
Introduction to Databases, Fall 2003

IT University of Copenhagen

Lecture 10, part I: XML for data exchange

November 4, 2003

Lecturer: Rasmus Pagh

XML for data exchange

• Semistructured data and XML.

• Defining XML formats using XML schemas.

Transaction processing (next slide set)

• Serializability and atomicity

• ACID properties and rollbacks

• Dirty reads and isolation levels in SQL

Today’s lecture

1

Next: Semistructured data and XML.

Recall the following from the last lecture:

• In many businesses, data from a large number of heterogeneous

databases need to be integrated

– in connection with data warehousing, or

– in connection with system integration in general

• This is no easy task, due to differences in formats, conventions,

systems, etc.

The first part of today’s lecture gives an overview of (some of the things

that go into) transferring data from one system to another.

Integration of databases

3

The semistructured data model is a flexible way of describing data.

The flexibility makes it a good data model for data exchange:

• It is (mostly) easy to convert a given data set to a semistructured

representation.

• It is (often) easy to perform transformation from one semistructured

representation to another.

[Figure 4.19 shown on slide]

The semistructured data model

4

Semistructured data can be represented as a graph with nodes, and arcs

with labels between the nodes.

There are three kinds of nodes:

• A single root node, with no arcs entering, represents the entire

database.

• Leaf nodes, with no arcs leaving, have associated data (e.g. strings).

• Interior nodes have arcs entering and leaving, but no data.

[Figure 4.19 shown on slide]

Semistructured data

5

XML is a standardized textual notation for semistructured data.

It is (primarily) aimed at semistructured data which is a tree, i.e., where all

nodes (except the root) have exactly one arc entering.

• An arc in the tree with label l pointing at a node n in the

semistructured data is represented in the XML document as a pair of

tags:

<l>...</l>

Here ... is the XML description of the part of the semistructured data

for which n is the root.

• Leaf nodes are represented by the data they contain.

XML

6

If we disregard the “crossing arcs” in [Figure 4.19], it is represented by

the following XML document:

<?xml version="1.0">

<root>

<star>

<name>Carrie Fisher</name>

<address><street>Maple</street><city>H’wood</city></address>

<address><street>Locust</street><city>Malibu</city></address>

</star>

<star>

<name>Mark Hamill</name>

<address><street>Oak</street><city>B’wood</city></address>

</star>

<movie>

<title>Star Wars</title>

<year>1977</year>

</movie>

</root>

XML example

7

Besides data interchange, another use of XML in connection with databases

is for sharing information via the World Wide Web.

• Newer web browsers have special facilities for viewing XML documents

(e.g., containing the result of a database query).

• There are specialized languages such as XSLT that can be used to

specify how XML data is to be presented in a browser (converting it to

HTML).

XML and WWW

8

Suggest a way of representing the below relation in XML.

accountNo balance type

12345 1000.00 savings

67890 2846.92 checking

32178 -3210.00 loan

Does your approach work for arbitrary relations?

What about entire relational databases?

Problem session

9

Next: Defining XML formats using XML schemas.

When doing data interchange it is necessary to have a common description

of the data format, i.e., we need a specification of what data is allowable.

Several languages for writing such schemas for XML are used. The most

widespread are DTD (old and well-established) and XML Schema

(upcoming, more powerful standard).

These schema languages work by specifying a grammar for the XML

documents allowed, i.e., a set of rules that can be used to form any

allowable XML document.

Essentially, for each <l>...</l> (called an XML element) it is specified

what can occur between <l> and </l>.

Schemas for XML

11

DTD by example: [Figure 4.22 shown on slide]

DTDs have these ways of stating what can be in an element:

• Text, written as #PCDATA.

• A sequence of elements, written (ELEM1, ELEM2, ELEM3, ...)

• Zero or more occurrences of the same element, written ELEM*.

• A choice between elements, written ELEM1 | ELEM2 | ELEM3 | ...

• An optional element, written ELEM?

It is possible to combine the above, and write expressions such as:

((A? | (B|C)*), D)

DTDs

12

“XML Schema” seems to be the upcoming standard for XML schemas.

Some main features, relative to DTDs:

• Sophisticated type system (in contrast to #PCDATA).

• Large schema definitions can be split into modules.

• Can specify “no content”.

• Supports a mechanism for distinguishing different XML elements with

the same name (“namespaces”).

[Murray, Figure 3, shown on slide]

XML Schemas

13

The reason for the success of XML and XML Schema is, in fact, not that it

does something that could not be done before.

The good new thing is standardization:

• There is widespread agreement that the XML standards will form the

basis of information interchange in the future.

• Consequently, the major players in the software industry, many country

administrations, etc., support XML.

• There are many tools available for XML and related technologies.

Why XML?

14

As a minimum, you should after this week:

• Be able to recognize an XML document.

• Be able to understand a simple DTD or XML Schema.

In the course material, you will find many more details than what I have

talked about. I do not expect you to learn these details.

Most important points in this lecture

15

