
Databasesystemer, for̊ar 2006

IT Universitetet i København

Forelæsning 4: Business rules, constraints & triggers.

2. marts 2005

Forelæser: Esben Rune Hansen

Constraints and triggers

• Uniqueness constraints (identifiers/candidate keys, identifier/primary

key)

• Assertion-based constraints

• Foreign keys

• Triggers

Today’s lecture

1

In this lecture I will assume that you remember:

• Identifiers in E-R diagrams.

• Cardinality constraints in E-R diagrams.

• How to convert an E-R diagram into relations.

• The SQL used when modifying or adding tuples in a relation.

What you should remember from previously

2

Next: Uniqueness constraints.

When translated to relations, identifiers in E-R diagrams serve to:

• Uniquely identify tuples in relations corresponding to entities.

• Together, identifiers of participating entities uniquely identify tuples in

relations corresponding to relationships.

We would like the DBMS to make sure that data conforms to these

uniqueness constraints. This is done by declaring the unique identifiers as

“primary keys”.

Identifiers in E-R diagrams

4

Add to the relation schema a line of the form:

PRIMARY KEY (<list of attributes>)

If the primary key has just one attribute, we may instead write PRIMARY

KEY immediately after the definition of the data type of the attribute, e.g.:

id INT PRIMARY KEY,

NULL values are not allowed in attributes of a primary key.

Declaring a primary key

5

When a key constraint is violated, an error message is produced.

The state of the database (i.e., the data it contains) is restored to what it

was before the action that caused the violation.

Updates in SQL are grouped in units called transactions (more about

transactions later in the course).

Constraint-violating transactions are undone (or rolled back).

When a key constraint is violated

6

SQL> CREATE TABLE Students (

2 cpr VARCHAR(10) PRIMARY KEY,

3 name VARCHAR(20),

4 address VARCHAR(20)

5);

Table created.

SQL> INSERT INTO Students VALUES (’0602751127’,’Ethan Longwinder’,’My Way 2’);

1 row created.

SQL> INSERT INTO Students VALUES (’0602751127’,’Ethan Longwinder II’,’My Way 2’);

INSERT INTO Students VALUES (’0602751127’,’Ethan Longwinder II’,’My Way 2’)

ERROR at line 1:

ORA-00001: unique constraint (ESBEN.SYS C005079) violated

Primary Key Example, slide 1 of 2

7

SQL> INSERT INTO Students VALUES (NULL,’Mysterio Student’,’No Way 8’);

INSERT INTO Students VALUES (NULL,’Mysterio Student’,’No Way 8’)

ERROR at line 1:

ORA-01400: cannot insert NULL into (”ESBEN”.”STUDENTS”.”CPR”)

SQL> SELECT * FROM Students;

CPR NAME ADDRESS

0602751127 Ethan Longwinder My Way 2

Primary Key Example, slide 2 of 2

8

If we want the DBMS to check other uniqueness constraints, we may add to

the SQL relation schema any number of lines of the form:

UNIQUE (<list of attributes in key>)

Uniqueness is not guaranteed for tuples having NULL values in the key

attributes. However, NULL values can be prevented by adding a NOT NULL

constraint after the declaration of each key attribute.

Declaring other candidate keys

9

SQL> CREATE TABLE Students (

2 cpr VARCHAR(10) PRIMARY KEY,

3 name VARCHAR(30) NOT NULL,

4 address VARCHAR(20)

5 CONSTRAINT my constraint UNIQUE (name,address));

5);

Table created.

SQL> INSERT INTO Students VALUES (’0602751127’,’Ethan Longwinder’,’My Way 2’);

1 row created.

SQL> INSERT INTO Students VALUES (’0602751129’,’Ethan Longwinder’,’My Way 2’);

INSERT INTO Students VALUES (’0602751129’,’Ethan Longwinder’,’My Way 2’)

ERROR at line 1:

ORA-00001: unique constraint (ESBEN.MY CONSTRAINT) violated

Unique Key Example, slide 1 of 3

10

SQL> INSERT INTO Students VALUES (’2103780002’,’H. Omeless’,NULL);

1 row created.

SQL> INSERT INTO Students VALUES (’2103780004’,NULL,NULL);

INSERT INTO Students VALUES (’2103780004’,NULL,NULL)

ERROR at line 1:

ORA-01400: cannot insert NULL into (”ESBEN”.”STUDENTS”.”NAME”)

SQL> SELECT * FROM Students;

CPR NAME ADDRESS

0602751127 Ethan Longwinder My Way 2

2103780002 H. Omeless

Unique Key Example, slide 2 of 3

11

SQL> INSERT INTO Students VALUES (’0602751129’,’Bullie Bank’,’Goa Way 10’);

1 row created.

SQL> INSERT INTO Students VALUES (’0602751131’,’Ethan Longwinder’,’My Way 4’);

1 row created.

SQL> UPDATE Students SET address = ’Urban Collective’;

UPDATE Students SET address = ’Urban Collective’

ERROR at line 1:

ORA-00001: unique constraint (ESBEN.MY CONSTRAINT) violated

SQL> SELECT * FROM Students;

CPR NAME ADDRESS

0602751127 Ethan Longwinder My Way 2

2103780002 H. Omeless

0602751129 Bullie Bank Goa Way 10

0602751131 Ethan Longwinder My Way 4

Unique Key Example, slide 3 of 3

12

Short answer: Not necessarily.

Consider for example the relation corresponding to a simple multivalued

attribute in an E-R diagram:

• Typically, the only candidate key would consist of both attributes.

• Thus, a primary key constraint would only serve the purpose of

eliminating duplicate tuples.

Should every relation have a primary key?

13

Next: Assertion-based constraints.

The constraint NOT NULL may be specified for any attribute in a relation

schema, indicating that NULL is not a legal value.

In general, any attribute that does not correspond to an optional attribute

in the E-R diagram should be declared NOT NULL.

NOT NULL constraints

15

Many business rules can be expressed as so-called CHECK constraints, which

are assertions (i.e., conditions that must be true) about attributes or tuples

of a relation.

• A CHECK constraint on an attribute is checked every time

– a value of this attribute is modified.

– a new tuple is inserted.

• A CHECK constraint on tuples is checked every time

– an attribute value changes.

– a new tuple is inserted.

• If a constraint is violated, the current transaction is rolled back, and an

error message is produced.

CHECK constraints

16

A constraint C on an attribute is declared by writing

CHECK C

immediately after the datatype definition.

The condition C may refer to other attributes of the relation, and even to

other relations, using a subquery.

(However, Oracle does not allow SQL queries in C.)

Examples:

• percentage INT CHECK (percentage>=0 AND percentage<=100)

• cpr CHAR(10) CHECK (cpr IN (SELECT cpr FROM students))

Writing attribute-based CHECK constraints

17

A constraint C on tuples is declared by adding the line

CHECK C

to the relation schema definition.

The only difference to attribute-based CHECK constraints is when the

constraint is checked.

Examples:

• CHECK (upper-bound => lower-bound)

• CHECK (cpr IN (SELECT cpr FROM students))

Writing tuple-based CHECK constraints

18

Next: Foreign keys.

A foreign key constraint on an attribute is a constraint saying that its

attribute values can always be found in exactly one place in another relation.

Foreign key constraints are typically used to express referential integrity,

i.e., that values supposed to refer to tuples in other tables indeed do so.

If we want the DBMS to check foreign key constraints, we may add to the

SQL relation schema any number of declarations of the form:

FOREIGN KEY (<attribute name>)

REFERENCES <table name>(<attribute name>)

Foreign key constraints

20

Foreign keys may be composite, i.e., consist of several attributes.

The syntax for declaring composite foreign keys is the obvious extension of

what we saw before:

FOREIGN KEY (<list of attribute names>)

REFERENCES <table name>(<list of attribute names>)

Composite foreign keys

21

Suppose the schema for relation R contains the declaration

FOREIGN KEY (A1, . . . , An) REFERENCES S(B1, . . . , Bn).

Then the relation S must have B1, . . . , Bn as primary keys or contain a

declaration like

UNIQUE (B1, . . . , Bn).

This means that the DBMS checks that any values of A1, . . . , An in a tuple

of R can also be found as values of B1, . . . , Bn in a tuple of S.

Semantics of a foreign key constraint

22

SQL> CREATE TABLE ITUpeople (

2 cpr VARCHAR(10) PRIMARY KEY,

3 name VARCHAR(30) NOT NULL,

4 address VARCHAR(20)

5);

Table created.

SQL> CREATE TABLE Students (

2 cpr VARCHAR(10) PRIMARY KEY

3 CONSTRAINT ValidCPR REFERENCES ITUpeople(cpr),

4 enrolled VARCHAR(10),

5 graduated VARCHAR(10),

6 gpa REAL CHECK (gpa>=6 AND gpa<=13),

7 CONSTRAINT PositiveStudyTime CHECK (enrolled < graduated)

8);

Table created.

SQL> INSERT INTO ITUpeople VALUES (’0602751129’,’Bullie Bank’,’Goa Way 10’);

1 row created.

Assertation Example, slide 1 of 3

23

SQL> INSERT INTO Students VALUES (’0602751129’,’2003-08-01’,NULL,NULL);

1 row created.

SQL> UPDATE Students SET graduated = ’2001-02-28’ WHERE cpr=’0602751129’;

UPDATE Students SET graduated = ’2001-02-28’ WHERE cpr=’0602751129’

ERROR at line 1:

ORA-02290: check constraint (ESBEN.POSITIVESTUDYTIME) violated

SQL> DELETE FROM ITUpeople WHERE cpr=’0602751129’;

DELETE FROM ITUpeople WHERE cpr=’0602751129’

ERROR at line 1:

ORA-02292: integrity constraint (ESBEN.VALIDCPR) violated - child record found

SQL> SELECT * FROM ITUpeople;

CPR NAME ADDRESS

0602751129 Bullie Bank Goa Way 10

Assertation Example, slide 2 of 3

24

SQL> ALTER TABLE Students DROP CONSTRAINT ValidCPR;

Table altered.

SQL> ALTER TABLE Students ADD CONSTRAINT ValidCPR

2 FOREIGN KEY (cpr) REFERENCES ITUpeople(cpr) ON DELETE CASCADE;

Table altered.

SQL> DELETE FROM ITUpeople WHERE cpr=’0602751129’;

1 row deleted.

SQL> SELECT * FROM ITUpeople;

no rows selected

SQL> SELECT * FROM Students;

no rows selected

Assertation Example, slide 3 of 3

25

What is the difference (if any) between the CHECK constraint

cpr CHAR(10) CHECK (cpr IN (SELECT cpr FROM students))

and the referential integrity constraint

cpr CHAR(10) REFERENCES students(cpr)

Problem session (5 minutes)

26

If a relationship in our E-R diagram has an “exactly one” cardinality

constraint, it can be expressed as a foreign key constraint.

This means that the DBMS maintains the referential integrity of the

relationship.

There seems to be no general way to express an “at least one” cardinality

constraint.

Note that in supertype-subtype relationships there is an implicit “exactly

one” cardinality constraint.

Referential integrity from E-R diagrams

27

The default (i.e., standard) policy when a transaction violates a foreign key

constraint is to roll the transaction back.

However, for each referential constraint we may choose from two other

policies for handling changes to the referenced relation:

• The cascade policy:

– If the foreign key attribute values of a tuple were changed, change

all references to this tuple to the new value.

– If a tuple is deleted, delete all tuples referencing it.

• The set-null policy:

– If some reference became invalid, set all its attribute values to NULL.

Maintaining referential integrity

28

Next: Triggers.

Triggers is a general mechanism for:

• Enforcing constraints/business rules, and more generally

• Making the DBMS perform actions on certain events.

The definition of a trigger consist of an event, a condition, and an action.

• Triggers are awakened (or triggered) when the event, a certain change

to the database, occurs.

• If the condition associated with the trigger is true, then the action is

performed.

Triggers

30

Key features of triggers in SQL:

• Triggering events are insertions, deletions, and updates of tuples.

• The action can be any SQL statement.

(But most RDBMSs have restrictions on the SQL allowed in the action.)

• The action can refer to values from both before and after the event.

• The action can be performed either

– After each event that activates the trigger, or

– At the end of each transaction where one or more events activated

the trigger.

Triggers in SQL

31

SQL> select * from MovieExec;

NAME ADDRESS CERT NETWORTH

George Lucas Oak Rd. 555 200000000

Ted Turner Turner Av. 333 125000000

Stephen Spielberg 123 ET road 222 100000000

Merv Griffin Riot Rd. 199 112000000

Calvin Coolidge Fast Lane 123 20000000

SQL> CREATE TABLE NetworthHistory (

2 name VARCHAR(25),

3 oldnetworth INT,

4 newnetworth INT

5);

Table created.

Trigger Example, slide 1 of 4

32

SQL> CREATE TRIGGER NetWorthTrigger

2 AFTER UPDATE OF netWorth ON MovieExec

3 REFERENCING

4 OLD AS Oldtuple

5 NEW AS Newtuple

6 FOR EACH ROW

7 WHEN (Oldtuple.networth <> NewTuple.networth)

8 BEGIN

9 INSERT INTO NetworthHistory

10 VALUES (:Oldtuple.name,:Oldtuple.networth,:Newtuple.networth);

11 END;

12 /

Trigger created.

Trigger Example, slide 2 of 4

33

SQL> UPDATE MovieExec

2 SET netWorth = 29000000

3 WHERE name=’George Lucas’;

1 row updated.

SQL> SELECT * FROM NetworthHistory;

NAME OLDNETWORTH NEWNETWORTH

George Lucas 200000000 29000000

Trigger Example, slide 3 of 4

34

SQL> UPDATE MovieExec

2 SET netWorth = 25000000

3 WHERE name=’George Lucas’;

1 row updated.

SQL> SELECT * FROM NetworthHistory;

NAME OLDNETWORTH NEWNETWORTH

George Lucas 200000000 29000000

George Lucas 29000000 25000000

Trigger Example, slide 4 of 4

35

Syntax in Oracle (differs slightly from SQL definition):

CREATE TRIGGER <name of trigger> AFTER

INSERT | DELETE | UPDATE

[OF <attribute name>] ON <name of relation or view>

[REFERENCING OLD AS <name>, NEW AS <name>]

[FOR EACH ROW

[WHEN <condition>]]

BEGIN

<PL/SQL commands>

END;

Vertical lines | between alternatives. Brackets [] around optional parts.

Variables in <PL/SQL commands> must be prefixed by semicolon (:old.a).

Trigger definition syntax, simplified

36

As a minimum, you should after this week:

• Know how to declare key constraints and referential integrity (i.e.,

foreign key) constraints in SQL.

• Understand the basic mechanisms for maintaining referential integrity.

• Know how to declare tuple-based CHECK constraints, and know how

these are checked.

• Understand how to define triggers, and the mechanism for executing

triggers in SQL.

Most important points in this lecture

37

