
Database Systems, Fall 2006

IT University of Copenhagen

Lecture 12, part I: Temporal databases

Based on Elmasri & Navathe, 24.2.0-24.2.2.

December 5, 2006

Lecturer: Rasmus Pagh



• Temoral data. How to handle time in databases.

• Exam preparation. What to expect at the exam.

Today’s lecture

1



Some applications (e.g., banking, insurance, hospitals,. . . ) should keep a

full record of all data (or nearly all data) that has existed in the system.

Preserving data in an accessible form may be a requirement by law.

Basic principle: Never delete data.

Advantages:

• Can query old data (e.g. patient records).

• Safeguard against unwanted change – possible to revert changes.

The need for temporal data

2



Storage prices diminishing — feasible for many systems to “store all

versions” of the database.

This kind of database is called a temporal database (“database with

time”).

There has been considerable research into how to support temporality as a

“native” DBMS feature. However, in this lecture we focus on how to do

this using a standard relational DBMS.

The need for temporal data, cont.

3



Suppose we want to be able to query the database at any (previous) point

in time.

Example: How many students were registered for DBT on December 1?

What is a “point in time”? Different granularity may be chosen

according to the kind of application (stock trading may require “by

minute”, for car sales “by day” is probably enough).

To be able to relate all versions of an entity, it is important to have a

primary key that does not change (possibly a surrogate key).

Transaction time temporality

4



General method for allowing temporal (transaction time) queries in a

relational database:

• Add two attributes to each relation: Tst and Tet that indicate the

start time and end time for each tuple.

• When inserting a new tuple, Tst is set to the current time, and Tet is

set to a special value uc (Until Changed). Think ∞.

• When “deleting” a tuple, Tet is set to the current time. No tuple is

ever deleted.

• Modifying a tuple corresponds to “deleting” it, and inserting the

modified version.

Tuple versioning

5



The new way of handling insertions, deletions, and modifications may be

implemented using “instead of” triggers.

In some applications, most queries are about “current” data.

Then, efficiency may be gained by keeping tuples with Tet=uc in a separate

relation, and using this for such queries.

Special “temporal” indexes that can be used by the DBMS for queries “at

time t”, for any t, exist and have essentially the same efficiency as usual

B-tree indexes.

Implementing tuple versioning

6



To ask a query SELECT ...FROM R1, . . . , Rk WHERE C on the data at

time t, just add the condition that all tuples considered have t in the

interval [Tst,Tet].

SELECT ...

FROM R1, . . . , Rk

WHERE C

AND R1.Tst <= t AND t<=R1.Tet

...

AND Rk.Tst <= t AND t<=Rk.Tet;

Some extensions of SQL allow more convenient ways of writing such queries.

Querying tuple versioned data

7



As described, a lot of space may be used to store copies of nearly identical

tuples: One for each update of an attribute.

Possible solution: Create one relation Ra for each attribute a not in the

primary key of R. Ra is equal to the projection of R onto a and the primary

key attributes. (Then the schema is in temporal normal form.)

Elmasri & Navathe state that this makes an expensive “temporal

intersection join” necessary. However, this is not true for queries about a

particular point in time.

Temporal normal form

8



In some cases, the time at which a fact was entered into the database is not

important: We are interested in the time period in which the fact is valid.

Example: The fact that “student x takes course y” is valid during the

semester in which the course runs, but may be entered before or after the

first day of the semester in the course registration system.

Valid time

9



Valid time may be represented similarly to transaction time:

• Add two attributes to each relation: Vst and Vet that indicate the

valid start time and valid end time for each tuple.

• When inserting a new tuple, Vst is set to the user supplied valid start

time, and Tet is set to a special value now (Until Now).

• At any time, if the valid end time becomes different from now, we may

assign the value to Tet.

Note that both proactive and retroactive updates are possible.

Valid time temporal data

10



In some applications, both transaction time and valid time of tuples are

needed.

These are seen as two independent time dimensions, and the database is

called bitemporal.

Example: Suppose that a student registers for a course but decides to drop

it, then logically we should delete the fact “x takes course y” from the

database. If we are interested in patterns of how students change their

course choices, we need transaction time temporality.

Example query: How many students on my course changed from another

course?

Bitemporal databases

11



Can be implemented by using the methods described previously “on top of

each other” (first valid time, then transaction time).

Indexing of bitemporal data is challenging. Some of the currently best

techniques are based on “R-trees”, which was originally conceived for

geometric data.

Implementing bitemporal databases

12



As a minimum, you should after this lecture:

• Be able to systematically add valid time or transaction time temporality

to a database design.

General methods sometimes more complicated than necessary — use

common sense.

Most important points in this lecture

13


