
Database Systemer, For̊ar 2006

IT Universitet i København

Lecture 10: Transaction processing

6 april, 2006

Forelæser: Esben Rune Hansen



Part I: Transaction processing

• Serializability and atomicity

• ACID properties and rollbacks

• Dirty reads and isolation levels in SQL

Today’s lecture

1



Suppose that you have created table2 by:

CREATE TABLE table2(foreign INT)

Write down the SQL-statements needed if we want to:

1. Create a table table1(id) with id as a primary index

2. Make table2.foreign be a foreign key on table1.id

3. Create a table table3 with a foreign key foreign on table1.id. If a

key in table3 references to a primary key in table1 that is deleted you

want the foreign key in table2 to be deleted as well.

Illustration:

table2(foreign INT) −→ table1(id INT) ←− table1(foreign INT)

Problem Session on Constraints (5 min)

2



1. Create a table table1(id) with id as a primary index:

CREATE TABLE table1(id INT PRIMARY KEY);

2. Make table2.foreign be a foreign key on table1.id

ALTER TABLE table2 ADD CONSTRAINT EsbensConstraint

FOREIGN KEY (foreign) REFERENCES table1(id);

3. Create a table table3 with a foreign key foreign on table1.id. If a

key in table3 references to a primary key in table1 that is deleted you

want the foreign key in table2 to be deleted as well.

CREATE TABLE table3(foreign REFERENCES table1(id) ON

DELETE CASCADE);

Illustration:

table2(foreign INT) −→ table1(id INT) ←− table1(foreign INT)

Solutions to Problem Session

3



In most large database systems, many users and application programs will

be (and must be) accessing the database at the same time.

Consecutive updates to a database that “belong together” can grouped into

transactions by the database programmer.

Having concurrent users updating the database raises a number of

problems that, if not properly dealt with by the DBMS, could leave the

database in an inconsistent state, even if all users “did the right thing”.

Databases and concurrency

4



We would like the DBMS to make transactions satisfy serializability:

Even though many transactions may be performed at the same

time, the state of the database should look as if transactions

were performed one by one (i.e., in a serial schedule).

The DBMS is allowed to choose the order of transactions:

• It is not necessarily the transaction that is started first, which is first in

the serial schedule.

• The order may look different from the viewpoint of different users (but

at the end, they will see the same state).

Serializability

5



A similar issue is what happens if a transaction, for some reason (e.g.,

power or hardware failure) is aborted while executing.

We would like the DBMS to make transactions satisfy atomicity:

Even though a transaction may involve many updates, the

state of the database should look as if either the whole trans-

action or no part of the transaction has been carried out.

Atomicity

6



As a default, the SQL standard requires the DBMS to process transactions

atomically.

As a default, SQL also executes transactions in a serializable manner. (This

is not the Oracle default – more on this later.)

However, in some situations the SQL programmer might give the DBMS

permission to execute transactions in a non-serializable manner. (More on

this later.)

Serializability and atomicity in SQL

7



Some kinds of constraints require several updates to be performed in an

atomic manner.

Example (The “Chicken-and-egg” problem): Suppose we have foreign

key constraints stating that

• Every value of attribute A should also be a value of attribute B.

• Every value of attribute B should also be a value of attribute A.

Then values for A and B must be inserted and deleted simultaneously:

• The constraints should be declared DEFERRABLE.

• The transaction inserting or deleting should begin by setting the

constraints as DEFERRED, so that they are only checked at the end of

the transaction.

Atomicity and constraints

8



How can we make a “chicken-and-egg” constraint?

This will solution will not do:

CREATE TABLE Chicken (ChickenId INT PRIMARY KEY REFERENCES egg(EggId));

CREATE TABLE Egg(EggId INT PRIMARY KEY REFERENCES chicken(ChickenId));

Consider the following:

• What is wrong with the two statements above?

• How can we make a chicken-and-egg constraint (difficult)

• Write down the SQL-commands that will create two tables with a

chicken-and-egg constraint (very difficult)

Illustration:

Chicken(ChickeId INT) � Egg(EggId INT)

Problem Session (5 min)

9



This will solution will not do as the table Chicken need the existence
of the table Egg in order to be created and vice versa:

CREATE TABLE Chicken (ChickenId INT PRIMARY KEY REFERENCES egg(EggId));

CREATE TABLE Egg(EggId INT PRIMARY KEY REFERENCES chicken(ChickenId));

Instead we:

1. Create both tables without the foreign key constraints:

• CREATE TABLE Chicken (ChickenId INT PRIMARY KEY);

• CREATE TABLE Egg(EggId INT PRIMARY KEY);

2. Add the foreign key constraints to the tables:

• ALTER TABLE Chicken ADD CONSTRAINT ChickenConstraint

FOREIGN KEY (ChickenId) REFERENCES Egg(EggId) INITIALLY

DEFERRED DEFERRABLE;

• ALTER TABLE Egg ADD CONSTRAINT EggConstraint FOREIGN

KEY (EggId) REFERENCES Chicken(ChickenId) INITIALLY

DEFERRED DEFERRABLE;

Solution to Problem Session

10



Next: Transactions in SQL and ACID properties



By the SQL standard, transactions consisting of more than one statement

are started by the command

START TRANSACTION

and ended with one of the following commands:

• COMMIT: Update the state of the database to reflect the changes

performed in the transaction.

• ROLLBACK: Discard the transaction.

Transactions in SQL

12



In SQL*Plus the START TRANSACTION command is implicit, i.e., statements

are by default grouped into transactions.

Transactions are ended when:

• You exit from SQL*Plus.

• A command alters the database schema.

• A COMMIT or ROLLBACK statement appears.

Transactions in SQL*Plus

13



Ideal transactions are said to meet the ACID test:

• Atomicity – the all-or-nothing execution of transactions.

• Consistency – transactions preserve database constraints.

• Isolation – the appearance that transactions are executed one by one.

• Durability – the effect of a transaction is never lost once it has

completed.

A good DBMSs should fully implement A, C and D, and will allow the user

to specify the extent to which I should hold (for efficiency reasons).

However, I always applies to any single SQL statement in a transaction.

The ACID properties of transactions

14



We already discussed all ACID properties except durability, which is

another reason why DBMSs are used for critical applications:

A good DBMS is able to withstand a power outage, disk or

hardware failure, with little or no loss of data, returning the

database to a recent, consistent state.

Durability

15



Next: Dirty reads/writes and isolation levels in SQL



Suppose that a transaction is in the process of updating a large relation.

Other transactions executing may see:

• Old data, not (yet) modified by the transaction.

• New data, updated by the transaction.

As long as a transaction has not committed, all data that it has changed is

referred to as dirty.

A read of dirty data (called a dirty read) is a main source of trouble when

executing transactions concurrently.

Dirty reads

17



Overwriting data that is not yet committed can also cause problems.

Example: Two concurrent bank transfers. One from account A to account

B, and one in the other direction.

Any good DBMS prevents such dirty writes.

Dirty writes

18



The default in SQL is to execute transactions in a serializable way.

In particular, dirty reads cannot performed by the DBMS.

This can give performance problems:

• Sometimes a transaction must wait for other (potentially lengthy)

transactions to commit before being able to finish.

Dirty reads/writes and performance

19



We can tell the DBMS that the current transaction does not update the

database, using the SQL statement

SET TRANSACTION READ ONLY;

It is a good idea to do this whenever we have a read-only transaction:

• Other transactions never need to wait for a read-only transaction to

finish, since it does not change anything.

• Thus the DBMS potentially runs faster if it knows that a transaction is

read-only.

Read-only transactions

20



The lowest isolation level in which SQL allows transactions to do updates is

READ COMMITTED (Oracle’s default isolation level).

SQL statements of transactions running at this isolation level make no dirty

reads or writes. In particular, they see other transactions as atomic, in the

sense that either:

• No changes made by a transaction are seen, or

• all changes made by a transaction are seen.

However, different statements in the transaction may see the database in

different states (i.e., some transactions may commit in between).

This is sometimes referred to as the phantom phenomenon.

Read committed

21



In the same setting as before, assume that transactions run at isolation level

READ COMMITTED. Consider the following sequence of statements.

A B

INSERT INTO Primes VALUES (2);

SELECT * FROM A.Primes;

INSERT INTO A.Primes VALUES (2003);

SELECT * FROM A.Primes;

COMMIT;

SELECT * FROM A.Primes;

SELECT * FROM Primes;

COMMIT;

SELECT * FROM Primes;

What output is possible for each SELECT statement?

Problem session (5 minutes)

22



The highest isolation level in SQL is SERIALIZABLE, which makes sure that

transactions always execute in a serial schedule.

A slightly weaker guarantee, ANOMALY SERIALIZABLE, gives the following

guarantee in addition to that of READ COMMITTED:

• No value read or written by the transaction is changed before the

transaction is committed.

• In particular, there is no phantom phenomenon.

Oracle defines the SERIALIZABLE isolation level, but the actual behavior is

not always serializable (see exercises today). It seems to be at least

ANOMALY SERIALIZABLE, though.

The SERIALIZABLE isolation level

23



The SQL standard defines four isolation levels in total:

• SERIALIZABLE (not really implemented in Oracle). Ideal, serializable

transactions.

• REPEATABLE READ. Allows the result of a query to change during the

transaction, in the sense that more tuples may be added.

• READ COMMITTED (Oracle default). The result of any statement reflects

some set of committed transactions.

• READ UNCOMMITTED. Allow dirty reads. (Not recommended!)

SQL isolation levels

24



Several DBMSs (DB2, SQL Server) have isolation levels that are not in the

SQL standard:

• CURSOR STABILITY. Like READ COMMITTED, but additionally prevents

“lost updates” (consider, for example, two transactions that

simultaneously try to increase the balance of a bank account).

• SNAPSHOT ISOLATION. Transactions are guaranteed to only see data as

it is “at the time they are started”.

A thorough description of these and the SQL isolation levels is provided in

the paper A Critique of ANSI SQL Isolation Levels, found in the course

schedule.

Nonstandard isolation levels

25



The most common implementation of isolation is using locks:

• A transaction reading a database element must first obtain a read lock

on the element.

• A transaction writing to some database element must hold a write lock

on this element, which can only be held if no other transaction has a

read or write lock on the element.

If a transaction cannot obtain some needed lock, it waits for the lock to

become available.

The various isolation levels differ mainly in the way in which they request

and release locks. Higher levels keep locks for longer. (More details in the

course Advanced Database Technology.)

Implementation of isolation levels

26



Sometimes the DBMS must roll back one or more transactions to allow

others to go on.

Example: Suppose that transaction A cannot commit before B has

committed, and vice versa (e.g. if A waits to obtain a lock held by B, and B

waits to obtain a lock held by A). Then we have a deadlock, and the only

way out is to roll back one of the transactions.

Deadlock situations occur more often at higher isolation levels, which is

another reason to use the lowest isolation level necessary.

System-generated rollbacks

27



As a minimum, you should after this week:

• Know and understand the ACID properties of transactions.

• Know how to create transactions in SQL.

• Be able to predict possible transaction behavior at isolation levels

SERIALIZABLE and READ COMMITTED.

Most important points in this lecture

28



I perioden for 4-ugers projekter vejleder jeg følgende:

1. En Web-baseret browser for relationer:

http://www.itu.dk/people/pagh/DBS06/project.html

2. En dynamisk hjemmeside ved hjælp af SQL og PHP/Servlets

3. Dit ynglingsprojekt der involverer SQL og PHP/Servlets

Alle projekter skal udføres enten ved hjælp af PHP eller Servlets.

Snak med mig efter denne forelæsning hvis du er interesseret. Eller skriv til

esben@itu.dk

Course Related Projects

28


