
Introduction to Databases, Fall 2003

IT University of Copenhagen

Lecture 4: Normalization

September 24, 2004

Lecturer: Rasmus Pagh



• What you should remember from previously.

• Anomalies in relations.

• Decomposing relations.

• Functional dependencies.

• Boyce-Codd normal form (BCNF).

• 3rd normal form.

• Attribute value redundancy.

Today’s lecture

1



In this lecture I will assume that you remember:

• Key concepts of the relational data model:

– Relation

– Attributes

– Relation schema

– Relation instance

• Key concepts in SQL

– Projection

– Join

• Key concepts in E/R modeling:

– Entity set

– Relationship

What you should remember from previously.

2



Next: Anomalies in relations



Redundant (i.e., “unnecessary”) information occurs in a relation if the same

fact is repeated in several different tuples.

[Figure 3.21 shown on slide]

One obvious problem with redundant information is that we use more

memory than is necessary. Redundancy is an example of an anomaly of the

relation schema.

Redundancy in a relation

4



The other principal kinds of unwanted anomalies are:

• Update anomalies. Occur when it is possible to change a fact in one

tuple but leave the same fact unchanged in another. (E.g., the length

of Star Wars in the Movies relation.)

• Deletion anomalies. Occur when deleting a tuple (recording some

fact) may delete another fact from the database. (E.g., information on

a movie in the Movies relation.)

[Figure 3.21 shown on slide]

Ideally, we would like relation schemas that do not allow anomalies.

Normalization is a process that can often be used to arrive at such

schemas.

Other kinds of anomalies

5



Next: Decomposing relations



The anomalies in the example we saw can be eliminated by splitting (or

decomposing) the relation schema

Movies(title, year, length, filmType, studioName, starName)

into two relation schemas

Movies1(title, year, length, filmType, studioName)

Movies2(title, year, starName)

[Figure 3.22 and 3.23 shown on slide]

Decomposing relations

7



The relation instances for Movies1 and Movies2 were found by projection

of Movies onto their attributes. In SQL, Movies2 could be computed as

follows:

SELECT title, year, starName

FROM Movies

This is a general rule when decomposing: The decomposed relation

instances are found by projection of the original relation instance.

Decomposition and projection

8



We would like the decomposed relations to contain the same information as

the original relation. In particular, we should be able to recombine them to

recover the original relation.

Recombining can be done by joining the relations on attributes of the same

name (this is called a natural join). [Figure 3.28 shown on slide]

Example: In SQL we can compute Movies as follows:

SELECT *

FROM Stars1, Stars2

WHERE Stars1.title = Stars2.title AND

Stars1.year = Stars2.year

Recombining relations

9



Consider these two attempts at decomposing Movies into relations

MoviesA(length, filmType, studioName)

MoviesB(title, year, starName)

MoviesX(title, year, length, filmType)

MoviesY(title, year, starName, studioName)

What are the problems with these attempts?

Problem session (5 minutes)

10



A key for a relation is a set of its attributes that satisfy:

• Uniqueness. The values of the attributes uniquely iden-

tify a tuple.

• Minimality. No proper subset of the attributes has the

uniqueness property.

If uniqueness is satisfied (but not necessarily minimality) the

attributes are said to form a superkey.

Examples: [Figure 3.21 shown on slide]

• {Title, year, starName} is a key for the Movies relation.

• {Title, year, starName, length} is a superkey, but not a key, for

the Movies relation.

• {Title, year} is not a superkey (or key) for the Movies relation.

Keys of a relation

11



Confusingly, what we call a superkey in the context of relations corresponds

to what we called a key in the context of E/R models.

According to the book, the key/superkey terminology is not well-established.

Keys consisting of more than one attribute are sometimes called composite.

Key terminology

12



Suppose we decompose a relation R into two relations R1 and R2 with

common attributes B1, B2, . . . , Bm. What is required to be able to

recover R?

[Figure 3.28 shown on slide]

Criterion for being able to recombine:

{B1, B2, . . . , Bm} must be a superkey for R1 or R2.

Recombining requires a superkey

13



Next: Functional dependencies



When values of attribute B can be derived from the attributes

A1, . . . , An we say that B is functionally dependent on A1, . . . , An.

This is written as follows:

A1A2 . . . An → B

[Figure 3.16 shown on slide]

Example: Movies has the functional dependency (FD)

title year → length

but not the FD

title year → starName

This is in fact the very reason for the anomalies we saw!

Functional dependencies cause anomalies

15



Functional dependency on a superkey

Whenever we see the attribute values of some (super)key {A1, . . . , An}, we

can uniquely identify the tuple from which the values come.

In particular, we can determine the value of any other attribute B in the

relation, so we unavoidably have the FD

A1A2 . . . An → B

Trivial functional dependency

Also, we can always determine the value of attribute Ai from the value of

attribute Ai. So we unavoidably have the FD

A1A2 . . . An → Ai

Unavoidable functional dependency

16



Consider a relation containing an inventory record:

Inventory(part, warehouse, quantity, warehouse-address)

• What are the keys of the relation?

• What are the avoidable functional dependencies?

• Can you suggest a way of decomposing the relation to eliminate the

avoidable functional dependencies?

Problem session (10 minutes)

17



Next: Boyce-Codd normal form (BCNF)



A normal form is a criterion on a relation schema.

A relation is in Boyce-Codd normal form (BCNF) if there

are only unavoidable functional dependencies among its at-

tributes.

Example: Movies has the functional dependency

title year → length

which is not unavoidable because it is nontrivial and {title, year} is not a

(super)key. Thus, Movies is not in BCNF.

Boyce-Codd normal form (BCNF)

19



The relations of our decomposition:

Movies1(title, year, length, filmType, studioName)

Movies2(title, year, starName)

are in BCNF. The only nontrivial nonreducible FDs are

Movies1: title year → length

Movies1: title year → filmType

Movies1: title year → studioName

Movies2: title year → starName

and they are unavoidable since {title, year} is a key for both relations.

Examples of relations in BCNF

20



Reducing FDs: Whenever we can reduce the number of attributes when

writing an FD we do so. For example, Movies1 has the FDs

title year filmType → length

title year studioName → length

which can both be reduced to

title year → length

Combining FDs: Whenever several FDs have the same left hand side we

combine them. For example, the three FDs we saw for Movies can be

written succinctly as:

title year → length filmType studioName

Writing functional dependencies

21



Suppose we have a relation R which is not in BCNF. Then there is an FD

A1A2 . . . An → B1B2 . . . Bm

which is not unavoidable.

To eliminate the FD we split R into two relations: [Figure 3.24]

• One with all attributes of R except B1, B2, . . . , Bm.

• One with attributes A1, A2, . . . , An, B1, B2, . . . , Bm.

If any of the resulting relations is not in BCNF, the process is repeated.

Note: A1, A2, . . . , An is a superkey for the second relation – therefore we

can recover R as the natural join of the two relations.

Decomposing a relation into BCNF

22



Recall the relation Movies with schema

Movies(title, year, length, filmType, studioName, starName)

It has the following FD, which is not unavoidable:

title year → length filmType studioName

Thus the decomposition yields the following relations (both in BCNF):

Movies1(title, year, length, filmType, studioName)

Movies2(title, year, starName)

BCNF decomposition example

23



Consider the following relation with information on movie studios:

MovieStudio(title, year, length, filmType, studioName, studioAddr)

Argue that the relation is not in BCNF, and find a decomposition into

BCNF.

Problem session (5 minutes)

24



The following systematic method (not described in GUW) can be used to

find all FDs in a relation.

Suppose we have a relation with attributes A1, A2, . . . , An and B. To find

all FDs with B on the right hand side, first determine whether

A1A2 . . . An → B

is an FD:

• If not, there are no FDs with (a subset of) A1, A2, . . . , An on the left

hand side and B on the right hand side, and we may stop.

• Otherwise repeat the same procedure with the n candidate FDs we get

by taking one attribute away from the left hand side of the above FD.

Finding all FDs

25



To find all nonreducible FDs, we may use the following method, which often

looks at much fewer candidate FDs:

First determine whether

A1A2 . . . An → B

is an FD:

• If not, we may stop.

• Otherwise, if we can spot an FD from a subset of A1, A2, . . . , An to B,

repeat the procedure with each of the attributes of the subset removed

from the left hand side of the above FD.

• Otherwise repeat the procedure with all n candidate FDs we get by

taking one attribute away from the left hand side of the above FD.

Reducing the number of cases

26



Movies(title, year, length, filmType, studioName, starName)

To find all nonreducible FDs with studioName on the right hand side, we

consider the following candidate FDs:

• title year length filmType starName → studioName (FD)

• title year starName → studioName (spotted FD)

• year length filmType starName → studioName (not FD)

• title length filmType starName → studioName (not FD)

• title year length filmType → studioName (FD)

• title year → studioName (spotted FD)

• year length filmType → studioName (not FD)

• title length filmType → studioName (not FD)

Example of finding all nonreducible FDs

27



Next: 3rd normal form



Consider the relation with schema Bookings(title,theater,city)

Under certain assumptions, it has the FD theater → city, but theater is

not a superkey. The BCNF decomposition yields relation schemas

Bookings1(theater,city) and Bookings2(theater,title).

These schemas and their FDs allow, e.g., the relation instances:

theater city

Guild Menlo Park

Park Menlo Park

theater title

Guild The net

Park The net

which violate the presumed FD title city → theater.

Thus, there are implicit dependencies between values in different relations.

We cannot check FDs separately in each relation to see such a dependency.

Interrelation dependencies

29



As we just saw, decomposition can result in a relational database schema

where a functional dependency “disappeared”.

The problem in the previous example arose because we decomposed

according to the FD theater → city, where city is part of a key for the

Bookings relation. Thus we ended up splitting the key {city, theater}.

This problem of FDs that are not preserved never arises if we do not

decompose in this case.

Splitting keys

30



We have motivated the following normal form which never splits a keys of

the original relation:

A relation is in 3rd normal form (3NF) if any functional

dependency among its attributes is either unavoidable, or has

a member of some key on the right hand side.

In words: A relation is in 3NF if there are no unavoidable functional

dependencies among non-key attributes.

Third normal form

31



Whether it is a good idea to stop decomposition when third normal form is

reached depends on the specific scenario.

• Mostly, 3NF and BCNF coincide, so there is nothing to consider.

• If not, the redundancy in tuples in 3NF should be weighed against the

fact that some FD is difficult to check/maintain in BCNF.

Example:

In the Bookings example, we might want to make the DBMS check that to

every title and city, there is at most one theater. For the BCNF

decomposed relations, this would involve a query on Bookings1 for every

change of Bookings2, and vice versa.

When to stop decomposition at 3NF?

32



Next: Attribute value redundancy (not in book)



A kind of redundancy, which is different from functional dependence, is

redundancy in attribute values.

Example: The string Star Wars was repeated many times to designate the

movie. Longer strings would make the problem even more obvious.

This kind of redundancy could also cause update anomalies.

Example: Suppose the working title Lucky Luke Skywalker had to be

changed in the whole database to Star Wars.

Attribute value redundancy

34



A way of reducing this redundancy is to use (or introduce) a short key value

for each string, and put strings in a separate relation like

MovieNames(key,name)

Whether this is a good idea depends on the number of occurrences and

other factors such as the need for efficiency.

Reducing attribute value redundancy

35



As a minimum, you should after this week:

• Understand the significance of normalization.

• Be able to determine whether a relation is in Boyce Codd normal form

or 3rd normal form.

• Be able to split a relation in several relations to achieve any of the

normal forms.

• Know how to recombine normalized relations in SQL.

Most important points in this lecture

36



Next week we finish the study of normalization:

• 4th normal form

• Some observations on normalization.

Then we will go through a number of cases of database design, including

• E/R design

• Conversion to relation schemas

• Normalization

Next time

37


