Introduction to Databases, Fall 2003
IT University of Copenhagen

Lecture 11: Database efficiency

November 11, 2003

Lecturer: Rasmus Pagh




— Today'’s lecture

e Database efficiency
e Indexing
e A little about schema tuning

e Database tuning cases




— What you should remember from previously —

In this lecture | will assume that you remember:

e That we characterized a DBMS as a system for providing efficient,
convenient, and safe storage of and multi-user access to (possibly
massive) amounts of persistent data.

e That each of the words in bold are important.




Next: Database efficiency




— Database efficiency

This lecture is on database efficiency:

The property that the database uses a (mostly) small amount
of computational and storage resources.

Here, “small” is relative to the best use of resources we could hope for:

e \We don’'t want the database to use 100 times more storage or
computation time than the best that the computer could be
programmed to do.




— RDBMS efficiency is largely automatic

One of the reasons for the success of RDBMSs is that, to a large extent,

they are efficient “automatically”.

One of the great dividends of investing in an RDBMS is that you
don’t have to think too much about the computer’s inner life.
You're the programmer and say what kinds of data you want. The
computer’s job is to fetch it and you don’t really care how.

Philip Greenspan in “SQL for Web Nerds"

This lecture is about some of the things that you, as a database
programmer, might have to do to help the RDBMS improve efficiency:

e Define suitable indexes.

e "Tune” the database schema.




— Hard drives

Relations of large databases are usually stored on hard drives.

Hard drives can store large amounts of data, but work rather slowly
compared to the memory of a modern computer:

e The time to access a specific piece of data is on the order of 10° times

slower.

e [he rate at which data can be read is on the order of 10 — 100 times

slower.

For databases that do not fit in the computer’'s main memory,
the time used for accessing disks is usually the main perfor-

mance bottleneck.




— Using several hard drives

Many database systems use several hard drives to:
e Enable several pieces of data to be fetched in parallel.

e Increase the total rate of data from disk.

Even in systems with many hard drives, the time used for accessing disks is
usually the main performance bottleneck.




Next: Indexing




— Full table scans

When a DBMS encounters a query of the form

SELECT *
FROM R
WHERE <condition>

the obvious thing to do is read through the tuples of R and report those
tuples that satisfy the condition.

This is called a full table scan.




— Selective queries

Consider the selection query from before:

SELECT *
FROM R
WHERE <condition>

e If we have to report 80% of the tuples in R, it makes sense to do a full

table scan.

e On the other hand, if the query is very selective, and returns just a
small percentage of the tuples we might hope to do better:

— Is there a way of “skipping over” tuples that will not be selected?

10



— Problem session (5 minutes)

What ways of “going directly to the desired information” do you know?

Consider for example:
e A phone book.
e A dictionary.
e A cookbook.

Can you give examples where the equivalent of a full table scan is needed?

11



— Point queries

Consider a selection query with a single equality in the condition:

SELECT x*
FROM R
WHERE grade = 11

This is a so-called point query: We report all grades at the “point™ 11.

Point queries are often very selective.

Suppose the tuples of R were sorted by grade. Then the DBMS could:
1. Search for the first tuple with grade 11.

2. Report this and all the following tuples with grade 11.

12



— Range queries

Consider a selection query with a single inequality in the condition:

SELECT =*
FROM R
WHERE grade > 6 AND grade < 10

This is an example of a range query, since we report all grades in the range
7 to 9.

Suppose that the tuples of R were sorted according to grade. Then the
DBMS could:

1. Search for the first tuple with grade > 6.

2. Report this and all the following tuples with grade < 10.

13



— Indexes

To be able to quickly find the first tuple with a specific grade, the DBMS
may build an index on the grade attribute.

A database index is similar to an index in the back of a book:

1. For every piece of data you might be interested in (e.g., the attribute
value 9), the index says where to find it.

2. The index itself is organized such that one can quickly do the lookup.

Looking for information in a relation with the help of an index is called an
index scan.

14



— Primary indexes

If the tuples of a relation are stored sorted according to some attribute, an

index on this attribute is called primary.

e Primary indexes make point and range queries on the key very efficient.

e Many DBMSs automatically build a primary index on the primary key of

each relation.

e A primary index is sometimes referred to as a clustering or sparse

Index.

15



— Secondary indexes

It is possible to have more than one index on a relation. While not part of
the SQL standard, additional indexes can usually be created by writing

statements such as:

CREATE INDEX gradeIndex ON projects (grade);

The non-primary indexes are called secondary indexes.

e Secondary indexes make most point queries on the key more efficient.
e Secondary indexes make some range queries on the key more efficient.

e A secondary index is sometimes referred to as non-clustering or dense

index.

16



— Indexes on several attributes

An index can be defined on one or more attributes, e.g.

CREATE INDEX myIndex ON projects (grade,start,exam);

Such an index speeds up point queries such as:

SELECT * FROM projects
WHERE grade = 13 AND start=’2003-11-24’ AND exam=’2004-01-28’;

Due to the way indexes are (usually) implemented, an index on several
attributes automatically gives index for any prefix of these attributes.

Example:
myIndex also gives an index for (grade,start) and for (grade).

17



— Index scan versus full scan

Point and range queries on the attribute(s) of the primary index are almost
always best performed using an index scan.

Secondary indexes should be used with high selectivity queries:

e As a rule of thumb, a secondary index scan is faster than a full table
scan for queries returning less than 10-20% of a relation.

18



— Choosing whether to use the index

Even if an index scan is possible, a good DBMS sometimes chooses to do a

full table scan.

The decision is usually based on statistics on the data in the relation, which

allows the selectivity of the query to be estimated.

Often computation of the statistics is controlled manually. In Oracle,

statistics can be computed as follows:

ANALYZE TABLE <relation> COMPUTE STATISTICS;

19



— Other uses of indexes

Indexes are used by the DBMS to speed up other operations than point and

range queries.

e Join operations are often considerably faster when the join attributes

are indexed.

e Indexes are used by DBMSs to efficiently check referential integrity
constraints (such indexes are usually automatically created).

20



— Time usage of indexes

Based on what you have seen until now, a natural question would be:

Why not make indexes for all possible sets of attributes?

The main reason is that indexes need to be updated when the relation
changes, and index updates take time.

Thus we have the following trade-off for every index:
e |t speeds up certain database queries, but

e slows down every update to the relation.

Whether an index is a good idea is thus a matter of weighing the time

saved on queries against the additional time spent on updates.

21



— Problem session (5-10 minutes)

Suppose that you are the administrator of a database with two common

queries, (1 and ()s.

e Both queries take 100 ms to execute without an index.

e For each query we may choose to build an index which lowers the query

time to 40 ms.

e The time for inserting a new tuple is 20 ms, plus 20 ms for each index.

When is it advantageous to have indexes for (1 and/or (057

22



— Space usage of indexes

In addition to taking time to update, an index has a space cost.

e Primary indexes usually have modest space requirements, i.e.,
considerably less than the space for the relation itself.

e Secondary indexes use space similar to that required for the attributes

iIndexed.

For space reasons, one should therefore be careful with creating secondary

indexes on large amounts of data.

23



— Join “Advanced database technology”

For those of you who are fortunate enough to have taken an introductory
course in algorithms (at ITU or elsewhere), there is the possibility to learn
about the inner workings of indexes in the spring semester:

Advanced database technology

Lectures and exercises on Thursdays

Taught by Anna Ostlin and Rasmus Pagh

Based on the second part of GUW + supplementary material

The course contains explanation of disk based algorithms, indexes, query
optimization, and many other things to make you a database expert!

24



Next: A little about schema tuning




— Use the “smallest” possible data type

DBMSs often offer many different data types?®.

Among other things, this is to allow programmers to choose a data type
with the smallest possible space usage.

Space may have an impact on time, e.g., if tuples are twice as long as
needed, a full table scan takes twice as long as needed.

In Oracle, space can often be saved be replacing fixed length strings such as
CHAR (20) with variable length strings such as VARCHAR (20).

aWarning: Data types and their definition differ from one DBMS to another.

26



— Normalization and efficiency

The good: Normalization can be used to eliminate redundancy in a
database design, and thus avoid all sorts of problems.

The bad: Normalization implies that more join operations must be
performed when answering database queries.

Sometimes a database designer may choose to denormalize a database

schema, i.e., join several relation schemas into one.
e This may make some queries run faster.

e However, updates must then be handled more carefully, and the space

usage may rise.

27



Next: Database tuning cases

(following the SQL for Web Nerds web page on tuning)




— Most important points in this lecture

As a minimum, you should after this week:

e Remember that disk accesses are the performance bottleneck of most
large databases.

e Be able to estimate the value of a particular index based on:
— The selectivity of typical queries.

— The frequency of queries and updates.

In this lecture many details were given that you will not find in the course
book or supplementary material:

You are expected to know this to the detail given by the slides.

29



— 4-week project reminder

e The deadline for the 4-week project description is on Monday.

e |f you want to do my database project, A database-driven website,

please e-mail the description to me ahead of time (i.e., Friday morning
at the latest) for feedback.

30



— Last lecture

Next time the lecture will be about:
e The three dominant commercial RDBMSs (Oracle, SQL Server, DB2).
e How to study for the exam: What to focus on, how to read.

e Some sample exam-type questions and possible answers.

31



