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Abstract

One of the most interesting new problems in theoretical computer science is
massive data algorithmics. Massive data problems cannot rely on naive tech-
niques: Even quadratic time algorithms can turn out to be unbearable in the
case of massive input. This problem is even more urgent when the output
depends on aggregations of the input data, since to aggregate data translates
in an explosion in size and time necessary to compute the aggregation. Still,
the aggregate, intermediate data, are necessary to produce the correct output.
We present algorithms that are able to sample from the multiset of intermediate
data, without representing explicitly such a multiset, in this way achieving small
space usage and efficient running time.

We address problems in data mining, data streaming, pattern mining in
graphs and structure prediction. For all these topics, we use the innovative
technique of sampling from implicit sets.

More specifically, we present algorithms for finding the most similar pairs of
items in the so called market basket model. This model is easily explained in
the following way: we want to find those pairs of items that are mainly bought
together by customers of a shop. In one scenario, the input of this problem is
given in a single unit and can be read several times; on the other hand, there
are frameworks in which the input arrives in smaller, volatile chunks; in these
frameworks it is infeasible to store more than one chunk at a time; therefore,
once a chunk is read, it cannot be accessed anymore in the future. We address
the problem of finding similar pairs in both scenarios without generating the
multiset of all the pairs that appear in the customers’ baskets. For the latter
scenario we also present two hardness results.

Furthermore, we present an algorithm for finding recurrent sequences of
labels in a directed graph where vertices are, non uniquely, labelled. The output
is produced without generating all the possible directed paths of nodes that exist
in the graph. To the best of our knowledge, this is the first algorithm dealing
with such a problem.

Moreover, we show an algorithm for computing an approximation of the
number of non zero entries in the result of the product of two boolean matrices.
The estimate is output without explicitly producing the result of the matrix
product.

The algorithms we present are all randomised, and so they can make errors.
A thorough analysis of these errors shows that our algorithms are indeed accu-
rate and reliable, and errors are unlikely. Moreover, all our algorithms solve the
respective problems using time, in expectation, that is linear, or quasi linear,
with respect to the input size or is linear with respect to the size of the output.
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Chapter 1

Introduction

Theoretical computer science has evolved in the years, starting from the classical
graphs and combinatorial optimisation problems, to arrive to the arguably more
recent massive data and algorithmic game theory problems.

This evolution accounts for many factors that influenced computer science
during the last 50 years: Faster machines, cheaper storage space, pervasive
deployment of Internet in the first world, economical evolution and a different
perception of the tasks of scientific research in universities. While all these
factors are not necessarily positive, the plethora of new branches that computer
science has followed has highlighted some interesting and deep problems.

A very meaningful example concerning these new problems is the one con-
nected to massive data algorithms. The topic has acquired such a huge relevance
that entire research centres have been devoted to researching in this field. Why
massive data algorithms have become a central topic of study is easily under-
stood, looking at the evolution of western societies in the last 30 years. Besides
the political reasons and interests of the police in keeping the data of social enti-
ties under strict control, cheap hardware has caused all the administrative tasks
of companies or social institutions to be carried out using computers. All that
was formerly recorded only on paper, suddenly found a Platonic copy of itself in
a digital format. This means that managing such a huge amount of information
could not rely anymore on naive algorithms. Managing information is not only
the task of accessing and storing the data; it also entails being able to aggregate
them and output the result of the aggregation tasks. Handling information also
requires to run analyses of the data in order to find some possibly interesting
characteristics that they possess. Typically, companies want to build profiles of
the customers, in order to define classes of clients on the basis of their habits. A
very good idea of this process can be obtained by thinking of the use that of our
personal information, such as the contents of unencrypted emails, our World
Wide Web habits and the country from which we connect, is done by some
of the largest companies operating on the Internet. So it is very common to
get personalised adverts, references to digital information concerning people we
might know in real life, and so on. Another factor that has made massive data
algorithms important has been the fast development of the Internet on a world
scale, and in particular the huge increase in data traffic that this phenomenon
has created. Analysis of traffic implies facing an overwhelming amount of data.
Just the log of a home router can easily grow to megabytes or even gigabytes in
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size, hence the obvious considerations about ISPs and backbone routers. Anal-
ysis of those logs can be highly interesting for many actors in the digitalised
world. In particular, such analyses have to be run on the fly, while the packets
pass through the router, in order for this information to be of any use. This
specific setting has also made a new problem model popular, that completely
catches the issues of carrying on fast computations with a very limited amount
of memory.

In this massive data world, this thesis is born and grown up, showing some
characteristic of problems and proposing some solutions.

In what remains of the chapter, we will explain which problems we face and
how they relate to each other. Moreover we will devote a large part of the
chapter to introduce randomized algorithms and techniques.

1.1 A descriptive overview

Here we describe in a general, descriptive and abstract way, the problems we ad-
dress. The section does not require the reader to have any scientific knowledge,
with respect to computer science and mathematics.

Before starting the description of the problems, it is opportune to define what
massive data means. Massive data problems face inputs that are overwhelmingly
large given the computational power at hand. Terabytes of data are often used
to represent some information; for example very long sequences of items, market
basket data of huge multinational shops, the content of the World Wide Web,
are all good representatives of massive data for the current technology.

However, we think it is relevant to highlight the fact that the meaning of
massive has not to deal only with the amount of memory necessary to store the
input. A 1000 nodes graph can be represented using a very small quantity of
memory; still it is, and it will likely always be, a massive data input when the
problem to solve is the Travelling Salesperson Problem'. This depends from
the fact that a graph is implicitly massive. Its rich mathematical structure is
able to represent in a succinct way a huge number of sub structures that are
often the objects of interest for some problem to be solved. More information
about the TSP and its state-of-the-art, including the largest solved instance so
far, can be found in the book [10].

1.1.1 Data mining

A typical massive data task is to extract information from data. This is not
only the task of querying a database about its content. It is also the process
of building non structured information that lie hidden in the rough data. Data
mining is a big umbrella including many distinct problems. One of the most
interesting amongst these problems, can be described in the following abstract
form: Suppose that a set of people possesses collections of objects, one set per
person. Moreover, suppose that all the objects in the collections come from
a limited number of possible existing object kinds, so that several people can

1This problem, often called TSP, is very hard to solve. Suppose that the salesperson can
sell his products in a certain number of cities that are connected by a network of roads; the
salesperson, in order to maximise his revenue, wants to find a tour that touches all the cities
only once and that allows him to use at most a fixed amount of fuel.
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own objects of the same kind. A reasonable question is to ask which subsets
of objects are often owned by people, or to ask which objects are likely to be
owned together. In general, given a dataset, it is useful to understand which
are the patterns, if any, that happen in the dataset. Moreover, once a pattern
is discovered, it can be interesting to understand how frequent such a pattern
actually is.

Ezample 1.1.1. We live in an industrialised post-modern society, so the request
for cars with some very, so to say, advanced characteristics is very high. We
are the car builders and we want to understand which have been the most well
received features of the cars we produce by the market. In this setting, each
subset is a car with a given set of characteristics. So a car can have a certain
colour, a compact disk reader, the ABS braking system and so on. The goal of
the mining would be finding those sets of characteristics that are highly related.
In particular, looking at the cars sold in the previous years, it can happen to
spot that red cars are nearly always equipped with black seats, and the other
way around. Such data suggest that red frames and black seats are related
characteristics. o

It is also interesting to point out that data mining not only attempts to
uncover information that is spread, hidden and often unknown, in the data, but
it tries as well to predict the evolution of the data, using the information that it
is able to get. Looking at a pattern mining framework, where recurring patterns
in the input are sought, it is easy to see how and why this works: Suppose that
there is evidence that, when a series of patterns happens, then a consequence,
a specific datum or data pattern, shows up. This means that when the series
of patterns is spotted, it can be considered as likely that the consequence that
has been discovered will happen as well. In the literature the two described
approaches fall respectively in the so-called descriptive and predictive class of
data mining. The latter is also a very common and studied problem in the
framework of machine learning.

Ezample 1.1.2. In the past years, white cars with a pack rack and towing at-
tachment have turned out to be quite popular, so we can infer that that set
of characteristics has to be put on the market again, since it is likely to find a
receptive audience. )

1.1.2 Streaming

Streaming algorithms are probably one of the main topics of interest in recent
theoretical computer science. The setting in which a router, in an online fashion,
tries to compute information as the packets flow through it, is entirely caught by
the streaming framework and constitutes a reasonable real world explanation
of what the streaming environment is. It is clear what are the issues that
such algorithms have to face: Limited space, which results in the infeasibility
of storing the whole input, and limited time, because of the high rate of the
incoming data. The input of these algorithms is typically an infinite stream
of data. An infinite stream of data is massive without any doubt and makes
entirely clear the reason why storing the input is not an option.
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Example 1.1.3. The car factory wants to differentiate its offer on the basis of
territorial tastes and preferences. To achieve this goal, sensors along some of
the highways are placed that can register the features of cars that pass by them.
These devices are limited in computational power and storage space. For exam-
ple they might be powered only with solar panels, so they need to save as much
energy as possible. o

Many data mining tasks can be framed in a streaming fashion. It is easy
to understand, as a matter of fact, that the information contained in a stream
of data can be found using concepts and ideas from the data mining world.
Of course the techniques used in the streaming world and the data mining one
cannot be exactly the same, given the difference in nature of the two problems,
but can be adapted sometimes to fit each other framework.

An interesting challenge in streaming, as well as in data mining, is exploiting
any possibility of speeding up the computation using parallelism. Nowadays
even laptops are equipped with multicore CPUs, so parallel algorithms can
provide attractive solutions when the data are massive and the time constraints
are strict.

Ezxample 1.1.4. Instead of processing the data arriving from the sensors like if
they form a single stream, we split those data in several streams, on the basis
of the areas where the sensors are placed. In this way we end up with several
streams of approximately the same size, since all highways are used with the
same average intensity. Hence we can process each stream using a distinct CPU
and reduce the time needed to find the information we are interested in. o

1.1.3 Graph mining

Graphs are notoriously a natural source of complex problems. Their structure
embeds a level of mathematical complexity and richness that often challenges
algorithms that want to be efficient.

Data mining often asks for mining over some very specific data coming from
real world applications. A worthy goal is thus to come out with general ap-
proaches that are able to capture the structure of the problem. In this way it
is often possible to find algorithms that are able to solve a much wider array of
problems that are representable with the formal, as said, general, formulation
of the problem.

Graphs, as noted before, are very rich in structure and can productively be
applied to some of the problems that data mining poses. Graph mining often
looks for recurring patterns in a graph. Often, these patterns are substructures
of the graph that become interesting when they repeat frequently.

As an example, consider a situation in which a certain number of agents
have installed transmitters on themselves and there are antennas in their envi-
ronment, that are capable of keeping track of the passage of an agent when it
is reasonably close. Along with the event of having seen a specific agent, the
antenna keeps track of the timestamp of the reading. In such a setting it can
be interesting to spot those patterns of movement that agents tend to exhibit
in a temporal sequence, considering two antennas’ readings consecutive if they
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happen within a certain time window. To be more concrete, consider people
pushing around trolleys in a mall. Suppose that there is a transmitter installed
on every trolley. It can be commercially advantageous to keep track of what
are the recurrent and frequent movements of customers in the mall, such as
which shops people visit in a sequence. This information might allow a market
analyst to be able, in real time, to predict the movement of people, according
to patterns exhibited by other customers.

These settings can be represented using a graph, in particular, a directed
acyclic graph, where events are vertices of the graph and edges represent the
fact that two events happened within a reasonable time window. In general,
when a real-world situation can be represented using a directed graph, so that
two events can be considered close according to a certain metric, which needs
not be the time, finding frequent patterns in such a graph allows mining the
sequences of events that are frequent. An example of this flexibility is the one
that follows.

Example 1.1.5. In our world of massive industrial production, the sensors that
were placed on the highways have been re-converted to just signal the presence
of a car, registering the plate of the car and the time when it passed. We might
be interested in computing which routes are the most common that cars take.
This would help building a network of dedicated workshops, for instance, to
assist owners of cars experiencing mechanical problems. The whole road system
can be represented with a directed graph. In this setting, car routes can be
represented using directed sequences of nodes in the directed graph, so the task
of the graph mining algorithm would be to find those routes, so those directed
paths, occurring frequently. o

1.1.4 Matrix multiplication

Using a matrix many information and characteristics of datasets can be repre-
sented. The idea is that each row or column of a matrix can be seen as the
representation of a vector. Since objects can be represented with a list of values
in connection with the characteristics they provide, hence a vector, matrices
turn out to be good tools for representing sets of objects.

Ezample 1.1.6. A car can be described using a set of characteristics. If we fix an
order for this set of characteristics, we can associate a vector with each car, that
is a sequence of numbers, such that the position of a number in the sequence
tells us what characteristic it refers to, and the value quantifies the character-
istic. A red car, with 5 doors, no ABS and three air bags may be represented
as (1,5,0,3). We are assuming that to each colour is represented uniquely by
a number, so to red, the number 1 is associated. If we list all the cars, their
associated vectors will form a matrix. o

Matrix multiplication is therefore a very interesting abstraction of many
problems in the massive data environment, when the input needs to be ma-
nipulated in order to get the structure necessary to uncover the information
that it embeds. Matrix multiplication essentially captures, amongst others, the
concepts of set intersection and its size, cardinality of sets tout court. These
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concepts and mathematical operations are very important in database applica-
tions. In this field it is often interesting to know how many elements an entity
possesses, which translates, in practical terms, to removing duplicates from the
result of some relational algebra operators.

Moreover, matrix multiplication is interesting as a problem in its own right,
and the research community has used a lot of effort in solving it in an efficient
way. The mathematical structure of the problem is rich enough that we can
hope to find some aspects that have not yet been explored.

Example 1.1.7. We associate a vector of characteristics to each car. For con-
currency reasons, we want to compute the similarity amongst two kinds of cars
on the basis of the gadgets they provide. This will allow us to differentiate our
products with respect to other producer and within the own range of cars of-
fered. This problem is very easily represented by multiplying the characteristic
vectors of distinct models of cars. )

1.2 This thesis

As introduced in the previous sections, massive data require fast and space
efficient algorithms. Still, it does not always suffice to just carry on the com-
putation on the data in the form they are given. Often, the information is
contained in some aggregation of the data. It is the same as in industrial prod-
ucts, where starting from the raw materials, a finished product comes out. This
does not happen in a single step of production, the process usually goes through
several phases of manipulation, where several semiprocessed products are pro-
duced. Often, the interesting information has to be found and extracted from
these semiprocessed products rather than from the raw material.

A semiprocessed product often occupies much more space than the raw ma-
terials used for producing the semiprocessed product itself. As an example,
one can think of car production, where the raw materials are metal and raw
chemicals for plastic, and a semiprocessed product is the car frame and some
of the plastic interiors. Moreover, producing those pieces is not an immediate
task and, before they are actually ready to be put on the assembly line to get
the car finished, a lot of time is necessary.

All this easily translates in terms of algorithms and complexity. Massive data
are, tautologically, massive, so it is already challenging to deal with them in a
space and time efficient way. When the data in their raw form are not sufficient
to produce the output and they instead need to be aggregated, or semiprocessed
to bind the idea to the former paragraph scenario, the explosion in size might
be unbearable. This means that not all the semiprocessed products must be
produced, because it would be just too expensive, both in terms of time and
space.

For this reason this work has the title “Sampling implicit sets: A new data
mining technique™ the sampling, which is one of the necessary techniques for
dealing with massive datasets, happens on the implicit stock of semiprocessed
products, without actually producing them all. As a concrete example we can
think of customers who, in the context of market research, have expressed a
list of characteristics that they would like to find in a car. Then, instead of
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producing cars with all possible combination of characteristics, such as colour of
the frame and electric engine, we produce cars having some of the combinations
of characteristics: The ones that customers have expressed as important to have
together. Notice that the sentence “important to have together” requires, asks
for a proper semantic

For all the informally described problems, we use the technique of computing
the output without producing what would be an overwhelming amount of data.

1.3 Our results

We now describe in a more precise way the problems we address, providing
some terminology and defining some concepts and functions that will be used
in the following chapters. These definitions will also be given in the appropriate
chapters, but they are necessary at this point in order to have a mathematical
idea of the problems we will present and the tools to provide a description of
how they relate together.

The reader of the section is supposed to have some basic knowledge of com-
puter science and theory of computing, since many definitions are skipped and
concepts are assumed to be well known.

Each following sub-section will detail what has been described in general in
Section 1.1.

1.3.1 Similarity mining - a two passes approach

We explain here what has already been described in an informal fashion in
Section 1.1.1.

The input of this problem is a collection of subsets Ti,...,T,, of a set,
or universe, U = [n] = {1,...,n}. The average size of the sets T; in the
collection is represented by b. The letter T for the elements of the collection
stands for transaction, which is a term borrowed from the world of databases.
The problem is to produce those 2—itemsets of elements of U that are highly
similar, according to some similarity measure. It is evident how this problem
can be trivially solved, producing the set (g) of all the 2—itemsets of U and
studying its composition. It is evident, as well, that this approach, when the
cardinality n of U is large, is not feasible, since it would produce (72’) pairs. Still,
the implicit set from which we will sample, is exactly (3). It is opportune to
remark that |([2])\ = O(n?). The main idea we will exploit is to spend, for a
pair, a time that is proportional to the similarity of the pair itself. In particular
this will translate in sampling a pair a number of time that is, in expectation,
proportional to the similarity it holds. Relying on this fact, it will be possible
to select, in a successive phase, those pairs that have been sampled frequently
enough, since those will be the pairs that have a high similarity.

A more precise definition of similarity will be provided in the chapter that
describes the algorithm. Here, it suffices to say that the similarity functions
that we will address, depend linearly on the number of occurrences of a pair
and in inverse proportion to the number of occurrences of the single items the
pair contains. Just as an example, we can think of a similarity measure that
is sometimes actually used, called support. Support measures the number of
occurrences of a pair, so the more frequently a pair appears in the input, the
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more similar it is considered, according to this measure. A technique in this case
would be to sample uniformly from the transactions. The sampling probability
should be chosen as a function of the minimum support A we are interested
in. In particular, we can choose a sampling probability p = u/A, so that a
pair whose support is equal to A will be sampled p times. Moreover, pairs
having support much smaller than A would be unlikely to be sampled even
once. Besides the time necessary for reading the input, using a smart way of
carrying out the sampling, we could spend time only on pairs that are actually
sampled. In this way, we would obtain a random sample of the pairs such that
a pair appears in the sample a number of times, in expectation, proportional
to its similarity, that is, its support s times the sampling probability p. This
would give us a good idea of the high frequency pairs. Notice that false positives,
pairs appearing in the result set that have support below the threshold, can be
ruled out just by means of a second pass over the data. In this way it would be
possible to compute the actual support of the pairs to be output. This approach
is always feasible when multiple passes over the data are possible, in this way
turning false positives in a false problem.

For general similarity measures, like the ones described in Table 2.1, a
smarter sampling technique will be necessary. The algorithm will take time
O(mb + T20<i<j§n s(4,7)), where s(i,7) is the similarity measure applied to
the pair {i,5}, mb is the input size and 7 is an input parameter. 7 can be
thought of as a constant that is used to tune the error probability of the algo-
rithm; that is, the number of false positives and negatives. In particular 7 plays
a role in determining the number of samples taken for each pair. Looking at
the time complexity we can see that the running time is either dominated by
reading the input or is proportional to the sum of pairwise similarities, that is
what we are trying to evaluate.

Chapter 2 digs out the details of what we described in this sub section.

1.3.2 Similarity mining - a streaming approach

We explain here what has been already described in an informal fashion in
Section 1.1.2 with respect to sequential algorithms.

A variant of the problem described in the previous section considers the
collection of subsets as a stream of transactions. According to what we said
in Section 1.1.2 and what we will define more formally in Section 1.4.2; in the
streaming model we cannot store the whole input and once we have dealt with
one of the elements in the stream, that piece of the input is lost. In this setting,
what we can store, is one transaction at a time. The implicit subset is the same
of the former problem, namely (g), since we will focus again on pairs. It is quite
evident that in this setting, because of the fact that a second pass over the data
is just impossible, producing candidates to be output is not an option and the
algorithm must go directly for the interesting pairs.

The algorithm will exploit the same sampling technique and idea of the two
passes version, adapted to deal with the constraints that streaming imposes.

Another question that arises quite naturally in this setting is how much
space an algorithm must use in order to produce the desired output. We will
answer to this question showing that no algorithm, even a randomized one, can
do better than the trivial ones when trying to find the most similar pair in the
input. For this reason, in order for the algorithm presented to be more efficient
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than that, we will make the assumption that the transactions in the stream,
arrive in random order.

The running time of the algorithm is a logarithmic factor away from lin-
ear, with high probability. In particular the time complexity has the form
O(mblog(mn)), where, again, mb is the input size, and m is the number of
transactions, that is, the length of the stream. Within this time bound, the
algorithm is able to spot pairs appearing frequently enough, a so called support
threshold, and having similarity higher than a limit that depends either on n or
on the input size. For what concerns the space usage, the dependency is either
on the number n of distinct elements in the universe U, or on a parameter s.
The algorithm, after sampling in a way that is similar to the one of Section 1.3.1,
re-samples the pairs using a data structure that has size s, and influences the
precision of the whole algorithm.

Chapter 4 brings the details of what we sketched in this sub section.

1.3.3 Frequent pairs in data streams

We extend here what has been already introduced in an informal fashion in
Subsection 1.1.2 with respect to parallel algorithms.

The problem we address consists in reporting the most frequent pairs ap-
pearing in a stream of transactions. In particular we study this problem when
the pairs frequencies follow a Zipfian distribution, defined as f; = C/i* for the
frequency f; of the ith most frequent pair. Note that while we will consider
parameter z to be a constant, this will not be the case for parameter C.

The problem of finding frequent items in an item stream has been deeply
studied in many aspects, and several techniques have been developed depending
on the specific function that has to be computed on the stream.

The set from which the implicit sampling is carried out is again the multiset
of all pairs contained in all transactions. However, the main goal of the sampling
in this case is achieving a small space usage by means of smart data structures.
For what concerns the time complexity, the algorithm will actually produce the
whole multiset; in order to avoid a quadratic cost, the algorithm will rely on the
use of multiple processors, splitting the stream of pairs in sub-streams that are
tackled in parallel.

To fulfil the requirement of small space usage and a good precision, the
algorithm composes well known techniques for streams of items, extending them
in order to be able to deal with pairs of items; moreover, as pointed out at the
beginning of the section, the algorithm assumes that the frequencies of pairs
follow a Zipfian distribution. The algorithm provides, for a space usage k, a
Zipfian distribution f; = C/z% and d distinct pairs in the stream, a constant
error guarantee when reporting pairs whose frequency is above a threshold that
depends on the parameters introduced before. The error then can be made
arbitrarily small by means of Chernoff bounds, at the cost of running multiple
instances of the algorithm.

Chapter 5 brings the details of what we introduced in this sub section.

1.3.4 Frequent traces of paths in graphs

A more formal definition of the graph mining problem described in Section 1.1.3
is: Given a directed acyclic graph G = (V, E) and a labelling of the nodes in
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V, find those sequences of node labels, called traces, of length at most m, so
sequences of labels associated with paths of nodes of length at most m, such
that they appear frequently in the graph. A question is: What is in this case
the set from which we want to extract the frequent traces? This is the multiset
S of all traces of length at most m existing in the graph, so the set of all
subpaths of length at most m existing in the graph. The cardinality of this
set is exponential in the maximum length m of traces that we allow. The
algorithm we will present relies on the observation that traces have an inner
recursive structure that can be exploited. As a matter of fact, let S;(v) denote
the multiset of traces corresponding to paths (of length at most ¢) starting in a
node v € V. Then we can write:

Si(v) = {label(w)} x (¢ U | J  Sica(v')

v'|(v,w')EE

where € is the empty trace. So, if m is the maximum length of a trace we are
interested in, we can write:

Sm = Sm(v).

veV

From S,, we will sample traces recursively and in a way that a branch of recur-
sion will produce at least one sample. This fact will help us in bounding the
running time used by the sampling, binding it to the number of samples taken.
It is worth remarking that the running time will be independent of the total
size of \S,,.

Chapter 6 traces the details of what we depicted in this sub section.

1.3.5 Structure prediction

We explain here what has been already described in an informal fashion in
Section 1.1.4.

The matrix multiplication problem we address consists in estimating the
number of non zero entries in the result of the product of two boolean matrices.
This setting captures the nature of various problems in databases and computer
algebra. As a matter of fact, it is fairly intuitive to understand the formula-
tion of the problem basing the description on databases foundations. Matrix
multiplication can be used for data mining purposes in order to compute the
support similarity measure introduced in Section 1.3.1 in the way that follows.
Consider a 0—1 matrix A in which each row represents an item and each column
a transaction. It will be a;, = 1 if and only if item ¢ appears in transaction
p. Then, computing A = A x AT, we get that for an item 4, support(i) = Qg i
Because A is symmetric, support(i,j) = a; ; = a;, for any item j # 1.

Also the problem that we address can be turned into a data mining tool,
since it allows for estimating the space usage of a run of Agrawal and Srikant’s
A-Priori algorithm [6]. This algorithm, as a first step, produces and stores the
set of all pairs that can be generated by a collection of transactions. This num-
ber of distinct pairs, hence the space usage of the algorithm, can be estimated
running our algorithm on matrices built as described previously, when the prod-
uct between A and AT is a boolean product. Figure 1.1 gives an example of both
the cases that we have just discussed. An interesting application of this prop-
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Figure 1.1: The rows of A represent the items, while the columns represent
the transactions. The elements of A are the support of single elements on the
diagonal, and of pairs in other positions, when the product is computed over the
natural numbers union 0. On the other hand, when the product is boolean, be-
sides the diagonal always having 1 in all positions, the result has 1 in positions
corresponding to pairs generated by A-Priori.

erty is computing the cardinality of the result of the natural join of two relations
followed by a projection that eliminates the columns used to join. To represent
this in a mathematical fashion, consider two tables Ry = (a,b) and Rz = (b, ¢)
where a,b and c are sets of attributes. Using standard relational algebra oper-
ators, what we want to compute is the cardinality of R = 7, (R1 X Rg), that
is, the projection of the attributes a and ¢ of the relation R obtained from the
natural join of Ry and Rs. It is immediately clear that the difficulty lies in the
fact that the result is a set, so duplicates of the same row collapse to one and
only one row. Notice that there can be as many as |b| copies of a row once b
gets projected out, where |b| stands for the number of possible values that the
set of attributes b can acquire.

In essence here the multiset from which we will sample, is the table Ry X Ro,
that is, the table having all rows before the projection takes place. This table
can be very large, as of |b| - |R1| - |Rz| so, again, actually computing it is not a
feasible task.

The algorithm we will present computes an approximation of the solution
with small error probability, even o(1) for any fixed error, using time that is,
in expectation, linear in the size of the input, that is the sum of the number of
rows of the two input relations.

Chapter 7 multiplies the details of what we introduced in this sub section.

1.4 Models and tools

We introduce and describe the tools that we use in our algorithms, providing
here some general and formal definitions. Besides presenting some of the con-
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cepts that we will use extensively throughout the whole thesis, we provide an
overview of the scientific fields where these tools fall in. The reader who is
interested in deepening his knowledge of the topics that we touch on in the
remainder of the chapter, will find useful references inside the sections.

1.4.1 Randomized algorithms

In the proceeding we often referred to the need of performing a sampling of the
implicit sets. This is necessary since the size of those sets is simply too large
to actually deal with. In this subsection, we will introduce and discuss some
characteristics of randomized algorithms in general. For a deeper description
and coverage of the topic, the book of Motwani and Raghavan [82] is a precious
resource.

Randomized algorithms, besides having some remarkable practical applica-
tions such as hash tables and signatures, play an important role in theoretical
computer science. Not only they allow fast algorithms that guarantee accurate
output, they have also posed some of the most interesting questions in the field;
for example, we can think of the inclusion relationships between randomised and
deterministic complexity classes. On the other hand, randomisation often hides
the structure of a problem, relying instead on the properties of some probability
distribution; in these cases, even though it provides efficiency, it does not open
to any real understanding of the characteristics of the problem at hand.

Randomised algorithms can be classified into two main categories:

Monte Carlo: algorithms in this family make errors, which means that the
answer provided by the algorithm may be the wrong one; these algorithms
can present errors of two different kinds:

One sided error: this kind of algorithm can produce errors only in one
way; for decision problems, this translates in the fact that if the
algorithm answers Yes (answers No) then the answer is correct for
sure; on the other hand, if it answers No (respectively Yes) the answer
can be wrong with some probability;

Two sided error: this kind of algorithms has not the property of the
former class. They can answer with the wrong output in all cases so
that every output has a probability larger than zero of being wrong;

Las Vegas: the other side of coin are the Las Vegas algorithms. The algorithms
in this class are always right; their drawbacks are the fact that the running
time is a random variable and the fact that the algorithms in this class
may not, in principle, terminate; usually Las Vegas algorithms are defined
in a way that imposes them to admit an upper bound on the expected
running time.

The algorithms that will be presented in this thesis are all Monte Carlo ones,
in a broader sense than the former definition admits. The problems we address
are not decision ones, so the definition above has to be adapted. Our results
usually have the form of computing an approximation of the exact solution with
some guarantee, that is, usually, being a 1 4+ € factor away from correctness.
The guarantee on the approximation holds with a small error probability, so
that the algorithms can output a solution whose quality is worse than the one
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guaranteed; the algorithms we will present are Monte Carlo in this sense, and
can make errors that are both one sided and two sided.

In the discussion that follows we will reason about computational complex-
ity classes. We assume one of the standard models of computation and skate
over the details and we will not define precisely what a complexity class is at
all. We assume the reader is familiar with these concepts. Also it would be
very space consuming to detail precisely the tools necessary for more accurate
considerations about computational complexity. The reader who wants to go
deeper in this topic can find plenty of discussions in some of the most interesting
books that have been published during the short life of computer science. We
signal here just a selection of these excellent books: [12, 13, 49, 56, 63, 85].

Polynomial time Las Vegas problems define the class ZPP = RP N Co-
RP, where RP is the class of decision problems that admit a polynomial time
Monte Carlo algorithm with one sided error on acceptance and error probability
smaller than or equal to 1/2. So Co-RP contains those problem admitting the
inverse error behaviour with respect to those in RP, that are algorithms that
can error on rejection with error probability smaller than 1/2. From the former
considerations it is clear how to come up with a Las Vegas algorithm for a
problem, given RP and Co-RP: Just run two algorithms, one from each class,
for the problem and as soon as they agree on an answer, that answer will be
correct for sure. This also gets it across of why the running time of the obtained
Las Vegas algorithm is a random variable and does not admit an upper bound
for the worst case: The two algorithms may run for an infinite number of times
without agreeing on the result.

In order to have a better idea of the relationships between complexity classes,
we introduce the class BPP. This class is defined as including those decision
problems that admit polynomial time randomized algorithms that output the
correct answer with probability at least 3/4.

It is quite evident that ZPP C RP C BPP. Both the classes RP and BPP
are meaningful if and only if there exist a perfect source of randomness that the
algorithms can exploit. This question is actually relevant and refers to the ex-
istence of suitable and proper pseudorandom generators. Without entering the
theory and the results concerning this topic, it is worth noticing that this entities
are intensively studied and are object of rather vivid discussions in the theoret-
ical computer science community (see for example [55, 57, 71]). Figure 1.2 gives
a visual idea of how some of the complexity classes relate to each other. This
whole hierarchy of complexity classes is actually very intriguing and poses some
of the most interesting problems in current theoretical computer science:

e P = BPP?
e BPP C NP?
e RP = Co-RP?

e RP C NP N Co-NP? (This would be implied by proving the former);

The first point has been the topic of many research papers during the years,
and solving it would be a huge step forward in science.

In order to classify our algorithms we have to refer to optimisation prob-
lems rather than decision ones. In this framework, our algorithms all present a
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Co-NP NP
Co-RP RP
PP
P
BPP

Figure 1.2: The structure of some of the randomized and deterministic com-
plexity classes. The inclusions are never strict, so, for instance, P C BPP.

FPRAS (fully polynomial time randomized approximation scheme). As a mat-
ter of fact, the time bounds we will present are polynomial, even linear or quasi
linear, in the input size and have a dependency on the approximation parameter
¢ that is polynomial in e~ 1.

Streaming problems have been a fruitful field for randomised algorithms. It
is arguably infeasible to deal with streaming problems without using randomisa-
tion. Streaming has seen a huge increase in popularity in recent years. In fact,
many papers on streaming have started to flow after the seminal work from
Alon, Matias and Szegedi [7] has raised again the level of interest in the topic,
after some years of calm. We will describe here the streaming framework in
what follows. The description will be repeated later in the appropriate chapters
when needed, in order to point out the salient elements of the model.

1.4.2 Streaming

In this sub section we give a formal definition of stream and characterise the
streaming framework. For a wider, deeper coverage of the topic the reader can
refer to [14, 83]. The streaming framework possesses the following characteris-
tics:

A stream is composed of data elements that arrive in an on-line? fashion;

The order in which elements arrive is not under the control of the algo-
rithm;

The length of the stream is unknown and usually considered unbounded;

Once an element of the data stream is processed, it is lost and cannot be
accessed again, unless it has been explicitly recorded in memory.

20n-line is a setting where the input is not know a priori, and is discovered as elements
arrive.
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A formal definition of a stream can be given according to several models.

Definition 1.4.1. An input stream aq,as, ... arrives sequentially, one item at
the time. The elements of the stream are such that Vi.a; € {1,...,N}. This is
a set of objects, which can be pairs and are not necessarily numbers. We can
think of the elements of the universe {1,..., N} as a mapping of values in R
The sequence of items describes an underlying signal S. The signal is essentially
mapped by the elements of the stream, so that S can be considered a function
such that: S: {1,...,N} - R.

According to how the stream represents S we have the following definitions:

Time series model: Vi.a; = S[i|; this means that each element a; of the
stream is the representation of the i*" element of the signal;

Cash register model: Vi.a; = (j,I;), I; > 0, so that S;[j] = S;—1[j] + I;; this
means that S; represents the state of the signal after the i*" element of
the stream has been seen; this model is quite popular and often used in
literature when addressing streaming problems;

Turnstile model: Vi.a; = (j,U;), so that S;[j] = S;_1[j] + U;; the difference
with the former model stands in the fact that, in this case, the state of the
signal gets updated and not only incremented, since U; can be positive,
negative or zero; there is a variant to this model, called the strict turnstile
model, where it must be true that S[j] > 0. o

Our algorithms use both the time series (Chapters 4,7) and the cash register
models (Chapters 2,4,6). The former will be used when we do not care about the
frequency of elements but will focus only on single appearances, while the second
will be used whenever statistics about frequencies are necessary. It is interesting
to point out how our algorithms often generate a stream from the input. Such a
generated stream, often falls in the cash register model. Some of our algorithms
could be extended to use the turnstile model, essentially considering a fully
dynamic scenario. For example, consider the problem presented in Section 1.3.2,
augmenting it in order to take into account the deletion of a transaction. This
would be captured and naturally represented by the turnstile model, just by
using negative updates.

The performances of an algorithm that computes some function of a signal
can be measured in several ways:

e Time used per element a;;
e Space used by the algorithm at any give time t;

e Total time used to compute the function at any given time t.

In this framework, we usually aim for (¢) a very small time per element, repre-
senting the fact that data arrive at a high pace, (i7) small space, representing
the fact that the algorithm runs on limited hardware, (ii¢) and small total time,
which is not a surprising desideratum.

In order to achieve a succinct space usage, it is necessary to use algorithmic
techniques to represent the input without storing it explicitly; that is, maintain a
synopsis of the input. In order to adhere to this requirement, various approaches
can be used, also depending on the function to be computed on the signal:
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Random samples: This technique is the most immediate one can think of;
noticeably it allows for further synopses to be computed on top of the
sample. A good example are the frequent items algorithms; in this algo-
rithms sampling is often used in connection with a data structure that
keeps track of the counts of a subset of elements from the stream; these
algorithm are also called counter-based, for obvious reasons. We will use
some of these techniques in the algorithms that we will present in what
follows;

Sketching: This technique has been introduced by the aforementioned paper
of Alon, Matias and Szegedy [7]; the technique consists of maintaining a
summary of the data that is able to represent some qualities of the stream
that the algorithm wants to compute. The summary that is maintained
has not, usually, an intuitive structure; it looks instead fairly involved
from a semantic perspective, yet simple and easy to maintain. This kind
of technique is particularly suited when the goal is to compute moments
of the stream or, equivalently, norms of a vector in the turnstile or cash
register model. There are also remarkable examples of the use of sketching
in a frequent items scenario;

Histograms: This technique aims to represent the distribution of values in the
stream, keeping the space usage within reasonable boundaries. Histograms
allow for an even finer sub-classification; we will not detail the various
techniques but the interested reader can refer to the cited literature, in
particular [14], for further explanations and accurate references:

e V-optimal histogram,;
e Equi-Width histogram;
e End-biased histogram.

Wavelets: This technique represents the signal using a suitable basis of or-
thogonal vectors; distinct wavelets differ according to how the basis is
chosen;

Sliding windows: This is a largely unexplored area, where the academic lit-
erature is sparse. One area where it has been used to some extent, is
data mining, as discussed in Section 4.1. The idea behind this model is to
consider only the more recent elements in the stream, since those are good
candidates for computing the goal function; the reason why the younger
elements are considered more interesting is that they may hold a higher
influence if they will continue to appear in the part of the stream yet to
come. This approach makes sense only in some specific scenarios, where
the past part of the stream is less relevant than the recent part.

Our algorithms use both random samples and sketching techniques, by maintain-
ing counting data structures for the former (Chapters 2, 4 and 6) and synopsis
data structures for the latter (Chapters 5 and 7). The other techniques are
reported for the sake of completeness and to give the reader an overview of the
field.

Another interesting aspect of streaming scenarios, arguably the most inter-
esting aspect, is that they allow for many techniques to be used in order to
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compute lower bounds. These techniques fall, in essence in three main cate-
gories:

Compressibility: Given a problem @ and a prefix of the stream P, suppose
that such prefix is stored, in some compressed way, in a data structure A;
we could then craft a suffix S of the stream such that, solving @Q on Po .S
could be used to reconstruct exactly P from A. Since the space used by A
can compress only a subset of prefixes, the lower bound on the size of A
follows; we use this technique in Chapter 5 to give a proof of infeasibility;

Communication complexity: This is a rather natural way of finding lower
bounds for streaming algorithms. Usually one can reduce a two party
protocol to the streaming problem, and since the protocol needs a certain
amount of communication, the lower bound follows; we use his technique
in Chapter 4 to get an unavoidable space usage need for the problem of
mining similar pairs in a stream of transactions;

Reduction: This is the classic and well known technique, used in several dis-
tinct fields of theoretical computer science.

Now we will start the description of the techniques we developed in order
to carry out sampling on implicit sets. All the algorithms presented are ran-
domized Monte Carlo algorithms, using streaming tools or being themselves
streaming algorithms. The main innovation of all the algorithms, stands in the
way the sampling is carried out on the implicit set, and in the way we exploit
the structure of the set itself.
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Chapter 2

BiSam - a Two Passes
Approach

Sampling-based methods have previously been proposed for the problem of find-
ing interesting associations in data, even for low-support items. While these
methods do not guarantee precise results, they can be vastly more efficient
than approaches that rely on exact counting. However, for many similarity
measures no such methods have been known. In this chapter we show how a
wide variety of measures can be supported by a simple biased sampling method.
The method also extends to find high-confidence association rules. We demon-
strate theoretically that our method is superior to exact methods when the
threshold for “interesting similarity/confidence” is above the average pairwise
similarity/confidence, and the average support is not too low. Our method is
particularly advantageous when transactions contain many items. We confirm
in experiments on standard association mining benchmarks that we obtain a
significant speedup on real datasets. Reductions in computation time of over
an order of magnitude, and significant savings in space, are observed.

2.1 Introduction

A central task in data mining is finding associations in a binary relation. Typ-
ically, this is phrased in a “market basket” setup, where there is a sequence
of baskets (from now on “transactions”), each of which is a set of items. The
goal is to find patterns such as “customers who buy diapers are more likely to
also buy beer”. There is no canonical way of defining whether an association
is interesting — indeed, this seems to depend on problem-specific factors not
captured by the abstract formulation. As a result, a number of measures exist:
In this chapter we deal with some of the most common measures, including
Jaccard [34], lift [19, 4], cosine, and all_ confidence [74, 84]. In addition, we are
interested in high-confidence association rules, which are closely related to the
overlap coefficient similarity measure. We refer to [59, Chapter 5] for general
background and discussion of similarity measures.

In the discussion we limit ourselves to the problem of binary associations,
i.e., patterns involving pairs of items. There is a large literature considering the
challenges of finding patterns involving larger itemsets, taking into account the
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aspect of time, multiple-level rules, etc. Previous methods rely on one of the
following approaches:

1. Identifying item pairs (i, 5) that “occur frequently together” in the trans-
actions — in particular, this means counting the number of co-occurrences
of each such pair — or

2. Computing a “signature” for each item such that the similarity of every pair
of items can be estimated by (partially) comparing the item signatures.

Our approach is different from both these approaches, and generally offers
improved performance and/or flexibility. In some sense we go directly to the
desired result, which is the set of pairs of items with similarity measure above
some user-defined threshold A. Our method is sampling based, which means
that the output may contain false positives, and there may be false negatives.
However, these errors are rigorously understood, and can be reduced to any
desired level, at some cost of efficiency — our experimental results are for a false
negative probability of less than 2%. The sampling method that we describe is
the main novelty of the approach. It samples, as it will be clear in the following,
pairs from the multiset of all pairs that appear in all transactions.

The main focus in many previous association mining publications has been
on space usage and the number of passes over the dataset, since these have been
recognized as main bottlenecks. We believe that time has come to also carefully
consider CPU time. A transaction with b items contains (g) item pairs, and if b
is not small the effort of considering all pairs is non-negligible compared to the
cost of reading the itemset. This is true in particular if data reside in RAM, or
on a modern SSD that is able to deliver data at a rate of more than a gigabyte
per second. One remedy that has been used (to reduce space, but also time) is
to require high support, i.e., define “occur frequently together” such that most
items can be thrown away initially, simply because they do not occur frequently
enough (they are below the support threshold). However, as observed in [34]
this means that potentially interesting or useful associations (e.g. correlations
between genes and rare diseases) are not reported. We consider instead the
problem of finding associations without support pruning. Of course, support
pruning can still be used to reduce the size of the dataset before our algorithms
are applied.

In the following sections we first discuss the need for focusing on CPU time
in data mining, and then elaborate on the relationship between our contribution
and related works.

2.1.1 I/O versus CPU

In recent years, the capacity of very fast storage devices has exploded. A typical
desktop computer has 4-16 GB of RAM, that can be read (sequentially) at a
speed of at least 800 million 32-bit words per second. The flash-based ioDrive
Duo of Fusion-io offers up to over a terabyte of storage that can be read at
around 400 million 32-bit words per second. Thus, even massive datasets can
be read at speeds that make it challenging for CPUs to keep up. An 8-core
system must, for example, process 100 million (or 50 million) items per core per
second. At 3 GHz this is 33 clock cycles (or 66 clock cycles) per item. This means
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that any kind of processing that is not constant time per item (e.g., using time
proportional to the size of the transaction containing the item) is likely to be
CPU bound rather than I/O bound. For example, a hash table lookup requires
on the order of 5-10 ns even if the hash table is L2 cache-resident (today less
than 10 MB per core). This gives an upper limit of 100-200 million lookups per
second in each core, meaning that any algorithm that does more than a dozen
hash table operations per item (e.g. updating the count of some item pairs)
is definitely CPU bound, rather than I/O bound. In conclusion, we believe
it is time to carefully consider optimizing internal computation time, rather
than considering all computation as “free” by only counting I/Os or number of
passes. Once CPU efficient algorithms are known, it is likely that the remaining
bottleneck is I/O. Thus, we also consider I/O efficient versions of our algorithm.

2.1.2 Previous work
Exact counting of frequent itemsets

The approach pioneered by the A-Priori algorithm [5, 6], and refined by many
others (see e.g. [54, 78, 20, 86, 88]), allows, as a special case, finding all item
pairs (7, ) that occur in more than k transactions, for a specified threshold k.
However, for the similarity measures we consider, the value of k must in general
be chosen as a low constant, since even pairs of very infrequent items can have
high similarity. This means that such methods degenerate to simply counting
the number of occurrences of all pairs, spending time ©(b?) on a transaction
with b items. Also, generally the space usage of such methods (at least those
requiring a constant number of passes over the data) is at least 1 bit of space
for each pair that occurs in some transaction. An experimental comparison for
some 2004 state-of-the-art algorithms for frequent itemset mining is carried out
in [53].

The problem of counting the number of co-occurrences of all item pairs
is in fact equivalent to the problem of multiplying sparse 0-1 matrices. This
equivalence has already been showed in Section 1.3.5, but we present it again,
for ease of understanding: consider the n x m matrix A in which each row A; is
the incidence vector having 1 in position p iff the ith element in the set of items
appears in the pth transaction. Each entry Ai,j of the n xn matrix A = A x AT
represents the number of transactions in which the pair (¢, j) appears. The best
theoretical algorithms for (sparse) matrix multiplication [9, 36, 96] scale better
than the A-Priori family of methods as the transaction size gets larger, but
because of huge constant factors this is so far only of theoretical interest.

Sampling methods

Toivonen [90] investigated the use of sampling to find candidate frequent pairs
(i,7): Take a small, random subset of the transactions and see what pairs
are frequent in the subset. This can considerably reduce the memory used
to actually count the number of occurrences (in the full set), at the cost of
some probability of missing a frequent pair. This approach is good for high-
support items, but low-support associations are likely to be missed, since few
transactions contain the relevant items.

Cohen and Lewis [35] present an algorithm for approximate matrix multipli-
cation that can be used for finding similar pairs (in the same approximate sense
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that we pursue here) according to some similarity measures such as cosine and
lift. In fact, for these similarity measures their algorithm will produce estimator
random variables with the same distribution as ours (binomial), in a similar
time bound. Our approach handles more general similarity measures, uses less
space in addition to the input, and we couple the sampling with a space-efficient
algorithm for finding the most similar pairs.

Locality-sensitive hashing

Cohen et al. [34] proposed the use of another sampling technique, called min-
wise independent hashing, where a small number of occurrences of each item (a
“signature”) is sampled. This means that occurrences of items with low support
are more likely to be sampled. As a result, pairs of (possibly low-support) items
with high jaccard coefficient are found — with a probability of false positives and
negatives. A main result of [34] is that the time complexity of their algorithm
is proportional to the sum of all pairwise jaccard coefficients, plus the cost of
initially reading the data. Our main result exactly the same form, but has the
advantage of supporting a wide class of similarity measures.

Min-wise independent hashing belongs to the class of locality-sensitive hash-
ing methods [65]. Another such method was described by Charikar [29], who
showed how to compute succinct signatures whose Hamming distance reflects
angles between incidence vectors. This leads to an algorithm for finding item
pairs with cosine similarity above a given threshold (again, with a probability of
false positives and negatives), that uses linear time to compute the signatures,
and ©(n?) time to find the similar pairs, where n is the number of distinct
items in all transactions. Charikar also shows that many similarity measures,
including some measures supported by our algorithm, cannot be handled using
the approach of locality-sensitive hashing.

Deterministic signature methods

In the database community, finding all pairs with similarity above a given thresh-
old is sometimes referred to as a “similarity join.” Recent results on similarity
joins include [11, 30, 93, 94]. While not always described in this way, these
methods can be seen as deterministic analogues of the locality-sensitive hashing
methods, offering exact results. The idea is to avoid computing the similarity
of every pair by employing succinct “signatures” that may serve as witnesses for
low similarity. Most of these methods require the signatures of every pair of
items to be (partially) compared, which takes Q(n?) time. However, the worst-
case asymptotic performance appears to be no better than the A-Priori family of
methods. A similarity join algorithm that runs faster than Q(n?) in some cases
is described in [11]. However, this algorithm exhibits a polynomial dependence
on the maximum number k of differences between two incidence vectors that
are considered similar, and for many similarity measures the relevant value of k
may be linear in the number m of transactions.

Larger significant itemsets

Wu et al. [92] consider mining of significant itemsets according to a measure
related to lift. In particular, their approach extends to negative associations.
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Zhang et al. [98] use the same approach, presenting also a fuzzy variant. How-
ever, both approaches require exact counting of the number of co-occurrences
of all itempairs (where each item is above the support threshold). Therefore the
performance for finding significant/similar pairs is similar to the performance
of other exact counting methods.

Streaming algorithms

In Chapter 4, a modification of the technique presented in this chapter finds
similar pairs in a randomly ordered stream of transactions. In the streaming
framework one can see and store only one transaction at a time. In order to
tackle the difficulties of the new environment in an efficient fashion, that is
avoiding to sample too many pairs, a support threshold is used. Moreover the
sampling is carried out in a slightly different way, in order to guarantee that
it happens in “real time”. Also, we replace the final step of the algorithm by
the method of [41] that is particularly well suited to the setting of randomly
ordered data. Chapter 4 also contains a lower bound on the space that every
algorithm mining similar k-itemsets must use, in a worst case scenario, extending
a previous lower bound in [40] and explaining why the assumption concerning
the transactions arriving in random order is necessary.

2.1.3 Our results

As noted previously in the chapter, we present a novel sampling technique to
handle a variety of measures (including jaccard, lift, cosine, and all _confidence),
even finding similar pairs among low support items. The idea is to sample
a subset of all pairs (7,j) occurring in the transactions, letting the sampling
probability be a function of the supports of i and j, such that the expected
number of times a pair is sampled is proportional to s(i,j). Given a threshold
A the sampling rate can be scaled such that any pair with similarity above A is
likely to be sampled several times, whereas pairs with similarity “far below” A
are likely not to be sampled. The number of times a pair is sampled follows a
binomial distribution, which allows us to use the sample, in a filtering phase, to
infer which pairs are likely to have similarity above the threshold, with rigorous
bounds on false negative and false positive probabilities.

A nailve implementation of this idea would still use quadratic time for each
transaction, but we show how to do the sampling time that is linear in the
size of the transaction and number of sampled pairs. In turn, the expected
number of samples is proportional the sum of all pairwise similarities between
items. We will argue that this running time is the best one could hope for with
no conditions on the distribution of pairwise similarities. Under reasonable
assumptions, e.g. that the average support is not too low, this gives a speedup
of a factor £2(b), where b is the average size of a transaction, compared to exact
counting methods.

We show in extensive experiments on standard datasets for testing data min-
ing algorithms that our approach (with sampling rate resulting in a 1.8% false
negative probability) gives speedup factors in the vicinity of an order of magni-
tude, as well as significant savings in the amount of space required, compared to
exact counting methods. We also present evidence that for datasets with many
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distinct items, our algorithm may perform significantly less work than methods
based on locality-sensitive hashing 2.4.1.

2.1.4 Notation and framework

Let T4,...,T,, be a sequence of transactions, T; C [n] = {1,...,n}. For ¢ =
L,...,nlet S; ={j | i € T;}, i.e., S; is the set of occurrences of item .

We are interested in finding associations among items, and consider a frame-
work that captures the most common measures from the data mining literature.
Specifically, we can handle a similarity measure s(i, ) if there exists a function
f:INx N — R* that is non-increasing in both parameters, and such that:

s(i,7) = 15: NS5[ F(ISil, [S51) -

Table 2.1 shows particular measures that fall within this framework. The mono-
tonicity requirement on f holds for any reasonable similarity measure: It says
that for a given value of |S; N S|, adding an occurrence of i or j should not
increase the similarity. In the following we assume that f is computable in
constant time, which is clearly a reasonable assumption for the measures of
Table 2.1. In the time analysis we will further assume that f is polynomial in
the sense that changing the input by a constant changes the value of f by a
constant, specifically that f(c1,c2) = O(f(c1/2,c2/2)) for all ¢1, co. This clearly
holds for all similarity measures we consider, and arguably for any reasonable
similarity measure.

We end with some observations on other measures that can be handled
directly or indirectly by our framework.

Composite measures

Notice that if f1(]|S;],|S;]) and f2(|Ss],|S;|) are both non-increasing, then any
linear combination af; + G f2, where o, § > 0, is also non-increasing. Similarly,
min(afi, Bf2) is non-increasing. This allows us to use BISAM to directly search
for pairs with high similarity according to several measures (corresponding to
f1 and fs), e.g., pairs with cosine similarity at least 0.7 and lift at least 2.

Handling the Jaccard measure

We observe the following relationship between the jaccard and dice similarity
measures: Sjaccard (%, ) = Sdice(%,J)/(1 — Sdice(4,7)). Observe that sjaccard grows
monotonically with sgjce, and that the derivative wrt. sqjce is in the range [1;4].
This means that most questions about jaccard similarity can be translated into
questions about dice similarity. For example, if we are interested in all pairs
with a certain jaccard similarity, this translates directly into all pairs with a
certain dice similarity.

2.2 The BiSawMm algorithm

For a given parameter 7 > 0 our goal is to sample pairs of items such that (i, )
is sampled 7 - s(7, j) times in expectation. Also, we want the occurrences of an
item pair to be sampled independently, such that the number of samples follow
a (highly concentrated) binomial distribution.
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Measure | s(i,j) | f(Sil,[S])
lift mignl | m/(Sil-1S50)
cosine \l/% 1/\/W
all_confidence m'{%% 1/ max(|S;], [S;])
dice e | 1381+ 1S5
overlap _coef mlii%@ﬁk‘%n 1/min(|S;|, |S;])

Table 2.1: Some measures covered by our algorithm and the corresponding func-
tions. Note that finding all pairs with overlap coefficient at least A implies finding
all association rules with confidence at least A, where confidence(i, j) = ‘Sl";vs"jl
and is not symmetric. The Jaccard similarity measure can be handled via the dice

measure, as argued in Section 2.1.4.

The output of our algorithm, named B1SAm (for biased sampling), will be
an unordered sequence of samples. It will be convenient to work with weighted
samples, i.e., with each sampled pair we associate a positive real number (which
will be at least 1, but not necessarily integer). We define the number of occur-
rences of a pair (4,5) as the sum of the associated numbers.

We observe that all measures in Table 2.1 are symmetric, s(i,j) = s(j,1),
so it suffices to sample either (4,j) or (j,i). Our pseudocode will make this
optimization, by dealing with sets {i,7}, but can easily be modified to also
handle asymmetric measures.

2.2.1 Algorithm idea

Algorithm 2.1 shows pseudocode for BISAM. In an initial pass over the data it
computes item support counts, stored in a (hash) map c¢. For convenience, we
precompute item counts rounded down to the nearest power of 2, stored as ¢'.

After the initial pass, the algorithm iterates through the transactions once
more. For each transaction T}, some number of size-2 subsets of T; are output,
with a weight associated with each pair. The processing of a transaction starts
with sorting the items according to value of ¢/, i.e., they are “roughly sorted”
according to support. Below, we discuss how this can be done in linear time by
exploiting that ¢’ has only [logm] possible distinct values.

The main loop of the algorithm, Lines 4-16, outputs those pairs {T[i], T¢[j]}
for which f(c(T¢[i]), c(T¢[j]))T > r, where r is a random real number in [0;1).
This can be seen as follows. For each value of 7 the algorithm iterates through
j=i+1,i+2,... until j = |T| or f('(T3[4]), < (T3[5]))7 < r. In both cases we
can conclude, since f is non-increasing, that no more pairs with the current value
of 7 should be reported. The total time for the outer loop, Line 7, is O(|T3|),
and the time for the inner loop, Lines 9-14, is proportional to the number of
pairs {4, j} for which f(¢/(T%[i]), ' (Ti[4]))T < r.

A pair {T[i], T:[j]} is sampled with probability min(1, f(c(7:[i]), c(T¢[4]))7)-
In cases where we sample with probability less than 1, we associate a weight of 1
with the sample; otherwise we assign the weight f(c(T3[i]), c(T¢[j])7. In either
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case, the expected weight assigned to the sample is f(c(T[i]), c(T¢[j])7. Thus
we have the following;:

Lemma 2.2.1. Let M (i, j) denote the total weight of the pair {i,j} in the output
of BISAM. For all pairs (i,7), where i # j and c(i) < c(4), if f(c(i),c(4))m <1
then at the end of the procedure, M (i,j) has binomial distribution with |S; NS}
trials and mean

15 0551 f(1Sils 1951 = (i, 5)7-

If f(c(i),c(§))T > 1 then at the end of the procedure M(i,j) = s(i,j)T with
probability 1. )

In other words, the weight M (i, j) is an unbiased estimator for s(i, j)7 that
is tightly concentrated. This allows us to give firm guarantees on the probability
that M (i, 7)/7 deviates substantially from s(¢,7), as discussed in Section 2.3.1.

1: procedure BiSam(Ty,..., Ty f,7)

2: ¢ :=ITEMCOUNT(TY, ..., T))

3 ¢’ := FLOORTOPOWEROF2(c)

4 for ¢t :==1 tom do

5: sort Ty[] s.t. ¢(Ti[j]) < < (Th]j +1]) for 1 < j < |T}]
6 let r be a random number in [0;1)

7 for i :=1 to |T;| do

8

9

ji=1+1

: while j < |Ty| and f(c/(T¢[i]), ¢/ (T¢[]))T > r do
10: if f(e(Ti[i]), e(Ti[4]))T > r then
11 output {{T3[i], T;[j]}, max(1, f(c(Ti[i]), c(T3[5]))7) }
12: end if
13: ji=7+1
14: end while
15: end for
16: end for

17: end procedure

Algorithm 2.1: Pseudocode for the BISAM algorithm. The call to the procedure
ITEMCOUNT(+) on Line 2, returns a function (hash map) that contains the number
of occurrences of each item. The call to the procedure FLOORTOPOWEROF2(c),
on Line 3, returns a function that is obtained from c by rounding down occurrence
counts to the nearest integer power of 2. T;[j] denotes the jth item in transaction
number t.

2.2.2 Implementation

The best implementation of the subprocedure ITEMCOUNT depends on the re-
lationship between available memory and the number n of distinct items. If
there is sufficient internal memory, it can be efficiently implemented using a
hash table. In the following we first consider the standard model (often re-
ferred to as the “RAM model”), where the hash tables fit in internal memory,
and assume that each insertion takes constant time. Then we consider the I/O
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item ‘ occurences H item ‘ occurrences ‘

i c(i) [ i ] c(i) \
1 66 6 31
2 66 7 28
3 65 8 5
4 60 9 5
5 58 10 3

Table 2.2: Items in the example, with corresponding ITEMCOUNT wvalues.

item ‘ FloorToPowerOf2 ‘ bucket H item ‘ FloorToPowerOf2 ‘ bucket ‘

i (i) | [ (i) | |
1 64 5 6 16 3
2 64 5 7 16 3
3 64 5 8 4 2
4 32 4 9 4 2
5 32 4 10 2 1

Table 2.3: The table represents the function ¢’ obtained by the application of the
functional FloorToPowerOf2 to the function c. Hence the elements are grouped
in 5 buckets.

model, for which an I/O efficient “sort-and-count” implementation is discussed
(Section 2.2.3).

The use of the standard implementation of the sorting step would require
time O(|T;|log |T:|). However, we observe that there are only [logm] possible
values of ¢/, so this can be done more efficiently by bucket sorting (one bucket
per value). In case |Ti| < logm we need a few extra tricks to get a linear
time algorithm. We stress that these tricks are described for the purpose of
the theoretical result, and are unlikely to yield an advantage in practice due to
increased constant factors.

We modify standard bucket sort as follows: The buckets should be initialized
in a lazy fashion, such that we do not use time on buckets that contain no
elements. Also, when traversing the buckets to form the result we should not
spend time on empty buckets. This can be achieved by maintaining a bit vector
of length [logm] indicating which buckets are nonempty. Then the non-empty
buckets can be found in time O(|Ty|) using a constant-time least-significant-bit
computation.

Ezample 2.2.1. Suppose ITEMCOUNT has been run and the supports of items
1-6 are as shown in Table 2.2. Table 2.3 shows the values associated to each
element by the function ¢’.

Suppose now that the transaction T; = {6,4, 5, 3,2, 1} is given. Note that its
items are written according to the mapping given by the function ¢’. Assuming
the similarity measure is cosine, 7 = 14, and r for this transaction equal to 0.9,
the algorithm would sample from T} x T; the pairs shown in Table 2.4. )
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i | g | fle@@),c@)r || i | 4| fle),ci))T |
10]9 3.61 10 | 2 0.99
10 | 8 3.61 10 | 1 0.99
10 | 7 1.52 9 |8 2.8
10| 6 1.45 9 |7 1.18
10 | 5 1.06 9 |6 1.12
10 | 4 1.04 8 |7 1.18
10 |3 1.00 8 |6 1.12

Table 2.4: Pairs selected from T; in the example. Notice that after realising
the bucket pair (2,5) does not satisfy the inequality f(c'(9),c'(3))T > r, the al-
gorithm will not take into account the pairs of bucket (2,4). Moreover, since
F(d(7),(6))T < r the pairs of buckets (3,3),(3,4), (3,5), (4,4), (4,5) and (5,5).

2.2.3 Analysis of running time

We provide a running time analysis both in the standard (RAM) model and in
the I/O model of [3]. In the latter case we present an external memory efficient
implementation of the algorithm, IOB1SAM. Let b denote the average number
of items in a transaction, i.e., there are bm items in total.

Running time in the standard model

The first part of the algorithm just goes through the input, using expected time
O(mb). The sorting of a transaction with b, items, performed as described
above, takes O(by) time, and in particular the total cost of all sorting steps is
O(mb). Similarly, the total cost of iterating through all transactions is O(mb)
if the cost of the while loop of Lines 9-14 is not counted.

The time for the while loop is proportional to the number of pairs {i, j} for
which f(c/(Ti[i]), ¢ (Ti[j]))7 < r. That is, the probability that we spend time
O(1) on the pair {i,5} is min(1, f(¢/(T%[i]), ¢ (T¢[4]))7). Summing over all pairs
and all transactions we get an expected cost of at most:

Yo fE@LGNT=0(D>0 D fleld) )T

t {i,j}CTy t {i,j}CTy

using the assumption that f is polynomial. Reordering the terms of the sum we
get an expected cost of:

D 180851 £(e(d), @) = slin )T -
{i.5} {i.5}

Theorem 2.2.1. Suppose we are given transactions Ty, ..., Ty, , each a subset of
[n], with mb items in total, and that f is a polynomial function such that s(i,j) =
|S:NS;|f(|S:],1S;]). Then the expected time complexity of BISAM(T1, ..., Tpy; f,T)

in the standard model is O (mb +T X i<icj<n s(i,j)) . o
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Discussion. In most of our experiments the first of the two terms dominated
the time complexity. This means that the running time is close to optimal,
as O(mb) is the time for just reading the input. However, we also found that
for some datasets with mainly low-support items, the second term (the cost of
reporting samples) dominated.

A comparison can be made with the complexity of schemes counting the
occurrences of all pairs. Such methods use time Q(mb?), which is a factor Q(b)
larger than the first term. In fact, the difference will be larger if the distribution
of transaction sizes is not even.

Similarity threshold. The parameter 7 should be chosen such that s(i, j)7 is
not too small, e.g. s(,j)7, for the pairs that are considered highly similar. It is
instructive to parametrise in terms of the threshold A for “interesting similarity”.
To ensure that interesting pairs are reported with good probability, 7 must be
chosen such that 7A is not too small, e.g. in our experiments we use 7A = 15.
The reason for this choice is explained in Section 2.4.1 and in Table 2.5.

A reasonable assumption is that A is greater than the average similarity,
Le, A>3 cicicn 5(i,7)/(3). In many cases A will be much greater than the
average similarity, as discussed in Section 2.4.1. But just using the above we
can obtain the following simple (in some cases pessimistic) upper bound on the
time complexity:

Corollary 2.2.1. If A = O(1/7) is no smaller than the average pairwise simi-
larity, then expected time complexity of BISAM is O(mb + n?). o

This means that under the assumption of the corollary we win a factor
of at least min(b,m(b/n)?) compared to the exact counting approach. If we
let o = mb/n denote the average support, the speedup can be expressed as
Q(bmin(1,0/n)). So if the average support is n or more, we gain a factor (b).

Independent items. As further evidence for (or explanation of) why the
time complexity of the second term may be close to linear, we consider an
input where each item ¢ appears in a given transaction with probability p;,
independently of all other items. Thus, the probability that distinct items 4
and j appear in a transaction is p;p;. We observe that each similarity measure
s(i,7) in Table 2.1, with the exception of lift, satisfies s(i,7) < 3(4,7), where
5(i,4) = % + % Thus, we get an upper bound on running time for
these measures by considering the similarity measure §(i, 7). Observe that the
expected value of 5(4, §) is p;+p; by linearity of expectation. Hence, the expected
sum of similarities is:

n n n n
Z Z Pi+p; < Zpin-i-anj =2n .
i=1 j=it1 i=1 j=1

This means that the running time of BISAM is O(mb + 7n) for independent
items. Usually mb > 7n, so the first term dominates.
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Running time in the I/O model

We now present IOB1SAM, an I/O efficient implementation of the BiSam al-
gorithm. The rest of the chapter can be read independently of this section.
As before, we assume the similarity measure is represented as s(i,j) = |S; N
Sil£ (186, 1S51)-

In order to compute the support of each item, which means computing the
ITEMCOUNT function, a sorting of the dataset’s items is carried out. It is nec-
essary to keep track of which transaction each item belongs to. To compute
the sorted list of items, O(%log% &) 1/Os are needed [3], where N = mb
is the number of pairs ¢ = (item, Transaction ID), M is the number of such
pairs that fit in memory, and B is the number of pairs that fit in a memory
page. When the items are sorted, it is trivial to compute the number of occur-
rences of each item, so it takes just O(%) I/0s to compute and store the tuples
¢{item,support, Transaction ID).

We then sort the tuples according to transaction ID, and secondarily accord-
ing to support, again using O(% log u %) I/Os. This gives us each transaction
in sorted order, according to item supports. Assuming that each transaction
fits in main memory! it is simple to determine which pairs satisfy the inequal-
ity f(c(Ti[4]), c(Ti[j]))T > r. When a pair satisfies the inequality, it is output,
togheter with its weight max{1, f(¢(T¢[i]), c(T3[j]))7}. This operations have a
cost of O(N/B) 1/0Os for the reads.

The most expensive steps are the sorting steps, implying that the following
theorem holds:

Theorem 2.2.2. Suppose we are given transactions Ty, ..., Ty, each a subset
of [n], with N = mb items in total, and [ is the function corresponding to
the similarity measure s. Also let |S; N S;|f(|Sil,|S;]) = s(4,5). The expected
complezity of IOBISAM(T, ..., Ty f,7) in the I/O model is

(0] (% log ar %) I/0s

2.3 How to use the BiSAM output

Summing up the weight M (i, j) of a given pair {4, j} in the output of BiSam
gives us, by Lemma 2.2.1, one of the following:

e Exactly s(i,7)7 with probability 1, or

e The value of a random variable with binomial distribution and expectation
s(i, )T

In the former case we obviously know the similarity of ¢ and j. In the latter
case we can use statistical methods to derive bounds on likely and unlikely

IThe assumption is made only for simplicity of exposition, since the result holds also
without this assumption.
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Confidence that s(i,j)<a M(i,j)/T
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Figure 2.1: Illustration of confidence levels, using Poisson approximation, for
sample counts 1, 2, 4, 8, 16, and 32. Larger sample counts yield larger confidence.

values of s(i,7). In our theoretical discussion we will make use of the fact that
the binomial distribution is closely approximated by the Poisson distribution
(with the same mean) whenever the sampling probability is much smaller than
the expectation. However, we stress that in concrete cases it is possible to
do confidence calculations directly on the binomial distribution to get more
accurate results.

Figure 2.1 shows confidence bounds for various observed values of a Poisson
distributed random variable. We know that the mean value of M (i, j) is 75(3, ),
so M(i,7)/7 is an unbiased estimator for s(i,j). How likely is it that s(i,j) <
aM((i,j)/7 for some o < 17 This depends on « and M(i,j) — Figure 2.1
considers the cases where M (i, j) € {1,2,4,8,16,32}. For each value of M(i, j)
the graph plotted is the probability of not observing a value as large as M (i, j)
given that s(i,j) = aM (4, j)/7. This is the “confidence” we have in the assertion
that s(i,7) > aM(i,j)/7. Larger values of M (i,j) yield higher confidences.
Taking M (i, j) = 8 as an example we see that with 90% confidence the estimate
M(i,7)/7 is at most s(7,5)/0.59 =~ 1.7s(i, j), and with 90% confidence M (i, j)/7
is at least s(i,7)/1.65 ~ 0.65(3, j).

2.3.1 Errors with respect to a reporting threshold

One case we will consider in particular is when there is a threshold A such that
we are interested in reporting all pairs with similarity A or more. To report
such pairs with reasonable probability we cannot simply choose the pairs with
weight A7 or more, since this would give too many false negatives, i.e., pairs
with s(i,7) > A that are not reported. The false negative probability can be
decreased by lowering the weight threshold. In the following we assume that
pairs with weight A7/2 or more are reported.

Analysis of false negative probability. We first bound the probability that
a pair {4, j} with s(i,7) > A is not reported by the algorithm. This happens if
M(i,j) < At/2 and M (i,7)f(c(3),c(j),A) < 1. If f(e(i),c(4))T > 1 then the
pair {7, j} is reported with probability 1. Otherwise, since M (i, 7) has binomial
distribution, it follows from Chernoff bounds (see e.g. [82, Theorem 4.2] with
§ = 1/2) that the probability of the former event is at most exp(—d%u/2) =
exp(—u/8). Solving for p this means that we have error probability at most
¢ if w > 8In(1/e). This bound is pessimistic, especially when e is not very
small. Tighter bounds can be obtained using the Poisson approximation to the
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TA | € | ¢! ‘
3 [0.199 0.0498
5 | 0.125 0.00674
10 | 0.0671 | 0.0000454
15 | 0.0180 | < 1076
20 | 0.0108 | <1078
30 | 0.00195 | < 10713

Table 2.5: Values of TA and corresponding error probabilities €. The error
probabilities €' are for the variant of the algorithm where we return the whole
multiset M, and use a different method to filter false positives (see Section 2.5.2).

binomial distribution, which is known to be precise when the number of trials
is not too small (e.g., at least 100). Table 2.5 shows some values of p and
corresponding false negative probabilities, using the Poisson approximation.

False positives. The probability that a pair {4, j} with s(i, j) < A is reported
depends on how far the mean s(i, j)7 is from A7. If the ratio s(i,7)/A is close
to 1, there is a high probability that the pair will be reported. However, this is
not so bad since s(7, ) is close to the threshold A. On the other hand, when
s(i,7)/A is close to zero we would like the probability that {i,j} is reported to
be small. Again, we may use the fact that either f(c(i),c(j))7 > 1 (in which
case the pair is exactly counted and reported if and only if s(¢,7) > A/2). For
s(i,7) < A/2 we can use Chernoff bounds, or the Poisson approximation, to
bound the probability that M (i,j) > A7/2. Figure 2.2 illustrates two Poisson
distributions (one corresponding to an item pair with measure three times be-
low the threshold, and one corresponding to an item pair with measure at the
threshold).

2.3.2 Filtering of BiSAM output

The BiSAM algorithm generates a stream of weighted item pairs that may be
very large. In order to obtain a more succinct output we propose a filtering phase
that eliminates pairs that are not similar enough. This task can be carried out
in at least three ways:

Exact threshold filtering: A weight threshold w can be set, depending on
the similarity one is interested in, and can be used in order to filter out
those pairs whose sum of weights is below the threshold. As discussed in
the previous section this gives an output where false positive and negative
probabilities can be rigorously analyzed. This method requires that the
filter stores a set of weighted samples M, e.g. using a hash table, keeping
track of the current sum for each pair seen. In the I/O model, the best
implementation is via sorting of the output produced by IOBISAM. In
the standard model where space is a bigger issue, the next methods may
offer better guarantees at the cost of a more complex implementation;

Checking similarities: The weight threshold w implies that we filter away
those pairs whose similarity is far below w/7. An alternative is to spend
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Poisson distributions with mean 5 and 15
0,20

0,15 —

0,05

A

Figure 2.2: [llustration of false negatives and false positives for TA = 15. The
leftmost peak shows the probability distribution for the number of samples of a pair
{1,7} with s(i,j) = A/3. With a probability of around 13% the number of samples
is above the threshold (vertical line), which leads to the pair being reported (false
positive). The rightmost peak shows the probability distribution for the number of
samples of a pair {i,j} with s(i,j) = A. The probability that this is below the
threshold, and hence not reported (false negative), is around 1.8%.

more time on the pairs output by BISAM, using a sampling method to
obtain a more accurate estimate of |S; N.S;|. A suitable technique could
be to use min-wise independent hash functions [21, 64] to obtain a sketch
of each set S;. It suffices to compare two sketches in order to have an
approximation of the jaccard similarities of S; and S;, which in turn gives
an approximation of |S; N S;|. Based on this we may decide if a pair is
likely to be interesting, or if it is possible to filter it out. The sketches
could be built and maintained during the ITEMCOUNT procedure using,
say, a logaritmic number of hash functions. [64] presents an efficient class
of (almost) min-wise independent hash functions.

For some similarity measures such as lift and overlap coefficient the sim-
ilarity of two sets may be high even if the sets have very different sizes.
In such cases, it may be better to sample the smaller set, say, S;, and
use a hash table containing the larger set S; to estimate the fraction
|S; NS;]/]Si|. However, this requires that the whole dataset fits in mem-
ory.

Most frequent pairs in a stream: This technique consists in the use of a
streaming algorithm for finding the pairs whose sum of associated weights
exceeds a given user defined threshold. Many algorithms exist that address
this problem, see [37] for a comprehensive treatment and an experimental
comparison, but only some of them are able to manage weighted items.
One algorithm suiting the needs of BISAM well is SPACESAVING [79].
See [80] for a more detailed description of the algorithm. In the following
we will describe a modification of SPACESAVING that takes into account
the weights of pairs without adding any cost to the computational time.
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Weighted SPACESAVING

Here we describe a modification of SPACESAVING that supports weights in the
stream M. Such a modification has already been presented in [38], but our
approach is different in the sense that using some slackness in the space allowed,
we get constant time updates for the underlying data structure. We will refer
to our algorithm with the name WSPACESAVING. In the following we consider
the elements of M as pairs, but the algorithm works for generic elements.

As pointed out before, we are interested in reporting only those pairs in M
whose sum of weights exceeds a certain threshold. Let N := Z(i’j)eM M(i, 5);
given a user defined threshold ¢ we want to report those pairs p = (i, ) whose
sum of associated weights M (i,j) = M (p) is larger than ¢ N, for some ¢ > 0.
We discuss the choice of ¢ below.

In the following we will call the sum of associated weights M (i, j) of a pair
(i,7), the pair’s weight, and the threshold ¢ the cut weight. Moreover, we will
denote the associated weight of a pair (4,7) = p with w.

In order to have the desired result, we maintain a collection of entries, each
of which contains a pair, plus an estimate of the weight. The estimate is denoted
count,. Moreover, we keep track of the minimum count among all the recorded
entries, and refer to this value with the name min.

The size [ of the collection has to be chosen according to the precision of the
desired result, since the algorithm can output pairs whose weight is larger than
(¢ — 2/1)N, and guarantees to output each pair having weight larger than ¢N.

The algorithm works in a fairly simple way: When a new pair (i, j) arrives,
we look for it in the collection; if it is already recorded in some position v, we
update count, adding the associated weight w (which is max{1, f(|S;],|S;|)7}
in the case of BiSAM) to it and we move to the next pair. If the pair is not
in the collection we put the pair in the data structure, replacing a pair among
the ones having small estimated sum of associated weights. Suppose this pair
appears at position v — then we put in that position the pair (i, j), and assign
count, = count, + w. Figure 2.2 reports the pseudocode for the updating
procedure.

1: procedure WSPACESAVING(M, ¢)

2 while there is a new pair (7, ) from the stream do

3 if (7,7) is in the collection D at position v then

4: count, := count, + w

5: else

6 Choose a pair from the low weight pairs bucket
7 Let v be its position

8
9

Dv = (7"])
: count, := count, + w
10: end if

11: end while
12: Yo.v e€{l,...,l}: count, > $N output D,
13: end procedure

Algorithm 2.2: Pseudocode for the WSPACESAVING algorithm. We remark that,
in the case of BISAM, w := max{1, 7f(|S:|,]5;])}
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Choosing the pair to replace. We describe how to implement WSPACE-
SAVING in a way that only a constant number of operations are needed in case
of an update to the data structure. We maintain the pairs along with their
estimated sum of associated weights in buckets, each of which contains pairs
with count in a certain range. The size of ranges is increasing by a factor of
2, so we only have to keep track of a logarithmic, with respect to IV, num-
ber of buckets. In particular, we will have the ranges: [1,2),[2,4),[4,8),...,
[2F=1 2K) [2F ¢N),[¢N, N]. In this way, when we need to find a pair whose
count = min, we can go directly in the nonempty bucket with the lowest weight
range, and pick up an arbitrary pair contained in it. Moreover, when it is nec-
essary to move a pair in a new bucket, it is sufficient to move it in the bucket
representing the next range, eventually initializing the bucket. These operations
can easily be done in constant time per update. Once a bucket is empty it will
never receive a new pair again, so we can directly switch to the next one.

For what concerns the correctness of the algorithm, we will first describe
some properties.

Lemma 2.3.1. At any point in time Zvé{l 1y count, = N

Proof. The lemma can be proved via induction on the length of the stream. The
main idea is that at each step, only one counter is incremented with the weight
of the new arrived pair. O

Lemma 2.3.2. Among all counters, the minimum counter value, min, is no
greater than N/I.

Proof. We can write:

min =" [ N — Z (count, — min) | ;
ve{l,...,l}

since Yv.count, > min, the summation has all nonnegative terms, thus the
result. O

Theorem 2.3.1. V(i,5).(i,5) € M AM(i,j) > &N = (i,]) is recorded in the
data structure.

Proof. Assume (i,7) do not end up in the data structure; notice that M (i,5) >
min at any point in time. Since (i,7) is not in the data structure there has
to be a pair that caused the deletion of (7,5) one last time. Since (7,7) has
been selected to be deleted, all the pairs in the data structure have to have an
estimated frequency larger than ¢ N, so min > ¢N; by means of Lemma 2.3.2,
we also have min < N/l, so min > ¢N > N/l > min which is absurd. O

Theorem 2.3.1 states that all pairs (4, j) having frequency M(i,j) > ¢N are
reported by the algorithm.

It remains to understand the entity of the error the algorithm introduces.
The error depends on the maximum overestimation the algorithm allows. From
Lemma 2.3.2 we know that min < N/I; the pair having count, = min pertains
to a bucket whose range is [a,b). Since b = 2a < 2min < 2N/l and since
we can have overestimated the frequency of a pair using at most b, we get an
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additive 2/l—approximation, hence it is possible that pairs, whose frequency
falls in ((¢ — 2/1)N, $N], are reported.
From the previous theorem, we get the corollary:

Corollary 2.3.1. The space usage of BISAM, when WSPACESAVING is used, is
O(N/(7 - A)) and the computational time remains O(mb+7 3 ; i<y, S(4,5))-

Proof. For the time complexity, we have already pointed out that every update
to the data structure takes constant time. The space bound is straightforward
when we notice that, given the cut weight ¢, we can have at most 1/¢ frequent
pairs, so we need at least the space for storing those pairs. For ¢ = (7-A)/(2-N),
the claim is verified. O

2.4 Experiments

To make experiments fully reproducible and independent of implementation
details and machine architecture, we focus our attention on the number of hash
table operations, and the number of items in the hash tables. That is, the
time for BISAM is the number of items in the input set plus the number of
pairs output. The space of BISAM is the number of distinct items (for support
counts) plus the space for the filtering algorithm. An exact threshold filter has
space usage that is equal to the number of distinct pairs output by BISAM,
whereas the most frequent pairs algorithm has space usage that is equal to the
output weight of BiSAM divided by the weight threshold (see Corollary 2.3.1).
Similarly, the time for methods based on exact counting is the number of items
in the input set plus the number of pairs in all transactions (since every pair is
counted), and the space for exact counting is the number of distinct items plus
the number of distinct pairs that occur in some transaction.

We believe that these simplified measures of time and space are a good choice
for two reasons. First, hash table lookups and updates require hundreds of clock
cycles unless the relevant key is in cache. This means that a large fraction of the
time spent by a well-tuned implementation is used for hash table lookups and
updates. Second, we are comparing two approaches that have a similar behavior
in that they count supports of items and pairs. The key difference thus lies in
the number of hash table operations, and the space used for hash tables. Also,
this means that essentially any speedup or space reduction applicable to one
approach is applicable to the other (e.g. using counting Bloom filters to reduce
space usage).

Datasets. Experiments have been run on both real datasets and artificial
ones. We have used most of the datasets of the Frequent Itemset Mining Im-
plementations (FIMI) Repository?. In addition, we have created three datasets
based on the Internet movie database (IMDB). Table 2.6 contains some key
figures on the datasets.

2.4.1 Results and discussion

Tables 2.8, 2.9, 2.10 show the results of our experiments for the all confidence
measure. The time and space for BISAM is a random variable. The reported

2http://fimi.cs.helsinki.fi/
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distinct | number | avg. max. avg. avg.
Dataset items of trans. | trans. items simila-

trans. size size support rity
Chess 75 3196 37 37 1577 0.3148
Connect 129 67557 43 43 22519 0.1626
Mushroom 119 8124 23 23 1570 0.1523
Pumsb 2113 49046 74 74 1718 0.0120
Pumsb_star 2088 49046 50 63 1186 0.0102
Kosarak 41270 990002 8 2498 194 0.0168
BMS-WebView-1 497 59601 2 161 301 0.0307
BMS-WebView-2 3340 59601 2 161 107 0.0140
BMS-POS 1657 515596 6 164 2032 0.0044
Retail 16470 88162 10 76 55 0.0094
Accidents 468 340183 33 51 24575 0.0248
T10I14D100K 870 100000 10 29 1161 0.0137
T40I10D100K 942 100000 40 77 4204 0.0230
actors 128203 51226 31 1002 12 0.0618
directorsActor 50645 3783 1221 8887 90 0.0978
movieActors 51226 133633 12 2253 33 0.0380

Table 2.6: Key figures on the datasets used for experiments.

The first 13

datasets are from the FIMI repository. The last 8 were extracted from the May
29, 2009 snapshot of the Internet Movie Database (IMDB). The datasets Chess,
Connect, Mushroom, Pumsb, and Pumsb_star were prepared by Roberto
Bayardo from the UCI datasets and PUMBS. Kosarak contains (anonymized)
click-stream data of a hungarian on-line news portal, provided by Ferenc Bodon.
BMS-WebView-1, BMS-WebView-2, and BMS-POS contain clickstream
and purchase data of a legwear and legcare web retailer, see [72] for details. Re-
tail contains the (anonymized) retail market basket data from a Belgian retail
store [18]. Accidents contains (anonymized) traffic accident data [50]. The
datasets T10I4D100K and T10I4D100K have been generated using an IBM
generator from the Almaden Quest research group. Actors contains the set of
rated movies for each male actor who has acted in at least 10 rated movies. Di-
rectorActor contains, for each director who has directed at least 10 rated movies,
the set of actors from Actors that this director has worked with in rated mouvies.
MovieActor is the inverse relation of Actors, listing for each movie a set of
actors.



38 BiSam - a Two Passes Approach

number is an exact computation of the expectation of this random variable.
Separate experiments have confirmed that observed time and space is relatively
well concentrated around this value. The values of 7 used are shown in Table 2.7
— they were chosen manually in each case to give a “human readable” output
of around 1000 pairs. (For the IMDB dataset Actor and the Kosarak dataset
this was not possible; for the latter this behaviour was due to a large number of
false positives.) Note that choosing a smaller A would bring the performance
of BISAM closer to the exact algorithms; this is not surprising, since lowering A
means reporting pairs having a small value for the similarity measure, increasing
in this way the number of samples taken. As noted before, we are usually
interested in reporting pairs with high similarity, for almost any reasonable
scenario.

The results for the other measures are omitted for space reasons, since they
are very similar to the ones reported here. This is because the complexity of
B1SaM is, in most cases, dominated by the first phase (counting item frequen-
cies), meaning that fluctuations in the cost of the second phase have little effect.

We see that the speedup obtained in the experiments varies between a factor
1.62 and a factor over 36. The largest speedups tend to come for datasets with
the largest average transaction size, or datasets where some transactions are
very large (e.g. Kosarak). However, as our theoretical analysis suggests, large
transaction size alone is not sufficient to ensure a large speedup — items also
need to have support that is not too small. So while the Director Actor dataset
has very large average transaction size, the speedup is not as high as the ones
observed for other datasets, because the support of items is low. In a nutshell,
BI1SAM gives the largest speedups when there is a combination of relatively large
transactions and relatively high average support. The space results are shown
in Table 2.9 and Table 2.10. In particular, Table 2.9 refers to the algorithm
when the Fzact threshold filtering is applied and the space usage ranges from
being quite close to the space usage for exact counting, to a decent reduction.
Table 2.10 refers to the algorithm when WSPACESAVING is used. In particular,
in this case, we are taking into account the version of the algorithm presented
in [38], where the space usage would be N/(7 - A) at the cost of raising the
time complexity to O (mb + T2 1<cicj<n (i, 7) 10g(N/TA)>. As can be seen we
may get much higher savings in space in this case, up to almost two orders of
magnitude for some datasets. Especially, we get large savings for some datasets
with many distinct items.

Though we have not experimented with methods based on locality-sensitive
hashing (LSH), we observe that our method appears to have an advantage when
the number n of distinct items is large. This is because LSH in general (and in
particular for cosine similarity) requires comparison of (g) pairs of hash signa-
tures. On the other hand, our algorithm uses time that is n? times the average
similarity (times a constant 7 that is typically small, since we are looking for
high-similarity pairs). Table 2.6 shows the average all confidence similarity of
each of our datasets, which is typically 1-2 orders of magnitude smaller than
the similarity of the pairs we wish to report.

For the datasets Kosarak, Retail, BMS-Webview-2, Actors, and Movie-
Actors the ratio between the number of signature comparisons and the number
of hash table operations required for BISAM is in the range 9-1340. While these
numbers are not necessarily directly comparable, it does indicate that BISAM
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has the potential to improve LSH-based methods that require comparison of all
signature pairs.

’ Parameters and output size

Dataset H T \ F#output
Chess 20 986
Connect 20 1008
Mushroom 40 1048
Pumsb 9 844
Pumsb_star 14 1012
Kosarak 6 1710

BMS-WebView-1 || 30 992
BMS-WebView-2 || 21 1002

BMS-POS 85 994
Retail 20 1047
Accidents 30 1030

T10I14D100K 40 947
T40I10D100K 30 1087
Actors 8 200445
DirectorsActor 3 714
MovieActors 13 1213

Table 2.7: Chosen values of parameter T and the corresponding output sizes.
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’ Time
Dataset H BiSam \ Exact counting \ Ratio
Chess 1.35-10° 22.5-10° | 16.67
Connect 20.3-10° 639 -10° | 21.82
Mushroom 2.08-10° 22.4-10° | 10.77
Pumsb 36.8 - 10° 1360 - 10° | 36.96
Pumsb _star 25.4-10° 638 -10° | 25.12
Kosarak 108 - 10° 3130-10° | 28.98
BMS-WebView-1 || 2.06 - 10° 9.64 - 10° 4.68
BMS-WebView-2 || 5.66 - 10° 24.4.10° 4.31
BMS-POS 35.1-10° 246 - 10° 7.01
Retail 15.3-10° 80.7-10° | 5.27
Accidents 115 - 10° 187 - 10° 1.62
T10I4D100K 11-10° 62.8-10° | 5.72
T40I10D100K 42.6 - 10° 841-10° | 19.74
Actors 144 - 10° 500 - 10° | 3.47
DirectorsActor 4688 - 10° 81500 - 10° | 17.38
MovieActors 290 - 10° 1070 - 10° 3.69

Table 2.8: FEzperimental results for all_confidence measure concerning time.
The colums ratio represents the savings BISAM gets with respect to an exact ap-

proach computing all pairs.

’ Space (Ezact Threshold Filtering)

Dataset H BiSam \ Exact counting \ Ratio
Chess 2.20-103 2.66 - 103 1.21
Connect 4.14-10° 6.96-10% | 1.68
Mushroom 2.92-10°% 3.65 - 10° 1.25
Pumsb 36.7-10° 536 - 10° 14.6
Pumsb_star 44.5-103 485 - 103 10.9
Kosarak 2306 - 103 33100 - 103 | 14.35
BMS-WebView-1 26.5 - 103 64.5 - 103 2.43
BMS-WebView-2 163 - 103 725 - 103 4.45
BMS-POS 89.4-10° 381-103 4.26
Retail 612 -10°% 3600 - 103 5.88
Accidents 10.9 - 103 47.3-103 4.35
T10I4D100K 60.7 - 103 171- 103 2.82
T40110D100K 168 - 103 433-10% | 257
Actors 11925 - 103 32900 - 10° | 2.76
DirectorsActor 76104 - 10° 367000 - 103 4.82
MovieActors 22317 - 103 55400 - 103 2.48

Table 2.9: Result of experiments for the all confidence measure concerning

space when the Exact Threshold Filtering is used.
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] Space (WSPACESAVING)

Dataset H BiSam \ Exact counting \ Ratio
Chess 2.11-103 2.66-10% | 1.26
Connect 2.90 - 103 6.96-10° | 2.40
Mushroom 2.79 - 103 3.65 - 103 1.31
Pumsb 9.33-10° 536 - 103 | 57.48
Pumsb _star 10.61 - 10° 485 -10% | 45.69
Kosarak 387103 33100 - 10 | 85.63
BMS-WebView-1 7.5-103 64.5-103 | 8.60
BMS-WebView-2 || 29.27-103 725103 | 24.79
BMS-POS 18.96 - 10° 381-10% | 20.10
Retail 94.33 . 103 3600 - 103 | 38.20
Accidents 4.75 - 103 47.3-10% | 9.95
T1014D100K 12.52 - 103 171-103 | 13.65
T40I10D100K 38.22-10° 433-10% | 11.32
Actors 1731103 32900 - 103 | 19.00
DirectorsActor 58974 - 103 367000 - 103 6.32
MovieActors 3461 - 103 55400 - 103 | 16.00

Table 2.10: Result of experiments for the all_confidence measure concerning

space when the version of WSPACESAVING presented in [38] is used.
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Chapter 3

Interlude

The B1SaM algorithm presented in Chapter 2, looks for all the pairs in a transac-
tion whose associated sampling probability falls in an interval of the form [r, 1].
This is actually a concrete example of the more general problem of finding el-
ements belonging to a certain interval of values in a matrix. In this chapter
we present a technique for solving the described problem in linear time with
respect to the size of the dimensions of the matrix. We will use this technique
explicitly in Chapters 5 and 7, with the adaptations necessary to fit the specific
settings of those problem. The method can also be applied to the case described
in Section 4.3.1, in the paragraph on page 54, where the details of the streaming
adaptation are explained.

We think it is useful to give a description that prescinds from the specific
incarnation the technique can take for a given problem.

3.1 Problem description

Suppose that we are given two vectors of values ¥ = (vy,...,v,) € U™ and
W= (wy,...,Wy) € U™ for a set U with a total order relation < defined on
it. Moreover, suppose that the two vectors are sorted in ascending order; i.e,
Vi,j€nl,i,j €[m].(1 <j= v <v;) ANi' <j = wy <wj). Farthermore,
suppose that a function g is defined, such that:

g : U x U — I
ur , Uz 9(“1,U2).

I is a group on which a total order relation < is defined. The function ¢
is monotonically non decreasing in both parameters in the group I, that is,
modulo the maximum element in .

The problem we are interested in is finding efficiently the pairs of vector
components (v;,w;) such that g(v;,w;) € [p,q] C I, where p and ¢ are not
necessarily distinct values.

The problem is trivially solved in quadratic time just by checking all the
possible pairs of vector components. So solving this problem efficiently means
finding an algorithmic way to the result that is linear both in the size of the
vectors and in the number of pairs in the output.

In the next section we will present an algorithm that achieves the necessary
efficiency.
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3.2 Our algorithm

In order to find the pairs we are interested in, we will find some zones in an
ideal matrix M that contains all the vector component pairs. We can think of
the matrix M associating every row ¢ with the value v; and every column j with
the value w;. An entry M; ; of M consists of the value g(v;,w;). Built in this
way, M is monotonic non decreasing both row-wise and column-wise.

Instead of an interval [p, q] we will consider the interval [p+h,¢+h] = [/, ¢'],
where for each d € I we have p’ < d. We consider the interval in this form
because it simplifies the exposition of the algorithm, but the technique itself is
general and can be applied to any interval. We will start looking at the pairs
whose associated values appear in the first column, that is, pairs of the form
(vi,w1). In order to find the first pair that has an associated value belonging to
the interval, we look for index ¢ where a flip happens. We call flip an inversion
in monotonicity in a column k, such that M; ;. < M;_1) mod n,x- For a column
with flip position ¢ we notice that: (i) the value in position %, is the smallest; (ii)
there is one and only one flip; (iii) all the other values belonging to the interval
[p',q'] will appear in rows subsequent to the i*" having index larger than i
modulo n. Index i; = i gets marked, since it will be used for the next column.
All we need to find now is the row index j, sometimes called upper boundary
in the remaining part of the Chapter, such that M;1 < ¢ < M(j11) mod n,1-
and, because of (iii), it suffices to look for this index in rows below the 7"
in the column. Once found, position j; = j gets marked too and the pair of
coordinates (i1, j1), defining the borders of the zone of values falling in [p’, ¢']
in the first column, is output.

Suppose that the algorithm has found (i, jr) for column k; it is now nec-
essary to find (ix11,jg+1) in the next column. Therefore, the algorithm starts
looking for a flip in column k 4 1. This search can start from index iy, that
is, from M;, j1; until the flip is found, it suffices to look at rows with index
smaller than i;,. Again, the row position ix41 where the smaller value in column
k+1 lies, gets marked. In order to find the last pair that has an associated value
belonging to the interval, we look for the row where the largest value smaller
than ¢’ lies in the column. The algorithm starts looking for such a value from
the row index jj that has been marked in the preceding column, decreasing the
index until the search succeeds. The reason for this choice is that, since g is
monotonic, the values Mj, 4q k41, d € [1,n — j], are either involved in a flip or
larger than Mj, 11 > ¢'. Once the new ending position jjq is found, it gets
marked and the pair (ixi1,jg+1) is output for column k + 1. If the algorithm
reaches row 1 during the search of either ¢ or j in any column, it continues to
search starting from the bottom of the column. The values in the columns wrap
up, so, as it happens for Karnaugh maps [68], the values M, , and M,, ;, have
to be considered adjacent.

It is important to point out that rows have the same characteristics of
columns in terms of behaviour of the values. Therefore, each row is mono-
tonically non decreasing, has one and only one pair of adjacent columns where
a flip happens and the index where the flip happens marks the position of the
smallest value in the row.

Algorithm 3.1 contains the pseudocode for the described technique, and
Figure 3.1 gives a graphical representation of how intervals behave in the matrix
M.
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1: procedure FINDINTERVAL(¥, @, q’)

2 s:=0

3 while g(’U(S,U mod ns wO) < g(U57w0) do
4 s:=(s+1) modn

5: end while

6 si=s

7 while g(v(s’+l) mod nva) < ql do

8 s = (s’ +1) mod n

9: end while

10: 00 = (s,5")

11: fort:=1tom—1do

12: while g(“sawt) 2 g(v(s—l) mod nth) do
13: s:=(s—1) modn

14: end while

15: while g(vs, w:) > ¢ do

16: s’ = (s"—1) mod n

17: end while

18: ot = (8',8)

19: end for
20: output o

21: end procedure

Algorithm 3.1: Pseudocode for the interval finder. The While loops on Line 3
and Line 7 find the flip and the last value in [p', q'] respectively in the first column.
The While loop on Line 12 finds the index where the flip happens in a generic
column t > 0. The While loop on Line 15 instead, finds, for a generic column
t > 0, the index s’ such that s(ve,wt) is the largest value smaller than q'. We do
not consider in the pseudocode cases in which there are no interesting values in a
column and the patologic case of a column being constant.

3.3 Analysis

For the first column the algorithm takes at most n steps to find the flip and
the upper boundary. As a matter of fact, the loops on Line 3 and Line 7 in
Algorithm 3.1 are separated for sake of clarity, but the operations they involve
could be carried out together. For subsequent columns it suffices to notice that
at most n increases to the row index of the flip position will be performed in all
columns, since there can be only one flip per row. The same reasoning applies
for the the number of increases to the row index for finding the upper boundary
of intervals in all columns. This results in at most 3n operations, which is
exactly the linear running time we were trying to achieve. Clearly, in order to
report the z pairs in the interval, it would suffice to scan the interval itself and
output the pairs, which would take z steps.

The total running time is therefore O(n+m++z), when the algorithm outputs,
along with the boundaries of the interval, the pairs that the interval contains.
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Figure 3.1: The grey intervals define the zone in the matriz M containing values
belonging to [p’,q']; these values are obtained computing the monotonically non
decreasing function g on pairs of vector components; the latter are represented in
sorted order, according to an order relation, on the respective azes.



Chapter 4

BiSam - a Streaming
Approach

While there has been a lot of work on finding frequent itemsets in transaction
data streams, none of these solve the problem of finding similar pairs according
to standard similarity measures. In this chapter we present a first attempt at
dealing with this, arguably more important, problem.

We start out with a negative result that also explains the lack of theoretical
upper bounds on the space usage of data mining algorithms for finding frequent
itemsets: any algorithm that (even only approximately and with a chance of er-
ror) finds the most frequent k-itemset must use space Q(min{mb, n*, (mb/)*})
bits, where mb is the number of items in the stream so far, n is the number of
distinct items and ¢ is a support threshold.

To achieve any non-trivial space upper bound we must thus abandon a worst-
case assumption on the data stream. We work under the model that the transac-
tions come in random order, and show that surprisingly, not only is small-space
similarity mining possible for the most common similarity measures, but the
mining accuracy improves with the length of the stream for any fixed support
threshold.

4.1 Introduction

The problem we face is very close to the one presented in Chapter 2. As a mat-
ter of fact we have a set of m sets (“transactions”), each a subset of {1,...,n},
and we want to find interesting associations among items in these transactions.
This problem is thus the one framed in the “market basket” model where we are
interested in finding those pairs of items that are frequently bought together.
As pointed out in the previous chapter, understanding whether a pattern is
interesting or not must rely on various similarity measures, since the interest
of a pattern is problem dependent. We report here the names of some of the
most used similarity measures, as we did in Chapter 2, in order for the reader
to have a simpler access to the relevant references: Jaccard [34], cosine and
all_ confidence [74, 84]. Also in this case, besides the cited measures, we are
interested in association rules, which are intimately related to the overlap coef-
ficient similarity measure. As already pointed out in Chapter 2, [59, Chapter
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5] contains background and discussions of similarity measures.

In this chapter, we initiate the study of this problem in the streaming model
where transactions arrive one by one, and we are allowed limited time per trans-
action and very small space. The latter constraint implies we cannot hope to
store much information regarding pairs that are not similar and, moreover, we
cannot store the input. In particular, classical frequent item set algorithms such
as A-Priori [6] and FP-growth [60] that work in several passes over the data can-
not be used. The survey of Jiang and Gruenwald [66] gives a good overview of
the challenges in data stream association mining.

Previous works on transaction data streams have focused on finding frequent
itemsets, and can be classified in the following way [100]:

Landmark model: The frequent itemsets are searched for in the whole stream,
so that itemsets that appeared in the far past have the same importance
as recent ones;

Damped model: This model is also called Time-Fading. Recent transactions
have a higher weight than the older ones, so nearer itemsets are considered
more interesting than the further;

Sliding window: Only a part of the stream is considered at a given time in
this model, the one falling in the sliding window. This implies storing
information concerning the transactions falling within the window, since
whenever a transaction gets out of the window span, it has to be removed
from the counts of the itemsets. This approach falls in the more general
streaming technique described in Subsection 1.4.2

The last two models make the problem of achieving low space usage simpler,
since most of the information in the stream has little or no effect on the mining
result. The challenge is instead to handle the real-time requirements of data
stream settings.

All the cited approaches look for frequent items and do not try to com-
pute any similarity, relying on the tacit assumption that whatever is frequent is
automatically interesting. This assumption is not always true:

Ezample 4.1.1. Suppose we have item 1 appearing in 20% of transactions, item 2
appearing in 20% of transactions, and the pair {1,2} appears in 10% of transac-
tions. Suppose moreover that the pair {3,4} appears in only 5% of transactions
and that these transactions are the only ones in which 3 and 4 appear. The
set {1,2} has a frequency that is two times the one of {3,4}. But looking at
the similarity function cosine, we can easily realize that s(1,2) = 10/20 = 0.5
while s(3,4) = 5/5 = 1. If we base the idea of similarity only on frequencies,
we are likely to miss the pair {3,4} which holds a much higher similarity than
the more frequent pair {1,2}.

Notice also that {3,4} holds a higher similarity for all the measures we are
addressing, so the example shows how frequencies alone do not suffice to infer
similarity properties of pairs. o

Our contributions. In this chapter we address the problem of finding similar
pairs in a stream of transactions. We first show a negative result, which is that
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a worst-case stream does not allow solutions with non-trivial space usage: To
approximate even the simplest similarity measure one essentially needs space
that would be sufficient to store either the number of occurrences of all pairs or
the contents of the stream itself. Imposing a minimum support ¢ for the items
we are interested in alleviates the problem only when ¢ is close to the number
of transactions.

Theorem 4.1.1. Given a constant k > 0, and integers m, n, @, consider
inputs of m transactions of total size mk with n distinct items. Let Spax de-
note the highest support among k-itemsets where each item has support ¢ or
more. Any algorithm that makes a single pass over the transactions and esti-
mates Smax Within a factor a < 2 with error probability 6 < 1/2 must use space
Q(min(m,n*, (m/p)*)) bits in expectation on a worst-case input distribution. o

This lower bound extends and strengthens a lower bound for single-item
streams presented in [40].

Of course, many data streams may not exhibit worst-case behavior. Several
papers have considered models of data streams where the items are supposed
to be independently chosen from some distribution, or presented in random
order [41, 95, 26, 58]. We present an upper bound that works for a worst-case
set of transactions under the condition that it is presented in random order,
which is sufficient to bypass the lower bound. Our method is general in the sense
that it can evaluate the similarity of pairs according to several well-established
measure functions.

Theorem 4.1.2. Let § > 0 be constant, and s, M > 1 be integers. We consider
a data stream of transactions (subsets of {1,...n}) of maximum size M, where
i each prefix the set of transactions appears in random order. For all the
sitmilarity measures in Table 2.1 there is a streaming algorithm (depending on s
and M ) that maintains a “1£8 approzimation” of the s most similar high-support
pairs in the stream, as follows: Within the m transactions seen so far, let A be
the sth highest similarity among pairs {i,j} where both i and j appear at least
@ times, where ¢ can be any function of m. There exists L = O(log(mn)) such

that if A > {;max{ @, M}, then the pairs maintained all have similarity

at least (1—0)A with high probability, and all such pairs with similarity (140)A
or more are reported. To process a prefiz of mb items, the algorithm uses time
O(mblog(nm)), with high probability, and space O(n + s). o

It is worth noticing that s can be chosen as O(n), which yields a space
usage linear in the number of distinct items. Conversely, choosing s smaller
does not improve the space usage, so we may assume s > n. In absence of a
known bound on the maximum transaction size, one can use M = n. Then the

algorithm guarantees to detect pairs with similarity at least %max{ mb, n}

Using s > n and ignoring the logarithmic factor L this means that up to input
size mb = n? we can detect similarity n/¢, and after this point we can detect
similarity v/mb/¢. Assuming that ¢ is chosen as a linear function of m (relative
support threshold), we see that the accuracy improves with the length of the
stream.
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4.1.1 Previous work

Denote by m the number of transactions seen up to the moment in which we
want to report the similar pairs. Let n indicate the number of distinct items
that can appear in transactions. Without loss of generality we can assume these
items are in the set {1,...,n}. Parameter b is the average length of transactions
(such that mb is the size of the dataset seen so far).

Most of the algorithms we describe actually consider the problem of finding
frequent objects in a stream of items, so they do not focus on itemsets, like we
do. But given a stream of transactions we can of course generate the stream
of all pairs occurring in these transactions, and feed them to a frequent item
algorithm. (We do not consider here that this might not be possible for large
transactions in settings where real-time constraints are important.)

Landmark model

Many research papers have addressed the problem of frequent items in a stream.
Starting from the seminal paper [7] streaming algorithms have started to flow
in recent years. Many important contributions to the problem of frequent items
(and indirectly frequent itemsets) have thus been presented.

In several independent papers [81, 41, 70] algorithms have been presented
that can find all pairs with support at least k using space |\S|/(k—1) and constant
time per pair in the stream S. These algorithms may generate false positives,
i.e., it is only known that the output will contain the frequent pairs.

Cormode and Muthukrishnan [40] consider the problem of reporting hot
items in a fully dynamic database scenario. The space usage is similar to the
schemes above, but the error probability can be reduced arbitrarily (at the cost
of space).

Also in [40] is a lower bound on the number of bits of memory necessary in
order to answer queries that concern reporting the items with frequencies over
a certain threshold. This lower bound is extended and generalized by our lower
bound in Theorem 4.1.1.

In [28] the COUNT SKETCH algorithm tackles the problem of reporting the k
most frequent itemsets. For worst-case distributions their algorithm has similar
performance to those mentioned above, but for skewed distributions they are
able to detect itemsets with smaller frequencies in the same amount of space.

A false negative approach

Yu et al. [95] present algorithms directly addressing the problem of finding
frequent itemsets in a transaction stream. The algorithm does not find itemsets
that are similar by means of measure functions other than support. Under
the assumption that items occur independently (which is arguably quite strong,
since we are assuming that there may be dependencies resulting in frequent sets)
the authors show upper bounds on space usage similar to those of [40]. The
performance is tested on artificial datasets where the independence assumption
holds. For itemsets of size two (or more) the paper lacks a theoretical analysis
of the proposed algorithm, but claims an empirical space usage bounded by
m3/k3.
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Sampling according to the similarity

Our algorithms builds on top of the idea presented in Chapter 2. The sampling
technique used in that algorithm is such that pairs are sampled a number of
times that is proportional to their similarity. (A more technical explanation can
be found in Section 4.3.1 where we improve the sampling procedure to make it
suitable for a streaming environment.) The algorithms presented in Chapter 2
have near-optimal running time, when no information on the distribution of
similarities are given. As a matter of fact, the running time is linear in the size of
the input and output (when there are many pairs of roughly the same similarity).
The methods presented are highly general and apply to many measure functions
that are linear in the number of occurrences of a pair. However, the method
does not directly apply to a streaming setting since it needs two passes over the
data.

4.2 Lower bound

There are two naive approaches to handling k-itemset support counting in a
data stream setting: One consists in storing all the transactions seen (possibly
trying to compress the representation), and the other one maintains support
counts for all k-itemsets seen so far.

Theorem 4.1.1 says that it is not possible to beat the best of these approaches
in the worst case (with support threshold ¢ = 1). The proof is a reduction from
communication complexity:

Proof. The inputs considered for the lower bound have m transactions of size
k. Let n’ = min(n, [mk/(2¢)|) — 1 be the largest possible number of items that
can appear ¢ times in m/2 transactions, minus 1. We pick an arbitrary set F'
of n’ items, and will form an input stream that consists of two parts:

e In the first m/2 transactions we ensure that each item in F appears ¢
times or more, while no k-subset of F' appears. This can be done by
putting one item not in F' in each transaction.

e In the last m/2 transactions we encode information that will require many
bits to store, as detailed below.

Consider the first s = min(m/2, (7,1/)) transactions in the second part. Since s <

(7;;) we can map the numbers {1, ..., s} to unique k-itemsets in F. In particular,
any bit string « € {0,1}® can be mapped to the unique set of transactions
corresponding to the positions of 1s in z. In this dataset, each k-itemset from
F appears at most once.

Suppose we have an algorithm that can determine the support of the most
frequent itemset within a factor @ < 2 with probability 1 — §. This implies
that, on inputs where no itemset appears more than twice, the algorithm can
distinguish (with probability 1 — §) the cases where the most frequent itemset
appears once and twice. Given z € {0, 1}* we consider the memory configuration
after the algorithm has seen the set of transactions that correspond to x. This
can be seen as a “message” that encodes sufficient information on x that allows
us to determine if one of the itemsets we have seen appears later in the stream.
Lower bounds from communication complexity (see [73, Example 3.22]) tell us
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that even when we allow error probability § < 1/2 the amount of communication
to determine whether z,y € {0,1}® have a 1 in the same position (corresponding
to the same k-itemset appearing twice) is (s) bits in expectation. This means
that the memory representation (even if it is compressed) must use §2(s) bits.
Using the estimate (7;;) > min((}), (mk/k(:s“"))) = Q(min(n¥, (m/p)*)) we get the
lower bound stated in the theorem. O

Corollary 4.2.1. Any deterministic algorithm that determines the highest sup-
port in a transaction data stream must, after having processed transactions of
total size mb, use space Q(min(mb, n*)) bits on a worst-case input. o

4.3 Our algorithm

We now present a new algorithm for extracting similar pairs from a set of trans-
actions using only one pass over the data. The algorithm is approximate, so
false negatives and false positives occur. Most of our discussion will concern
space usage, but we are also aiming for very low per-item time complexity of
the algorithm. In particular, we will not allow anything like iterating through
all pairs in a transaction.

The measures we will address are almost the same reported in the Chap-
ter 2, Figure 2.1. The difference stands in the fact that we do not support lift.
We remark that also in the algorithm presented in this chapter, the measure
Jaccard can be computed by means of computing the measureDice. Further-
more we recall the reader that finding pairs with an Overlap Coefficient over
a certain threshold, entails finding association rules with confidence over the
same threshold. It is worth pointing out again that the measures we address are
all symmetric. This means that we are interested only in looking at pairs (i, j)
where ¢ < j. For this reason we will use set notation for the pairs, so instead of
(i,4) we will write {4,5}.

Parameters of the algorithm. We recall that ¢ is the item support thresh-
old, and M is the maximal transaction size. Increasing ¢ will decrease the
minimum similarity the algorithm will be able to spot. M is a characteristic
of the transactions, supplied as a parameter to the algorithm. In absence of a
known bound on M, one can set M = n. The parameter s determines the space
usage of the algorithm, which is O(n + s) words.

Notation. In the streaming framework, the total number of transactions is
not known. In order to address this issue, we consider sets of transactions,
prefizes, of the stream of increasing size. Suppose that so far we have seen m
transactions T1,..., T, C {1,...,n}.

The current prefix has length 2¢, t € INU {0} when m falls in the interval
[2¢,2871). Our algorithm maintains counts of all items and stores copies of the
counts every time the current prefix changes (that is: Every time the number of
transactions seen is two times the length of the current prefix). Each time the
current prefix changes, we update our estimate of the most similar pairs, and
use this estimate until the next change of current prefix.

The algorithm is based on two pipelined stages: A stream of pairs generation
phase and a store and count phase. We will describe the two phases separately,
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Figure 4.1: Overview of the algorithm with all its components.

since the output of the former phase will constitute the input of the latter.
Figure 4.1 gives an overview of the algorithm.

The prefixes of the stream are fed to a pair sampling stage that uses the
stored counts from the previous prefix to compute sampling probabilities. Given
the current prefix, the counts relative to that prefix will be used in order to sam-
ple pairs in the stream, until a new set of counts is stored for the prefix of length
241 The idea is that, since transactions come in random order, the sampling
probabilities associated with the pairs in each prefix, should be approximately
the same as for the BISAM (Subsection 2.2.1) sampling procedure (which bases
the sampling probabilities on exact item frequencies).

In Section 4.4 we show how this technique samples, with high probability,
the pairs having a high enough similarity. In fact, we show that a stronger
property holds with high probability: Even when we split the stream into &
chunks, each with the same number of transactions, we will sample these pairs
sufficiently often in each chunk to reliably estimate their similarity.

4.3.1 Pair sampling

We base our technique on the sampling method of the BISAM algorithm (Chap-
ter 2). For each transaction the pairs are sampled according to their support,
such that the pair {i,j} is sampled with probability 7f(]S;|, |S;|), where f is a
function that depends on the similarity measure considered, and 7 is a parame-
ter that is used to control the sampling rate. We fix 7 = %’, where the number
of chunks k is given by (4.6).

BiSam idea. The idea is that after both i and j have appeared ¢ times, the
expected number of times {4, j} is sampled is proportional to s(i,j). Also, the
number of samples follows a highly concentrated (binomial) distribution, so the
true similarity can be estimated reliably for pairs that are sampled sufficiently
often. For any f that is non-increasing in both parameters, the BISAM algorithm
performs the sampling in time that is expected linear in the transaction size
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plus the number of samples. However, the time to process a transaction may be
quadratic with non-negligible probability, which is problematic for application
in a streaming context. We refer to the previous chapter for details.

Streaming adaptation. Two things allow us to arrive at a version suitable
for streaming;:

e While BiSAM produces dependent samples, in the sense that the number of
times two different itemsets is sampled is not independent, we show how
to make the samples produced independent. This will ensure that the
number of samples from each transaction is highly concentrated around
its expectation.

e The requirement of minimum support ¢ will ensure that processing of a
single transaction takes “linear time with high probability.” More precisely:
Any set of consecutive transactions with a total of logm items will require
linear time with high probability.

To achieve independence we will change the sampling probabilities by round-
ing them down to the nearest negative power of 2. This means that the expected
number of times {4, j} is sampled is no longer exactly proportional to s(,j),
but is changed by a factor «; ; € [1,2]. However, since the sampling probability
is known, which means that +; ; will be constant for any given {7, j}, we can
still use the sample counts to reliably estimate similarity.

Details. For a transaction 7; we can visualise the pairs in T} x Ty as a 2-
dimensional table, with rows and columns sorted by support, where we are
interested in the pairs below the diagonal (index ¢ < j). The cost of sorting will
be swallowed by the cost of the subsequent operations. Since f is non-increasing
the sampling probabilities are decreasing in each row and column. This means
that for any k > 0, in time O(|T}|) we can determine what interval in each row
of the table is to be sampled with probability 27%. In order to do this, we just
have to maintain references to where the next interval starts. Consider the case
when k£ = —1. We can browse the bottom row until we find a pair {1, j} such
that f(T:[1],T¢[j]) < 1/2. We can mark position (1, ) in order to remember
where to start looking for pairs belonging to the next interval. We then go to
row 2 and we look at column j; from here we start looking at columns j — p,
with p € {1,...,7—3} until we find a ¢ such that f(7;[2], T¢[q]) > 1/2 and mark
the position ¢ + 1. This will tell us the position where the rows belonging to
the next interesting interval starts on row 2. We then move to row 3 and carry
out the same procedure until no more pairs can be found with an associated
probability of 1/2. The total number of pairs scanned is at most 2|T;| and we
know in which columns the interval corresponding to the sampling probability
272 starts. Assume we have found the interval for k = x — 1. This means that
we know where the interval for £k = = starts on all the rows we have scanned
so far. Assume y and w are the indexes of rows where the first and the last
pair with associated probability 27% lie. We start from row y and look for the
first column index where f(T}[y],T;[r]) < 27*. We again mark the position
and carry out the same operations described above; that is, we scan row y + 1
and start decreasing the column index in order to find the first index where
f(Tily], T¢[r]) > 27*. Also in this case, the number of pairs scanned is at most
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2|Ty|, since we know, for each row index y, where the interval starts; that is,
either the index of the first interesting value or the position (y,y + 1). Thus
we only need to find where the interval finishes, which means going back to at
most column w + 1 < |T3| or reaching the diagonal in at most |T;| — y steps.

It is interesting to notice that the method described is an ad-hoc one for
a specific determination of a more general and abstract problem. This ab-
stract problem is the one of finding elements belonging to an interval in a set
of values; that is, the problem we described in Chapter 3. So, another possi-
ble approach would be finding the specific adaptation of the general technique
provided there. Chapters 5 and 7 show another case in which the same prob-
lem is faced, in distinct frameworks, and using the general technique, with the
appropriate adaptations.

To produce the part of the sample for one such interval, we describe a method
for producing a random sample of S = {1,..., ¢}, for a given integer ¢, where
each number is sampled with the same probability p. Since p¢ may be much
smaller than ¢, we want the time to depend on the number of samples, rather
than on ¢. This can be achieved using a simple recursive procedure similar
to the one used in efficient implementations of reservoir sampling [91]: With
probability (1 — p)® we return an empty sample. Otherwise, we choose one
random element z from S, and recursively take a sample of the set S\{z} with
sampling probability p. The set S can be maintained in an array, where sampled
numbers are marked. In case more than half of the numbers are marked, we
construct a new array containing only unmarked numbers. The amortised cost
of the construction of the new array is constant per marking. To select a random
unmarked number we sample until one is found, which takes expected O(1) time
because no more than half of the numbers are marked. To see why this is true,
it suffices to point out that each marked number has at most, and very crudely,
probability 1/2 of being selected. In summary, for each sampling probability 2%
we can compute the corresponding part of the sample in expected time O(|T;| +
2 ), where zj, is the number of samples. This is done for k = 1,2,...,2log(nm).
Sampling probabilities smaller than (nm)~2 are ignored, since the probability
that any such pair would be sampled in any transaction is less than 1/m. That
is, with high probability ignoring such pairs does not influence the sample. To
state our result, let 27 denote the set of negative integer powers of 2.

Lemma 4.3.1. Let f :IN x IN — 27N be non-increasing in both parameters.
Given a transaction Ty and support counts |S;| for its items, in expected time
O(|T¢| log(nm) + z) we can produce a random sample of z 2-subsets of Ty such
that:

o {i,j} is sampled with probability f(|SZ|, 1S;]) fo(\Sl|, IS;]) > (nm)~2, and
otherwise with probability 0, and

e The samples are independent. o

For all similarity measures in Table 2.1 and any feasible value of 7, the
minimum support requirement will ensure that the expected number of samples
in a transaction is at most |T;|. This means that for each transaction T;, the
time spent is O(|T¢|log(nm)) with high probability.
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4.3.2 SampleCount

This phase sees the stream of pairs generated by the pair sampling, and has to
filter out as many low similarity pairs as possible, while successfully identifying
high similarity pairs. By the properties of pair sampling, this is essentially the
task of identifying frequent pairs in the stream of samples. We aim for space
usage that is smaller than that of standard algorithms for frequent item mining
in a data stream. In order to accomplish this we use a modification of an
algorithm presented in [41]. That algorithm finds frequent items in a randomly
permuted stream of items, and so does not directly apply to our setting where
only the transactions are assumed to come in random order. In [41], the authors
are able to sample random elements by simply taking the first elements from
the stream. This would not work in our setting, where all these elements might
be pairs coming from the same transaction.

Reservoir sampling. Instead, we use a reservoir sampling method [91]. We
sketch the mechanism here and we refer to the original paper for a complete
description. Suppose we have a sequence of d items and we want to sample
a random subset of the sequence. We first of all put in the sample the first
s elements that we see. For each subsequent element, in position ¢t > s, we
will put it in the sample with probability s/t. When a new element has to be
included in the sample, another one that is already part of the sample has to
be evicted. Each element of the set of samples will be chosen as the victim with
probability 1/s. This technique ensures we will end up with a set of samples
that is a true random sample of size s.

SampleCount. We consider the stream of pairs divided into x chunks. The
pair sampling generates these chunks such that each chunk corresponds to some
set of transactions (i.e., all the pairs sampled from each transaction end up in
the same chunk).

We run reservoir sampling on every other chunk to produce a truly random
sample of size s/2. We then proceed to count the occurrences of the elements of
the sample in the next chunk. Assume in the following that we number chunks
by [k], such that reservoir sampling is done on even-numbered chunks, indexed
by [Keven].

When doing the above, whenever we see a pair {7, j} whose count must be
updated, we weigh the sample by the factor v; ; that got “lost” during the pair
sampling phase, so as to consider an expected number of samples exactly pro-
portional to s(i,7). At the end of a counting chunk we estimate the similarities
of all pairs sampled, and keep the s/2 largest similarities seen so far. At the end
of the stream the similarity estimates found are returned to supersede the pre-
vious estimates. Pseudocode for the SAMPLECOUNT is shown in Algorithm 4.1.

4.4 Analysis

Using the same notation as of Chapter 2, S; denotes the set of transactions
containing the element 7. Again this means that S;N.S; is the set of transactions
containing the pair {i, j}. Let S} denote the set of transactions containing i in
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1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

procedure SAMPLECOUNT(P, s, size)

<,)ut = @
while There are elements in P do
S =10
S:=10
S := the first s/2 elements in P
t:=s/2
while t < size do
i := the next element in P
t:=t+1

Choose uniformly at random a number r € [0, 1]
if r <s/(s/2+t) then
Choose a victim j uniformly at random from S
Substitute j with 4
end if
end while
INITIALIZE(S', S)
while (¢t < 2 - size) do

i := the next element in P
t=t+1
if i € S then
S'(1) = 8"(i) + v
end if
end while

S! . = the s topmost distinct items between S/, and S’
end while
output S! .

28: end procedure

Algorithm 4.1: Pseudocode for the SAMPLECOUNT phase. The input parameter
P, it is a stream of pairs, each of which has associated a similarity value. The
length of P is known. S’ on Line 17, is an associative array indexed on the

distinct items present in S; initializing it means putting all its entries to 0.
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the current prefix of the stream. Similarly, S¥ will denote the set of transactions
containing i in C}, the chunk k of the suffix of the stream up to the point in which
a new current prefix changes the counts of items occurrences. So S¥ = S; N Cy,

Definition 4.4.1. Given z,y € R we say that x (J, L)-approzimates y, written
% y, if and only if x > L implies x € [(1 — 0)y; (1 + d)y]. o

The notation extends in the natural way to approximate inequalities.

In what follows we will use (J, L)-approximations, where L = C'log(mn) for a
suitably large constant C' (depending on the accuracy ¢ in Theorem 4.1.2). The
task is to analyze the accuracy of the new approximation computed when the
current prefix changes. We introduce two random events, GOODPERMUTATION
(GP) and GooDpB1sAMSAMPLE (GBS), and bound the probability that they do
not happen.

A permutation of the transactions is called good for {3, j}, denoted GP; ;, if
and only if the following conditions hold (for the current prefix):

1. S} % [8;]/2 and [S}] = [S;]/2;

2. Vk.|SENSK =[S, N S;|/2k;

Essentially, goodness means that the frequencies of individual items are close in
the first and second half of the current prefix and the frequency of the pair is
evenly spread over the chunks in the second part of the current prefix.

Lemma 4.4.1. Given § € [0;1] C R, we have:

—15;162

PI‘[GPZ'J'] > 1—6-¢ ¢

Proof. An interesting property of the random variables |S}| and |SF N Sjk\ is
that they are negatively dependent [43]. First of all we bound the probability
that |S}| is far from |S;/2|. Using Chernoff bounds we can write:

EALS

Pr(|Si| = ISil /2] < 6|Sil/2) < 2-e7 0 (4.1)
Looking at |S¥ N Sjk| we can write:
1S;ns,;182
Pr[|SF N SF| = |Si N S;l/26] < 618N S;1/26] <27 o (4.2)

We use the fact that Chernoff bounds also hold for negatively dependent random
variables. Since the last bound is the weakest, the lemma follows. O

We want GP; ; to hold with probability 1 — o(1/n?) whenever items i and j
both have support ¢. From Lemma 4.4.1 we get that this holds if |S; N .S;| >
Cklogn, for some constant C' (depending on ). If s(i,5) > 2kLf(p,p) > KL/
then |S; N S;| > 2kL. Hence, a sufficient condition for the similarity is

s(i,7) > kL/g . (4.3)

It remains to understand what is the probability that, given a good permu-
tation, the pair sampler will take a number of samples for a given pair in each
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chunk % that leads to a (1 & §)-approximation of s(i,j). We denote the latter
event by GBS; ; », and want to bound the quantity Pr[{GBS; ; r|GP; ;].

For this purpose consider the random variable X ; ; defined as the number
of times we sample the pair {7, j} in chunk k. Assuming GP; ; we have that (over
the randomness in the pair sampling algorithm and because of the properties
of BiSaM) E[X; ; x] W f(SH, |Sj)7[Si N Sj|/2k. Since the occurrences of
{i,j} are independently sampled, we can apply a Chernoff bound to conclude

Xi gk W E[X; jk]. This leads to the conclusion:

5L

Lemma 4.4.2. X; ;5 =~ f(|S}, 1S}[)7S: N S;1 /2% o

Suppose that X; ;. is close to its expectation. Then we can use it, with
(14 §)-approximations of |S;| and [S;|, to compute a (14 O(J))-approximation
of s(i,7). This follows by analysis of the concrete functions f of the measures
in Table 2.1 on page 25.

A sufficient condition on the similarity needed for a (1+§)-approximation of
X, jk can be inferred from Lemma 4.4.2. in order to get the right approximation
for X; j 1, we need to enforce that f(|S}], |S}1)71S:NS;|/2k > L. We know that
fSH, 1S}1) > f(IS}1,1S}])/2. Moreover |S}| and |S}| approximate |S;|/2 and
|Sj|/2 respectively. It is important to point out that for all the measures we
address, f(|S:/2,]5;51/2) = 2f(]Sil,|S;j]). Thus, overloading the symbol § we

can write: f(|SZl|7 |S]1|)T|S,- N S;|/2x EL FUSil, 181718 N S;1/2k = s(i,5)7/2k.
If s(i,7) > 4xL/7 then E[X; ; 1] > s(i,7)7/4k > L. So it suffices to enforce:

s(i,j) > 4L /T . (4.4)

In order to have O(mb) pairs produced by the pair sampling phase, we
will choose 7 = 4 /M. The expected number of pair samples from T} is less
than |T;|*7 f (¢, ), using that f is decreasing. For all measures we consider,
fle.9) < 1/p, so L1 f(p,0) < |T* /M < T3]

It remains to understand which is the probability that a pair of items,
each with support at least ¢, is not sampled by SampleCount. Let the ran-
dom variable X  j; represent the total number of samples taken in chunk k.
The probability that a {i,j} is sampled in chunk k is X;; /X  , so the
probability that it does not get sampled in any (even-numbered) chunk is

5, L
er[,{cvcn](1_Xi,j7k/X.,4,k)s- We have seen before that X; ; > s(i,j)7/4k. For
what concerns X j using a Chernoff bound we can get: X w EX i <

mb/k, using the linear upper bound on the number of samples. So we can
compute:

. s(i,g)rr "/
[I O-Xijw/X 2 < (1- 22—

k€ [Reven] 2ky;,;mb
<|\1- i)\ ™" <Ce _s(ig)Tsk
- dmb N P 8mb

In order for this probability to be small enough (O(1/m?)), we need to bound

the similarity to
8mbL

SKT

s(i,j) 2 (4.5)
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Figure 4.2: Plots of the ratios |S}|/|Si| and |S} N S}|/|S: N S;].

To choose the best value of k we balance constraints (4.3) and (4.5), getting:

L mbL bM
rL _mbL ™ (4.6)
© SKT ]

From which we can deduce:

L, ] —Emax mbM
S(l,j)—(p { . ,M}. (4.7

4.5 Dataset characteristics

We have computed, for a selection of the datasets hosted on the FIMI web page',
the ratios between the number of occurrences of single items and pairs in the
first half of the transactions and the total number of occurrences of the same
items or pairs. The values of some of this ratios, the most representative, are
plotted Figure 4.2; on the z-axis items or pairs are spread evenly, after they have
been sorted according to their associated ratio. The y-axis represents the value
of the ratios. We have taken into account only items and pairs whose support is
over 20 occurrences in the whole dataset, in order to avoid the noise that could
be generated by very rare elements. As we can see, the number of occurrences
and co-occurrences are not so far from what would be expected under a random
permutation of the transactions. The synthetic dataset behaves exactly like we
would expect under a random permutation, with the ratio being very close to
1/2 for almost all items/pairs.

This means that even for real datasets, where the order of transactions is
not random, the sampling probabilities used in the pair sampling are reason-
ably close to the ones that would be obtained under the random permutation
assumption.

4.6 Conclusions

We presented the first study concerning the problem of mining similar pairs
from a stream of transactions that does rely on the similarity of items and not
only on the frequency of pairs. A thorough experimental study of (carefully
engineered versions of) the presented algorithm remains to be carried out.

Thttp://fimi.cs.helsinki.fi/



Chapter 5

Frequent Pairs in Data
Streams: Exploiting
Parallelism and Skew

We introduce the Pair Streaming Engine (PairSE) that detects frequent pairs in
a data stream of transactions. Our algorithm provably finds the most frequent
pairs with high probability, and gives tight bounds on their frequency. It is
particularly space efficient for skewed distribution of pair supports, confirmed
for several real-world datasets. Additionally, the algorithm parallelizes easily,
which opens up for real-time processing of large transactions. Our simple Java
implementation processes almost 100 million pairs per second on a workstation.

Furthermore we show that any algorithm that returns the exact most fre-
quent pair in a data stream must keep track of the frequencies of all pairs,
meaning that an exact approach is infeasible for data sets with many distinct
items.

Our theoretical findings are backed by extensive experiments showcasing
precision and recall of our method. In particular, we find that our method
achieves much better precision than guaranteed by the theoretical analysis, often
returning identical upper and lower bounds on the supports of the most frequent
pairs.

5.1 Introduction

We have already discussed in this work that a fundamental tasks in knowl-
edge discovery in databases is the mining of high quality association rules from
transactional databases over a set of items. The pioneering A-Priori [6] algo-
rithm proposed about two decades ago has paved the way for many important
contributions to the problem. Algorithms with much better space and time
complexity have since been proposed [20, 60, 86, 88] and showed to efficiently
handle large amounts of data.
In this chapter we concentrate again on discovering frequent pairs, or 2—itemsets.

It is worth pointing out again that, in our setting, we consider a pair p = (i, j)
as a set {4, j }; therefore we can focus our attention only on pairs such that ¢ < j.
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Our algorithm can be generalized in a straightforward way to k—itemsets, but
in that case the analysis becomes more complex. Also, it has been observed
that already the case of 2—itemsets captures the main challenge of frequent
itemset mining: “. .. the initial candidate set generation, especially for the large
2—itemsets, is the key issue to improve the performance of data mining” [86].

5.1.1 Mining data streams

The considerations in this section are vastly similar to the ones already expressed
in Section 4.1. We think it is useful for the reader to be able to have a picture
of the framework without the need of jumping back to where these notions were
firstly exposed. Classical approaches such as A-Priori [6] and FP-growth [60]
require several passes over the transactional database and thus it is necessary
to have access to a storage system containing the database. As observed by
Manku and Motwani [76] this requirement is not practical for many real life
applications where we want to mine frequent patterns in only one pass from a
high speed stream of transactions. Since this seminal work, many researchers
have considered the special requirements of data stream association mining. We
refer the reader to the survey of Jiang and Gruenwald [66] for an introduction
to this area, and references to many central works. In this paper we restrict
our attention to the fundamental case of mining frequent pairs over the entire
stream (“landmark model”, in the classification of [100]).

We show in Section 5.5 that even if we are only interested in the single most
frequent pair, any streaming algorithm that always returns the correct pair must
(in a certain technical sense) keep count of the number of occurrences of every
pair, the cost of which may be prohibitive for datasets with many distinct items.
For this reason we concentrate on algorithms that succeed with high probability,
and return upper and lower bounds on the number of occurrences rather than
precise counts. For example, in the webdocs dataset there are around 700 million
distinct pairs of items, and keeping all their counts in a hash table would require
at least 8 GB of memory. In contrast, we obtain accurate results using a sketch
data structure of a few megabytes that fits in L2 cache.

5.1.2 Related work

Heuristic algorithms. Manku and Motwani [76] first recognized the neces-
sity for efficient algorithm targeted at frequent itemsets in transaction streams.
They generalized their STICKYSAMPLING algorithm to a heuristic for transac-
tion streaming and showed empirically that it reliably estimates the frequency of
the most frequent itemsets on several benchmarks. The basic idea is to process
the dataset in memory-sized chunks, mining each chunk for frequent itemsets
to determine which itemsets should be counted in the next chunk. However,
this method is vulnerable to large itemsets that are “temporarily frequent”. An
itemset of size k that is frequent in a chunk will have all its subsets counted in
the following chunk, using space 2¥. For this reason it does not seem suitable
for general use.

Reduction to the single-item case. Another approach to mining of fre-
quent pairs (mentioned, but dismissed, in [76] and in Chapter 4) is to reduce the
problem to that of mining frequent items, which is well-studied in a data stream
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context. For a transaction T' C [n], this approach generates all (Igl) =0(|T?)
pairs of T and feeds the resulting stream S, where the items of S are the pairs
generated, into a frequent items algorithm. Let F» denote the length of the
stream generated in this way. It is known that using space s one can compute
the frequency of items (which are in fact pairs in our case) with an additive
error of Fy/s [41, 70, 81].

This means that all pairs with frequency above F5/s can be reported, with
computed upper and lower bounds on the frequency that differ by at most Fs/s.
While this is optimal over a worst-case data stream where all pairs occur with
frequency about F5/s, some methods, notably the SPACESAVING algorithm [79]
(a more detailed version of the paper is [80]), have been observed to produce
even tighter bounds on the highest frequencies in practice. However, to our best
knowledge, SPACESAVING and related algorithms have never been experimen-
tally investigated in the context of finding frequent itemsets.

Frequent items algorithms aim for using small time per item, and as a matter
of fact, the best methods use constant time per item; therefore the time usage for
the whole stream is O(F3). The most space-efficient methods do not parallelize
efficiently, as they rely on a single data structure, any part of which may be
updated for a particular transaction. Our algorithm, in contrast, parallelizes
efficiently without any need for shared memory.

Muthukrishan and Cormode [39] considered finding frequent items space-
efficiently in a stream that is highly skewed (Zipfian distribution with parameter
greater than 1). In the cited paper they are able to improve over previous
results the space needed to identify the most frequent items. However, when
considering the stream of all pairs, none of the datasets that we studied exhibits
large enough skew for their result to apply.

Algorithms for random streams. Yu et al. [95] presented another algo-
rithm for transaction stream mining. The main idea in their approach is to
keep a list of potentially frequent itemsets, and to update the list in a clever
way when advancing the stream. The paper contains theoretical bounds for the
quality of their estimates. However, in order to derive these bounds, they need
to assume that transactions are generated independently at random by some
process, and their analysis crucially depends on Chernoff bounds that can be
used because of this assumption.

In Chapter 4 the assumption is weaker, and is that the order of the trans-
actions in the stream is random.

Parallel and distributed algorithms. Since our data streaming algorithm
is parallel, it is natural to compare it to the literature on parallel and distributed
association mining (see e.g. Zaki’s 1999 survey [97]). Often, algorithms in this
literature store, partition, and repeatedly access data, so are not viable in a
data streaming context. For this reason, our technique for parallelizing the
approximate counting of pairs seems novel, and might be applicable to pursue
speedups in standard parallel models. In particular, all methods in [97] use
either:

e a vertical layout of the data, where for each item a sorted list of of the
transactions where it appears is maintained, or
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e a shared data structure.

In the former case space efficiency cannot be achieved, since computing the
vertical representation entails storing all transactions. In the latter case, con-
currency over the shared data structure would find a bottleneck when scaling to
many cores. Our algorithm requires neither the former nor the latter technique.

5.1.3 Our contribution

The results presented in this chapter are:

e An efficient algorithm with rigorously understood time and space com-
plexity and output quality; it is analyzed under the assumption of Zipfian
distribution of the frequency of pairs; we show that this assumptions holds
for many real-life datasets;

e A lower bound on the space that any algorithm has to use when the goal
is to report the pair with the highest frequency, or even just the highest
frequency seen in the stream of pairs.

The algorithm of the former point is randomized and returns with high
probability a correct estimate of the frequency of the most frequent pairs. We
build upon well-known streaming algorithms and show how to extend them to
transaction streaming.

The complexity as well as the quality of the output is determined by the
Zipfian distribution parameters and the space allowed. The space usage is a
user-defined parameter from which we will derive bounds for the frequency of
pairs which can be detected with high probability as well as on their estimates.

We show through extensive experiments on real and synthetic datasets that
in many cases our algorithm performs considerably better than the theoretical
analysis suggests.

5.2 Notation

For ease of exposition, in this chapter the notation is slightly different with re-
spect to Chapters 2 and 4. Therefore we specify again all the necessary notation,
even if it partially overlaps with what has already been defined previously.

The transaction stream is denoted by S = Ti,..,T), where T; C [n] =
{1,...,n}. Again a subset p = {i,j} C [n] is called a pair. The set of pairs is
denoted by P, while the number of distinct pairs occurring in the stream S is
represented using d < (Z) Furthermore, f will be the number of frequent pairs,
where the meaning of frequent will be specified in the given context.

The support of a pair p is the number of transactions containing p: sup(p) =
HTj:p CTi},1<j<m.

A hash function h : P — [k] for & € IN is t—wise independent if and only
if: (i) ¥p € P,c € [k]. Pr[h(p) = ¢ = 1/k; (ii) Prlh(p1) = c1 A h(p2) =
ca A+~ Ah(pt) = ¢;] = k=t for distinct pairs p;, 1 <i <, and ¢; € [k].

The Zipfian distribution with parameters C' and z is defined as f; = C/i*
for the frequency f; of the ith most frequent pair. Note that we will consider z
to be a constant but C' does not need to be constant.
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5.3 Our approach

5.3.1 Background and intuition

Before formally describing our algorithm let us give some technical background
and intuition. An algorithm detecting the frequent items in an item stream
can be generalized in a straightforward way in order to find frequent pairs in a
stream of transactions: Simply generate for each transaction all subsets of size
2 and treat these subsets as items. In particular, the two well known algorithms
COUNT-SKETCH and SPACESAVING could be generalised as described.

In COUNT-SKETCH [28] every item ¢ is hashed by a hash function & : [n] —
[k] to a bucket B containing a counter c¢g. Upon arrival of an item i the
corresponding counter is updated by a uniform sign hash function s(i) evaluating
i to either 1 or -1. After processing the stream the frequency of a given item
¢ can be estimated as c¢p - s(i) where B = h(i). The underlying idea is that
the contribution from other items will cancel out. Both h and s are pairwise
independent and this is sufficient to show that for an appropriate number of
buckets the algorithm produces good estimates where the error is measured with
respect to the 2—norm of the item frequencies. For skewed distribution of the
stream frequencies this gives high quality estimates of the heaviest pairs. One
can amplify the probability for correct estimates by working with more than one
hash function. Upon a query for the frequency of a given item COUNT-SKETCH
returns the median of the estimates, i.e., the counters in the buckets the item
hashes to.

The SPACESAVING algorithm [79] has been already cited in Chapter 2, where
we extended it in order to satisfy the needs of the setting presented there. We
sketch again its mechanism here, for the sake of clarity and to make the chapter
more readable. We remark that SPACESAVING offers upper and lower bounds
on the frequency of the items it reports, rather than an unbiased estimator. It
keeps a list of ¢ triples (item;, count;, overestimation;), 1 < j < ¢. Until there
are free slots amongst the ¢, it inserts a new triple as (4,1,0) when an item i,
that is not already stored in one of the slots, arrives. The £ triples are sorted
according to their count value. On arrival of new item ¢ the algorithm checks if
it is already in the list, in which case it increases the corresponding counter by
1 and updates the order in the list. Otherwise, since there is no room left, the
algorithm replaces the triple (itemg, count,, overestimationy) having minimum
count with a new triple (i, count, + 1, county). The intuition is that heavy items
will either get early on the “pull position" and won’t be evicted from the list, or
they will have many chances of entering the data structure and start climbing
towards the topmost positions as they appear in the stream. Skewed data will
thus get an accurate estimation.

Our algorithm can be seen as a twofold refinement of the above direct ap-
proach:

1. In order to address the issue of having a quadratic number of pairs in
each transaction, hence a quadratic number of hash values to produce, we
exploit parallelism. In this way we are able to distribute the computation
among several cores in a way such that each core efficiently computes the
pairs hashing to a given subset of the hash table.

2. Assuming Zipfian distribution we want to use the fact that the most fre-
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quent pairs will not collide and thus we keep track of the most frequent
pair hashing to a given bucket. We will use an important property of
SPACESAVING; this property is described in [79] and consists in the fact
that in a stream of items, an item having relative frequency at least 1/2
will end up in the first position of the SPACESAVING data structure.

Moreover, SPACESAVING has the nice property to correctly estimate the
frequency for the most frequent items for skewed distribution. This is more
of a heuristic property since the correctness of SPACESAVING depends on the
items order of arrival. However, for certain datasets we are able to obtain very
accurate estimates. Details follow.

5.3.2 Our algorithm
The skeleton of our algorithm is the following:
e Hash each pair to a bucket.
e Keep track of the most frequent pair in each bucket.

e Return an estimate of the frequency of the most frequent pair for each
bucket.

In the parallel version, each processor keeps track of an interval of the hash table,
and the total space remains fixed. Thus, we are in a shared nothing model with
no need for a shared memory — the only requirement is that each processor sees
the input stream. It is well-known that this kind of parallel algorithm scales
extremely well compared to algorithms that rely on interprocess communication
or shared data structures. Even for the largest datasets that we looked at, it is
feasible to keep the entire hash table in L2 cache of the involved processors on
a large workstation, resulting in extremely fast processing.

A crucial property in our analysis and experimental evaluations is that most
frequent pairs do not collide, and thus we obtain high quality estimates on their
frequency. We combine two different ways for estimating the frequency of the
heaviest pairs based on the COUNT-SKETCH and SPACESAVING algorithms. In
particular, we use a distribution hash function h : [n] x [n] — {0,...,k — 1} to
split the set of pairs into & parts, and use a SPACESAVING sketch on each part.
The size k of the hash table and the size of the SPACESAVING sketch determines
the accuracy of the sketch.

Pseudocode for our algorithm is shown in Algorithms 5.1 and 5.2. PAIRSE(Z, j)
produces a table with SPACESAVING and COUNT-SKETCH structures for those
pairs (u,v) that have h(u,v) € [i, ) for some range [¢, j).

Parallelizing processing of pairs. Naively we could just iterate through
all pairs of each transaction T, but we would like an algorithm that runs in
linear time when the number of pairs hashing to [i, j) is small. This will allow
us to split the task of computing the sketch among several cores, all the way
to the point where each core processes a transaction in linear time. In other
words, given sufficient parallelism we can handle a given data rate even if the
transactions are huge.

To achieve this, we exploit the special structure of our hash function: h(u,v) =
(h1(u)+he(v)) mod k for pairwise independent hash functions hy, hg : [n] — [k].
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To find the pairs in transaction T; that hash to [i,j) we first sort the sets
Hy = hi(T};) and Hy = ho(T}). Pairs with hash value in the right range cor-
respond to elements of Hy and Hy with sum in [i,5) U [k + 4,k + j). We will
sometimes denote [k + i,k + j) using [i,7) + k. One way to find these would
be to iterate over elements of Hy, and for each do two binary searches over the
sorted list Hs to find the values in the right ranges. However, this can be further
improved by processing H; in sorted order, and exploiting that the intervals of
H, values to consider will be moving monotonically left. This brings down the
time to O(|T¢| + d[i, 7)), where d[i, j) is the number of pairs hashing to [i, ).

In order to improve the algorithm’s accuracy we may run ¢ = O(log %) copies
of the algorithm in parallel.

At the end a pair is reported frequent if it has “won" in at least ¢/2 of its
corresponding SPACESAVING data structures. Our experimental results will be
for a single run, so the reported accuracy can be improved at the cost of time
and space.

The second estimate of the algorithm is based on the COUNT-SKETCH al-
gorithm by Charikar, Chen and Farach-Colton [28]. Here, we have a counter
serving as an unbiased estimator for the frequency of the heaviest pair, where
unbiased means that the estimate does not depend on the order of arrival of
pairs.

As in the original COUNT-SKETCH algorithm we will work with an additional
pairwise independent hash functions: The sign function s : P — {—1,1}. With
each bucket B we associate a counter cg. The counter serves the same purpose
as in the original algorithm [28].

Upon arrival of a new pair p we update the corresponding bucket, we abuse
notation and denote it as h(p), as follows: cj(p) = cp(p) + s(p). The intuition
is that the heaviest pair will contribute with the same sign, and contributions
from other pairs will cancel out. At the end the algorithm returns s(p) - cp(p) as
estimated frequency for the pair where p is the first pair in the SPACESAVING
data structure. As we show in the next section, if sup(p) > m/2, then a high-
quality estimation of p’s frequency is returned.

In order to reduce the error we work again with our simulation of ¢ = O(log )
independent hash functions and report the median of the results.

Parameters. We will assume that data are skewed and z > 1/2. We will
distinguish between the cases when 1/2 < z < 1 and z > 1. In order to keep
the presentation concise the particular case z = 1 will not be analyzed.

In our analysis we will also use as a parameter the number of distinct pairs
d occurring in the transaction stream. Of course, the value of d is not known in
advance. One can either be conservative and assume d = Q((g) ), or use efficient
methods for estimating the number of occurring pairs, like the one presented in
Chapter 7, if two passes over the transaction stream are allowed.

5.4 Analysis

In the following we give a separate analysis of the estimates based on SPACE-
SAVING (giving guarantees on the upper/lower bounds), as well as the unbiased
COUNT-SKETCH estimator returned by our algorithm. Note that while COUNT-
SKETCH is theoretically superior as it always returns an unbiased estimator, it
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1: procedure PAIRSE(Stream S, Interval [7, j), Integer k)
2: for B {0,...,k—1} do

3 SpSk[B].Initialise() > Initialisation of the k buckets
4: end for

5: for T'c S do

6 HasH(T, [¢, ), SpSk, k)

7 end for

8 for B€{0,...,k—1} do

9 (p, c,€) := SpSk[B][0]

10 cp = SpSk[B][2]

11: output (p,c,¢€)

12: output c¢p - s(p) as an unbiased estimator of the frequency of p
13: end for

14: end procedure

15: procedure HasH(Transaction T, Interval [i, j), Array SpSk, Integer k)
16: H, = hl(T)

17: Ty := T sorted according to the values in H;
18: H2 = hg (T)
19: Ty := T sorted according to the values in Hs

20: uy = Tlength — 1
21: ug := T.length — 1

22: 5:=0

23: while s < T'.length — 2 do

24: while h; (Tl [SD + ho (T2 [ul — 1]) > i do

25: up i=up — 1

26: end while

27: S1 1= Uy

28: while hy (Ty[s]) + ha(Tauz — 1]) > i+ k do
29: Ug = Uz — 1

30: end while

31: So 1= U9

32: while h; (Tl [SD + h2(T2 [81]) <J do

33: B := hi(T1[s]) + ha(Ts[s1]) mod k > compute the hash value
34: SPACESKETCH(SpSk[B], (T1[s], T2[s1])))
35: s1:=81+1

36: end while

37: while h; (Tl [SD + h2(T2 [52]) <j+ k do

38: B := hi(T1[s]) + ha(Ts[s2]) mod k > compute the hash value
39: SPACESKETCH(SpSk[B], (T1[s], Ta[s2])))
40: Sg 1=89+ 1

41: end while

42: s:=s+1

43: end while

44: end procedure

Algorithm 5.1: The initialisation on line 8 just put to 0 all the values
in the entries of SpSk. An entry j in the array SpSk is: SpSk[j] =
((p1,c1,€1), (p2,c2,€2),¢5,8(p1)). The While loop on Line 23 finds for every
element x of a transaction T the items y € T such that h(z,y) € [i,j)U[i,5) + k
(Loops on Lines 24 and 28). On Lines 84 and 39 are the calls to the procedure
that maintains the sketches for both SPACESAVING and COUNT-SKETCH
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1: procedure SPACESKETCH(Bucket SpSk[B], Pair p)
2 ((p1,c1,€1), (p2,¢2,€2),¢cp) := SpSk[B]

3 if p = p; then

4: cp:=c+1

5: else

6 if p = po then

7 cogi=co+ 1

8 else

9 p2=p

10: €y 1= C2

11: cogi=co+ 1

12: cp = cp + s(p) >s:P—{-1,1}
13: end if

14: if ¢ > ¢; then

15: swap((p1, c1, €1), (P2, €2, €2))

16: end if

17: end if

18: end procedure

Algorithm 5.2: The pseudocode explains how the techniques SPACESAVING and
COUNT-SKETCH are implemented by the algorithm.

requires more space for high quality estimates and our evaluations show that it
performs rather poorly on real-life datasets compared to the estimates given by
SPACESAVING.

5.4.1 SpaceSaving Based Sketch

Theorem 5.4.1. For a Zipfian distribution with parameters C and z > 1,
Algorithm 5.1 detects with constant error probability pairs with frequency at
least Q(k%), k is a user defined space usage parameter; that is, the hash function

range. For z < 1 the bound is Q(max(Z, Cd;z)). We recall the reader that
d is the number of distinct pairs occurring in all transactions. By allowing a
multiplicative factor of O(log(5)) for the space usage we report at least (1— ) f

frequent pairs with probability at least 1 — § for a user-defined parameter §.

Proof. Let the minimum support threshold for frequent pairs be am, a > 0.
(At the end of the proof we will obtain bounds on am that depend on k.) We
will estimate the probability that a frequent pair p is not reported. From the
Zipf distribution we obtain that z := (Ofn)% pairs will have frequency above

am

Let B be the bucket p hashes to. We first consider the case that another pair
with frequency above am will be hashed to B. This happens with probability
p1 := x/k. We will enforce a value for z, i.e. a lower bound on the support
threshold of frequent pairs, such that p; < 1/6.

Assume now that the only frequent pair in B is p. As already discussed
if the total weight of pairs frequencies hashed to B is less than 2am, then
p will be reported. Let w := ZLI +1 C/i* be the total weight of infrequent
pairs. In the following we will use the fact that w = O(C(d*~#)) for z < 1 and
w = O(C(x'7%)) for z > 1, where d is the number of distinct pairs in transaction
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database. This follows by integration of the corresponding continuous function.
Then we expect pairs of total weight w/k to land in B. In order to show a small
deviation from the expected value we will adapt the analysis from [39] to our
problem.

Let Y; be an indicator random variable denoting whether the jth infrequent
pair is hashed to B and X = Z;tf Y;. Clearly, E[X]| = w/k. Applying Markov’s
inequality we obtain Pr[X > 3w/k] = ps. We will later enforce po < 1/3.

We want 3w/k < 2am. For z < 1 we have w < %:) thus we set k& =

max(G(%)é,S%). Similarly, for z > 1 we have w < C((::)z), hence the
1

bound k = max(6(£n)%, —30= )

2z—1)(am)*

Thus, for z > 1, we will consider pairs frequent if their frequency is am =
Q&) and for z < 1 if am = Q(max(<, C4)).

Thus, by the union bound the probability that a given pair with frequency
at least am is not reported is at most p; + py < 1/2.

Instead of having one hash function we will work with ¢ := clog 6%, for some
constant ¢ > 1, independent hash functions such that each of them updates
one of k unique SPACESAVING data structures. A pair will be reported as
frequent only if it has won at least t/2 of its corresponding “races". Since the
hash functions are independent and the expected number of a frequent pair
being reported is at least t/2, we can apply Chernoff inequality and bound the
probability of a frequent pair not reported to at most O(52).

Note that the number of reported pairs is bounded by 2k. Thus, we expect
at most 62z frequent pairs not to be reported and by Markov’s inequality the

probability we don’t report more than dx frequent pairs is at most J. O

We remark that the above analysis is for a worst case scenario, namely
the one in which the pairs hashed to each bucket arrive in a specific order.
Moreover, in order to derive theoretically sound analysis, we work with the
pessimistic bounds given by Markov’s inequality. In our experiments we show
that for real-life datasets we are able to achieve very accurate results with much
more modest parameters than the ones in the above analysis.

If we define the two functions:

Recall: the ratio between the number of identified frequent pairs divided by
the number of all frequent pairs;

Precision: the ratio between the number of frequent pairs and the number of
pairs that are output;

it is possible to balance between them by choosing an optimal value for the
number of buckets k. The bigger k, the better recall we get, but the noise
in the output decreases the precision. The two functions are good metrics for
estimating the influence of the number of false positives and false negatives in
the output.

5.4.2 Count-Sketch

Theorem 5.4.2. For a Zipfian distribution with parameters C and z > 1/2
the unbiased estimator returned by Algorithm 5.1 estimates the frequency of a
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2z—1
given pair with frequency Q(%) within an additive constant factor with
a constant error probability. By allowing a multiplicative factor of O(log(%)) for
the space usage we report correct estimates for at least (1 — 6)f frequent pairs
with probability at least 1 — § for a user-defined parameter §.

Proof. As in the original COUNT-SKETCH algorithm we work with an additional
hash function: The sign function s : P — {—1,1}.

In the analysis below we will obtain closed expressions for the frequency of
items which we will consider frequent depending on C,z and the user-defined
k. Let us first denote the minimum required support as sup(p) > am, a > 0.
From the parameters of the Zipfian distribution we obtain a closed form for
the number of pairs with frequency at least am, i.e. (a(;n)é, let us denote this
number by x.

First, we have already analyzed the event that a given frequent pair is not
reported. We will assume this happens with probability at most 1/2.

We will now obtain upper and lower bounds on the estimates and will bound
the probability of them being not incorrect. The expected value E[s(p) - cp(p)]
is the exact frequency of p; abusing notation we denote by cj,(,,) the counter in
the bucket where p hashes to. Our goal is to show concentration result around
the expected value which will imply an high-quality estimate.

We bound the probability that pairs with total weight at least am will land
in h(p). In order to show concentration around the expected value we will adapt
the analysis from the previous section and will work with Chebyshev’s inequality
instead of Markov’s. Let w := Zd € denote the total weight of infrequent

1=x+1 12
. . . . . d
pairs. The sum of squared frequencies of infrequent pairs is wy = >, +1(%)2~

We use the fact that wy = C;”Z”l:fz for z > 1/2.

The expected excess in a bucket with a frequent pair, denoted by the random
variable X, is E[X] = w/k. The variance turns out to be Var[X| = wy/k. Thus,
for k > wo we bound the probability for absolute deviation from expectation by
more than X to 1/A2. We assume A > 2, thus the error probability is at most 1/4.
Note that this bound directly implies an upper bound on the overestimation,
respectively underestimation, of the frequency of the reported frequent pair.
With some algebra one obtains the lower bound on the support claimed in the
theorem.

The above lower bound on the space requirement is bigger than the bounds
in Theorem 5.4.1t for z > 1/2.

With the same analysis of the previous section we compute the probabil-
ity of not reporting the pair; therefore, to account also for the probability of
over/under estimating the frequency, we can use a union bound and get an error
probability smaller than 1/2. The probability can be reduced to any desired §
by working with t := clog(%2 = O(log%) independent hash (sign and bucket)
functions for some constant ¢ > 1, as outlined in the previous section. We will
report a pair as frequent if and only if it has been found frequent at least t/2
times. We take the median of the results and apply Chernoff bounds in order to
bound the probability the frequency has been over/underestimated. For bound-
ing the number of not reported/not correctly estimated frequent pairs, we can
apply again Markov’s inequality as shown in the previous section. O



72 Frequent Pairs in Data Streams...

5.5 A lower bound

We present a lower bound for the space needed in order to report the most fre-
quent pair in a stream of transactions. Of course, this applies also to any harder
problem, such as reporting a larger set of frequent pairs, with counts. This lower
bound complements the strong worst-case space lower bound presented in Chap-
ter 4, by arguing that any data streaming algorithm for frequent pairs that does
not make errors must store all information about itempair counts.

Theorem 5.5.1. Any data streaming algorithm that always outputs the most
frequent pair, or even just the frequency of the most frequent pair, must encode
in its state all itempair counts, in the sense that if two stream prefizes differ in
the count of some itempair, the algorithm must be in different states after seeing
the prefizes.

Intuitively, the only generally applicable ways of storing the counts of all
pairs is to either store each count explicitly, or store all transactions seen so far.

Proof. For a prefix of the stream consider the count vector that for each pair
records its frequency in the prefix. Let A be any algorithm that computes the
most frequent pair in a data stream. Consider two distinct count vectors = and
y, corresponding to different stream prefixes. We argue that A must be in two
different states after seeing these prefixes. Suppose that the latter claim is not
true, so that for x = y the algorithm is in the same state. Since x and y differ,
there must be at least a pair (u,v) having distinct counts in the two count
vectors. But this implies that we can extend the streams with a sequence that
makes the pair (u, v) the most frequent one in one of the vectors, say w.l.o.g. x,
(u,v) becomes the most frequent pair, while this does not happen in y. Still, the
algorithm would be in the same state in both cases, returning the same result
and occurrence count. This contradicts the assumption that A always returns
the correct answer, so the assumption that x and y resulted in the same state
must be false. O

5.6 Experiments

Table 5.1 summarises the datasets that we use for experiments. In all cases, we
use the order in which the transactions are given as the stream order. Experi-
ments refer to the version of the algorithm using SPACESAVING. We worked with
two implementations, a simple Python implementation, and a cache-optimised
Java implementation that was 10-20 times faster. In both cases, we used the
built-in random number generator of the language to store hash values in a
table.

5.6.1 Pair similarity distribution

We would like to justify the assumption in our theoretical analysis that the
counts over all pairs follow a Zipfian distribution. While it is well-known that
this is true for single items in many datasets, it is not obvious that this as-
sumption holds for streams of pairs generated from a stream of transactions.
For this reason we computed the exact count the most significant pairs using
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Dataset || # of pairs (Fy) | # of distinct pairs

Mushroom 22.4-10° 3.65 - 103
Pumsb 1360 - 10° 536 - 103
Pumsb _star 638 - 105 485 - 103
Kosarak 3130 - 10° 33100 - 103
Retail 80.7 - 10° 3600 - 103
Accidents 187 - 10° 47.3-103
Webdocs 2.0- 10 > 7-1010
Nytimes 1.0-101° >5-108
Pubmed 1.6 - 1010 >6-108
Wikipedia 5.17 - 101 > 5.8-10°

Table 5.1: Information on datasets for our erperiments. Nytimes and Pubmed
are taken from the UCI Machine Learning Repository (Bag of Words dataset).
The Wikipedia dataset has been crafted according to what is described in [1,
Page 14]. The rest are from the Frequent Itemset Mining Repository. For the
last four datasets the number of distinct pairs was estimated using the hashing
technique presented in Chapter 7. For Webdocs, only the first 100000 are taken
into account.

Borgelt’s A-Priori implementation * [17], and plotted them in decreasing order.
Figure 5.1 shows the supports of the most frequent pairs for our datasets. In all
cases we see that the curve starts as approximately a decreasing straight line on
a logarithmic plot. The length of this line varies from one dataset to another,
from a few hundred pairs to hundreds of thousands. Observe also that in all
cases where the curve deviates from a line it drops below, i.e., the distribution
is dominated by a Zipfian distribution.

5.6.2 PairSE precision and recall

Our next set of experiments shows results on the precision of the counts ob-
tained by PairSE, as well as the recall. Both aspects are of course influenced
by the amount of space used. For each dataset we have chosen a relatively low
space usage, to show that even with a small memory footprint good results are
obtained. In practice, it may be hard to foresee how much space will be needed
for a particular stream, so probably one will tend to use as much space as feasi-
ble with respect to running time (ensure in-cache hash table), or what amount
of memory can be made available on the system. A consequence of this will
be even more precise results. The results of the experiments are visible in Fig-
ures 5.2 and 5.3, where the former zooms in the zone where the lower and upper
bound computed by SPACESAVING are very accurate (left part of Figure 5.3).
The influence of the space usage on the recall, can also be appreciated looking
at Figure 5.4; the relative experiment is described in Section 5.6.3.

5.6.3 PairSE space requirements

We now investigate what happens to precision and recall when the space usage
of PairSE is pushed to, and beyond, its limits. In order to do this, we chose to

Thttp://www.borgelt.net/apriori.html
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Figure 5.1: The frequency distribution for the most frequent pairs, on doubly-
logarithmic scale. All start off with a straight line.
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Figure 5.2: Top frequent pairs for Webdocs, and their rank according to the
frequency lower bound computed by PairSE using 2°° buckets. As can be seen,
recall is initially high, but decreases with the support.
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Figure 5.3: Upper and lower bounds for Webdocs computed by PairSE using 22°
buckets. Values are normalised by dividing by true support. Upper bounds shadow
lower bounds; exact bounds, so matching upper and lower bounds, are visible only
as red dots without blue dots below, and are obtained for the most frequent pairs.
As can be seen, upper bounds are generally tighter than lower bounds.

work with 3 representative datasets, namely Mushroom, Retail and Accidents.
We decreased the space usage gradually, plotting the ratio between the upper
and lower bounds for the top-100 pairs returned by our algorithm. This is shown
in Figure 5.4 and we can see how the transition between very good and very
poor quality is fairly fast.

5.6.4 Load balance

Balancing of pairs We ran experiments in order to evaluate the distribution
of pairs amongst the buckets. When running these experiments, we kept track
also of the number of pairs that were evicted by a bucket, the number of swaps,
the number of increments to the counters. The results of these experiments are
reported in Table 5.2. The numbers in the table confirm that the pairs spread
evenly amongst the buckets; this means that parallelism greatly improves the
running time of the algorithm, since there will be no core that have to sustain a
much larger burden than the others; such a negative situation would bring the
performances of the algorithm close to a sequential one.

Progress of processing To illustrate the load balancing in terms of running
time, we ran PairSE on 4 cores of an Intel Core i7 Q720 1.60GHz laptop running
GNU/Linux, kernel version 2.6.38.7 vanilla. Parallelism was achieved by running
four processes, and letting the operating system allocate one to each core. We
tracked the progress of each process over time. The results for two representative
data sets can be seen in figures 5.5 and 5.6. As can be seen, the cores make
almost identical progress when running at full speed. In a data streaming setting
this means that we can expect to manage streams that require all cores to run
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Figure 5.4: Average ratio of lower and upper bound for top-100 pairs, for three
representative datasets. On the x axis we have the number of buckets. On the y
axis the ratio mentioned before. As can be seen, there is a quick transition from
poor to excellent precision.

Dataset | Cores Average Maximum
8 895542 934040
Retail 4 1791084 1808784
2 3582168 3585869
8 3203546 3219769
Kos 4 6407091 6427398
2 1.2814-107 | 1.2827-107
8 8.928 - 108 8.9394 - 108
Webdocs 4 1.7856 - 10° | 1.7871-10°
2 3.5712 - 10° 3.573 - 10°
8 1.2497 - 10° 1.251 - 10
Nytimes 4 2.4995 - 10° | 2.5005 - 10°
2 4.9989 - 10 | 4.9995 - 109
Wikipedia 8 6.4582 - 1010 | 6.4651 - 1010

Table 5.2: The table shows the average and mazximum number of pair occurrences
handled by each core. As can be seen, the maximum is quite close to the average.
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Figure 5.5: Current transaction number of each core running PairSE on the
Nytimes data set, over a period of about 400 seconds.

at close to maximum speed, while needing to cache only a small number of
transactions.

5.6.5 Performance and scalability

Experiments have been carried out in order to verify how the algorithm scales,
in terms of time, when parallel computations are used. We ran the algorithm on
various datasets using several different number of cores. In this way it has been
possible to highlight the parallel nature of the algorithm, hence, its capability of
being very time efficient when many cores are at hand. Table 5.3 reports some
of the results we obtained. The machine we used is described in the caption of
the table. It is interesting to point out that in case of large datasets, with a high
number of pairs, the algorithm allowed the CPU to manage almost 100 millions
pairs per second. This means that the algorithm scales particularly well when
the transaction are large. In those cases the parallelism of the computation
speeds up considerably the algorithm.
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Figure 5.6: Total time recorded for every 100th transaction when running
PairSE with 4 cores on the Kosarak data set.

Dataset H # of cores \ ms on # cores \ ms 1 core

1234
1050 1897
1342
822
824 2165
1260
72687
137308 711685
262075
132754
223724 1120705
435922
11326791

Retail

Docword.kos

Webdocs

Nytimes

QO DN | CO| N[ W[ OO DO H=| OO| DN| H~| CO

Wikipedia

Table 5.3: Ezperiments ran on an Intel Xeon E5570 2.93 Ghz equipped with
28 GB of RAM; the OS is GNU/Linux, kernel version 2.6.18. The number of
processes used is 8 for all the four rows. Times are given in milliseconds (ms).
We can observe that in any case, millions of pairs per second were manipulated
by the algorithm.



Chapter 6

On Finding Frequent
Patterns in Event
Sequences

Given a directed acyclic graph with non unique labels associated to vertices,
we consider the problem of finding the most common label sequences (“traces”)
among all paths in the graph (of some maximum length m). Since the number of
paths can be huge, we propose novel algorithms whose time complexity depends
only on the size of the graph, and on the frequency ¢ of the most frequent traces.
In addition, we apply techniques from streaming algorithms to achieve space
usage that depends only on €, and not on the number of distinct traces.

The abstract problem considered models a variety of tasks concerning finding
frequent patterns in event sequences. Our motivation comes from working with
a dataset of 2 million RFID readings from baggage trolleys at Copenhagen Air-
port. The question of finding frequent passenger movement patterns is mapped
to the above problem. We report on experimental findings for this dataset.

6.1 Introduction

Sequential pattern mining has attracted a lot of interest in recent years. How-
ever, some of the probabilistic techniques that have proved their efficiency in
mining of frequent itemsets have, to our best knowledge, not been transferred
to the realm of sequence mining. In this chapter we take a step in that direc-
tion, namely, we propose an analogue of Toivonen’s sampling-based algorithm
for frequent itemset mining [90] in the context of sequential patterns.

At a conceptual level we work with a new, simple formulation of the problem:
The input is a directed acyclic graph (DAG) where the vertices are events and
there is an edge between two events if they are considered to be connected (i.e.,
part of the same event sequences). Vertices are labelled by the type of event
they represent. This allows certain flexibility in modelling that is lacking in
many other formulations:

e Spatio-temporal events can be connected based on both spatial and tem-
poral closeness.



80 On Finding Frequent Patterns in Event Sequences

Figure 6.1: Example of a browsing history represented by a DAG
The browsing history of a user session can be captured by the dag, which also
accounts for detours or visits to search engines.

e Events that have an associated time range (rather than a single time
stamp) can be connected based on an arbitrary closeness criterion.

The data mining task we consider is to find the most common sequences of
event types (“traces”) among all paths in the DAG, or more generally all paths
of some maximum length m. The challenge is to handle the huge number of
paths that may be present in a DAG.

Ezample 6.1.1. Consider data on the history of URLs visited by a user, where
each URL is labelled by its domain name. If the user visits the domains
www.techcrunch.com, www.oracle.com, and www.itu.dk in this order, there
may be a connection between the first and second site, and between the second
and third site. If all visits happen within a few minutes one could also imagine
that the second site was merely a detour, and there is a connection from the
first to the third site. This is naturally modelled using a graph having URL
visits as vertices, and directed edges between vertices that we deem connected
(based on any criterion, e.g., temporal closeness). We label vertices by domain
name, and look for frequently occurring label sequences, traces, on paths in the
graph. Figure 6.1 gives represents the situation that we have just described. o

We might be interested in such frequent event sequences for a variety of
reasons, e.g. improved understanding of browsing behavior for advertisers (avoid
paying for many page impressions to the same user), and page recommendations
(“users who visited the same sequence of domains as you, often went on to the
domain. ..”). We should be able to detect the connection between sites even if
they are not visited in succession. For example, many browsing histories will
interleave visits to hubs such as google.com and yahoo.com with visits to topic
specialized domains.

6.1.1 Approach

We start from the observation that the number of paths in a DAG can be
extremely large, even if the path length is restricted to some small number m.
For example, the DAG pictured in Figure 6.2 has 16 vertices and 45 edges, but
the number of paths is 10919.

More generally, we expect the number of paths to increase exponentially
with m. In our experiments we see that, even for small m, the number of paths
is much larger than the size of the DAG.

Our algorithm rests on a novel sampling procedure that is able to create a
sample of any desired size, in time that is linear in the size of the DAG (for
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Figure 6.2: In this small DAG, there are 16 vertices, 45 edges but the number
of paths is 10919. The number of paths can have an exponential dependence on
the mazimum length of a path.

preprocessing) and the size of the sample. This allows a time complexity for the
mining procedure that depends only on the frequency e of the most common
traces, rather than the total number of traces. We also apply a technique from
data streaming algorithms to achieve space that depends on e rather than on
the number of distinct traces.

Though our formulation does not capture all the many aspects present in
other approaches to sequential pattern mining, we believe that it possesses an
attractive combination of expressive modeling and algorithmic tractability.

6.1.2 Problem definition

We are given a directed acyclic graph G = (V, E), and a function label(v)
that returns the label of a vertex. A path p in G is a sequence of vertices
v1,V2,...,0; € V such that (v;,v;41) € Efori=1,...,j —1. A path p has a
trace label(p), which is the vector of labels on the path. Let S, be the multiset
of all path traces of length at most m, i.e.,

Sm = {label(p) | p is a path in G of length at most m} .

The data mining task is to find the most frequent traces in S,,. It comes in
several flavours:

Top-k: For a parameter k, find the k traces that have the most occurrences
in Sy, (breaking ties arbitrarily).

Frequency e: Find the set of traces that have frequency € or more in S,,.

Monte Carlo: For both the above variants we can allow an error probability §
(typically allowing a false negative probability, i.e., that we fail to report
a trace with probability 0).

In this chapter, emphasis will be on Monte Carlo algorithms for the frequency
variant. However, we note that one can also obtain results for top-k by a simple
reduction.

6.1.3 Related work

There is a large body of related work on sequential pattern mining, see e.g. [77,
89, 67, 61, 99, 51, 31, 87]. These works deviate from the present one in that
they consider the input as a sequence of timestamped events, and allow a host
of formulations of what kinds of subsequences are of interest. In contrast, we
put the modeling of interesting subsequences into the description of the event
sequence (by defining DAG edges), and the patterns sought are simple strings.
This allows us to do things that we believe have not been done, and are probably
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difficult, in traditional sequential data mining settings, namely making use of
sampling methods.

The difficulty with sampling is that patterns can overlap in many ways, so
any straightforward approach will fail to produce a sample that correctly “rep-
resents” the original data. As an example, suppose that the pattern a?™ occurs
in the input, which means k£ 4+ 1 occurrences of a™. If we sample events with
probability 50%, the probability that an occurrence of a™ remains in the sample
is 1/2. On the other hand, if there are k + 1 non-overlapping occurrences of a™,
the probability that this is seen in the sample may be much lower. For exam-
ple, for the string (a™b™)™*! the probability is O(m/2™), i.e., exponentially
decreasing as m grows. This means that there is no direct way of going from
the number of occurrences in the sample to the number of occurrences in the
original string.

Similar problems make use of sampling methods in general graph mining
difficult. Suppose that we sample vertices (or edges) with probability p. If
all triangles in a graph overlap in a single vertex, the sample will contain no
triangles at all with probability 1 — p. On the other hand, if there is the same
number of vertex (edge) disjoint triangles, we are likely to sample close to a
fraction p® of them. As before, we cannot estimate the number of occurrences
in the original graph based on the number of occurrences in the sample.

6.2 Our solution

6.2.1 Generation of all traces

As a warmup we consider the task of producing the multiset S,, of all traces
having maximum length m. We will use the notation S;(v) to denote the mul-
tiset of traces corresponding to paths (of length at most i) starting in node v.
Clearly So(v) = 0. For ¢ > 0 we have the recursive definition

S;(v) = {label(v)} x (eU U Si—1(v")),

v, (v,v')EE

where € denotes the empty trace (note that this symbol is different from e denot-
ing the frequency), and (J is multiset union. Clearly we have S, = U, ¢y Sm(v).

These equalities lead to a simple recursive algorithm, shown in Algorithm 6.1.
It is easy to see that if traces are represented in a reasonable way (e.g. as singly
linked lists) the running time is linear in the size |V'| + |E| of the graph and the

total length of the traces generated.

Succinct output. If we are satisfied with returning hash values of the traces
(unique with high probability) the time can be improved such that only O(1)
time is used for each trace, i.e. time O(|V| + |E| + |Sm|) in total. This can
be done using a standard incremental string hashing method such as the one
that can be found in [69]. Observe that the output is sufficient to find the hash
values of the most frequent traces in S, (with a negligible error probability).
A second run of the procedure could then output the actual frequent traces,
e.g. by looking up the count of each hash value computed.
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1: procedure ALLTRACES(v,t,1)

2 if i > 0 then

3 output t||label(v)

4: for each v where (v,v') € E do

5: ALLTRACES(v, t|[label(v),i — 1)
6 end for

7 end if

8: end procedure

9: for v € V do
10: ALLTRACES(v, €, m)
11: end for

Algorithm 6.1: The procedure ALLTRACES outputs the concatenation of a trace
prefiz t, and each trace starting at v having length at most i. The notation || is
for concatenation of traces. Lines 7-9 call ALLTRACES for all vertices v, with the
empty trace € as prefix, producing the multiset S, of all traces of length at most
m.

6.2.2 Generation of a random sample

If the patterns we are interested in occur many times, substantial savings in
time can be obtained by employing a sampling procedure. That is, rather than
generating S,, explicitly we are interested in an algorithm that produces each
trace in S, with a given probability p, independently. This will reduce the
expected number of samples to a fraction p of the original. The choice of p is
constrained by the fact that we still want to sample each frequent trace a fair
number of times (to minimize the probability of false negatives being introduced
by the sampling).

Counting phase. Our algorithm starts by computing, for ¢ = 1,...,m the
number of paths v.c[i] of length at most ¢ that start in each vertex v. We
assume that this can be done using standard precision (e.g. 64 bit) integers. The
pseudocode shown in Algorithm 6.2 mimics the structure of the naive generation
algorithm, but uses memoization (aka. dynamic programming) to reduce the
running time.

For each ¢ < m the cost of all calls to COUNTTRACES with parameters (v, 1),
disregarding the cost of recursive calls, is easily seen to be proportional to the
number of edges incident to v. This means that the total time complexity of
the counting phase is O(]E|m). The space usage is dominated by an array of
size m for each vertex, i.e., it is O(|V|m).

Sampling phase. Consider the multiset S;(v) of traces, which has size v.c[i]
by definition. The probability that none of these traces are sampled should
be (1 — p)v<lil. Conditioned on the event that at least one trace from S;(v) is
sampled, we either have to sample a trace of length more than one (starting
with label(v)), or include the trace {v} in the sample. In a nutshell, this is what
the procedure SAMPLETRACES of Algorithm 6.3 does.

Let rand() denote a function that returns a uniformly random number in
[0; 1], independently of previously returned values. The condition rand() >
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function COUNTTRACES(v, 1)
if v.c[i] =null then
v.efi] =1
for each v where (v,v') € E do
v.cli] :== v.c[i] +COUNTTRACES(v,i — 1)
end for
end if
return v.cli]
end function

10: for v eV do
11: COUNTTRACES(v)
12: end for

Algorithm 6.2: Recursive computation of the paths of traces for each start-
ing vertex, using memoization. The algorithm assumes that each value v.c[0] is
initially set to zero, and each value v.c[i], 0 < i < m, is initially null.

(1 — p)¥<I™ holds with probability 1 — (1 — p)*<[™], so lines 14-16 call SAM-
PLETRACES if and only if we need to sample at least one trace from Sy, (v). In
the procedure SAMPLETRACES we use, similarly to above, a parameter ¢ to pass
along a trace prefix. The variable out is used to keep track of whether a trace
has been output in the recursive calls. If out is false after all recursive calls
we sample t|[label(v). For each v with (v,v') € E the probability that we do
not sample any trace from label(v)|[S;_1(v) is (1 —p)?"-<li=1 /(1 — (1 — p)v-eli)y,
This is exactly the correct probability since we condition on at least one trace
in S;(v) being sampled.

Refinement. Looking at the pseudocode of Algorithm 6.3, we can observe
that the probability in Line 4 may be precomputed for each edge and value
of i. Even with this optimization, a direct implementation of that pseudocode
may spend a lot of time in the for loop of 3 without producing any output.
To get a theoretically satisfying solution we may preprocess, for each (v,1),
the probabilities p1,ps,...,pq of making the recursive calls. Specifically, for
j =0,...,d we consider the probabilities ¢; = II;/<;(1 — p;/) that no recursive
call is made in the first j iterations. If we choose r uniformly at random in [0; 1]
then the probability that g;_; > > ¢; is exactly the probability that the first
recursive call is in the jth iteration. Similarly, the probability that r < ¢4 is
exactly the probability that no recursive call is made. Thus, by doing a binary
search for r over qq, ..., go we may choose, with the correct probability, the first
iteration j; in which there should be a recursive call. The same method can be
repeated, using a random value 7 in [0; ¢;,] to find the next recursive call, and
SO on.

In the worst case this uses time O(log |V'|) per recursive call. We can exploit
the fact that we are searching for a random value r to decrease this to O(1)
expected time. The idea is to represent the values g; in a binary trie that is
precomputed for each node. In addition we store for each string s € {0,1} [log d]
a pointer to the node in the trie that corresponds to the longest prefix of s.
The number of bits of » needed to determine its position in qq, ..., qg is at most
[logd] + t with probability at least 1 — 27¢. Using the pointers we can thus in
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1: procedure SAMPLETRACES(v, t,1)
2 out := false
3 for each v where (v,v') € E do
4 if rand()> (1 — p)?"<li=1/(1 — (1 — p)»-<lil) then
5: SAMPLETRACES (v, ¢||label(v),i — 1)
6 out := true
7 end if
8 end for
9 if out = false or rand()< p then
10: output ¢||label(v)
11: end if

12: end procedure

13: for v € V do
14:  if rand()> (1 — p)"“"™ then

15: SAMPLETRACES(v, €, m)
16: end if
17: end for

Algorithm 6.3: The procedure SAMPLETRACES outputs the concatenation of a
trace prefiz t and a random sample of the traces starting at v of length at most
i. The traces are sampled from the conditional distribution that is guaranteed to
sample at least one trace. As before, the notation || is for concatenation of traces,
and € denotes the empty trace. Lines 13-17 call SAMPLETRACES for each vertex
v with probability 1 — (1 — p)“‘cm, to produce a sample of all traces starting at v
having length at most i, where each trace is chosen independently at random with
probability p.
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expected time O(1) find the node in the trie that has the longest common prefix
with the binary representation of r. This, in turn, determines the rank of r in
dd; - --,qo0-

As before, we can choose to have a succinct output where traces are repre-
sented by the hash values of their traces, with no increase in time complexity.

6.2.3 Time and error analysis

For the time analysis we focus on the refined implementation described above,
since it allows a clean and exact theoretical analysis. A similar analysis of the
version stated in the pseudocode can be made under the assumption that the
outdegree of vertices in G is bounded by a constant. Observe that if SAMPLE-
TRACES makes c¢ recursive calls this takes expected time O(1 4 ¢). Also observe
that the total number of procedure calls is upper bounded by the total length
of all sampled traces — this is because each recursive call is guaranteed to pro-
duce at least one output. Combining these facts we see that the expected time
for all calls to SAMPLETRACES is linear in the length ¢ of all traces sampled.
Notice that the expected value of £ is O(p|Sy,|m). Since £ is independent of
the random choices determining the running time of the data structure in the
refined implementation we can conclude that the total expected running time
of the code in Algorithms 6.2 and 6.3 is O(|V| + |E|m + p|Sm|m).

The parameter p must be chosen such that p = C/e, where C > 1 is a
parameter that determines the false negative probability. The expected number
of times that we sample a trace with frequency &’ is Ce’ /e, and since the samples
are independent, the number of samples follows a binomial distribution. By
Chernoff bounds, this means that if ¢/ > ¢ then the number of samples is at
least C'/2 with probability 1 — 2-C) Examples of concrete error probabilities
are given in our experimental section. We have the following theoretical result:

Theorem 6.2.1. We can generate a random sample of S,, in expected time
O(|V] + |E|m + log(1/d)/e) such that any trace with frequency € or more has
frequency at least £/2 in the random sample with probability 1 — 0. o

Observe that the running time is independent of the total number of traces
in S,,.

6.2.4 Putting things together

It remains to assess how to choose, among the samples, the ones that are actually
interesting. In particular, we are interested in those traces appearing in the
sample at least C'/2 times.

This problem can be efficiently faced using a frequent items algorithm. Such
algorithms are widely used in data streaming contexts, and guarantee very small
space usage. A comprehensive treatment and an experimental comparison be-
tween various techniques can be found in [37].

Definition 6.2.1. Given a stream S of n elements, a frequency threshold 7,
and let f; be the the frequency of © in S. The frequent items problem consists
in returning a set F of size at most 1/n such that for all i with f; >n, i € F.o
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Observe that false positives, with f; < 7, can appear in the output. To
eliminate these, we simply make another pass (i.e., generate the same sample
again) to compute exact frequencies.

Theorem 6.2.2. Given a stream of elements representing the set of samples
of traces produced by SAMPLETRACES, the space needed in order to output the
traces with frequency at least /2, without producing any trace with frequency
less than /2, is O(1/e) words. o

6.3 From event sequence to a DAG

An event sequence is a set S of tuples of the form (¢,,£), where ¢t € R is a time
stamp, ¢ is a tag identifier, and ¢ is a label (in our application case of RFID
readings from baggage trolleys, i identifies the RFID on a trolley and ¢ is a
location identifier that indicates an approximate location, namely vicinity of an
antenna, of ¢ at time ¢). In this work we do not consider the physical locations
of antenna as part of the input.

Formally we may define the problem as follows: For a given number A, the
input set specifies a directed acyclic graph Ga = (V, Ea), where each observa-
tion is a vertex, and there is an edge from v; to vy if and only if the vertices
are observations of the same tag, at different locations, separated by at most A
time units (we use minutes as the time unit from now on).

To produce the DAG we sort the data by tag ID and timestamp. Note that
this makes it easy to find all the edges from a particular vertex v in Ga: Simply
scan the sorted list forward until either the timestamp differs by more than A
from that of v, or we reach a node corresponding to another tag.

Example 6.3.1. If A = 20 and we observe locations 1, 2, 3, 6, 7 at time 10,
20, 30, 60, 70, the following subsequences are considered to reflect a movement:
1-2, 2-3, 1-2-3, 1-3, 6-7. Notice the inclusion of 1-3, where one observation is
skipped, since there is at most A minutes between the observation of 1 and 3.
o

6.4 Experiments

We have worked with a dataset consisting of readings of RFID (Radio-Frequency
ID) tags by fixed-position antenna. RFID chips can be identified only when they
are in the proximity of an antenna, which means that readings give approximate
information about the location of an RFID tag. Such datasets, as well as similar
datasets based on other technologies, are becoming increasingly available as
more and more items, from parcels to items in shops, are being tagged with
RFID chips.

In order to construct the DAG, we have cleaned some of the noise present in
the data. One source of noise was due to the presence of sequences of readings
regarding trolleys remaining in zones where the range of two antennas is over-
lapping. This sequences of alternating readings had the form (zty™)(zTy*)™ .
In order to clean up this interferences, we replaced the elements of such a kind
of sequences, using a new zone label that represents the zone of overlap of the



88 On Finding Frequent Patterns in Event Sequences

20 e 2\ 022 g g s e 17

E— T — *16 o0 Authval
i o5 T o
o1 o4
a o0 o7 9 e15 13 o

A p 6 D
Terminal 2 Terminal 3

o L2kl

Figure 6.3: RFID antenna in Copenhagen Airport.

range of antennas. In particular we have used, for a sequence (zTy*)(zTy ™)™,
the label min{z, y} * 100 + max{x, y}.

Notice that this can be thought as an increase in the resolution of the read-
ings, making the granularity of the information finer. In some sense this modi-
fication allows for a cleaner sight on the movement of some trolleys.

Another source of noise, sometimes connected with the one just described,
is the presence of sequences of readings regarding the same zone for a given
trolley. In order to avoid having traces of the form ¢ = (Qyy™W), where
@ and W are sequences of readings, we considered only one occurrence of vy,
properly managing the timestamps of the readings. In particular this means
that, assuming the difference in time between any two consecutive y is within
the threshold A, in the DAG we put a directed edge (v,y), v € @ iff the first
occurrence of y after ) occurred within time A from v. Moreover we put a
directed edge (y,w), w € W iff w happened within time A from the last reading
of y in t.

It is necessary to point out that our method differs from the previous ap-
proaches in the way we look for frequent patterns. This means that our results
are not directly comparable with the ones that can be found in literature, so we
do not compare to existing algorithms.

6.4.1 Results

We ran a set of experiments on the airport data, in order to understand how
many patterns would have been generated for a given A and a size m. Table 6.2
shows the size of the graph for different sizes of A. We compare the obtained
results with the expected performance of our algorithm.

Table 6.2 reports some interesting characteristics of the data when fixing A
and m. In particular the table contains the number of traces generated, the fre-
quency of the 100th most frequent trace and the ratio between the space needed
in case of an exact computation and the space required when our algorithm is
used. Note that the space to represent the DAG and the counts is not counted
in this ratio. The rationale for this is that as we consider longer event sequences
the space for the DAG representation is expected to become negligible compared
to the space needed for finding the most common traces.

From the results of the test it is clear that great savings can be achieved
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Al VI | Bl |
20 | 2206302 | 4059250
10 | 2206302 | 2657931
5 | 2206302 | 1721448
3 | 2206302 | 1228759

Table 6.1: Size of the airport DAG for different values of A. As can be seen all
graphs are quite sparse, and in fact many nodes have no outgoing edges. This is
due to a relatively low resolution in the dataset.

A ‘ ‘ Tot. traces ‘ Dis. traces | top 100th ‘ ratio ‘

m
20 | 5 | 365818472 4311942 168000 990
10 | 5 | 106678064 1712646 52951 425
3
5
)

10 6196850 50085 9458 38.2
) 66947355 631300 42008 198
3 23152990 280454 15363 93

Table 6.2: Characteristics of the data for several combinations of A and m.
The third column, Tot. traces, represents the total number of traces that would
be generated by the naive approach; the Dis. traces column represents the number
of distinc traces; the top 100th column contains the frequency of the 100th most
frequent trace; the column ratio represents the saving we would achive using a
frequency threshold equal to the one represented in the top 100th column.

when the frequencies we are interested in are not too low. In a case, nearly 3
orders of magnitude of space can be saved using our approach. As a matter of
fact, when we are interested in very frequent traces, and this is often the case
in many practical applications, the sampling outputs a large number of samples
for each interesting trace, so that a low sampling ratio can be used.

Table 6.3 shows the number of samples we would take in expectation when
C =10 is used. The table gives the flavor of the saving in time that could be
achieved with respect to generating all the possible traces. Here we notice that
the total number of traces is already 1-2 orders of magnitude larger than the
size of the DAG, so we expect an improvement in running time of at least 1 order
of magnitude. Larger values of C' will increase the running time proportionally,
but decrease the error probabilities. Table 6.4 shows false negative probabilities,
as well as probabilities that traces with frequency below €/4 are reported.
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A | m | Tot. traces | # samples | ratio |

m

20 | 5 | 365818472 22774 16800

10 | 5 | 106678064 20147 5295
3
5
)

10 6196850 6552 946
5 66947355 15937 4200
3 23152990 15070 1536

Table 6.3: The ratio between the total number of traces and the number of
samples we would take using C = 10.

c False negative Significantly false
probability positive probability

3 0.199 0.173

5 0.125 0.127

10 0.0671 0.0420

15 0.0180 0.0376

20 0.0108 0.0318

30 0.00195 0.0103

Table 6.4: Probability that a trace with frequency e or more is not reported (false
negative), and probability that a trace with frequency less than /4 is reported
(significantly false positive), for different values of parameter C. The values are
computed using the Poisson approrimation to the binomial distribution, which is
accurate unless the set Sy, from which we sample is small.



Chapter 7

Size Estimation for Sparse
Matrix Products

We consider the problem of doing fast and reliable estimation of the number
z of non-zero entries in a sparse boolean matrix product. This problem has
applications in databases and computer algebra.

Let n denote the total number of non-zero entries in the input matrices. We
show how to compute a 1 4 ¢ approximation of z (with small probability of
error) in expected time O(n) for any £ > 4//z. The previously best estimation
algorithm, uses time O(n/e?). We also present a variant using O(sort(n)) I/Os
in expectation in the cache-oblivious model.

In contrast to these results, the currently best algorithms for computing a
sparse boolean matrix product use time w(n*/3) (resp. w(n*/3/B) 1/0s), even
if the result matrix has only z = O(n) nonzero entries.

Our algorithm combines the size estimation technique of [15] with a par-
ticular class of pairwise independent hash functions that allows the sketch of
a set of the form A x C to be computed in expected time O(|.A] + |C|) and
O(sort(]A| +1C|)) I/Os.

We then describe how sampling can be used to maintain (independent)
sketches of matrices that allow estimation to be performed in time o(n) if z
is sufficiently large. This gives a simpler alternative to the sketching technique
found in [47], and matches a space lower bound shown in that paper.

Finally, we present experiments on real-world datasets that show the accu-
racy of both our methods to be significantly better than the worst-case analysis
predicts.

7.1 Introduction

In this chapter we will consider a d x d boolean matrix as the subset of [d] X [d]
corresponding to the nonzero entries. The product of two matrices R; and Ry
contains (i, k) if and only if there exists j such that (¢,7) € Ry and (4, k) € Rs.
The matrix product can also be expressed using basic operators of relational
algebra: R; W Ry denotes the set of tuples (4,7,k) where (i,j) € R; and
(j, k) € Ro, and the projection operator 7 can be used to compute the tuples
(i, k) where there exists a tuple of the form (,-, k) in Ry ® Rp. Since most of
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our applications are in database systems we will primarily use the notation of
relational algebra.

We consider the following question: Given relations R; and Ry with schemata
(a,b) and (b, c), estimate the number z of distinct tuples in the relation Z =
Tac(R1 X Ry). This problem has been referred to in the literature as join-project
or join-distinct'. We define ny = |R1|, ny = |Ra|, and n = nj +mny. As observed
above, the join-project problem is equivalent to the problem of estimating the
number of non-zero entries in the product of two boolean matrices, having ny
and no non-zero entries, respectively.

In recent years there have been several papers presenting new algorithms
for sparse matrix multiplication [9, 75, 96]. In particular, these algorithms can
be used to implement boolean matrix multiplication. However, the proposed
algorithms all have substantially superlinear time complexity in the input size
n: On worst-case inputs they require time w(n*/?), even when z = O(n).

In an influential work, Cohen [32] presented an estimation algorithm that,
for any constant error probability § > 0, and any € > 0, can compute a 1 + &
approximation of z = |Z| in time O(n/e2?). Cohen’s algorithm applies to the
more general problem of computing the size of the transitive closure of a graph.

Our main result is that in the special case of sparse matrix product size
estimation, we can improve this to expected time O(n) for e > 4/¢/z. This
means that we have a linear time algorithm for relative error where Cohen’s
algorithm would use time O(n+/z).

Approach. To build intuition on the size estimation question, consider the
sets A; = {i |(4,7) € Ri} and C; = {k |(j, k) € Ro}. By definition, Z =
Uj A; x C;. The size of Z depends crucially on the extent of overlap among the
sets {A; x C;};. However, the total size of these sets may be much larger than
both input and output (see [9]), so any approach that explicitly processes them
is unattractive.

The starting point for our improved estimation algorithm is a well-known
algorithm for estimating the number of distinct elements in a data streaming
context [15]. (We remark that the idea underlying this algorithm is similar to
that of Cohen [32].) Our main insight is that this algorithm can be extended
such that a set of the form A; x C; can be added to the sketch in expected
time O(]A;| + |C;|), i.e., without explicitly generating all pairs. The idea is to
use a hash function that is particularly well suited for the purpose: Sufficiently
structured to make hash values easy to handle algorithmically, and sufficiently
random to make the analysis of sketching accuracy go through.

7.1.1 Motivation

Cohen [33] investigated the use of the size estimation technique in sparse ma-
trix computations. In particular, it can be used to find the optimal order of
multiplying sparse matrices, and in memory allocation for sparse matrix com-
putations.

1Readers familiar with the database literature may notice that we consider projections
that return a set, i.e., that projection is duplicate eliminating. We also observe that any
equi-join followed by a projection can be reduced to the case above, having two variables in
each relation and projecting away the single join attribute. Thus, there is no loss of generality
in considering this minimal case.
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In addition, we are motivated by applications in database systems, where size
estimation is an important part of query optimisation. Examples of database
queries that correspond to boolean matrix products are:

e A query that computes all pairs of people in a social network with a
distance 2 connection (“possible friends”).

e A query to compute all director-actor pairs who have done at least one
movie together.

e In a business database with information on orders, and a categorisation
of products into types, compute the relation that contains a tuple (¢, p) if
customer ¢ has made an order for a product of type p.

As a final example, we consider a fundamental data mining task. Given
a list of sets, the famous A-Priori data mining algorithm [6], that we have
already cited several times, finds frequent item pairs by counting the number
occurrences of item pairs where each single element is frequent. So if Ry = Rs
denotes the relationship between high-support (i.e., frequent) items and sets in
which they occur, Z is exactly the pairs of frequent items, and the number of
distinct items in Z determines the space usage of A-Priori. Since A-Priori may
be very time consuming, it is of interest to establish whether sufficient space is
available before choosing the support threshold and running the algorithm.

7.1.2 Further related work
JD sketch

Ganguly et al. [47] previously considered techniques that compute a data struc-
ture (a sketch) for Ry and Ry (individually), such that the two sketches suffice
to compute an approximation of z.

Define n, = [{i | 35.(4,5) € R1}| and n. = |{k | 35.(j, k) € Ra}|. Ganguly
et al. show that for any constant ¢ and any (3, a sketching method that returns
a c-approximation with probability (1) whenever z > 3 must, on a worst-case
input, use expected space

Q(min(n1+ng, ngne(n1/ng+na/ne)/B)) = Q(min(ng +nsg, (n1n.+nang)/B)) bits.

The lower bound proof applies to the case where ny = ns, ny, = n¢, and z <
ng + n.. We note that [47] claims a stronger lower bound, but their proof does
not establish a lower bound above n1 + ny bits. Ganguly et al. present a sketch
whose worst-case space usage matches the lower bound times polylogarithmic
factors (while not stated in [47], the trivial sketch that stores the whole input
can be used to nearly match the first term in the minimum).

In Section 7.3 we analyze a simple sketch, previously considered in other
contexts by Gibbons [52] and Ganguly and Saha [48]. It similarly matches the
above worst-case bound, but the exact space usage is incomparable to that
of [47].

The focus of [47] is on space usage, and so the time for updating sketches,
and for computing the estimate from two sketches, is not discussed in the paper.
Looking at the data structure description we see that the update time grows
linearly with the quantity s;, which is (n) in the worst case. Also, the sketch
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uses a number of summary data structures that are accessed in a random fashion,
meaning that the worst case number of I/Os is at least {2(n) unless the sketch
fits internal memory. By the above lower bound we see that keeping the sketch
in internal memory is not feasible in general. In contrast, the sketch we consider
allows collection and combination of sketches to be done efficiently in linear time
and I/0.

Distinct elements and distinct paths estimation

Our work is related in terms of techniques to papers on estimating the number
of distinct items in a data stream (see [15] and its references). However, our
basic estimation algorithm does not work in a general streaming model, since
it crucially needs the ability to access all tuples with a particular value on the
join attribute together.

Ganguly and Saha [48] consider the problem of estimating the number of
distinct vertex pairs connected by a length-2 path in a graph whose edges are
given as a data stream of n edges. This corresponds to size estimation for the
special case of squaring a matrix (or self-join in database terminology). It is
shown that space \/n is required, and that space roughly O(n3/*) suffices for
constant € (unless there are close to n connected components). The estimation
itself is a join-distinct size estimation of a sample of the input having size no
smaller than O(n?/4/£?). Using Cohen’s estimation algorithm this would require
time O(n®/4 /&%), so this is O(n) time only for ¢ > 1/ */n.

Join synopses

Acharya et al. [2] proposed so-called join synopses that provide a uniform sample
of the result of a join. While this can be used to estimate result sizes of a variety
of operations, it does not seem to yield efficient estimates of join-project sizes.
The reason is that a standard uniform sample is known to be inefficient for
estimating the number of distinct values [27]. In addition, Acharya et al. assume
the presence of a foreign-key relationship, i.e., that each tuple has at most one
matching tuple in the other table(s), which is also known as a snow flake schema.
Our method has no such restriction.

Distinct sampling

Gibbons [52] considered different samples that can be extracted by a scan over
the input, and proposed distinct samples, which offer much better guarantees
with respect to estimating the number of distinct values in query results. Gib-
bons shows that this technique applies to single relations, and to foreign key
joins where the join result has the same number of tuples as one of the relations.
In Section 7.3 we show that the distinct samples, with suitable settings of pa-
rameters, can often be used in our setting to get an accurate estimate of z = | Z|.
The processing of a pair of samples to produce the estimate consists of running
the efficient estimation algorithm of Section 7.2 on the samples, meaning that
this is time- and I/O-efficient.
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7.2 Our algorithm

The task is to estimate the size z of Z = m,.(R1 X Rz). We may assume that
attribute values are O(logn)-bits integers, since any domain can be mapped
into this one using hashing, without changing the join result size with high
probability. When discussing I/O bounds, B is the number of such integers
that fits in a disk block. In linear expected time (by hashing) or sort(n) I/Os
we can cluster the relations according to the value of the join attribute b. By
initially eliminating input tuples that do not have any matching tuples in the
other relation we may assume without loss of generality that z > n/2.

In what follows, k is a positive integer parameter that determines the space
usage and accuracy of our method. The technique used is to compute the kth
smallest value v of a hash function h(z,y), for (x,y) € Z. Analogously to the
result by Bar-Yossef et al. [15] we can then use Z = k/v as an estimator for z.
The idea underlying this estimation is that, if v is the value of the k' smallest
hash value, the density of values can be assumed to be v/k in the whole interval
[0,1]. Hence, if we have Z distinct items, it must be 1/2 =v/k = Z = k/v.

Our main building block is an efficient iteration over all tuples (z,-,y) €
R; ® Ry for which h(z,y) is smaller than a carefully chosen threshold p, and is
therefore a candidate for being among the k smallest hash values. The essence
of our result lies in how the pairs being output by this iteration are computed
in expected linear time. We also introduce a new buffering trick to update the
sketch in expected amortised O(1) time per pair. In a nutshell, each time k&
new elements have been retrieved, they are merged using a linear time selection
procedure with the previous k smallest values to produce a new (unordered) list
of the k smallest values.

Theorem 7.2.1. Let Ry(a,b) and Ra(b,c) be relations with n tuples in total,
and define z = |mqc(R1 W Rp)|. Lete, 0 <e < I be given. There are algorithms
that run in expected O(n) time on a RAM, and expected O(sort(n)) I/Os in the
cache-oblivious model, and output a number Z such that for k = 9/g%:

o Pr[(l—e)z <z < (1+e¢)z] >2/3 when z > k?, and
o Pr[z < (1+4¢)k? > 2/3 when z < k?. o

Observe that for ¢ > 4/{/z we will be in the first case, and get the desired
1+ € approximation with probability 2/3. The error probability can be reduced
from 1/3 to ¢ by the standard technique of doing O(log(1/4)) runs and taking
the median (the analysis follows from a Chernoff bound). We remark that this
can be done in such a way that the O(log(1/9)) factor affects only the RAM
running time and not the number of I/Os. For constant relative error € > 0 we
have the following result:

Theorem 7.2.2. In the setting of Theorem 7.2.1, if € is constant there are
algorithms that run in expected O(n) time on a RAM, and expected O(sort(n))
I/0s in the cache-oblivious model, that output Z such that Pr[(1 —e)z < 2 <

(1+e)2] =1 - O(1/v/n). o

The error probability can be reduced to n~¢ for any desired constant ¢ by
running the algorithms O(c) times, and taking the median as above.
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7.2.1 Finding pairs

For B = mp(R1) U mp(Re) and each ¢ € B let A; = m,(0p=i(R1)) and C; =
7e(op=i(R2)). We would like to efficiently iterate over all pairs (z,y) € A; x C;,
i € B, for which h(z,y) is smaller than a threshold p. This is done as follows
(see Algorithm 7.1 for pseudocode).

For a set U, let hy, hy : U — [0;1] be hash functions chosen independently
at random from a pairwise independent family, and define h : U x U — [0;1]
by?

h(z,y) = (hi(z) — ha(y)) mod 1.

It is easy to show that h is also a pairwise independent hash function — a
property we will utilize later. Now, conceptually arrange the values of h(z,y) in
an |A4;| x |C;] matrix, and order the rows by increasing values of hj(x), and the
columns by increasing values of hso(y). Then the values of h(z,y) will decrease
(modulo 1) from left to right, and increase (modulo 1) from top to bottom.

For each i € B, we traverse the corresponding |.A4;| x |C;| matrix by visiting
the columns from left to right, and in each column ¢ finding the row § with the
smallest value of h(xs,y;). Values smaller than p in that column will be found
in rows subsequent to 5. When all such values have been output, the search
proceeds in column ¢ + 1. Notice, that if h(xs,y;) was the minimum value in
column ¢, then the minimum value in column ¢+ 1 is found by increasing § until
h(zs,yt41) < M@ (5-1) mod | 4,]» Yt+1). We observe that the algorithm is robust
to decreasing the value of the threshold p during execution, in the sense that
the algorithm still outputs all pairs with hash value at most p. This algorithm
is the same presented in Chapter 3 with some adaptations needed to fit the
specific setting. These adaptations are:

e the interval of values we are interested in is [0, p];

e in order to find the flip, we increment the row index instead of decreasing
it, because of the hash function h we consider;

e the largest value smaller than p in every column is found starting from
the flip, because we want to explicitly produce all the values in a column
falling in [0, p)].

In order to get the same exact algorithm, it would be sufficient to consider
Hjy = —hy instead of ho, g(z,y) = (h1(x) + H2(y)) mod 1 instead of h and keep
track of the position j in which the largest value smaller than p is found in a
column.

7.2.2 Estimating the size

While finding the relevant pairs, we will use a technique that allows us to main-
tain the k smallest hash values in an unordered buffer instead of using a heap
data structure (Lines 14-18 in Algorithm 7.1). In this way we are able to main-
tain the k£ smallest hash values in constant amortised time per insertion in the
buffer, eliminating the log k factor implied by the heap data structure.

2We observe that this is different from the “composable hash functions” used by Ganguly
et al. [47].
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1: procedure DISITEMS(p,¢€)

2 k:=T19/e?]

3 F:=0

4 for i € B do

5: x := A; sorted according to hi-value
6 y := C; sorted according to ho-value
7 s:=1

8 for t :=1 to |C;| do

9: while h(xs,y:) > M(T(5-1) mod |.4,]> Y¢) dO
10: 5:=(5+1) mod |A4;]
11: end while

12: §:=35

13: while h(zs,y:) < p do

14: F:=FU{(zs,y)}

15: if |F| = k then

16: (p, S) := COMBINE(S, F')
17: F:=0

18: end if

19: s:=(s+1) mod |A4;]
20: end while
21: end for
22: end for

23: (p, S) := COMBINE(S, F)
24: if |S| = k then

25: return “zZ = % and Z € [(1 & €)z] with probability 2/3”
26: else
27: return “Z = k2, z < k? with probability 2/3”

28: end if
29: end procedure

30: procedure COMBINE(S, F')

31: v := RANK(R(S) U h(F), k) > RANK(-, k) returns the kth smallest value
32: S:={zeSUF|h(zx) <wv}

33: return (v, S)

34: end procedure

Algorithm 7.1: Pseudocode for the size estimator. The While loop on Line 9-
11 finds 3 such that h(zs,yt) is the minimum in the column. The While loop on
Line 13-20 finds all s where h(xs,y:) < p. The condition of the If on Line 15 is
verified when the buffer F is filled.

Let S and F be two unordered sets containing, respectively, the k& smallest
hash values seen so far (all, of course, smaller than p), and the latest up to k
elements seen. We avoid duplicates in S and F' (i.e., the sets are kept disjoint) by
using a simple hash table to check for membership before insertion. Whenever
|F| = k the two sets S and F' are combined in order to obtain a new sketch S.
This is done by finding the median of SUF, which takes O(k) time using either
deterministic methods (see [42]) or more practical randomized ones [62].

At each iteration the current kth smallest value in S may be smaller than
the initial value p, and we use this as a better substitute for the initial value
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of p. However, in the analysis below we will upper bound both the running time
and the error probability using the initial threshold value p.

7.2.3 Time analysis

We split the time analysis into two parts. One part accounts for iterations of
the inner while loop in Lines 13-20, and the other part accounts for everything
else. We first consider the RAM model, and then outline the analysis in the
cache-oblivious model.

Inner while loop. Observe that for each iteration, one pair (z,y;) is added
to F' (if it is not already there). For each t € C;, p|A;| elements are expected to
be added since each pair (zs, ;) is added with probability p. This means that
the expected total number of iterations is O(p|A;]|C;|). Each call to COMBINE
costs time O(k), but we notice that there must be at least k iterations between
successive calls, since the size of F' must go from 0 to k. Inserting a new value
into F' costs O(1) since the set is not sorted. Hence, the total cost of the inner

loop is O(p|A4i|Cil)-

Remaining cost. Consider the processing of a single ¢ € B in Algorithm 7.1.
The initial sorting of hash values can be done in expected time O(|A;| + |C;|)
in the following way. To sort A; according to hj-value we employ a simple
bucket sorting method: Create an array of size |A;| where entry ¢ points to
a “bucket” array that will eventually contain the items {z € A; | hi(z) €
[¢/|A;l; (€ + 1)/]Ai])}. The items are placed one by one in a bucket, taking
time linear in the number of items already in the bucket. The total cost for a
bucket is quadratic in the number of items it contains at the end. As shown
in [45], summing over all buckets this is O(|.4;|) in expectation if h; is pairwise
independent. By the same argument, C; can be sorted in expected time O(|C;|).

For the iteration in Lines 9-11 observe that h(zs,y;) is monotone modulo 1,
and we have at most a total of 2|.4;| increments of § among all ¢ € C; (since both
hi(x) and ha(y) map into [0;1] and we consider them in sorted order). Thus,
the total number of iterations is O(].4;|), and the total cost for each i € B is
O(| A4 + ICi]).

The time for the final call to COMBINE is dominated by the preceding cost
of constructing S and F.

I/0 efficient variant. As for I/O efficiency, notice that a direct implemen-
tation of Algorithm 7.1 may cause a linear number of cache misses if A; and
C; do not fit into internal memory. To get an I/O-efficient variant we use a
cache-oblivious sorting algorithm [46], sorting R; according to (b, hy(a)), and
Rs according to (b, ha(c)), such that the sorting steps for each i € B is replaced
by one global sorting step.

The rest of the algorithm works directly in a cache-oblivious setting. To
see this, notice that it suffices to keep in internal memory the two input blocks
that are closest to each of the pointers s, ¢, and 5. The cache-oblivious model
assumes the cache to behave in an optimal fashion, so also in this model there
will be 2(B) operations between cache misses, and O(n/B) I/0s, expected, in
total.
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Lemma 7.2.1. Suppose Ri(a,b) and Ra(b,c) are relations with n tuples in
total. Let p > 0 and € > 0 be given. Then Algorithm 7.1 runs in expected
O(n+ Y, plAillCi]) time and O(1/e?) space on a RAM, and can be modified to
use expected O(sort(n)) 1/Os in the cache-oblivious model. o

Choice of threshold p

We would like a value of p that ensures the expected processing time is O(n). At
the same time p should be large enough that we expect to reach Line 25 where
an exact estimate is returned (except possibly in the case where z is small).

Lemma 7.2.2. Let j € B satisfy |A;|[Cs| < |Ajl|C;] for all i € B. Then p =
min(1/k, k/(|A;]|C;])) gives an expected O(n) running time for Algorithm 7.1.

Proof. We argue that for each i, p|.4;||C;| < max(|.A;|, |C;|), which by Lemma 7.2.1
implies running time O(n + Y. p|A;||Ci|) = O(n + 3, max(|A4;], |C;|)) = O(n).
Suppose first that [A;||C;| > k?. Then p = k/(|A;1|C;]) and p|A;||Ci| < k <
VIACi| < max(]A4;],|Ci|). Otherwise, when |A;||C;| < k%, we have p < 1/k
and p|A;||Ci| = [Ail[Ci|/k < max(|Ail, [Ci])- 0

We note that when R; and Ry are sorted according to b, the value of p
specified above can be found by a simple scan over both inputs. Our experiments
indicate that in practice this initial scan is not needed, see Section 7.4 for details.

7.2.4 Error probability

Theorem 7.2.3. Let h be a pairwise independent hash function. Suppose we
are provided with a stream of elements N with h(x) < v for all x € N. Further,
lete, 0 <e< i be given and assume that p > min (%,%), where k > 9/e2,
and z 1is the number of distinct items in N. Then Algorithm 7.1 produces an
approximation Z of z such that

o Pr[(1—e)z <2< (1+¢)2] >2/3 for z > k?, and
o Pr[z < (1+¢)k?| >2/3 for = < k2.

Proof. The error probability proof is similar to the one that can be found in [15],
with some differences and extensions. We bound the error probability of three
cases: The estimate being smaller or larger than the multiplicative error bound,
and the number of obtained samples being too small.

Estimate too large. Let us first consider the case where Z > (1+¢)z, i.e. the
algorithm overestimates the number of distinct elements. This happens if the
stream N contains at least k entries smaller than k/(1 + €)z. For each pair
(a,c) € Z define an indicator random variable X, ) as

% . 1 h(a,c) <k/(1+¢)z
(@) = 0 otherwise

That is, we have z such random variables for which the probability of X, ) =1
is exactly k/(1+¢€)z and E[X (4 )] = k/(1+¢)z. Now define Y = 3", . c7 X(a,0)



100 Size Estimation for Sparse Matrix Products

so that E[Y] = E[}_, ez X(a.0l = 2(a)ez ElX (0] = k/(1 + ). By the
pairwise independence of the X, . we also get Var(Y) < k/(1 + ). Using
Chebyshev’s inequality [82] we can bound the probability of having too many
pairs reported:

Pr[Y>k]§Pr[|Y—E[Y]\>k—1L+E] <

since k > 9/¢2.

Estimate too small. Now, consider the case where Z < (1 — ¢)z which hap-
pens when at most & hash values are smaller than k/(1 —¢)z and at least k hash
values are smaller than p. Define X Ea,c) as

v {1 hia,c) < k/(1—¢)z

(@) ™ 10 otherwise

so that E[X(, ,] =k/(1—¢)z < (1+¢€)k/z. Moreover, withY" =3" , o7 X{,
we have E[Y'] = k/(1 — ¢), and since the indicator random variables defined
above are pairwise independent, we also have Var[Y’'] < E[Y'] < (1 + ¢)k.

Chebyshev’s inequality gives:
Var[Y”] < (I1+e)k

(- s) (%)
since k > 9/&2.

Not enough samples. Consider the case where |S| < k after all pairs have
been retrieved. In this case the algorithm returns 3 = k% as an upper bound
on the number of distinct elements in the output, and we have two possible
situations: either there is actually less than k2 distinct pairs in the output, in
which case the algorithm is correct, or there are more than k? distinct elements
in the output, in which case it is incorrect. In the latter case, less than k hash
values have been smaller than p and the kth smallest value v is therefore larger

than p. Define X{;_C) as

Pry’ <K < Pr[[Y - B[ > &£ k] <

1—¢ 2 <

Ol

(ae) —

X {1 h(a,c) <p

0 otherwise

and let again Y = 3", o, X, . It results that E[X(, ] =p and E[Y"] =

zp, and because of pairwise independence of X E:l ¢ also Var[Y"] < E[Y"]. Using
Chebyshev’s inequality and remembering that z > k? in this case we have:

zp zp

(= FP = (1)’

Pr[Y” < k] <Pr[|[Y" —E[Y"]| > 2p— k] < <8/k <1/18.

using that k > 9/¢2 > 144.

In conclusion, the probability that the algorithm fails to output an estimate
within the given limits is at most 1/6 +1/9+1/18 =1/3. O

For the proof of Theorem 7.2.2 we observe that in the above proof, if ¢ is
constant the error probability is O(1/k). Using k = /n we get linear running
time and error probability O(1//n).
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Realization of hash functions

We have used the idealised assumption that hash values were real numbers in
(0;1). Let m = n3. To get an actual implementation we approximate (by
rounding down) the real numbers used by rational numbers of the form i/m,
for integer i. This changes each hash value by at most 2/m. Now, because of
the way hash values are computed, the probability that we get a different result
when comparing two real-valued hash values and two rational ones is bounded
by 2/m. Similarly, the probability that we get a different result when looking up
a hash value in the dictionary is bounded by 2k/m. Thus, the probability that
the algorithm makes a different decision based on the approximation, in any of
its steps, is O(kn/m) = o(1). Also, for the final output the error introduced by
rounding is negligible.

7.3 Distinct sketches

A well-known approach to size estimation in, described in generality by Gib-
bons [52] and explicitly for join-project operations in [48, 9], is to sample random
subsets R C R; and R) C Ry, compute Z' = m,.(R] ®x R}), and use the size
of Z' to derive an estimate for z. This is possible if R} = o4es, (R1), where
S. € m,(Ry) is a random subset where each element is picked independently
with probability p1, and similarly R} = o.cs.(R2), where S, C 7.(R2) includes
each element independently with probability p,. Then 2’ = |Z’|/(p1p2) is an
unbiased estimator for z. The samples can be obtained in small space using
hash functions whose values determine which elements are picked for S, and S..
The value |Z’| can be approximated in linear time using the method described
in Section 7.2 if the samples are sorted — otherwise one has to add the cost of
sorting. In either case, the estimation algorithm is I/O-efficient.

Below we analyse the variance of the estimator z’, to identify the mini-
mum sampling probability that introduces only a small relative error with good
probability. The usual technique of repetition can be used to reduce the error
probability. Recall that we have two relations with n; and ny tuples, respec-
tively, and that n, and n. denotes the number of distinct values of attributes a
and ¢, respectively. Our method will pick samples R} and R} of expected size
s from each relation, where s = p1n; = pans is a parameter to be specified.

Theorem 7.3.1. Let R} and R} be samples of size s, obtained as described
above. Then 2’ = |mec(R] X RL)|/(p1p2) is a 1 £+ € approzimation of z =
|Tac(R1 X Rg)| with probability 5/6 if z > (3, where § = i—;l (%S"“"Q) If
z < B then 2z’ < (1+ ¢€)B with probability 5/6. o

7.3.1 Analysis of variance

To arrive at a sufficient condition that 2z’ is a 1+¢ approximation of z with good
probability, we analyse its variance. To this end define Z;. = {j|(4,j) € Z},
Z.; ={i|(i,j) € Z}, and let

X, — 1_p17 ifiesa Yy, — 1—p2, lf]GSC
N G I otherwise 71 —pa, otherwise
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By definition of S,, E[X;] = Pr[i € S,](1 — p1) — Pr[i € Sa]p1 = 0. Similarly,
E[Y;] = 0. We have that (i,7) € Z’ if and only if (i,5) € Z and (i,5) € Sy x Se.
This means that 2'pypy = Z(i,j)eZ(Xi"’pl)(Yj +p2). By linearity of expectation,
E[(X;4p1)(Y;+p2)] = p1p2, and we can write the variance of z'pips, Var(2'p1p2)

as
2

E Z (Xi +p1)(Y; + p2) — p1p2)
(4,5)€Z

Expanding the product and using linearity of expectation, we get

Var( zp1p2 Z Z ] + Z Z E [Yfpﬂ + Z E [XZQYJZ]

(i,J)€Z (i,5)€Z (i,5)€Z (i',j)€Z (i,5)€Z
=> > mE[XI]+>] > pB[V+:E[X]E[Y]
i€AG,j E€EZ;. JECii'eZ.

Since E [X?] = p1(1 — p1)? + (1 — p1)(=p1)? = p1 — P} < p1, and similarly
E [Yf] < po we can upper bound Var(z') as follows:

Var(2') = (p1p2) 2 Var(z'p1p2)

*2(2 Sopd+d Y p?p2+zp1pz>

€A j,j€Z;. JjeECii'€EZ
< (p1p2) 2 (nez p1p3 + naz pip2 + 2 p1p2)
= (ne/p1 +na/p2+ (p1p2) ') 2 .

7.3.2 Sufficient sample size

We are ready to derive a bound on the probability that 2z’ deviates significantly
from z. Choose 0 < ¢ < 1. Since z = E[2] Chebyshev’s inequality says

Var(z')
(e2)?

This can equivalently be expressed in terms of the sample size s, since p; = s/n
and po = s/na:

Pr(|z' —z] > ez2] < < (ne/p1 +na/p2 + (p1p2) ") /(e%2).

Pr[|2’ — 2] > 2] < (neny + nang +ning/s) /(se22).

We seek a sufficient condition on s that the above probability is bounded by

some constant § < i (e.g. § = 1/6). In particular it must be the case that

nina/(s?€22) < &, which implies s > \/n1,n2/(62) > \/n1,n2/(6nan.). Hence,
using the arithmetic-geometric inequality:

nina/s < \/neningnad < (neng + nang)/(2\/(§).

In other words, it suffices that

(neny 4 nang) (1 + (2V6)™1) e e 5o <ncn1 + nan2> (1 + (2\/S)l>

se2z z 20



7.4 Experiments 103

One apparent problem is the chicken-egg situation: z is not known in ad-
vance. If a lower bound on z is known, this can be used to compute a sufficient
sample size. Alternatively, if we allow a larger relative error whenever z < 3 we
may compute a sufficient value of s based on the assumption z > 3. Whenever
z < B we then get the guarantee that 2’ < (1 + €)8 with probability 1 — 4.
Theorem 7.3.1 follows by fixing s and solving for .

Optimality

For constant ¢ and § our upper bound matches the lower bound of Ganguly
et al. [47] whenever this does not exceed n; + no. It is trivial to achieve a
sketch of size O((ny + n2)log(ny + n2)) bits (simply store hash signatures for
the entire relations). We also note that the lower bound proof in [47] uses certain
restrictions of parameters (n; = ng, ng, = n., and z < n, + n.), so it may be
possible to do better in some settings.

7.4 Experiments

We have run our algorithm on most of the datasets from the Frequent Item-
set Mining Implementations (FIMI) Repository® together with some datasets
extracted from the Internet Movie Database (IMDB). Each dataset represents
a single relation, and motivated by the A-Priori space estimation example in
the introduction, we perform the size estimation on self-joins of these relations.
Table 7.1 displays the size of each dataset together with the number of distinct
a- and c-values.

Instance H z ng (= ne) ‘ €01 €0.01 ‘
Accidents 94 -103 468 1.18 3.73
BMS-POS 760 - 103 1,657 0.78  2.47
BMS-WebView-1 || 128103 497 1.04 3.29
BMS-webView-2 || 1.45-10° 3,340 0.80 2.54
Chess 5.24 -103 75 2.00 6.33
Connect 13.8- 103 129 1.62 5.12
DirectorActor 734 - 106 50,645 0.14 0.44
Kosarak 66.2 - 106 41,270 042 1.32
MovieActor 111-105 51,226 | 0.36 1.14
Mushroom 7.17-103 119 2.16 6.82
Pumsb 1.07 - 106 2,113 0.74 2.35
Pumsb_star 967 - 103 2,088 0.78  2.46
Retail 7.19 - 106 16,470 0.80 2.53

Table 7.1: Characteristics of the used datasets. The rightmost middle column
displays the size ng = |mq(R1)| (which in this case is equals n. = |Umc(R2)|). The
two rightmost columns display the theoretical error as described in Theorem 7.5.1,
forp1 = p2 = 0.1 and p1 = p2 = 0.01, respectively. These theoretical error bounds,
which hold with probability 5/6, are significantly larger than the actual observed
errors in Figure 7.2.

Shttp://fimi.cs.helsinki.fi
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Figure 7.1: The cumulative distribution functions for k = 256 and k = 1024.
It is seen that k = 1024 yields a more precise estimate than k = 256 with 2/3 of
the estimates being within 4% and 10% of the exact size, respectively.
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Plots for sampling with probability 10% and 1%. If the sampling
probability is too small, no elements at all may reach the sketch and in these cases
we are not able to return an estimate. Instances with no estimates have been left
out of the graph.
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Rather than selecting h; and hy from an arbitrary pairwise independent
family, we store functions that map the attribute values to fully random and
independent values of the form d/254, where d is a 64 bit random integer formed
by reading 64 random bits from the Marsaglia Random Number CDROM?*.

We have chosen an initial value of p = 1 for our tests in order to be certain to
always arrive at an estimate. In most cases we observed that p quickly decreases
to a value below 1/k anyway. But as the sampling probability decreases, the
probability that the sketch will never be filled increases, implying that we will
not get a linear time complexity with an initial value of p = 1. In the cases
where the sketch is not filled, we report |F|/(pip2) as the estimate, where |F|
is the number of elements in the buffer.

Tests have been performed for £ = 256 and k£ = 1024. In each test, 60
independent estimates were made and compared to the exact size of the join-
project. By sorting the ratios “estimate”/“exact size” we can draw the cumulative
distribution function for each instance that, for each ratio-value on the z-axis,
displays on the y-axis the probability that an estimate will have this ratio or
less. Figure 7.1 shows plots for k£ = 256 and k£ = 1024. In Table 7.2 we compare
the theoretical error ¢ with observed error for 2/3 of the results. As seen, the
observed error is smaller than the theoretical upper bound.

In Figure 7.2 we perform sampling with 10% and 1% probability, as described
in Section 7.3. Again, the samples are chosen using truly random bits. The
variance of estimates increases as the probability decreases, but increases more
for smaller than for larger instances. If the sampling probability is too small,
no elements at all may reach the sketch and in these cases we are not able to
return an estimate. As seen, the observed errors in the figure are significantly
smaller than the theoretical errors seen in Table 7.1.

k \ € Observed ¢ ‘
256 | 0.188 0.1
1024 | 0.094 0.04

Table 7.2: The theoretical error bound is € = \/9/k as stated Theorem 7.2.5.
The observed error in Figure 7.1, however, is significantly less.

7.5 Conclusion

We have presented improved algorithms for estimating the size of boolean matrix
products, for the first time allowing o(1) relative error to be achieved in linear
time. An interesting open problem is if this can be extended to transitive closure
in general graphs, and/or to products of more than two matrices.

4http://www.stat.fsu.edu/pub/diehard/



Chapter 8
Epilogue

Sampling from implicit sets is not in general an entirely new technique. As a
matter of fact the idea has been used for rather significant research, and some
of these findings have been regarded as influential enough to be awarded prizes.

It is important to highlight the work of Dyer, Frieze and Kannan [44], where
a technique similar to ours, in the fact that the sampling happens on an im-
plicit object, is used in order to provide an approximation algorithm for com-
puting the volume of convex bodies. Computing the volume of convex bodies
takes time that is exponential in n, where n is the number of dimensions. The
cited paper proposed a randomized approximation algorithm that computes an
e—approximation of the volume with high probability, in time that is polynomial
in the number of dimensions n. Notice that it would be infeasible to achieve
an approximation even within a polynomial factor in deterministic polynomial
time, since a hardness result is contained in [16]. In order to accomplish the
result, the algorithm performs a random walk over an implicitly defined undi-
rected graph. The graph models cubes that try to cover the space of the body,
and an estimate of the body volume is derived from the size of the cubes covered
by the random walk. The random walk will hence visit a number of vertices of
the graphs that are the cubes, and provide an estimate after a sufficient number
of steps have been taken. In this way, it is not necessary to draw the entire
graph, that is, producing all the cubes, but only the portion of graph, hence the
portion of cubes, involved in the walk. A polynomial number of such entities is
necessary to the algorithm to achieve the desired result.

In most cases, the difference from our approach stands in a fundamental
point: the complexity class in which the problems we address lie in. For the
convex body, all known deterministic algorithms are exponential in the number
of dimensions of the space, and the approximation randomized algorithm reduces
the running time to polynomial. Almost all the problems that we address are
solvable in polynomial time, usually quadratic time, and the algorithms we
present reduce the running time to quasi-linear or linear. This means that the
problem of and the structural approach to the sampling faces entirely different
constraints and opportunities.

Moreover, the sampling techniques we use are highly innovative for the prob-
lems we have presented. Sometimes (see Chapter 6), sampling is an entirely new
approach to the framework we applied it. Our techniques offer the appealing
characteristic of avoiding the generation of candidate solutions to be selected,
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in a second phase, to be output. The candidate generation phase, in particu-
lar when carried out in the early stages of many algorithms, operates on the
whole input, and for this reason produces a lot of intermediate artefacts; this
production is expensive from both a time and a space perspective.

Possible evolutions
BiSAM family of algorithms.

A rather natural extension of the techniques presented would be addressing
itemsets of size larger than 2. At first glance, the sampling methods we presented
cannot be immediately extended in this sense, and using it as a first phase of
a multiphase algorithm would make the algorithm fall in the class of candidate
generating algorithms, which is not desirable, as explained before.

One possible approach is to use geometric properties of vectors, hence matrix
multiplication techniques, in order to get estimates of some of the measure
functions like cosine. Additionally similarity functions for itemsets of size larger
than two are not so frequent.

Another interesting direction to follow is finding more hardness results, tak-
ing into account various possible characteristics of the input. A very natural
development would be, for instance, extending the lower bound of Theorem 4.1.1
on page 49, in order to take into account the random order of transactions.

Graph mining

Graph mining offers a wide space of manoeuvre in order for our sampling tech-
niques to be used.

Many counting problems seem to be good candidates for reducing polynomial
time complexities to linear or quasi-linear. Counting k—cliques in a graph can
be one such problem. The obvious worst case time for an exact algorithm would
be n©®) | that is particularly expensive when k is large.

A k—clique is a vertex connected to all nodes in a (k — 1)—clique, so an ap-
proach to estimating the number of cliques could exploit this recursive structure
in order to sample a number of cliques that is not too large, using a suitable
sampling probability. If one is able to sample with a probability that is inde-
pendent enough and uniform, or almost uniform, a conclusion can be derived on
the total expected number of k—cliques in the graph. In essence the algorithm
should try to take samples from the set of subgraphs of size k without explicitly
producing that set.

Another problem similar in spirit can be estimating the number of cliques
of low degree nodes in a dense graph. This kind of graphs are interesting for
the many real world structures that they are able to represent; a meaningful
example with this respect are social networks.

Matrix multiplication

As pointed out, the problem is widely general, so extending and deepening
this technique is a rather appealing path. It remains, as a matter of fact, to
be understood whether the algorithm: (i) can be adapted and generalized in
order to address the problem of transitive closure for general graphs; (ii) can be
extended and adapted to the case of multiplication of multiple matrices.
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