could get rid of the k index on the x_{ij}^k variables then the number of binary variables could be reduced to $O(|N|^2)$, which hopefully would make the problem easier to solve.
- (DARP2) model where the k index is stripped from all variables. The variables have the same meaning as in (DARP1), they are just no longer associated with a specefic vehicle.

Compact model (DARP2)

Objective:

$$\min\sum_{i\in N}\sum_{j\in N}c_{ij}x_{ij}$$

One vehicle enters every user node and one vehicle leaves every user node:

$$\sum_{j \in N} x_{ij} = 1 \quad \forall i \in P$$
$$\sum_{i \in N} x_{ij} = 1 \quad \forall j \in P$$

Setting and checking visit time:

$$B_j \ge (B_i + d_i + t_{ij}) x_{ij} \quad \forall i \in N, j \in N$$
$$e_i \le B_i \le l_i \qquad \qquad \forall i \in N$$

Setting and checking ride time:

$$L_{i} = B_{n+i} - (B_{i} + d_{i}) \quad \forall i \in P$$
$$L_{i} \leq L \qquad \forall i \in N$$

Setting and checking vehicle load:

$$Q_{j} \ge (Q_{i} + q_{j})x_{ij} \quad \forall i \in N, j \in N$$
$$Q_{i} \le Q \qquad \forall i \in N$$
(1)

Binary variables:

$$x_{ij} \in \{0, 1\} \quad \forall i \in N, j \in N$$

Compact model (DARP2)

- Problem: The model does not guarantee that the pickup and delivery of a request are performed by the same vehicle. To ensure this we first define the set S consisting of all node subsets $S \subset N$ such that there is at least one request i for which $i \in S$ but $n + i \notin S$.
- Now the following set of equations (*precedence constraints*) ensure that each pickup/delivery pair is served by the same vehicle.

$$\sum_{i \in S} \sum_{j \in N \setminus S} x_{ij} \ge 1 \quad \forall S \in \mathcal{S}$$

The equation simply express that one edge should leave the set (we have to leave the set in order to visit n + i).

Example 1:

Compact model (DARP2)

Example 2 (precedence is also ensured by the constraint):

- New problem: ${\mathcal S}$ grows exponentially with n. Constraints must be generated dynamically.
- Given fractional solution \bar{x} a violated precedence constraint can be found using the following algorithm.
 - 1. Construct a weighted graph $\bar{G} = (N, \bar{A})$ where $\bar{A} = \{(i, j) \in A; \bar{x_{ij}} > 0$. Each edge (i,j) in \bar{A} has an associated weight $w_{ij} = \bar{x_{ij}}$
 - 2. for all i in P do
 - (a) Find the minimum cut between i and n+i in \bar{G}
 - (b) If the weight of the minimum cut is less than 1 then a violated inequality has been found
- The correctness of the algorithm follows easily
 - If the weight of minimum cut is less than 1 then the cut identifies a set ${\cal S}$ that violates the inequality
 - If the weight of minimum cut is greater than or equal to 1 for all *i* then we can show by contradiction that no precedence constraint will be violated.

Comparing DARP1 to DARP2

- DARP1: Certain extra constraints are easier to represent like:
 - Heterogenous fleet
 - Route duration constraints
- DARP1 can be solved directly using CPLEX, DARP2 needs special implementation.
- DARP2 is expected to solve problems faster

Valid inequalities

Valid inequalities - some examples

Subtour elimination constraints

 $x_{ij} + x_{ji} + x_{jk} + x_{kj} + x_{ki} + x_{ik} \le 2$

Lifting for directed case:

 $x_{ij} + 2x_{ji} + x_{jk} + x_{ki} \le 2$

Lifting for DARP case:

$$x_{ij} + 2x_{ji} + x_{jk} + x_{ki} + x_{n+j,i} + x_{n+k,i} \le 2$$

General expression and more liftings described in paper.

Separation algorithms?

Generalized order constraints

 $x_{i,n+j} + x_{n+j,i} + x_{j,n+k} + x_{n+k,j} + x_{k,n+i} + x_{n+i,k} \le 2$

Lifting for directed case:

 $x_{i,n+j} + x_{n+j,i} + x_{j,n+k} + x_{n+k,j} + x_{k,n+i} + x_{n+i,k} + x_{ij} + x_{i,n+k} \le 2$

Separation algorithms?

Capacity constraints

$$\sum_{i \in S} \sum_{j \in N \setminus S} x_{ij} \ge \left\lceil \frac{q(S)}{Q} \right\rceil \quad \forall S \subseteq P \cup D$$

$$q(S) = \sum_{i \in S} q_i$$

Separation algorithms?

Infeasible path constraints

If the path $i_1 \rightarrow i_2 \rightarrow \ldots \rightarrow i_h$ is infeasible because of time window or ride time constraints (or a combination) then the following inequality is valid:

$$\sum_{i=1}^{h-1} x_{i,i+1} \le h-2$$

Can be separated in polynomial time.

Even more compact model (DARP3)

Using some of the inequalities just presented, we can get rid of the B_i, Q_i and L_i variables.

$$\min\sum_{i\in N}\sum_{j\in N}c_{ij}x_{ij}$$

$$\sum_{j \in N} x_{ij} = 1 \quad \forall i \in P$$
$$\sum_{i \in N} x_{ij} = 1 \quad \forall j \in P$$
$$\sum_{i \in S} \sum_{j \in N \setminus S} x_{ij} \ge 1 \quad \forall S \in S$$

Infeasible path inequality that ensures that time window, capacities and ride time constraints are obeyed. \mathcal{P} is the set of all infeasible paths. Each path in \mathcal{P} is stored as a set of edges.

$$\sum_{(i,j)\in E^*} x_{ij} \le |E^*| - 1 \quad \forall E^* \in \mathcal{P}$$
$$x_{ij} \in \{0,1\} \qquad \forall i \in N, j \in N$$

Computational results

See other slide

Conclusion

- A more compact model in terms of number of binary variables was profitable.
- Getting rid of the "superflous" fractional variables didn't improve running time.
- We have just scratched the surface. There are more to tell, and even more to discover.
- Plenty of open algorithmic questions how to design good separation routines?