
Databasesystemer, for̊ar 2005

IT Universitetet i København

Forelæsning 8: Database effektivitet.

31. marts 2005

Forelæser: Rasmus Pagh

• Database efficiency

• Indexing

• Schema tuning

Today’s lecture

1

This lecture is on database efficiency:

The property that the database uses a (mostly) small amount

of computational and storage resources.

Here, “small” is relative to the best use of resources we could hope for:

• We don’t want the database to use 100 times more storage or

computation time than the best that the computer could be

programmed to do.

Database efficiency

2

One of the reasons for the success of RDBMSs is that, to a large extent,

they are efficient “automatically”.

One of the great dividends of investing in an RDBMS is that you

don’t have to think too much about the computer’s inner life.

You’re the programmer and say what kinds of data you want. The

computer’s job is to fetch it and you don’t really care how.

Philip Greenspun in “SQL for Web Nerds”

This lecture is about some of the things that you, as a database

programmer, might have to do to help the RDBMS improve efficiency:

• Define suitable indexes.

• “Tune” the database schema.

RDBMS efficiency is largely automatic

3

Relations of large databases are usually stored on hard drives.

Hard drives can store large amounts of data, but work rather slowly

compared to the memory of a modern computer:

• The time to access a specific piece of data is on the order of 10
6 times

slower.

• The rate at which data can be read is on the order of 10 − 100 times

slower.

For databases that do not fit in the computer’s main memory,

the time used for accessing disks is usually the main perfor-

mance bottleneck.

Hard drives

4

Many database systems use several hard drives to:

• Enable several pieces of data to be fetched in parallel.

• Increase the total rate of data from disk.

Systems of several disks are often arranged in so-called RAID systems, which

support various levels of performance improvement and error resilience.

Even in systems with many hard drives, the time used for accessing disks is

usually the main performance bottleneck.

Using several hard drives

5

Next: Indexing

When a DBMS encounters a query of the form

SELECT *

FROM R

WHERE <condition>

the obvious thing to do is read through the tuples of R and report those

tuples that satisfy the condition.

This is called a full table scan.

Full table scans

7

Consider the selection query from before:

SELECT *

FROM R

WHERE <condition>

• If we have to report 80% of the tuples in R, it makes sense to do a full

table scan.

• On the other hand, if the query is very selective, and returns just a

small percentage of the tuples we might hope to do better:

– Is there a way of “skipping over” tuples that will not be selected?

Selective queries

8

The following are well-known examples that there are ways of “going

directly to the desired information”:

• A phone book.

• A dictionary.

• A cookbook.

Database systems use similar principles to find information quickly.

Sometimes, the equivalent of a full table scan is needed, e.g. when looking

for “recipe combining eggs and mustard at 220 degrees in the oven”.

Non-computer search for information

9

Consider a selection query with a single equality in the condition:

SELECT *

FROM R

WHERE grade = 11

This is a so-called point query: We report all grades at the “point” 11.

Point queries are often very selective.

Suppose the tuples of R were sorted by grade. Then the DBMS could:

1. Search for the first tuple with grade 11.

2. Report this and all the following tuples with grade 11.

Point queries

10

Consider a selection query with a single inequality in the condition:

SELECT *

FROM R

WHERE grade > 6 AND grade < 10

This is an example of a range query, since we report all grades in the range

7 to 9.

Suppose that the tuples of R were sorted according to grade. Then the

DBMS could:

1. Search for the first tuple with grade > 6.

2. Report this and all the following tuples with grade < 10.

Range queries

11

To be able to quickly find the first tuple with a specific grade, the DBMS

may build an index on the grade attribute.

A database index is similar to an index in the back of a book:

1. For every piece of data you might be interested in (e.g., the attribute

value 9), the index says where to find it.

2. The index itself is organized such that one can quickly do the lookup.

Looking for information in a relation with the help of an index is called an

index scan.

Indexes

12

If the tuples of a relation are stored sorted according to some attribute, an

index on this attribute is called primary.

• Primary indexes make point and range queries on the key very efficient.

• Many DBMSs automatically build a primary index on the primary key of

each relation. (In Oracle the programmer must explicitly specify that

the table should be index organized.)

• A primary index is sometimes referred to as a clustering or sparse

index.

Primary indexes

13

It is possible to have more than one index on a relation. While not part of

the SQL standard, additional indexes can usually be created by writing

statements such as:

CREATE INDEX gradeIndex ON projects (grade);

The non-primary indexes are called secondary indexes.

• Secondary indexes make most point queries on the key more efficient.

• Secondary indexes make some range queries on the key more efficient.

• A secondary index is sometimes referred to as non-clustering or dense

index.

Secondary indexes

14

Point and range queries on the attribute(s) of the primary index are almost

always best performed using an index scan.

Secondary indexes should be used with high selectivity queries:

• As a rule of thumb, a secondary index scan is faster than a full table

scan for queries returning less than 10-20% of a relation.

Index scan versus full scan

15

Even if an index scan is possible, a good DBMS sometimes chooses to do a

full table scan.

The decision is usually based on statistics on the data in the relation, which

allows the selectivity of the query to be estimated.

Often computation of the statistics is controlled manually. In Oracle,

statistics can be computed as follows:

ANALYZE TABLE <relation> COMPUTE STATISTICS;

Choosing whether to use the index

16

An index can be defined on one or more attributes, e.g.

CREATE INDEX myIndex ON projects (grade,start,exam);

Such an index speeds up point queries such as:

SELECT * FROM projects

WHERE grade = 13 AND start=’2003-11-24’ AND exam=’2004-01-28’;

Due to the way indexes are (usually) implemented (as a B-tree), an index

on several attributes automatically gives index for any prefix of these

attributes.

Example:

myIndex also gives an index for (grade,start) and for (grade).

Indexes on several attributes

17

An index on the attributes (grade,start,exam) has a similar effect as

storing the tuples sorted first according to grade, secondly according to

start, and thirdly sorted according to exam.

grade start exam

.

11 2003-11-24 2004-01-28

11 2004-11-27 2005-01-07

13 2003-11-24 2004-01-28

13 2003-11-24 2004-01-28

13 2003-11-24 2005-01-07

13 2004-11-27 2005-01-07

13 2004-11-27 2005-01-07

Indexes on several attributes, intuition

18

What kinds of point and range queries are “easy”when the relation is stored

as in the previous example:

• A range query on the first attribute?

• A range query on the second attribute?

• A point query on the second attribute?

• A point query on the first attribute combined with a range query on the

second attribute?

• A point query on the second attribute combined with a range query on

the first attribute?

Problem session (5 minutes)

19

Indexes are used by the DBMS to speed up other operations than point and

range queries.

• Join operations are often considerably faster when the join attributes

are indexed.

• Indexes are used by DBMSs to efficiently check referential integrity

constraints (such indexes are usually automatically created).

Other uses of indexes

20

Based on what you have seen until now, a natural question would be:

Why not make indexes for all possible sets of attributes?

The main reason is that indexes need to be updated when the relation

changes, and index updates take time.

Thus we have the following trade-off for every index:

• It speeds up certain database queries, but

• slows down every update to the relation.

Whether an index is a good idea is thus a matter of weighing the time

saved on queries against the additional time spent on updates.

Time usage of indexes

21

In addition to taking time to update, an index has a space cost.

• Primary indexes usually have modest space requirements, i.e.,

considerably less than the space for the relation itself.

• Secondary indexes use space similar to that required for the attributes

indexed.

For space reasons, one should therefore be careful with creating secondary

indexes on large amounts of data.

Space usage of indexes

22

Indexing is a science of it own:

• There are special index types such as bitmap indexes and hash indexes

that are more efficient that B-trees for some types of data.

• There are join indexes that speed up join operations (but are expensive

to update).

• There are indexes for geometric and multidimensional data.

• There are indexes for textual data.

• . . .

MDM has a few short descriptions, but a deeper understanding of indexes is

beyond the scope of this course.

Other types of indexes

23

If you have taken an introductory course in algorithms (at ITU or

elsewhere), or will take the course in the fall semester, there is the

possibility to learn about the inner workings of indexes, and other things

touched upon by MDM 6, in spring 2006.

Advanced database technology

Taught by Anna Östlin and Rasmus Pagh

The course contains explanation of disk based algorithms, indexes, query

optimization, and many other things to make you a database expert!

Understand performance rules of thumb and know when they apply!

Join “Advanced database technology”

24

Next: Schema tuning

DBMSs often offer many different data types. Among other things, this is

to allow programmers to choose a data type with the smallest possible

space usage.

Space may have an impact on time, e.g., if tuples are twice as long as

needed, a full table scan takes twice as long as needed.

In Oracle, space can often be saved be replacing fixed length strings such as

CHAR(20) with variable length strings such as VARCHAR(20).

Use the “smallest” possible data type

26

For non-standard data types with few possible values (e.g. “types of

wood”), space can be saved by introducing a relation with short integer

codes for each possible value (encoded in a less space efficient data type).

The drawback of this approach is that a join operation is necessary to

combine the information in the two relations.

Use of a code table

27

The good: Normalization can be used to eliminate redundancy in a

database design, and thus avoid all sorts of problems. Also, less redundancy

means that e.g. full table scans are faster.

The bad: Normalization implies that more join operations must be

performed when answering database queries. Performance may not be

adequate.

Sometimes a database designer may choose to denormalize a database

schema, i.e., join several relation schemas into one.

• This may make some queries run faster.

• However, updates must then be handled more carefully, and the space

usage may rise.

Normalization and efficiency

28

Typical denormalization scenarios:

• 1-1 relationship. Joining the relations of the two entity types will

result in no (or little) redundancy, and will usually still be normalized.

• M-1 relationship. Joining in this case will not result in a much larger

relation if an entity instance on the “one” side is typically related to

few instances on the “many” side, or if the total size of the attributes

on the “one” side is small.

Some dangers of denormalization:

• Destroys the advantages of a normalized design. Requires more

programming and is more error-prone.

• May speed up some queries, but slow others down.

Recent research results on join processing suggest that in future database

systems the effect of denormalization will diminish.

Denormalization

29

An alternative to denormalizing the database schema is to create a

materialized view that maintains the join of some of the relations.

The good:

• Accessing the materialized view is the same as accessing the

corresponding relation in a denormalized design.

• Updates can be done in the normalized schema (no anomalies).

The bad:

• Space usage is even larger than in denormalized design.

• The DBMS may not handle updates as efficiently as updates in a

hand-coded denormalized design.

Denormalization vs materialized views

30

Related to, but independent of, denormalization, the DB programmer can

instruct the DBMS to use a particular physical layout of a relation.

• Horizontal partitioning. If some (frequent) queries deal only with

some attributes of a relation, it can speed up processing to physically

split the relation into two parts – one with those attributes, and one

with the rest.

• Vertical partitioning. If some (frequent) queries deal with tuples

having a particular value on some attribute, it can speed up processing

to physically split the relation into parts depending on the value of that

attribute. This is a “light” alternative to having a primary index.

The cost of horizontal partitioning is that it takes more time to retrieve an

entire tuple. The cost of vertical partitioning is that insertions of new tuples

take more time.

Vertical and horizontal partitioning

31

As a minimum, you should after this week:

• Remember that disk accesses are the performance bottleneck of most

large databases.

• Be able to estimate the value of a particular index based on:

– The selectivity of typical queries.

– The frequency of queries and updates.

• Understand the basic techniques of schema tuning.

In this lecture some details were given that you will not find in the course

book or supplementary material: You are expected to know this to the

detail given by the slides.

Most important points in this lecture

32

