
Construction of
Minimum-Weight Spanners

Mikkel Sigurd

Martin Zachariasen

University of Copenhagen

Outline
� Motivation and Background

� Minimum-Weight Spanner Problem

� Greedy Spanner Algorithm

� Exact Algorithm: Column Generation Approach

� Exact Algorithm: Constrained Shortest Paths

� Implementation Details

� Experimental Results

� Conclusions and Future Work

Motivation and Background

Construction of sparse networks that (approximately) preserve distances

in original (dense) networks.

Application examples:

Metric space searching. Compact data structure for holding informa-

tion about approximate distances.

Message distribution in networks. Construction of a network that has

both low cost and low delay.

Faster approximation algorithms for geometric problems. Replacing

dense graphs by sparse graphs may speed up approximation algo-

rithms for several geometric optimization problems (e.g., TSP).

Motivation and Background

Construction of sparse networks that (approximately) preserve distances

in original (dense) networks.

Application examples:

� Metric space searching. Compact data structure for holding informa-

tion about approximate distances.

Message distribution in networks. Construction of a network that has

both low cost and low delay.

Faster approximation algorithms for geometric problems. Replacing

dense graphs by sparse graphs may speed up approximation algo-

rithms for several geometric optimization problems (e.g., TSP).

Motivation and Background

Construction of sparse networks that (approximately) preserve distances

in original (dense) networks.

Application examples:

� Metric space searching. Compact data structure for holding informa-

tion about approximate distances.

� Message distribution in networks. Construction of a network that has

both low cost and low delay.

Faster approximation algorithms for geometric problems. Replacing

dense graphs by sparse graphs may speed up approximation algo-

rithms for several geometric optimization problems (e.g., TSP).

Motivation and Background

Construction of sparse networks that (approximately) preserve distances

in original (dense) networks.

Application examples:

� Metric space searching. Compact data structure for holding informa-

tion about approximate distances.

� Message distribution in networks. Construction of a network that has

both low cost and low delay.

� Faster approximation algorithms for geometric problems. Replacing

dense graphs by sparse graphs may speed up approximation algo-

rithms for several geometric optimization problems (e.g., TSP).

Minimum-Weight Spanner Problem (MWSP)

Given an undirected and edge-weighted graph � � ��� ��� � .

	 -spanner: Subgraph ��
 � ��� ���
 � of � such that the shortest path

between any pair of nodes is at most 	 times longer in �
 than in �

(where 	 � is a fixed constant).

Minimum-weight 	 -spanner problem (MWSP): Construct a 	 -spanner in

� with minimum total edge-weight.

Minimum-Weight Spanner Example

Complete Euclidean graph with 15 nodes

Minimum-Weight Spanner Example

Minimum weight 	 -spanner for 	 � � �

Minimum-Weight Spanner Example

Minimum weight 	 -spanner for 	 � � �

Minimum-Weight Spanner Example

Minimum weight 	 -spanner for 	 � � �

Minimum-Weight Spanner Example

Minimum weight 	 -spanner for 	 � �

Minimum-Weight Spanner Example

Minimum weight 	 -spanner for 	 � �

Minimum-Weight Spanner Example

Minimum spanning tree (or minimum weight 	 -spanner for 	 � �)

Minimum-Weight Spanner Problem (MWSP)

Known to be an NP-hard problem [Cai, 1994].

Several approximation algorithms exist, in particular for the geometric

versions of the problem; the greedy algorithm is particularly well studied.

All practical applications use some variant of the greedy algorithm.

No (non-trivial) exact algorithm is known.

Minimum-Weight Spanner Problem (MWSP)

Known to be an NP-hard problem [Cai, 1994].

Several approximation algorithms exist, in particular for the geometric

versions of the problem; the greedy algorithm is particularly well studied.

All practical applications use some variant of the greedy algorithm.

No (non-trivial) exact algorithm is known.

Minimum-Weight Spanner Problem (MWSP)

Known to be an NP-hard problem [Cai, 1994].

Several approximation algorithms exist, in particular for the geometric

versions of the problem; the greedy algorithm is particularly well studied.

All practical applications use some variant of the greedy algorithm.

No (non-trivial) exact algorithm is known.

Greedy Spanner Algorithm

1. Set �
 � ��� ���
 � where�
 � � .

2. Sort edges in � � �� ��� � by non-decreasing weight.

3. Process edges � � � in sorted order:

� Let � � be the weight of edge � � ��� ��� � .

� If the shortest path between � and� in �
 exceeds 	 	 � � , then

append � � �� ��� � to�
 .

Resulting -spanner denoted greedy spanner; known to have weight

times that of a MST for points in fixed dimensional space.

[Das, Narasimhan & Salowe, 1995; Das & Narasimhan, 1997]

Greedy Spanner Algorithm

1. Set �
 � ��� ���
 � where�
 � � .

2. Sort edges in � � �� ��� � by non-decreasing weight.

3. Process edges � � � in sorted order:

� Let � � be the weight of edge � � ��� ��� � .

� If the shortest path between � and� in �
 exceeds 	 	 � � , then

append � � �� ��� � to�
 .

Resulting 	 -spanner denoted greedy spanner; known to have weight � � �

times that of a MST for points in fixed dimensional space.

[Das, Narasimhan & Salowe, 1995; Das & Narasimhan, 1997]

New Exact Algorithm for MWSP

Model a generalization of MWSP as an integer program.

: Node pairs with length constraints.

: Set of paths between and satisfying length constraint.

: Set of all paths satisfying length constraint.

if edge is on path .

if edge is part of the solution.

if path is part of the solution.

New Exact Algorithm for MWSP

Model a generalization of MWSP as an integer program.

� � � � ��� � ��� � � ��� � �� � � ��� � : Node pairs with length constraints.

� 	
� : Set of paths between� and� satisfying length constraint.

� 	 � �
 � ���� 	
� : Set of all paths satisfying length constraint.

� � �� � if edge � � � is on path � � 	 .

� � � � if edge � is part of the solution.

� � � � if path � is part of the solution.

Integer Programming (IP) Formulation

minimize � �� � � � � (1.1)

subject to � � � �� � � � �� � � � � � � � � � �� ��� � � � (1.2)
� � � �� � � � � ��� ��� � � � (1.3)

� � � ��� � � � � � � (1.4)

� � � ��� � � � � � 	 (1.5)

Properties of the IP Model
� Proposed model contains an exponential number of variables

(no useful polynomial sized model is known).

� Model provides a good LP-relaxation lower bound.

� LP-relaxation can be solved by delayed column generation.

� Integer solutions obtained by embedding lower bound computations

in branch and bound.

IP Column Generation
� Work on a restricted linear program with fewer variables.

� Add variables iteratively according to Dantzig’s pricing rule:

Add variable with minimum reduced cost ��� ��� .

� Given dual variables �
�
� and �
� , solve the pricing problem

�� �� � � �� ��� � �� �

� � � ��	 �
 � ���� � ��
� �� �
�

�

 �
�

� The pricing problem is a constrained shortest path problem between

� and� on the graph with edge costs �
�
� and weights � � .

Constrained Shortest Path Problem (CSPP)
� Find a shortest path from � to� with respect to the cost of edges

such that the total weight is below a given threshold.

� NP-hard problem, but has a FPTAS [Warburton, 1987].

We solve CSPP by a labeling algorithm:

– Enumerate all paths from to discarding dominated and

infeasible paths.

– Domination and infeasibility can be checked quickly by precom-

puting shortest path trees from w.r.t. edge costs and weights,

respectively.

Constrained Shortest Path Problem (CSPP)
� Find a shortest path from � to� with respect to the cost of edges

such that the total weight is below a given threshold.

� NP-hard problem, but has a FPTAS [Warburton, 1987].

� We solve CSPP by a labeling algorithm:

– Enumerate all paths from � to � discarding dominated and

infeasible paths.

– Domination and infeasibility can be checked quickly by precom-

puting shortest path trees from� w.r.t. edge costs and weights,

respectively.

Implementation Details
� Used ABACUS branch and price framework [Thienel, 1995].

� LP models solved by CPLEX 7.0.

� Computer: Pentium IV 3.0 GHz, 2GB memory

� Master LP contains � ��� � � constraints. We solve master problem

with fewer constraints, generating violated constraints iteratively.

� Branching on binary edge variables � � .

� Each instance allowed 30 minutes of CPU time.

Two Types of Test Instances

Euclidean: Complete Euclidean graphs on vertices randomly drawn

from a -dimensional hypercube.

/ /

Realistic: Similar to networks appearing in communication network

applications: nodes randomly distributed in a square, edges added

according to/not according to locality, and edge costs random or Eu-

clidean. Average degree fixed.

/ /

50 instances for every class/size of graphs.

Two Types of Test Instances

Euclidean: Complete Euclidean graphs on � vertices randomly drawn

from a� -dimensional hypercube.

� � � � � � � � � � ��� � / � � � � � � � � � � � / 	 � � � � � � � � � � � �

Realistic: Similar to networks appearing in communication network

applications: nodes randomly distributed in a square, edges added

according to/not according to locality, and edge costs random or Eu-

clidean. Average degree fixed.

/ /

50 instances for every class/size of graphs.

Two Types of Test Instances

Euclidean: Complete Euclidean graphs on � vertices randomly drawn

from a� -dimensional hypercube.

� � � � � � � � � � ��� � / � � � � � � � � � � � / 	 � � � � � � � � � � � �

Realistic: Similar to networks appearing in communication network

applications: � nodes randomly distributed in a square, edges added

according to/not according to locality, and edge costs random or Eu-

clidean. Average degree � fixed.

� � � � � � � � � / � � � � � / 	 � � � � � � � � � �

50 instances for every class/size of graphs.

Two Types of Test Instances

Euclidean: Complete Euclidean graphs on � vertices randomly drawn

from a� -dimensional hypercube.

� � � � � � � � � � ��� � / � � � � � � � � � � � / 	 � � � � � � � � � � � �

Realistic: Similar to networks appearing in communication network

applications: � nodes randomly distributed in a square, edges added

according to/not according to locality, and edge costs random or Eu-

clidean. Average degree � fixed.

� � � � � � � � � / � � � � � / 	 � � � � � � � � � �
50 instances for every class/size of graphs.

Realistic Graph Examples

� � � � , � � � , no locality of edges

Realistic Graph Examples

� � � � , � � � , no locality of edges

Realistic Graph Examples

� � � � , � � � , with locality of edges

Realistic Graph Examples

� � � � , � � � , with locality of edges

Computational Results: Euclidean Graphs

Nodes 20 30

Dimension 5 10 20 25 5 10 20 25
� � ��� 0.90 0.00 0.00 0.00 1.63 0.00 0.00 0.00

� � �� � 7.61 0.83 0.00 0.00 10.88 1.20 0.01 0.00

� � �� � 16.22 9.55 0.62 0.31 20.11 13.36 1.00 0.29

� � �� � 21.99 33.03 18.45 13.68 - 47.93 32.97 17.97

Nodes 40 50

Dimension 5 10 20 25 5 10 20 25

� � ��� 2.50 0.01 0.00 0.00 3.10 0.01 0.00 0.00

� � �� � 13.00 1.43 0.00 0.00 13.59 1.75 0.01 0.00

� � �� � - 15.39 1.38 0.40 - 18.44 1.50 0.41

� � �� � - - - - - - - -

Average excess from optimum of greedy spanner (in percent).

Computational Results: Realistic Graphs

Edge cost Euclidean Random

Avg. deg. 4 8 4 8

Nodes 16 32 64 16 32 64 16 32 64 16 32 64

� � �� �

� locality 0.05 0.02 0.02 0.57 0.23 0.14 0.00 0.00 0.00 0.00 0.00 0.00

� locality 0.41 0.12 0.09 1.43 1.40 1.00 0.00 0.00 0.00 0.00 0.00 0.00

� � � � �

� locality 3.25 2.22 1.29 4.71 8.48 4.35 2.76 1.17 2.46 4.22 3.29 3.33

� locality 3.84 2.73 2.32 4.85 - - 1.74 0.90 1.67 5.74 4.34 3.71

� � � � �

� locality 1.31 6.29 - 2.10 - - 0.64 4.72 - 2.64 - -

� locality 1.43 - - - - - 0.00 - - 3.95 - -

Average excess from optimum of greedy spanner (in percent).

Generalizations handled by Exact Algorithm

MWSP with variable stretch factor. Allow different stretch factors for ev-

ery pair of nodes. Easily handled by changing the definition of the

feasible set of paths 	
� for a pair of nodes� and� .

MWSP with selected shortest path constraints. Only a subset of all

pairs have maximum length constraints. As an example, only paths

involving one particular node (the root) have maximum length con-

straints. Has applications in, e.g., VLSI design, where trees with

both low cost and low delay are wanted.

Conclusions and Future Work
� Total weight of a greedy spanner is within a few percent from opti-

mum for the set of realistic instances; for Euclidean graphs and large

stretch factors the quality of the greedy spanner deteriorates signifi-

cantly.

� It would be interesting to test the exact algorithm and the greedy

spanner algorithm on a larger set of problem instances. Also, im-

provements to the greedy spanner algorithm would be worthwhile to

investigate.

