
Introduction to Databases, Fall 2004

IT University of Copenhagen

Lecture 8, part I: Constraints and triggers

October 22, 2004

Lecturer: Rasmus Pagh

Constraints and triggers

• Keys

• Assertion-based constraints (tuple-level, schema-level)

• Foreign keys

• Triggers

XML for data exchange

• Semistructured data and XML.

• Defining XML formats using XML schemas.

Today’s lecture

1

• Your feedback is appreciated!

• Ensures quality of studies.

• Influences new study structures (“strukturkommisionen”).

Reminder: Course evaluation

2

In this lecture I will assume that you remember:

• What a key of a relation is.

• Referential integrity constraints in E/R diagrams.

• How to convert an E/R diagram into relations.

• The SQL used when modifying or adding tuples in a relation.

What you should remember from previously

3

Next: Keys.

So far we used the concept of a key of a relation only for normalization.

However, keys play an important role in SQL, because specifying the values

of key attributes is a way of referring to a unique tuple in a relation.

Since updates (e.g., entered by users of the database) could violate that

certain attributes form a key, RDBMSs offer to check this.

Keys in SQL?

5

One key of a relation may be declared as primary. This is done by adding

to the relation schema a line of the form:

PRIMARY KEY (<list of attributes>)

If the primary key has just one attribute, we may instead write PRIMARY

KEY immediately after the definition of the data type of the attribute, e.g.:

id INT PRIMARY KEY,

NULL values are not allowed in attributes of a primary key.

Declaring a primary key

6

If we want the DBMS to check other key constraints, we may add to the

SQL relation schema any number of lines of the form:

UNIQUE (<list of attributes in key>)

Uniqueness is not guaranteed for tuples having NULL values in the key

attributes. However, NULL values can be prevented by adding a NOT NULL

constraint after the declaration of each key attribute.

Declaring other keys

7

When a key constraint is violated, an error message is produced.

The state of the database (i.e., the data it contains) is restored to what it

was before the action that caused the violation.

Updates in SQL are grouped in units called transactions (more about

transactions in two weeks).

Constraint-violating transactions are undone (or rolled back).

When a key constraint is violated

8

Next: Assertion-based constraints.

Another useful kind of constraints, called CHECK constraints, are assertions

(i.e., conditions that must be true) about attributes or tuples of a relation.

• A CHECK constraint on an attribute is checked every time

– a value of this attribute is modified.

– a new tuple is inserted.

• A CHECK constraint on tuples is checked every time

– an attribute value changes.

– a new tuple is inserted.

• If a constraint is violated, the current transaction is rolled back, and an

error message is produced.

CHECK constraints

10

A constraint C on an attribute is declared by writing

CHECK C

immediately after the datatype definition.

The condition C may refer to other attributes of the relation, and even to

other relations, using a subquery.

(However, Oracle does not allow subqueries in C.)

Examples:

• percentage INT CHECK (percentage>=0 AND percentage<=100)

• cpr CHAR(10) CHECK (cpr IN (SELECT cpr FROM students))

Writing attribute-based CHECK constraints

11

A constraint C on tuples is declared by adding the line

CHECK C

to the relation schema definition.

The only difference to attribute-based CHECK constraints is when the

constraint is checked.

Examples:

• CHECK (upper-bound => lower-bound)

• CHECK (cpr IN (SELECT cpr FROM students))

Writing tuple-based CHECK constraints

12

The SQL standard proposes a general form of assertions, or general

constraints.

These are declared as part of the database schema, and may assert the

truth of any condition C.

Semantics: Any transaction that makes C false will be rolled back.

Unfortunately, assertions are not implemented in major DBMSs (including

Oracle), the reason being that they can be hard to check efficiently.

[Box from GUW p. 339 shown on slide]

Schema-level assertions

13

Next: Foreign keys.

A foreign key constraint on an attribute is a constraint saying that its

attribute values can always be found in exactly one place in another relation.

Foreign key constraints are typically used to express referential integrity,

i.e., that values supposed to refer to tuples in other tables indeed do so.

If we want the DBMS to check foreign key constraints, we may add to the

SQL relation schema any number of declarations of the form:

FOREIGN KEY (<attribute name>)

REFERENCES <table name>(<attribute name>)

Foreign key constraints

15

Foreign keys may be composite, i.e., consist of several attributes.

The syntax for declaring composite foreign keys is the obvious extension of

what we saw before:

FOREIGN KEY (<list of attribute names>)

REFERENCES <table name>(<list of attribute names>)

Composite foreign keys

16

Suppose the schema for relation R contains the declaration

FOREIGN KEY (A1, . . . , An) REFERENCES S(B1, . . . , Bn).

Then the schema for relation S must contain a declaration like

UNIQUE (B1, . . . , Bn).

This means that the DBMS checks:

• That every tuple in πA1,...,An
(R) that has no NULL value is also in

πB1,...,Bn
(S).

• The UNIQUE constraint on B1, . . . , Bn

Semantics of a foreign key constraint

17

What is the difference (if any) between the CHECK constraint

cpr CHAR(10) CHECK (cpr IN (SELECT cpr FROM students))

and the referential integrity constraint

cpr CHAR(10) REFERENCES students(cpr)

Problem session (5 minutes)

18

Suppose we based our relation schema on an E/R diagram, where there was

a referential integrity constraint on a relationship X.

S¡
¡@

@
¡

¡@
@

R X °
¯

If the key for entity set S is {A1, . . . , An}, then

• The relation corresponding to R has A1, . . . , An as attributes

(it was combined with the relation for X, as described in GUW 3.2.3).

• The relation corresponding to S has A1, . . . , An as primary key.

We can express the referential integrity constraint in the schema for R:

FOREIGN KEY (A1, . . . , An) REFERENCES S(A1, . . . , An).

Referential integrity from E/R diagrams

19

The default (i.e., standard) policy when a transaction violates a foreign key

constraint is to roll the transaction back.

However, for each referential constraint we may choose from two other

policies for handling changes to the referenced relation:

• The cascade policy:

– If the foreign key attribute values of a tuple were changed, change

all references to this tuple to the new value.

– If a tuple is deleted, delete all tuples referencing it.

• The set-null policy:

– If some reference became invalid, set all its attribute values to NULL.

Maintaining referential integrity

20

Consider the E/R diagram of GUW Figure 2.18 (with suitable attributes

added). You should convert the diagram into a suitable relational database

schema, including:

• Name and attributes of each relation.

• Referential integrity constraints.

Suppose we delete a studio from the database. What would happen to

other relations if we use:

• The cascade policy.

• The set-null policy.

Problem session (5-10 minutes)

21

Next: Triggers.

Triggers (or event-condition-action rules) is a general mechanism for:

• Enforcing constraints, and more generally

• Making the DBMS perform actions on certain events.

The definition of a trigger consist of an event, a condition, and an action.

• Triggers are awakened (or triggered) when the event, a certain change

to the database, occurs.

• If the condition associated with the trigger is true, then the action is

performed.

[Figure 7.8 shown on slide]

Triggers

23

Key features of triggers in SQL:

• Triggering events are insertions, deletions, and updates of tuples.

• The action can be any SQL statement.

(But most RDBMSs have restrictions on the SQL allowed in the action.)

• The action can refer to values from both before and after the event.

• The action can be performed either

– After each event that activates the trigger, or

– At the end of each transaction where one or more events activated

the trigger.

Triggers in SQL

24

Syntax in Oracle (differs slightly from SQL definition):

CREATE TRIGGER <name of trigger> AFTER

INSERT | DELETE | UPDATE

[OF <attribute name>] ON <name of relation or view>

[REFERENCING OLD AS <name>, NEW AS <name>]

[FOR EACH ROW

[WHEN <condition>]]

BEGIN

<SQL commands>

END;

Vertical lines | between alternatives. Brackets [] around optional parts.

Variables in <SQL commands> must be prefixed by semicolon (:old.a).

Trigger definition syntax, simplified

25

A special kind of triggers, instead-of triggers, supported by e.g. Oracle,

can be used to specify what should happen when a view is updated.

• This makes it possible to update some views that are not updateable.

• If the view is updatable, the action of the trigger is executed instead of

the update itself.

Instead-of triggers and views

26

As a minimum, you should after this week:

• Know how to declare key constraints and referential integrity (i.e.,

foreign key) constraints in SQL.

• Understand the basic mechanisms for maintaining referential integrity.

• Know how to declare tuple-based CHECK constraints, and know how

these are checked.

• Understand how to define triggers, and the mechanism for executing

triggers in SQL.

Most important points in this lecture

27

