Introduction to Databases, Fall 2003 IT University of Copenhagen

Lecture 6, part I: Normalization II

September 30, 2003

Lecturer: Rasmus Pagh

— Today's lecture

- What you should remember from previously.
- Multivalued dependencies.
- 4th normal form.
- Some observations on normalization.

-What you should remember from previously -

In this lecture I will assume that you remember:

- Concepts of normalization:
 - Decomposition
 - Functional dependency
 - Boyce-Codd normal form and 3rd normal form

Next: Multivalued dependencies.

- Redundancy in BCNF relations -

Boyce-Codd normal form eliminates redundancy in each tuple, but may leave redundancy among tuples in a relation.

This happens, for example, if two many-many relationships are represented in a relation.

```
[Figure 3.29 shown on slide]
```

Example: In the relation StarsIn(name, street, city, title, year) we could represent two many-many relationships: between actors and addresses, and between actors and movies.

— Curing it with NULL values? —

Then what about something like one of these:

name	street	city	title	year
C. Fisher	123 Maple St.	Hollywood	NULL	NULL
C. Fisher	5 Locust Ln.	Malibu	NULL	NULL
C. Fisher	NULL	NULL	Star Wars	1977
C. Fisher	NULL	NULL	Empire Strikes Back	1980
C. Fisher	NULL	NULL	Return of the Jedi	1983

name	street	city	title	year
C. Fisher	123 Maple St.	Hollywood	Star Wars	1977
C. Fisher	5 Locust Ln.	Malibu	Empire Strikes Back	1980
C. Fisher	NULL	NULL	Return of the Jedi	1983

- Decomposition -

A better idea is to eliminate redundancy by decomposing StarsIn as follows:

	name	street	С	ity
	C. Fisher	123 Maple St.	Holly	ywood
	C. Fisher	5 Locust Ln.	Malibu	
			1	
	name	title		year
:	<i>name</i> C. Fisher	<i>title</i> Star Wars		<i>year</i> 1977
	<i>name</i> C. Fisher C. Fisher	<i>title</i> Star Wars Empire Strikes B	Back	<i>year</i> 1977 1980

- When can we decompose? -

When can we decompose a relation R? Suppose we decompose into two relations (for simplicity we assume that there is just one common attribute):

R1(A, B1, B2,..., Bm) R2(A, C1, C2,..., Ck)

Now consider a specific value a for attribute A, occurring in the set of tuples T_1 from R1 and in the set of tuples T_2 from R2.

When we join R1 and R2, every pair of tuples from T_1 and T_2 are combined.

- When can we decompose (2)?

Example:

- Multivalued dependencies

When we can decompose R into relations
 R1(A1, A2,...An, B1, B2,..., Bm)
 R2(A1, A2,...An, C1, C2,..., Ck)
(with no Bs among the Cs) then we say that there is a
multivalued dependency (MVD) from the As to the Bs, written
 A1 A2...An → B1 B2...Bm

Example: Since StarsIn can be decomposed into

StarsIn1(name, street, city) and StarsIn2(name, title, year) it has the MVD name $\rightarrow \rightarrow$ street city.

Multi-valued dependencies, book's definition -

A1 A2...An \longrightarrow B1 B2...Bm

holds exactly if:

For every pair of tuples t and u from R that agree on all As, we can find some tuple v in R that agrees:

- With both t and u on the As
- With t on the Bs
- With *u* on the Cs

[Figure 3.30 shown on slide]

Problem session (5 minutes): Convince yourselves that this definition, used in the coursebook, is equivalent to the one given previously in this lecture.

- Unavoidable and trivial MVDs-

If $\{A1, A2, \ldots, An\}$ form a superkey, then for any B1, B2,..., Bm we unavoidably have:

A1 A2...An $\rightarrow \rightarrow$ B1 B2...Bm

An MVD is said to be **trivial** if either

- One of the Bs is among the As, or
- All the attributes of R are among the As and Bs.

Next: 4th normal form.

-4th normal form

Roughly speaking, a relation is in 4th normal form if it cannot be meaningfully decomposed into two relations. More precisely:

A relation is in **fourth normal form** (4NF) if any multivalued dependency among its attributes is either unavoidable or trivial.

Example: StarsIn has the MVD name $\rightarrow \rightarrow$ street city which is nontrivial. Since name is not a superkey the relation is not in 4NF.

- Decomposing a relation into 4NF

Suppose we have a relation R which is not in 4NF. Then there is a nontrivial MVD

$$A_1 A_2 \dots A_n \longrightarrow B_1 B_2 \dots B_m$$

which is not unavoidable.

To eliminate the MVD we split R into two relations:

- One with all attributes of R except B_1, B_2, \ldots, B_m .
- One with attributes $A_1, A_2, \ldots, A_n, B_1, B_2, \ldots, B_m$.

If any of the resulting relations is not in 4NF, the process is repeated.

-4NF decomposition example

Recall the relation StarsIn with schema

```
StarsIn(name, street, city, title, year)
```

It has the following nontrivial MVD, which is not unavoidable:

name $\rightarrow \rightarrow$ street city

Thus the decomposition yields the following relations (both in 4NF):

```
StarsIn1(name, street, city)
```

```
StarsIn2(name, title, year)
```

- Problem session (5 minutes)

What would happen if we tried to do the decomposition:

- According to an unavoidable MVD?
- According to an MVD including all attributes of R?
- According to an MVD with a common attribute on the left and right hand side?

- Reasoning about MVDs

As for functional dependencies, there are rules that can be used to derive new MVDs from a set of already known MVDs:

- The trivial dependencies rule. If $A_1A_2 \dots A_n \rightarrow B_1B_2 \dots B_m$ then $A_1A_2 \dots A_n \rightarrow B_1B_2 \dots B_mC_1 \dots C_k$, where the *C*s are among the *A*s.
- The transitive rule. If $A_1A_2 \ldots A_n \longrightarrow B_1B_2 \ldots B_m$ and $B_1B_2 \ldots B_m \longrightarrow C_1, \ldots, C_k$, where none of the Cs are among the Bs, then

$$A_1 A_2 \dots A_n \longrightarrow C_1 C_2 \dots C_k$$

 The complementation rule. If A₁A₂...A_n → B₁B₂...B_m then A₁A₂...A_n → C₁C₂...C_k, where the Cs are those attributes not among the As or Bs.

Next: Some observations on normalization

- Relationship among normal forms -

Inclusion among normal forms:

Any relation in 4NF is also in BCNF.

Any relation in BCNF is also in 3NF.

[Figure 3.31 shown on slide]

Properties of normal forms:

A "higher" normal form has less redundancy, but may not preserve functional and multivalued dependencies.

[Figure 3.32 shown on slide]

- How should normal forms be used? -

The various normal forms may be seen as *guidelines* for designing a good relation schema. Some complexities that arise are:

- Should we split keys, introducing dependencies between relations (in 3NF we do not)?
- What is the effect of decomposition on performance?
- How does decomposition affect query programming?

- Most important points in this lecture -

As a minimum, you should after this week:

- Be able to determine whether a relation is in 4th normal form.
- Be able to split a relation in several relations to achieve 4th normal form.