
Introduction to Databases, Fall 2005

IT University of Copenhagen

Lecture 7: Relational algebra and SQL

October 24, 2005

Lecturer: Rasmus Pagh



• Basics of relational algebra.

• Relational algebra on bags and commercial RDBMSs.

• More relational algebra (and SQL).

• Algebraic laws.

Today’s lecture

1



In this lecture I will assume that you remember:

• The mathematical definition of a relation as a set of tuples.

• Projection and selection using SELECT-FROM-WHERE.

• Natural join.

• Nested SQL queries.

What you should remember from previously

2



Next: Basics of relational algebra.



An algebra consists of a set of atomic operands, and a set of operators.

We can form algebraic expressions by applying operators to operands

(which can be atomic or expressions themselves).

Example:

In the algebra of arithmetic, the atomic operands are constants and

variables, and the operators are +, -, /, and ·.

Using these we can form expressions like ((x + 7)/(y − 3)) + x.

What is an algebra?

4



Relational algebra, defined in its basic form by E. F. Codd in 1970, has

relations as atomic operands, and various operations on relations (such as

select and join) as operators.

It is the mathematical basis of SQL queries.

Example relational algebra expression:

σa≥5(R1 ./ R2) ∪ R3

using the operators σa≥5, ./, and ∪ on operands R1, R2, and R3.

Relational algebra

5



Top reasons why relational algebra is covered in most database textbooks:

1. It gives another view of SQL queries, and thus a better understanding.

2. It is used in query optimization (to learn about this, enroll for Advanced

Database Technology in spring 2006!)

3. It can be used for reasoning about relational queries and constraints.

4. It is the historical background of relational databases.

Why is relational algebra useful?

6



To describe the operators of relational algebra we will use mathematical

notation for describing sets (recall that a relation is a set of tuples).

The notation {X | Y } is used to describe “the set of all elements of the

form X that satisfy the condition Y ”.

Examples:

• The set of negative integers: {x | x ∈ Z (the set of integers), x < 0}.

• The set of two-tuples of strings:

{(x, y) | x is a string, and y is a string}.

Recap of set notation

7



Recall that selection is the operation of choosing the tuples in a relation

satisfying some condition.

In relational algebra, the operator σC is used for selection with condition C.

Formally, σC(R) = {t ∈ R | t satisfies C}. Thus:

σC(R)

corresponds in SQL to

SELECT *

FROM R

WHERE C

Selection in relational algebra

8



Recall that projection is the operation of choosing certain attributes of a

relation.

In relational algebra, the operator πA1,...,An
is used for projection onto

attributes A1, . . . , An.

Formally:

πA1,...,An
(R) = {(a1, a2, . . . , an) | there exists t ∈ R where for all i,

ai is the value of attribute Ai of t}

Projection in relational algebra

9



πA1,...,An
(R)

corresponds in SQL to

SELECT A1, . . . , An

FROM R

Note that projection is the operator we use to compute relation instances in

a decomposition.

Projection in relational algebra and SQL

10



Since relations are sets, we can apply the standard set operators.

• Union: R1 ∪ R2 = {x | x ∈ R1 or x ∈ R2}.

• Intersection: R1 ∩ R2 = {x | x ∈ R1 and x ∈ R2}.

• Difference: R1 − R2 = {x | x ∈ R1 and x 6∈ R2}.

In SQL, the above expressions correspond to, respectively:

• R1 UNION R2

• R1 INTERSECT R2

• R1 EXCEPT R2

Set operators in relational algebra

11



Try to come up with a formal definition of the natural join operation, i.e.,

the join operation used to combine decomposed relation instances.

Suppose the relations to be joined are R1(A1, . . . , An, B1, . . . , Bm) and

R2(A1, . . . , An, C1, . . . , Ck). You should express your answer in the form

{X | Y }

as in the examples you have seen.

Cheating can be done by looking at the next slide!

Problem session (5 minutes)

12



The join operation used when recombining decomposed relations is called

natural join, denoted by ./ in relational algebra.

Suppose we have relations R1(A1, . . . , An, B1, . . . , Bm) and

R2(A1, . . . , An, C1, . . . , Ck). Then formally:

R1 ./ R2 = {(a1, . . . , an, b1, . . . , bm, c1, . . . , ck)

| there exists t ∈ R1 and u ∈ R2 with

values a1, . . . , an on attributes A1, . . . , An of t and u,

values b1, . . . , bm on attributes B1, . . . , Bm of t,

and values c1, . . . , ck on attributes C1, . . . , Ck of u}

Natural join in relational algebra

13



R1 ./ R2

corresponds in SQL to

R1 NATURAL JOIN R2

Natural join is the operator we use to recover the original relation in a

decomposition.

Note: NATURAL JOIN is not supported in Oracle.

Natural join in relational algebra and SQL

14



Next: Relational algebra on bags and commercial RDBMSs.



In all the cases we saw, the correspondence between relational

algebra and SQL queries is not what you might think!

Let’s look at some examples from an Oracle session. . .

Relational algebra vs SQL

16



What we have seen is that relations in SQL are bags (or multisets), i.e.,

tuples may appear more than once.

The fact that the same attribute may occur several times is a different (and

less important) issue that we won’t go into.

It is possible to define relational algebra on bags, whose operators are

basically identical to those of SQL.

Relations in SQL are bags

17



Relational algebra on bags is basically the same as relational algebra (on

sets), without duplicate elimination.

• πA1,...,An
(R) has one tuple for each tuple of R, even if the tuples

become identical when some attributes are removed.

• σC(R) contains all tuples of R satisfying C, including duplicates.

• A tuple occurs x · y times in R1 ./ R2 if it was formed by combining a

tuple occurring x times in R1 with a tuple occurring y times in R2.

• R1 ∪ R2 contains all tuples of R1 and R2, including duplicates.

(This corresponds to UNION ALL in SQL.)

• R1 ∩ R2 and R1 − R2 can also be defined – see book for details.

• A new duplicate elimination operator: δ(R) is the set of (different)

tuples occurring in the bag R.

Features of relational algebra on bags

18



The reason for using bags (rather than sets, which are easier to handle) is

database efficiency.

Since efficiency is crucial for commercial RDBMSs, SQL was carefully

designed to allow efficient evaluation of queries.

The reason why bags are used is that duplicate elimination is relatively

costly (requires time and memory), so it is generally an advantage to use it

only when necessary.

Why bags?

19



We can force duplicate elimination in a SELECT-FROM-WHERE by adding the

keyword DISTINCT.

Example: To compute the relational algebra expression πA1,...,An
(R) in

SQL, use SELECT DISTINCT A1, . . . , An FROM R.

Some SQL operators, like UNION, INTERSECT, and EXCEPT, automatically

perform duplicate elimination.

If we always used DISTINCT etc., the semantics of SQL would match

relational algebra. However, when efficiency is an issue this is a bad idea.

Duplicate elimination in SQL

20



Suppose that R and S are relations with the same attributes, and consider

the expression

((σC1
(R)) ∪ S) ./ (σC2

(R))

Write SQL expressions that are equivalent to the above:

1. When interpreted as an expression in relational algebra (on sets).

2. When interpreted as an expression in relational algebra on bags.

Problem session (5-10 minutes)

21



Next: More relational algebra (and SQL).



• Cartesian product. R1 × R2, corresponds in SQL to

SELECT * FROM R1, R2.

• Theta-join (Θ-join). R1 ./
C

R2, corresponds in SQL to

SELECT * FROM R1, R2 WHERE C.

• Outerjoin. R1
◦
./ R2, includes all tuples of R1 ./ R2, and further

includes dangling tuples of R1 and R2 that are not matched with any

tuple of the other relation, padded with NULL values.

Corresponds in SQL to R1 FULL NATURAL OUTER JOIN R2.

[Figure 5.19 shown on slide]

Other kinds of join

23



Aggregation operators are used to compute facts about the values of some

attribute in a relation.

The standard aggregation operators are: SUM, AVG, MIN, MAX, and COUNT,

computing, respectively, the sum, average, minimum, maximum and

number of the attribute values.

In relational algebra, the aggregation of attribute A in a relation R with

operator OP is written: γOP(A)(R)

Aggregation can be done in SQL by specifying the aggregation operator in

the SELECT clause:

SELECT OP(A)

FROM R

Aggregation operators

24



Aggregation is most useful in connection with grouping, where the tuples of

a relation are split into groups, for each of which the aggregate is computed.

The tuples in a relation are divided into groups based on the values of a

specified set of grouping attributes, and the aggregate is computed for

each group.

Aggregation of attribute A in a relation R with operator OP on grouping

attributes A1, . . . , An is written in relational algebra as γA1,...,An,OP(A)(R)

The SQL equivalent is

SELECT A1, . . . , An, OP(A)

FROM R

GROUP BY A1, . . . , An

Grouping and aggregation

25



When computing an aggregate, we get one tuple for each list of values of

the grouping attributes. In addition to the grouping attributes, the tuple

contains the aggregate value(s) for the group.

The formal definition of the grouping and aggregation operators in

relational algebra depends on the operator in question. For SUM we have:

γA1,...,An,SUM(A)(R) = {(a1, a2, . . . , an, s) | (a1, a2, . . . , an) ∈ πA1,...,An
(R)

and s = Σt∈σA1=a1,...,An=an (R)πA(t)}

Semantics of aggregation

26



Sometimes we wish to perform a selection of certain groups, based on an

aggregate value of that group.

SQL supports a convenient way of doing this (with no direct equivalent in

relational algebra):

SELECT <attributes and aggregates in the result>

FROM R

GROUP BY <grouping attributes>

HAVING <condition that may involve aggregates>

The HAVING clause may contain conditions like MIN(year) < 1930, where

MIN(year) is the minimum value of the year attribute within the group.

Note: This would make no sense in a WHERE clause. (Why?)

Aggregate conditions on groups

27



Next: Algebraic laws.



An algebraic law is an equation (or other mathematical statement) which is

always true in a particular algebra.

Using such laws we could, e.g., conclude that the following two relational

algebra expressions are equivalent:

((σC1
(R1)) ∪ R2) ./ (σC2

(R1))

(σC1 AND C2
(R1)) ∪ (σC2

(R1 ./ R2))

The laws of relational algebra allow us to:

• Reason about relational expressions (and thus SQL expressions).

• Perform query optimization (ADBT, spring 2006).

Laws in relational algebra

29



Commutativity laws, examples

• R ./ S = S ./ R

• R ∪ S = S ∪ R

• R ∩ S = S ∩ R

Associativity laws, examples

• (R ./ S) ./ T = R ./ (S ./ T )

• (R ∪ S) ∪ T = R ∪ (S ∪ T )

• (R ∩ S) ∩ T = R ∩ (S ∩ T )

Basic laws in relational algebra

30



Argue that the equation

(R ./ S) ./ T = R ./ (S ./ T )

is indeed a valid algebraic law.

In other words: Argue that the equality holds for any relations R, S, and T .

Problem session (5 minutes)

31



Distributive laws, examples

• (R ∩ S) ∪ T = (R ∪ T ) ∩ (S ∪ T )

• (R ∪ S) ./ T = (R ./ T ) ∪ (S ./ T )

• σC(R ∪ S) = σC(R) ∪ σC(S)

• πL(R ./ S) = πL(πL∪J(R) ./ πL∪J(S)), where J is the set of common

attributes of R and S.

Example of use: By the second law, the expression

((σC1
(R1)) ∪ R2) ./ (σC2

(R1))

is equivalent to ((σC1
(R1)) ./ (σC2

(R1))) ∪ (R2 ./ (σC2
(R1))).

Relational algebraic law school, continued

32



We can decompose a relation R into R1(A1, . . . , An, B1, . . . , Bm) and

R2(A1, . . . , An, C1, . . . , Ck) exactly when we have the equality:

R = (πA1,...,An,B1,...,Bm
(R)) ./ (πA1,...,An,C1,...,Ck

(R))

This is the formal way of stating that the relation instances of R1 and R2,

derived from R by projection, should always join to form R.

An algebraic criterion for decomposition

33



As a minimum, you should after this week:

• Know the meaning of the most common relational algebra operators:

∪, ∩, −, π, σ, ×, ./, γ.

• Be able to translate simple SQL queries to relational algebra on bags,

and vice versa.

• Recognize relational algebra laws.

Most important points in this lecture

34



Next time we will cover a mix of topics:

• Constraints, which are assertions that we want to be true at all times in

the database.

• Triggers, which are database modifications that can be activated by

other database modifications.

• Access privileges in SQL.

• . . . and if time allows, XML as a data interchange format.

Next lecture

35


