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Abstract
Delay management for public transport consists of deciding whether vehicles should wait for delayed
transferring passengers, with the objective of minimizing the overall passenger discomfort. We model
the underlying transportation network as a directed acyclic graph, where edges represent trains, and
weighted paths represent passenger flows. Given initial delays of some of the passenger paths, our goal
is to decide which edges wait for delayed passenger paths, such that the sum of all passenger delays is
minimized.

This paper classifies the computational complexity of delay management problems with respect to
various structural parameters, such as the maximum number of passenger transfers, the graph topology,
and the capability of edges to reduce delays. Our focus is to distinguish between polynomially solvable
and NP-complete problem variants. To that end, we show that even fairly restricted versions of the delay
management problem are hard to solve.

1 Introduction

Even a carefully planned railway system will once in a while have to deal with delayed trains due to
unforeseeable events. In such a case, the railway operator can react by maintaining some connections and
modifying the schedule accordingly.

This paper considers the impact of such modifications on the overall passenger delay. The problem
of managing delayed trains is still not well understood, even though the first research on railway delays
started as early as two decades ago (see, for example, [HK81]). In particular, no efficient exact algorithms
are known so far for any general problem setting. We present an explanation for this situation by showing
that several restricted versions of the delay management problem are NP-complete. We identify various
combinatorial aspects that cause the problem to be difficult to solve, and complementarily describe some
polynomial time algorithms. Thus, we establish a fairly precise complexity boundary that depends on
structural parameters of the problem instance.

The delay management problem considers a trade-off that is best explained by an example. Consider
a passenger in an on-time train, which decides to wait for a delayed feeder train. Although the passenger
was traveling on-time, she now faces a delay because of this decision. Moreover, she herself may later
miss a connecting train in a subsequent station. Alternatively, had the train not waited, then the connecting
passengers in the feeder train would have missed their connection. In particular, they would have had
to wait for the next train, thus facing a large delay each. Delay management consists of deciding which
connecting trains should wait for which delayed feeder trains, with the objective of minimizing the sum of
the delays faced by the passengers.

We model the railway network as a graph, and passenger flows as fixed paths in this graph. In this
network, unforeseen events may occur that result in the late arrival of connecting passengers at transfer
stations. Given these so-called source delays, our goal is to decide which connecting trains wait for delayed
transfer passengers, such that the sum of all passenger delays is minimized. In our opinion, this model
captures the key aspects of delay management, such as the propagation of delays through the network. And
because of its abstractness, the model is also applicable to other modes of scheduled public transport. Still,
some important real-life aspects are not included, such as the availability of track capacity to accommodate
the adjusted schedule.
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Network No slack times With slack times
topology ≤ 2 transfers ≤ 3 transfers < ∞ transfers ≤ 2 transfers < ∞ transfers

General min cut NP-complete NP-complete NP-complete NP-complete
Series-parallel min cut NP-complete NP-complete NP-complete NP-complete
Tree min cut dynamic program dynamic program ? NP-complete
Line min cut dynamic program dynamic program ? NP-complete

Tree, single destination “pedal-to-the-metal”

Table 1: Classification of the binary delay management problem, with implied entries greyed out. Contributions of
the paper are in italic.

1.1 Contribution of the Paper

This paper identifies a boundary between NP-completeness and polynomial solvability for various natural
problem parameters of the delay management problem. In particular, we focus here on the case where all
non-zero source delays are of equal size, which we refer to as binary source delays.

We first show that the binary delay management problem is strongly NP-complete if trains cannot catch
up on their delay, already on a railway network with series-parallel topology. As some of the passengers in
the complexity reduction transfer three times, the result complements our earlier finding that the problem is
polynomially solvable when passengers transfer at most twice [GGJ+04]. We also extend the latter result
to the case of unbounded number of transfers, in which initially on-time passengers are not allowed to miss
a connecting train (though they are allowed to be delayed).

Next, we study the binary delay management problem with slack times, meaning that trains can catch
up on their delay. We show that this variant is already NP-complete on a railway network with a line
structure. Again, this contrasts an earlier result on the polynomially solvability of such a line network
without slack times [GGJ+04]. Further, a slightly different NP-completeness reduction yields passengers
that transfer twice, on a more general network that is series-parallel. As an ingredient for one of our proofs,
we establish that the maximum unweighted directed cut problem on directed acyclic graphs is NP-complete.

Without slack times, all source delays must contribute to the objective. For this setting, we also in-
vestigate the objective function without this offset, and show that it is NP-hard to approximate to a certain
constant factor.

Finally, we describe a polynomial time “pedal-to-the-metal” algorithm for the delay management prob-
lem with slack times, under the restriction that all passengers travel to the same destination station on a
network with a tree-like structure.

Given our interest in complexity aspects, we focus on fairly simple versions of the delay management
problem, which are perhaps not too realistic. Still, our findings give insight into the structure of more
complex and more realistic models. Thus, the main contribution of the paper is to identify combinatorial
aspects that are crucial for the problem’s complexity. Table 1 summarizes the results. Naturally, the
unrestricted delay management problem is NP-complete as well.

1.2 Related Research

The above described delay management problem was introduced by [Sch01], who proposed a Mixed In-
teger Programming formulation for a model that is similar to ours. Schöbel [Sch03] also showed that,
when no two delayed vehicles meet in an optimal solution to this model, its constraint matrix is totally
unimodular. In that case, an optimal solution can be obtained in polynomial time by Linear Programming.
Further, [GGJ+04] described a minimum cut reduction for passengers that transfer at most twice, and a
polynomial-time dynamic program for railway networks with a tree topology.

In spite of these algorithmic results, no strong NP-completeness results were known so far for delay
management. [Sch03] showed that the the bi-criteria problem of concurrently minimizing the weighted
passenger delay and the number of missed connections is weakly NP-complete. For the same bi-criteria
problem, [Meg04] provides a slightly different complexity proof and some further theoretical observations.

2



[GJPW04] provides a first competitive analysis for the on-line version of delay management, on the
simplified setting of a single railway line with intermediate stops. For this simple model, a family of
2-competitive algorithms exists, and no on-line algorithm can be more than golden-ratio competitive.

The series of papers [SM01, SBK01, SMBG01, BS04] evaluates deterministic policies for deciding
whether trains should wait for delayed transfer passengers. The evaluation of these policies is carried out
through an agent-based simulation tool. Since our focus is on optimization and computational complexity,
we do not further discuss this and other research on simulation for railway delays, such as [ADGT99,
OW99, HHW99].

2 Problem Statement

This section describes the delay management model analyzed in the paper. First, we describe the general
model, which is similar to the model in [Sch01]. Next, we specify the considered restrictions of the model.

General Model Definition
The event-activity model in [Sch03] forms the base of our general delay management model. Let G =
(V, E) be a directed acyclic graph. Each vertex v ∈ V represents a station, and each edge e = (u, v) ∈
E represents a single direct train only operating the connection between u and v. Trains do not have
intermediate stops in this model. At each station v, the outgoing edges (v, w) represent the connecting
trains for the passengers traveling on the incoming trains (u, v). A directed path in G then corresponds
to a journey a passenger can undertake by transferring between trains. We assume transfers to happen
instantaneously. Thus, passengers arriving at a station with a delay can only board the connecting train if
it waits for the entire delay of the feeder train. Alternatively, one could model the transfers by additional
edges in the graph. We omit this construction for simplicity, but point out that these additional edges do
not influence our results.

A train e = (u, v) ∈ E can reduce a possible delay by S(e) ≥ 0 time units on its trip from u to v, for
example by driving faster than scheduled. We refer to S(e) as the slack time of the train. Trains must not
arrive earlier than scheduled, so slack times can only be used if a train departs with a delay.

Passenger flows in the railway system are modeled by a set of directed paths P in the graph. Such
a path P induces transfers at every internal vertex of P . A path P ∈ P has an associated weight w(P )
representing the number of passengers, or the importance of the path in a more abstract sense. As a direct
consequence of an unforeseen event, some passengers may arrive at a transfer station with a delay. In our
model, such passengers are represented by a passenger path P ∈ P with a source delay D(P ) > 0, starting
at that transfer station and ending at the passengers’ destination. Thus, our model defines source delays on
paths rather than on trains. We refer to paths with D(P ) = 0 as source punctual paths, and to paths with
D(P ) > 0 as source delayed paths.

A passenger path P ∈ P misses a connection if it arrives at a transfer station with a delay, and its
connecting train does not wait long enough. We assume that trains are operated according to a periodic
timetable with period T , and that delays do not propagate to the next period. Examples exist where the
latter happens, but we do not consider such cases for the sake of simplicity. Hence, a passenger path
P ∈ P has an arrival delay δP = T if it misses a connection. If all connections on path P are maintained,
its arrival delay δP equals the arrival delay of its last train. We refer to paths with δP = 0, arriving as
scheduled at their destination, as punctual paths, to those arriving delayed as delayed paths, and to those
missing a connection as dropped paths. Further, we refer to paths not missing a connection as maintained
paths. The possibility to drop paths is a key aspect of this setting. Indeed, dropping a path P effectively
removes P from the network, such that no train is influenced by P any more.

An instance is completely defined by the tuple (G,S,P ,D, w, T ). For such an instance, a delay pol-
icy π specifies which trains wait, for how long, and how much slack time they use. We wish to find a
delay policy π∗ that minimizes the total passenger delay defined as the weighted sum of arrival delays∑

P∈P
wP δP .

Problem Restricting Parameters
Our complexity results consider several restricted versions of the general model. These restrictions include
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the basic cases of limiting the maximum number of passenger transfers (maximum passenger path length),
restricting the source delays to one single non-zero value (binary source delays), and not allowing for trains
to catch up on delays (availability of slack times).

As for the network topology, we consider lines (paths), trees, and series-parallel graphs. Series-parallel
graphs have treewidth two, which intuitively means they are almost trees. Many NP-complete problems,
such as Independent Set and Vertex Cover, become polynomially solvable on bounded-treewidth graphs.
Hence, an NP-hardness result for series-parallel graphs in some sense complements a polynomial time
algorithm for trees.

For a discussion of series-parallel graphs and treewidth, see for example [Bod93]. Briefly, the (directed)
series-parallel graphs are defined recursively as follows. Every series-parallel graph has a designated source
node s and a sink t. The graph consisting of one edge from s to t is a series-parallel graph. Given two
series-parallel graphs G and H , their parallel composition and their serial composition are both series-
parallel graphs. The parallel composition is obtained by identifying the two source nodes and the two sink
nodes. The serial composition is defined by identifying the sink of G with the source of H , and by defining
the new source as the source of G, and the new sink as the sink of H .

Remarks on the Model
Note that in one station there may be paths that connect on time as well as paths that connect delayed.
Additionally, there may be several paths between one origin destination pair, which can all be used simul-
taneously by different passengers. This leads to a problem variant with so-called dynamic path choices, in
which the optimization includes choosing a path for each passenger.

Dynamic path choices, as used in [GGJ+04], become void if each passenger has a unique path to travel
from his origin to his destination. By exploiting this observation, we can strengthen our hardness results
to also hold for dynamic path choices, also improving on the result in [GGJ+04] with respect to network
topology. Thus, dynamic path choices do not make the problem easier to solve. Actually, considering
the inapproximability result of [GGJ+04] for unrestricted topology, it could be that dynamic path choices
make the problem harder to solve.

The same holds for other possible restrictions on the passenger paths structure, such as allowing only
shortest paths to travel from an origin to a destination.

Finally, consider the natural setting in which a single initially delayed train is the cause of the source
delayed paths. Our hardness results can be adapted to this situation by the following modification. Each
source delayed path starts with the single delayed train, followed by an artificial train to the path’s true
origin station. Such an artificial train is defined for each source delayed path, and used uniquely by that
path. Thus, a source delayed path travels with the delayed train, and uses the artificial train to reach its true
origin station. This construction results in only slightly weaker parameters with respect to the number of
passenger transfers and the network topology.

3 Delay Management without Slack Times

Our first analysis considers the restricted setting of binary source delays and no slack times, that is, D(P ) ∈
{0, δ} for all P ∈ P , and S(e) = 0 for all e ∈ E. In this setting, an optimal delay policy π∗ describes
which trains depart on-time, and which ones depart with a delay of size δ. We refer to this restricted model
as the binary delay management problem, and write an instance as (G,P ,D, w, T ).

3.1 Proof of Hardness with Three Transfers

In this section, we prove that the binary delay management problem is NP-complete already for unweighted
passenger paths on a series-parallel train-network. To that end, we first prove a weaker theorem.

Definition: Decision binary delay management problem.
Instance: A binary delay management instance (G,P ,D, w, T ), d ∈ N.
Question: Is there a delay policy such that the total passenger delay is less than or equal to d?

4



P e
1

P e
2

Pu

Pv

Pue

P e
α

Au

Av Bv

De
Ee

Ce

Pve

Fe

Ge
P e

3

P e
β

Bu

Figure 1: The construction for an extended edge (u, ue, ve, v) in G2. Directed edges represent the trains in the
network. Undirected lines represent the paths. Thick paths are the paths of weight M . Dashed paths represent paths
with source delay δ.

Theorem 1. The decision binary delay management problem with passenger paths changing at most four
times is NP-complete.

Proof. It is easy to see that the problem is in NP, as the weighted delay of the paths induced by a delay
policy π can be computed in polynomial time, and the size of π is polynomial as well. We show that
the problem is NP-hard by reduction from Maximum Independent Set [GJ79, Problem GT20]. Let the
undirected graph G = (V, E), |V | = n, |E| = m be a Maximum Independent Set instance asking for an
independent set of size K. Consider its 2-subdivision [Pol74] G2 = (V2, E2), i.e., the graph obtained by
inserting the vertices ue, ve for each undirected edge e = (u, v) and splitting the edge into three undirected
edges (u, ue), (ue, ve), (ve, v). We refer to this construction for an edge e = (u, v) of the original graph
as the extended edge in the 2-subdivision, symbolized by (u, ue, ve, v). The graph G has a maximum
independent set of size K if and only if its 2-subdivision G2 has a maximum independent set of size
K + m.

In the following, we construct gadgets for every extended edge of the 2-subdivision graph. In the result-
ing delay management instance, certain paths that are maintained in an optimal delay policy π∗ correspond
to the vertices in the maximum independent set of the 2-subdivision.

For each vertex q in G2 we construct a path Pq in the delay management instance, such that two
vertices q, r can be in the same independent set if and only if the corresponding paths Pq and Pr can both
be maintained in the same optimal delay policy. A maximum independent set in G2 hence corresponds to
an optimal set of maintained paths.

For this construction, consider an extended edge (u, ue, ve, v). For the vertices u, v we have paths
Pu, Pv ∈ P , both with unit weight and unit source delay. These paths exist once for every u ∈ V .
Further, we introduce paths Pue

, Pve
for ue and ve, both with unit weight and no source delay. The exact

configuration of all these paths is shown in Figure 1.
For each extended edge (u, ue, ve, v) of the 2-subdivision we introduce five paths in the delay man-

agement instance, P e
1 , P e

2 , P e
3 , P e

α, P e
β , each with weight w(P e

i ) = M, i ∈ {1, 2, 3, α, β}, where M is a
sufficiently large value. The paths P e

α and P e
β have source delay δ, the other paths have no source delay.

Because of the large weight M , the source delayed paths P e
α, P e

β will never be dropped in an optimal delay
policy π∗. For the same reason, the paths P e

i , i ∈ {1, 2, 3} will always be kept punctual. We refer to these
paths as M -paths, and Figure 1 shows their exact configuration.

Let π∗ be an optimal delay management policy for the constructed instance, meaning that no M -paths
are dropped. In π∗, the paths corresponding to vertices of G2 interact by sharing edges. Because of the
M -paths, π∗ cannot maintain two such interacting paths, since one requires the shared edge to be delayed,
whereas the other requires it to be on-time. Indeed, Pu and Pue

share the edge (Au, Bu), and Pue
and Pve

share (De, Ee). Note that this construction enforces that each maintained unit weight path will be delayed.
Hence, the unit weight paths that are maintained in π∗ correspond to an independent set I in G2. Since

every maintained path reduces the cost of the delay policy, I is a maximum independent set.
More precisely, set δ = 1, T = 2, M = m + 2, and d = 2mMδ + (2m + n)T − (m + K)(T − δ).

Now G2 has an independent set of size m + K if and only if the binary delay management instance has a
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Figure 2: On the left hand side, a network stemming from Independent Set on nodes u, v, w and edges e = (u, v), e′ =
(v, w). Except for P ∗, the paths of the construction are omitted. Capital letters are the node labels. On the right hand
side, the corresponding series-parallel network after the contraction has taken place. Note that the path P ∗ is routed
along the edges f1, f2, f3, f4, as in the uncontracted version.

delay policy π with cost at most d, i.e., which maintains m + K unit weight paths.
Finally observe that the longest constructed passenger path requires 4 changes.

Theorem 1 can be strengthened by constructing an even simpler instance of the delay management
problem.

Theorem 2. The decision binary delay management problem on a series-parallel graph with passenger
paths changing at most three times and unweighted passenger paths is NP-complete.

Proof. We modify the construction of Theorem 1 as follows. To reduce the maximal number of changes
to 3, the last gadget edge (Fe, Ge) is omitted for each e ∈ E. This still enforces that one of the paths
Pve

and Pue
must be dropped. With this construction, dropping Pue

and maintaining Pve
causes a delay of

T , which is less than the cost δ + T of maintaining Pue
and dropping Pve

.
Set δ = 1, T = m + 2, M = m + 3, w(Pi) = 1, i ∈ {u, v, ue, ve} and d = 2n − K + mn − mK +

2m2 +6m. We claim that G2 has an independent set of size m+K if and only if the modified binary delay
management instance has a delay policy with cost at most d, which maintains K unit weight paths Pu and
m unit weight paths Pue

. Such a policy contributes to the objective with weight Kδ for the maintained
paths Pu, with (n − K)T for the dropped paths of the same type, with mδM for the source delayed M -
paths, and with weight mT for the dropped paths Pue

and Pve
. Although dropping the paths Pue

and Pve

contributes to the objective with weight T per path, maintaining Pue
has a different impact on the objective

than maintaining Pve
. Indeed, maintaining Pve

causes no addition to the objective, whereas maintaining
Pue

increases the objective by δ. Over all edges e, this contribution can nevertheless be bounded by mδ.
Adding all the above terms yields the value of d.

Delaying or dropping M -paths is more expensive than dropping unit weight paths. Further, dropping
more than n − K + m unit weight paths causes the delay to exceed d, as can be verified. Thus, the
construction enforces at least K + m paths to be maintained, that is, at most n − K + m paths to be
dropped.

To make the underlying network series-parallel, we identify all nodes of one position into one single
node. That is, all Au nodes are contracted into one node A, all Bu nodes into one nodes B, all Ce into C,
and so on. Then, the graph consists of the 6 nodes A, B, C, D, E, F , with bundles of parallel edges between
(A, B), (B, C), (B, D), (C, D), (D, E), and (E, F ), see Figure 2.

In the resulting series-parallel network, each path still uses the same edges as prior to contracting the
nodes. For example, the path P ∗ in Figure 2 uses the edges f1, f2, f3, f4 in the series-parallel network.
The interaction of the gadgets in the series-parallel network is achieved by paths that share an edge.

Observe that the weight M = m + 2 is polynomial in the size of the instance. Thus, as a last step,
we can transform the reduction to an instance with unweighted paths by introducing M parallel passenger
paths of unit weight for each M -path.
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Figure 3: The non-contracted graph with dynamic path choices before the contraction and the embedding into a
series-parallel network.

3.2 Dynamic Path Choices

Unfortunately, dynamic path choices render the construction in the proof of Theorem 2 useless. To see
this, note that all paths with the same “function” in the construction of Theorem 1 start and end at the same
nodes in the above series-parallel network. For example, all paths Pv, v ∈ V , start at A and end at B, and
all paths P e

v , e = {u, v} ∈ E, v ∈ V , start at A and end at F .
Consider the following solution. For each bundle of parallel edges, set one edge to be punctual, one

edge to be delayed, and all other edges arbitrarily. Now, each source punctual path can dynamically choose
the punctual edges, and each source delayed path can dynamically choose the delayed edges. Clearly, this
solution does not drop any paths, nor does it delay any source punctual paths.

As a remedy, the construction can be modified such that the route of each passenger path is unique in
the series-parallel network. The construction uses a 4-subdivision instead of a 2-subdivision. To this aim,
each of the 2m parallel subgraphs between B and D is replaced by a serial interaction gadget, with one
on-time M -path and one delayed M -path. Further, the paths between B and D in the original construction
are split, see Figure 3. In this modified construction, only the vertices Bu and De are contracted. This
construction can be embedded in a series-parallel graph. The resulting graph before the contraction is
depicted in Figure 3. As a result, after contracting the vertices Bu and De, each path has a unique feasible
route.

Corollary 3. The decision binary delay management problem on a series-parallel graph with passenger
paths changing at most three times and unweighted passenger paths is NP-complete, even with dynamic
path choices.

3.3 Approximating the Additional Delay

As stated in Section 2, our objective is to minimize the total passenger delay. Alternatively, it also makes
sense to minimize only the weighted delay that paths face in addition to their source delay. Indeed, as there
are no slack times, a source delayed path can never do better than arrive at its destination with a delay of δ.
This portion of the delay cannot be optimized, so it is reasonable to omit it from the objective function. We
refer to this alternative objective function as the additional weighted delay, which should be minimized.

As Independent Set and Vertex Cover are complementary problems, the results from [Hås01] provide
an inapproximability result for the delay management problem with the additional delay objective func-
tion. The proof involves a different reduction from independent set, and generally needs more than three
passenger transfers.

Lemma 4. For any ε > 0, it is NP-hard to approximate the binary decision delay management problem
with the objective of minimizing the additional delay within a factor 15

14
− ε.

Proof. It is easy to see that the problem is in NP, as the weighted delay of the paths induced by a delay
policy can be computed in polynomial time, and the size of the delay policy is polynomial as well. We first
construct an alternative reduction from Independent Set [GJ79, Problem GT20] to show that the problem
is NP-hard, and then use this reduction to prove the inapproximability result.

The idea of the alternative reduction is the following. For each vertex in the independent set instance,
we insert a so-called vertex-path that is maintained if the vertex is in the independent set. As in the proof
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Figure 4: An example of the reduction. At the left, the independent set graph, at the right, the resulting
delay management network. Paths are drawn as arrows to indicate their direction.
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δ

D(P i
δ ) = δ

P i
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D(P i
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Figure 5: The corner gadget, enforcing a vertex-
path to be dropped if already delayed before sta-
tion 0, and delaying it after 0. Thick paths are
M -paths, dashed paths have source delay.
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Pi
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Figure 6: The crossing gadget, enforcing two
paths whose vertices share an edge in G to use
a common train in the delay management prob-
lem. Here, paths are drawn as arrows to indicate
their direction.

of Theorem 1, two adjacent vertices yield two vertex-paths that share an edge in such a way that at most
one of the two paths can be maintained in any optimal delay policy. There is a one-to-one correspondence
between the vertices of an independent set and the maintained paths in the resulting delay management
instance.

More precisely, given an instance G = (V, E), K ∈ N, |V | = n, |E| = m, of Independent Set, we
construct an instance of the delay management problem (G′,P ,D, w, T ), G′ = (V ′, E′), as follows. Set
δ = 1, T = 2, d = 2n−K, and consider an arbitrary ordering of V from 1 to n. For presentation purposes,
the construction is embedded in the plane, with ‘time’ on the horizontal axis, and ‘space’ on the vertical
axis. For each vertex i ∈ V , we construct a unit weight source punctual vertex-path Pi. We specify the
edges of the path below. The path Pi starts at location i at time zero, reaches location 0 at time i, and ends
its journey at location n − i at scheduled time n. To perform this journey, the path Pi needs to connect
between trains several times. An example of the embedding is sketched in Figure 4.

At location 0 we introduce a so-called corner gadget, illustrated in Figure 5. Each path Pi arrives at
station 0 with an edge it shares exclusively with a source punctual M -path P i

0. The interaction of P i
0 with

the network is limited to this edge, and to the path Pi. Similarly, Pi leaves station 0 through an edge shared
exclusively with a source delayed M -path P i

δ , which interacts with the network solely through this edge.
By choosing M big enough, delaying P i

0 is more expensive than dropping Pi. In this way, Pi is forced to
be dropped if it reaches the edge in common with P i

0 delayed. Similarly, Pi is forced to be delayed if it
reaches the edge common with P i

δ on time.
Two adjacent vertices i, j ∈ V, i < j, cannot both be in the independent set. To enforce this, the paths

Pi and Pj cross exactly once on one common edge, in a so-called crossing gadget as shown in Figure 6.
In the embedding, the crossing gadget is placed after Pi’s corner gadget but before Pj ’s corner gadget, see
Figure 4. Thus, given the decision to maintain path Pi, the path Pj must be dropped, as it reaches its corner
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gadget with a delay. Conversely, given the decision to maintain the path Pj , the path Pi must be dropped,
as it reaches the crossing gadget with a delay. Hence, the two paths cannot be maintained concurrently if
there is an edge (i, j) ∈ E. Note that the paths are disjoint if (i, j) 6∈ E.

Set M = 2n. Delaying one of the M -paths causes a delay of 2n · δ = 2n, which is equal to the
delay caused by dropping all unit weight vertex-paths. However, at least one vertex-path can always be
maintained by neither delaying nor dropping any M -paths. In the worst case, all remaining vertex-paths
must be dropped, which yields an additional weighted delay of 2n−1. Thus, delaying or dropping M -paths
cannot lead to an optimal policy. Again, the size of the instance remains polynomial when each M -path is
replaced by M unit weight paths, as M = 2n.

The graph G has an independent set of size at least K if and only if the constructed unweighted delay
management instance has a delay policy inducing at most 2n−K additional weighted delay (which corre-
sponds to a total delay of at most 2n−K + nMδ). The reduction is polynomial, since each vertex induces
1 + 2M = 1 + 4n paths and O(m) edges, and the instance can be built in polynomial time.

Finally, we show the inapproximability result for the additional weighted delay objective. As the ver-
tices of the maintained vertex-paths form an independent set in G, the vertices of the dropped vertex-paths
form a vertex cover in G. Hence, G has a vertex cover of size at most c if and only if there exists a delay
policy with additional delay at most n+ c. As shown in [Hås01], it is NP-hard to distinguish graphs having
a vertex cover of size ≤ ( 6

8
+ ε)n from those having a vertex cover of size ≥ ( 7

8
− ε)n. This provides an

inapproximability result of 7

6
− ε̄.

Our objective has an additive offset n. Hence, distinguishing the above delay management instances
with additional delay n + 6

8
n = 14

8
n from those with additional delay n + 7

8
n = 15

8
n, is equivalent to

distinguishing between the corresponding sizes of a vertex cover. The ratio between these values proves
the statement.

3.4 Polynomially Solvable Cases

Several special cases of the delay management problem can be solved by reduction to a minimum directed
cut problem [GGJ+04]. This section extends these results for the case in which no delay policy is allowed
to drop source punctual paths. As dropping source punctual paths is in some sense unfair, this restricted
case may very well be reasonable from a practical point of view.

A minimum directed s-t-cut is a partition of the vertex set into two disjoint sets S, S̄, with s ∈ S, t ∈ S̄,
such that the sum of the cost of the edges traversing the cut from S to S̄ is minimal. We construct a new
graph G′ = (V ′, E′, c), with a cost function c : E → N. A minimum directed cut in G′ with respect to c

corresponds to an optimal delay policy on (G,P ,D, w, T ).
We map the trains E to vertices in G′, and add two new vertices s and t. The idea of the reduction is that

trains in S wait, whereas trains in S̄ depart on time. For each source punctual passenger path we introduce
infinite weight edges between every two subsequent trains the path uses. Further, for each such path we
introduce a new vertex and infinite weight edges from each train used by the path to the new vertex, such
that it will be in S if the path is delayed. An appropriately weighted edge connected to t ∈ S̄ accounts for
the delay occurring if the path is delayed. For each source delayed path, we also introduce a new vertex.
This vertex is connected to all trains used by the path with infinite weight edges, such that the vertex is
in S̄ if one of these trains is on-time. An appropriately weighted edge connects s ∈ S with this vertex,
accounting for the dropping costs. An additional weighted edge (s, t) accounts for the delay of the source
delayed path.

More precisely, given an instance (G,P ,D, w, T ), we build a new graph G′ = (V ′, E′, c), c : E′ → N.
Let V ′ = E ∪ {t, s} ∪ P . For each source punctual path P ∈ P , P = {f0, f1, . . . fl}, fi ∈ E,D(P ) = 0,
we introduce edges (fi, fi+1), i ∈ {0, . . . , l − 1} each with weight c(fi, fi+1) = ∞. Further, let vP ∈
V ′ be the vertex corresponding to this path. We introduce edges (fi, vP ), i ∈ {0, . . . , l} with weight
c(fi, vP ) = ∞, and an edge (vP , t) with weight c(vP , t) = δ · w(P ). For each source delayed path
P ∈ P , P = {f0, . . . , fl}, fi ∈ E,D(P ) = δ, let vP be the vertex corresponding to the considered path.
We introduce edges (vP , fi), i ∈ {0, . . . , l} with weight c(vP , fi) = ∞, an edge (s, vP ) with weight
c(s, vP ) = (T − δ) · w(P ) and finally an edge (s, t) with weight c(s, t) = δ · w(P ).
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Lemma 5. Given that source punctual passenger paths cannot be dropped, the minimum total passenger
delay for (G,D,P , w, T ) is equal to the cost of the minimum directed s-t-cut [S, S̄] in G′. In such an
optimal delay policy all trains corresponding to vertices in S wait and all trains corresponding to vertices
in S̄ depart on-time.

Proof. It is clear that at least one non-infinite cut exists, since all source delayed paths can be dropped
by setting S = {s}. Next, we show that source punctual paths can never be dropped. Since finite weight
edges appear only from and to vertices vP , and between s and t, the infinite weight edges ensure the desired
consistency. Assume that the path P = {f0, . . . , fl} ∈ P ,D(P ) = 0, is delayed. Then, there exists an
fi ∈ P ∩S. Because of the infinite weight edges (fi, fi+1), . . . (fl−1, fl), no such edge can traverse the cut
in a minimum directed cut. Hence, the path will not be dropped. Notice that such paths can be delayed, as
the infinite weight edges traverse the cut backwards from S̄ to S and are hence not counted in the objective.

We show that the cost of each non-infinite weight cut is equal to the delay occurring if all trains in S

wait, and all trains in S̄ depart on-time. Each source punctual path P = {f0, . . . , fl}, has vP ∈ S if one
fi ∈ S, i.e., if the path is delayed. If this were not the case, at least one infinite weight edge would traverse
the cut. Since vP ∈ S, the edge (vP , t) traverses the cut, adding the delay costs for path P . If the path is
not delayed, then vP ∈ S̄, and accordingly no edge related to P traverses the cut in any direction. For each
source delayed path P = {f0, . . . , fl}, fi ∈ E,D(P ) = δ, per construction (s, t) traverses the cut, adding
the delay costs of the path to the cut’s size. Further, assume one of the trains used by P departs on-time,
and hence the path is dropped. Then, the vertex vP must be in S̄, as an infinite weight edge would traverse
the cut otherwise. Correspondingly, the edge (s, vP ) is in the cut, increasing the cut’s costs for this path to
T · w(P ). If the path is not dropped, then vP ∈ S, and no other edge traverses the cut.

Now, if the source punctual paths are short enough that they cannot be dropped, the above construction
works in general. This observation yields the corollary below.

Corollary 6. The delay management problem with an unrestricted delay policy can be solved by reduction
to a minimum cut problem if each source punctual path uses one train only.

Moreover, a slightly different construction than above for the source punctual paths yields the following
theorem.

Theorem 7. The delay management problem with an unrestricted delay policy can be solved by reduction
to a minimum cut problem if each source punctual path transfers at most twice.

Proof. For the source delayed paths, we apply the same construction as in the proof of Lemma 5. For
the source punctual paths, we use a different construction which is similar to the one in [GGJ+04], see
Figure 7.

For this gadget, we analyze what happens for a path P = {e1, e2, e3} of length three with weight w(P ).
First, due to the infinite weights of the edges (ei, vP ), the vertex vP is in S whenever at least one of the
vertices {e1, e2, e3} is in S. When vP is in S, the edge (vP , t) contributes δ · w(P ) to the cut cost, which
reflects the weighted delay of the passenger path P .

Second, P can only be dropped when changing from e1 to e2 or when changing from e2 to e3. In both
cases, only one edge with weight (T − δ) · w(P ) can be in the cut, increasing the total cost of the cut to
T · w(P ). This is exactly the cost of missing a connection.

4 Delay Management with Slack Times

In this section, we analyze the case where trains can have some slack time. A train e having slack time
S(e) is able to catch up S(e) time units on its delay. As stated earlier, we do not allow trains to catch
up more time than they are delayed, implying that they can never arrive early. Also for this case, the
never-meet-property allows for a polynomial-time algorithm [Sch03].
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Figure 7: Gadget for a source punctual path P = {e1, e2, e3}

4.1 Proof of Hardness

In Section 3.1, we showed that the delay management problem is NP-complete on general networks. Here,
we show that by including slack times the delay management problem becomes NP-complete already with
passenger paths transferring twice. In contrast, the delay management problem without slack times is still
polynomially solvable on a line network [GGJ+04] .

We reduce from Maximum Directed Acyclic Cut. As the hardness proof of Maximum Directed Cut in
[PY91] does not create an acyclic graph, we first show that the Maximum Directed Acyclic Cut problem is
NP-complete.

Definition: Maximum Directed Acyclic Cut
Instance: Directed acyclic unweighted graph G = (V, E), K ∈ N.
Question: Does a partition of V exist into two disjoint sets V1, V2, V = V1 ∪ V2, such that the number of
edges traversing the partition from V1 to V2 is greater than or equal to K?

Lemma 8. Maximum Directed Acyclic Cut is NP-complete.

Proof. Clearly, the problem is in NP. We prove it to be NP-hard by reduction from Maximum Unweighted
Directed Cut [GJ79, Problem ND16]: given a directed graph G = (V, E), |V | = n, |E| = m and a positive
integer K ∈ N , is there a partition of V into two disjoint sets V1, V2, V = V1 ∪ V2, such that the number
of edges traversing the cut from V1 to V2 is at least K?

We first build a maximum directed acyclic cut instance G′ = (V ′, E′) using edge weights c′ as follows.
For each vertex vi ∈ V , we build a gadget of five vertices, {v1

i , v2
i , v3

i , v4
i , v5

i }, connected by four edges
(vj

i , v
j+1

i ), j ∈ {1, . . . , 4}, with weight c′(vj
i , v

j+1

i ) = m. It is clear that at most two non-consecutive
edges of each gadget can traverse the cut. By setting their weights to m we enforce that two of these edges
actually do traverse the cut. For each edge e = (vi, vj) ∈ E, we insert the edge (v2

i , v4
j ) in E′ with weight

c′(v2
i , v4

j ) = 1.
The reduction is polynomial in space and time: we have 5n vertices and 4n + m edges, and the graph

can be constructed efficiently. The graph G has a maximum cut V1, V2 of size K if and only if G′ has a
maximum cut V ′

1 , V ′
2 of size 2nm + K.

The crucial observation for the reduction’s correctness is that a gadget cannot have both v2
i ∈ V ′

1 and
v4

i ∈ V ′
2 , and at the same time contribute 2m from gadget-internal edges.

Finally, the above reduction also works for unweighted graphs G′. In that case we introduce, for each
gadget, m parallel paths of length two between even-numbered vertices instead of the edges of weight m,
multiplying the odd-numbered vertices. Still, the cut consistently separates the vertices as above. As we
introduce 4m edges for each vertex in G, the construction remains polynomial.

In the following, we show that fairly restricted versions of the delay management problem with slack
times are already NP-complete.

Definition: Decision delay management problem with slack times.
Instance: A delay management instance (G,S,P ,D, w, T ), d ∈ N.
Question: Does a delay policy exist, such that the total passenger delay does not exceed d?

Theorem 9. The decision delay management problem with slack times is NP-complete with binary delays,
binary slack times, unweighted passenger paths, and passengers transferring at most twice.
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Proof. The proof is by reduction from Maximum Directed Acyclic Cut. It is clear that the problem is in
NP, as the delay of each path can be efficiently computed from a delay policy.

Given a maximum directed acyclic cut instance G = (V, E), we build a delay management problem
(G′,P ,D, w,S, T ), with G′ = (V ′, E′), as follows. For every v ∈ V , we introduce an edge fv ∈ E′

without slack. For each edge e = (u, v) ∈ E, we introduce an edge ge from fu to fv having slack time
equal to δ. Further, for each edge e = (u, v) ∈ E, we introduce two paths, the path Pe = (fu, ge, fv) with
source delay δ with unit weight, and the source punctual path P u

e = {fu} with weight 3. More precisely,
the latter weighted path can be replaced by three parallel paths of unit weight. Note that each outgoing
edge (u, v) ∈ E induces one P u

e path on fu.
We set δ = 1 and T = 4, and ask for a delay policy inducing a total delay of d = mT −Kδ = 4m−K.

There is a direct correspondence of a delay policy in G′ to a cut in G: if fu waits, u ∈ V1, otherwise u ∈ V2.
It remains to argue that we have a cut of size at least K if and only if there is a delay policy with at most d

total delay. To this end, it is sufficient to analyze the delay caused by the two paths Pe and P u
e for the

different policies. If fu does not wait, Pe is dropped and P u
e is on time. So, independent of fv, these

two paths together contribute T to the objective. If both fu and fv wait, the paths contribute 4δ = T

to the objective, as both paths arrive with a delay. Only if fu waits and fv departs as scheduled, the
two paths contribute 3δ to the objective. Now, G has a maximum directed cut of size K if and only if
(G,S,P ,D, w, T ) has a delay policy causing 4m − K = d delay. Using the described correspondence
between a cut in G and a delay policy in G′, for every edge e of G there is a contribution of 3 units to the
total delay if e crosses the cut, and otherwise of 4 units.

In contrast to Lemma 5, no source punctual paths are dropped in the above construction. Note that the
reduction can be adapted to any T = kδ by introducing k − 1 paths P i

e per edge e instead of three. The
special case k = 1 is also feasible, but it is unclear how this should be interpreted. Furthermore, dynamic
path choices do not influence the construction of Theorem 9, since the first and the last edge of the paths Pe

cannot be changed. This observation allows us to simplify the network topology even further:

Corollary 10. The decision delay management problem with slack times is NP-complete with binary de-
lays, binary slack times, and unweighted passenger paths, even if the network forms a line.

Proof. Since G is acyclic, we can assume that the numbering of the vertices induces a topological ordering,
i.e., for every edge (ui, uj) ∈ E we have i < j. Now replace the edges ge by edges gi connecting fui

with
fui+1

, with unit slack time. Additionally, each path Pe for e = (u, v) now follows the line from fu to fv.
Since all gi have slack time equal to one, Pe can only be dropped at its first edge.

Finally, the structure of the created instance has the following natural interpretation. The trains without
slack times stand for real trains, the edges with slack times stand for transfers at the stations. Naturally, the
first and last activity of a passenger path are on a real train. Given that the slack time for transferring at
stations is large enough, there is no propagation of the delays.

In general, the above proof of Corollary 10 yields paths with an arbitrary number of transfers, as
opposed to the proof of Theorem 2.

Below, we show that the delay management problem with slack times is already NP-complete on a
series-parallel network where passengers transfer at most twice.

Corollary 11. The decision delay management problem with slack times is NP-complete on a series-
parallel network if passenger paths transfer twice, with unit path weights, binary delays, and binary slack
times.

Proof. The reduction is from Maximum Cut on a directed graph G = (V, E), |V | = n, |E| = m. Combin-
ing Lemma 8 and the construction of Theorem 9, we arrive at a network G′.

Note that w.l.o.g., each node v1
i from Lemma 8 can be placed in U1, and all v5

i in U2. This leads to
some simplification of the paths in G′, schematically depicted in Figure 8. More precisely, the path P 4

v

would originally continue to one more edge without slack, which is superfluous. Similarly the path P 1
v

originally starts at an earlier edge, but is never dropped there.
As in the proof of Theorem 2, the network G′ can be made series-parallel by contracting nodes with

the same functionality, see Figure 9.
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Figure 8: The delay management instance with slack times resulting from an edge (u, v) in the Maximum Cut
instance G. Directed edges represent trains. Dotted edges represent trains with slack time one, plain edges have no
slack time. Undirected lines represent paths. Solid paths are source punctual, dashed paths have source delay 1.

Figure 9: The contraction of the corresponding nodes (here shown for the network above) leads to three bundles of
parallel edges on edges with no slack time.

Thus, the network consists of only 7 nodes, and bundles of parallel edges. Note that each bundle of
edges with slack time can be contracted to a single edge with slack time, since every train with slack time
can wait, and still arrive at its destination punctually. Each path now uses its original edges without slack
times, and the contracted edges with slack time. Further, each path still interacts with the other paths on
the same edges without slack time as before the contraction.

The proof of Corollary 11 might suggest that re-routing passenger paths simplifies the problem. This is
not the case, since the route of each path can be made unique by the techniques sketched in Section 3.2. In
this case, we only identify the second and the fifth node. Note that the edge with slack between these two
nodes can be removed as well, since the paths Pu,v can be rerouted through other existing edges between
the two nodes. Except for this latter type of path, all other paths have a unique route, and each route for
Pu,v induces the same costs.

4.2 Polynomially Solvable Cases

Although the general setting on the line is NP-hard, some variants of the delay management problem with
slack times can be solved efficiently by simple strategies. Below we describe two such variants.

Let G be a graph that forms a line. Contrary to the models analyzed so far, we consider a single train
traveling on the line with intermediate stops. This implies that a passenger path need not connect to other
trains, once it has entered the train. Hence, a path can either be dropped before boarding the train, or it
reaches its destination, possibly with some delay.

First, assume that all paths P ∈ P end at the terminal station of the considered train. This can be
interpreted as passengers traveling to the city center on an urban rail line. We refer to this model as all
passengers to a unique destination on a single train.

Theorem 12. The delay management problem with slack times and all passengers to a unique destination
on a single train can be solved in polynomial time.

Proof. This problem can be solved by the following pedal-to-the-metal strategy. The driver a priori fixes a
target delay at the terminal stop, exhausts all slack times, and drives at maximum velocity to achieve that
target delay.

Given a target arrival delay δ, the delay policy π corresponding to the pedal-to-the-metal strategy is
computed in a backward fashion, starting from the arrival station. Let δi be the delay at station i. The delay
of the train at station i − 1 is computed as δi−1 = δi + S((i − 1, i)). Any optimal policy must use all
the available slack, since using less slack could only result in dropping more passenger paths. Thus, the
policy π is optimal for the arrival delay δ.
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To see which values of the target arrival delay δ are relevant, consider δ = 0. Let l(δ) be the minimum
time by which a passenger path missed the train aiming at a target arrival delay δ. If the train had waited l(δ)
longer, thus targeting for an arrival delay δ + l(δ), only this path would additionally be maintained. Hence,
we analyze the target arrival delay δ + l(δ) next. Since the values δ ∈ (δi, δi + l(δi)) result in dropping the
same paths as for δi but increase the arrival delay, they need not be considered. This procedure can then be
iterated. As at most |{P ∈ P : D(P ) > 0}| paths can lead to a different arrival delay, only polynomially
many solutions are evaluated, and we can pick the best one.

All Passengers to Unique Destination through Single Links on a Rooted Tree
The above delay policy can be extended to the case where single trains operate between the stations, the
graph is a rooted in-tree, and all passengers travel to the root of the tree. The passengers must thus connect
to a new train at each intermediate station on their trip to the root node.

We point out that it makes no sense to drop a connection in the middle of a passenger path. By doing
this, we would drop all paths starting before that connection. But then, we may as well have the preceding
trains wait less, and maintain the connections to the paths which can board the train with these delays.
Since we then drop less connections than before, or in extreme cases the same connections, this delay
policy is optimal on a line. It is also optimal for a tree, as the argument holds for every incoming edge of
a node. Hence, the pedal-to-the-metal strategy for all passengers to a unique destination on a train can be
applied to this problem as well.

When G is a general tree, this kind of strategy also works if all paths start at a common stop. The same
holds if all passengers travel in the same direction through a common station.

5 Conclusions and Future Work

We resolved the complexity status of the delay management problem by proving it to be NP-complete, even
for quite restricted problem variants. Still, the research on delay management is only at the beginning, and
many other computational aspects are yet to be explored. For example, good approximation algorithms
provide a challenging direction for further theoretical research.

On the other hand, there is an obvious need to solve practical instances. Even if our polynomially solv-
able cases are quite simplified, they still indicate parameters that are crucial for the problem’s complexity.
A challenging task is to develop algorithms and heuristics for real-world problems. More specifically,
decomposition methods or branching schemes could be based on passenger paths with more than three
transfers, or on sub-networks with a line or tree topology.
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