Database Systems, fall 2006

Esben Rune Hansen

Exercises for lecture on October 3

Joins

The exercises in this section are considering the relations Product, PC og Laptop,
that are already in your database if you have inserted in relations in the file
“all.rel” into your database as described on the first exercise sheet (Ex0). If you
have not inserted the relations your should do it now.

The relations have the following schemas:

Product (id, maker, model, type)

PC (model, speed, ram, hd, rd, price)

Laptop (model, speed, ram, hd, screen, price)
Exercise 1
Write queries that return the following:

1. All laptops with a price less than 2500.

2. The modelnumber for all laptops with a price less than 2500 or with a
speed on at least 800.

3. All tuples i Product, that concerns laptops.

The syntax Product NATURAL JOIN Laptop can be used to combine tuples in
Product and Laptop with same value in the model attribute. Try this in Oracle
by typing the following:

SELECT * FROM (Product NATURAL JOIN Laptop);

Exercise 2

Repeat the exercises from last section but now the related data concerning the
data returned has to be included in the result. For instance the first query in
Exercise 1 that before only returned information from Laptop now has to return
information from Product as well.

Try now the following query:

SELECT * FROM (PC NATURAL JOIN Laptop);

Explain why the result is empty. Write then a less restrictive join on the form:



SELECT * FROM PC, Laptop where ... = ...

that does not give an empty result. Add a tuple to Laptop, that makes the
query:

SELECT * FROM (PC NATURAL JOIN Laptop);

no longer return an empty result.

Sub-queries

Exercise 1

Write the following queries, based on the database schema:

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

OutComes(ship, battle, result)

You should use at least one sub-query in each of your answers and write
each query in two significantly different ways (e.g. using different sets of the
operator EXISTS, IN, ALL and ANY).

1. Find the countries whose ships had the largest number of guns.
2. Find the classes of the ships at least one of which was sunk in a battle
3. Find the names of the ships with a 16-inch bore.
4. Find the battles in which ships of the Kongo class participates
Test your queries in Oracle on the sample data you entered in the beginning of
the course.
Exercise 2
Write the following queries, based on the database schema:

Product (maker, model, type)

PC(model, speed, ram, hd, rd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer(model, color, type, price)

You should use at least one sub-query in each of your answers and write each
query in two significantly different ways (e.g. using different sets of the operator
EXISTS, IN, ALL and ANY).

1. find the printers with the highest price

2. find the laptops whose speed is slower than that of any PC.

Test your queries in Oracle on the sample data you entered in the beginning of
the course.



Constraints & Triggers

Exercise 1
In this exercise you are going to work on the relations

Ships(name,class,launched)

Classes(class,type, country,numGuns,bore,displacement)
Outcomes (ship,battle,result)

Battles(name,date)

1. Propose appropriate primary keys and foreign key for the 4 relations.
Make some changes in the SQL schema definitions, so that primary and
foreign key are stated. Use the SET NULL policy in connection with for-
eign kays. (Oracle only supports SET NULL in connection with deletions,
not in connection with updates). Test your new schema definition in Or-
acle, including insertion of more than one tuple with the same primary
key, or with the value NULL on some key attribute. Test also deletion of
a tuple that another tuple is referring to.

2. Add tuple base CHECK constraints to the relation schemas, using the
syntax ALTER TABLE ... ADD CONSTRAINT ...:

(a) No ship are allowed to have a bore (diameter on the canon) larger
than 16 inches.

(b) If a ship has more than 9 canons, its diameter has to be at most 14
inches.

(¢) No ship can be engaged in battle before it is (launched).

Exercise 2

3. Write a trigger that makes the following:

(a) When a new class is inserted in Classes, there has to be inserted a
ship in Ships which name is the name of the class and with NULL
as the value of launched.

(b) When a new class is inserted with displacement larger than 35.000
tons, the weight has to be changed to 35.000 tons.

Test your triggers in Oracle. Remember to put semi colons in front of
references to new as well as old rowvariables. If you try to modify a
realtion in the “action” part of a trigger on the same relation you get a
“table is mutation” error since this is not allowed in Oracle. The solution
will in many cases be to use a INSTEAD OF trigger, where it is allowed to
change the relation. If there are compilationerrors in the action part they
can be shown by writting show errors (but do not trust the linenumbers).

4. Change the policy for foreign keys in exercise 1 to CASCADE. Test the new
behaviour by deleting some selected tuples.



