
Databasesystemer, for̊ar 2005

IT Universitetet i København

Forelæsning 11: Transaktioner.

21. april 2005

Forelæser: Rasmus Pagh

• Serializability and atomicity

• ACID properties and rollbacks

• Dirty reads and isolation levels in SQL

Today’s lecture

1



Next: Serializability and atomicity

In most large database systems, many users and application programs will

be (and must be) accessing the database at the same time.

Groups of updates to a database that “belong together” are grouped into

so-called transactions.

Having concurrent transactions updating the database raises a number of

problems that, if not properly dealt with by the DBMS, could leave the

database in an inconsistent state, even if all users “did the right thing”.

Examples: Booking seats in a plane, transferring money between accounts.

Databases and concurrency

3



In many cases, undesired behavior can occur if two transactions are

performed simultaneously.

We would like the DBMS to make transactions satisfy serializability:

Even though many transactions may be performed at the same

time, the state of the database should look as if transactions

were performed one by one (i.e., in a serial schedule).

The DBMS is allowed to choose the order of transactions:

• It is not necessarily the transaction that is started first, which is first in

the serial schedule.

• The order may look different from the viewpoint of different users.

Serializability

4

A similar issue is what happens if a transaction, for some reason (e.g.,

power or hardware failure) is aborted while executing.

We would like the DBMS to make transactions satisfy atomicity:

Even though a transaction may involve many updates, the

state of the database should look as if either the whole trans-

action or no part of the transaction has been carried out.

We already saw the atomicity property in connection with database

constraints: A transaction violating a constraint was rolled back.

Atomicity

5



As a default, the SQL standard requires the DBMS to process transactions

atomically.

As a default, SQL also executes transactions in a serializable manner. (This

is not the Oracle default – more on this later.)

However, in some situations the SQL programmer might give the DBMS

permission to execute transactions in a non-serializable manner. (More on

this later.)

Serializability and atomicity in SQL

6

Next: Transactions in SQL and ACID properties



By the SQL standard, transactions consisting of more than one statement

are started by the command

START TRANSACTION

and ended with one of the following commands:

• COMMIT: Update the state of the database to reflect the changes

performed in the transaction.

• ROLLBACK: Discard the transaction.

Transactions in SQL

8

In SQL*Plus/TOra the START TRANSACTION command is implicit, i.e.,

statements are by default grouped into transactions.

(NB! This is different from a “generic interface”, as described in GUW.)

Transactions are ended when:

• You exit the program.

• A command alters the database schema.

• A COMMIT or ROLLBACK statement appears.

Transactions in SQL*Plus/TOra

9



Ideal transactions are said to meet the ACID test:

• Atomicity – the all-or-nothing execution of transactions.

• Consistency – transactions preserve database constraints.

• Isolation – the appearance that transactions are executed one by one.

• Durability – the effect of a transaction is never lost once it has

completed.

Commercial DBMSs tend to fully implement C and D, while A and I are

only partially implemented (for efficiency reasons).

The ACID properties of transactions

10

We already discussed all ACID properties except durability, which is

another reason why DBMSs are used for critical applications:

A good DBMS is able to withstand a power outage, disk or

hardware failure, with little or no loss of data, returning the

database to a recent, consistent state.

Durability

11



Next: Dirty reads and isolation levels in SQL

Suppose that a transaction is in the process of updating a large relation.

Other transactions executing may see:

• Old data, not (yet) modified by the transaction.

• New data, updated by the transaction.

As long as a transaction has not committed, all data that it has changed is

referred to as dirty.

A read of dirty data (called a dirty read) is a main source of trouble when

executing transactions concurrently.

To avoid a dirty read, a transaction may have to wait for another

(potentially lengthy) transaction to commit before being able to execute.

Dirty reads

13



We can tell the DBMS that the current transaction does not update the

database, using the SQL statement

SET TRANSACTION READ ONLY;

It is a good idea to do this whenever we have a read-only transaction:

• Other transactions never need to wait for a read-only transaction to

finish, since it does not change anything.

• Thus the DBMS potentially runs faster if it knows that a transaction is

read-only.

Read-only transactions

14

The lowest isolation level in which SQL allows transactions to do updates is

READ COMMITTED (Oracle’s default isolation level).

Transactions running at this isolation level see other transactions as atomic,

in the sense that either:

• No changes made by a transaction are seen, or

• all changes made by a transaction are seen.

However, different statements in the transaction may see the database in

different states (i.e., some transactions may commit in between).

This is sometimes referred to as the phantom phenomenon.

Read committed

15



The highest isolation level in SQL is SERIALIZABLE, which gives nearly, but

not quite, the behavior of a serial schedule of transactions.

This isolation level gives the following additional guarantee:

• No value read or written by the transaction is changed before the

transaction is committed.

• In particular, there is no phantom phenomenon.

It is possible, but not easy, to come up with transactions that, when

executed at the SERIALIZABLE isolation level, may give a result different

from any serial schedule.

The SERIALIZABLE isolation level

16

The SQL-92 standard defines four isolation levels, two of which are

supported by Oracle.

• SERIALIZABLE (implemented in Oracle). Almost, but not quite, ideal

serializable transactions.

• REPEATABLE READ. Allows the result of a query to change during the

transaction, in the sense that more tuples may be added.

• READ COMMITTED (Oracle default). The result of any statement reflects

some set of committed transactions.

• READ UNCOMMITTED. Allow dirty reads.

SQL isolation levels

17



Several DBMSs (DB2, SQL Server) have isolation levels that are not in the

SQL standard:

• CURSOR STABILITY. Like REPEATABLE READ, but additionally

prevents “lost updates”.

• SNAPSHOT ISOLATION. Transactions are guaranteed to only see data as

it is “at the time they are started”.

A thorough description of these and the SQL isolation levels is provided in

the paper A Critique of ANSI SQL Isolation Levels, found in the course

schedule.

Nonstandard isolation levels

18

Sometimes the DBMS must roll back one or more transactions to allow

others to go on.

Example: Suppose that transaction A cannot commit before B has

committed, and vice versa (i.e., we have a deadlock). Then the only way

out is to roll back one of the transactions.

Deadlock situations occur more often at higher isolation levels, which is

another reason to use the lowest isolation level necessary.

System-generated rollbacks

19



As a minimum, you should after this week:

• Know and understand the ACID properties of transactions.

• Know how to create transactions in SQL.

• Be able to predict possible transaction behavior at isolation levels

SERIALIZABLE and READ COMMITTED.

Next: Martin Jensen, Oracle Denmark, talks about large multiuser systems

(and probably about Oracle’s concurrency control technology).

Most important points in this lecture

20


