
On shunting over a hump

Riko Jacob

Institute of Theoretical Computer Science, ETH Zurich, Switzerland
ETH Zentrum, CH-8092 Zürich

rjacob@inf.ethz.ch

Abstract. We consider the situation of rearranging freight trains in
a shunting yard with a hump and several tracks. Here, an elementary
shunting operation is to push a all cars of one track over the hump.
On the way back to the tracks the cars can be guided individually to
an arbitrary track. The goal is to create one or several trains that have
their cars in a particular order. We measure the efficiency of a shunting
plan by the number of elementary shunting operations, and to a lesser
extent by the total number of car movements.
We find optimal shunting operations in the following situations:

– The incoming trains are unsorted and the shunting yard has suffi-
ciently many tracks but the length of the tracks is limited (capaci-
ties).

– The order of the cars in a single incoming train is given, the tracks
of the shunting yard are sufficiently long, but there is only a limited
number of tracks.

In contrast, we show that the following problems are NP-complete:

– There are several incoming trains and for each the order of the cars
is given, but the order in which to start shunting the trains can be
chosen.

– There is one train with given order of the cars, and the lengths of
the tracks is limited.

These results are based on expressing the shunting task as finding a
suitable set of codes.
The results will perhaps not solve the practical problem directly, but
rather provide some first structural insights and complexity limits that
can guide the search for practical algorithms.

1 Introduction

One central task in a freight railway operation is rearranging trains in a shunting
yard, also called switching in a classification yard. This paper is concerned with
the theoretical foundations of the shunting task for a certain type of shunting
yard, that is characterized by the availability of a hump over which a pseudotrain
of cars can be pushed and distributed to different tracks. Here, we make the situ-
ation mathematically precise, explore special cases for which an optimal solution
can be given, and identify NP-hard questions. Since the task at hand is sorting
on an unusual model of computation and with specific restrictions, it is not too

surprising that many of the basic concepts of theoretical computer science turn
out to be relevant, like sorting, binary codes and Fibonacci numbers. The re-
sults presented here are not meant to directly solve any of the planning problems
occuring in practice, but rather provide an understanding of the mathematical
structure of the problem. At this stage, we find several structural insights into
this specific type of shunting operation, in particular situations where we can eas-
ily describe the optimal operations. This does not solve the operations research
question how to compute a good shunting plan, but it is certainly an impor-
tant starting point for practical algorithms that work for the more complicated
situations one expects to find in practice.

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(a) (b) (c) (d)

Fig. 1. The different stages of a track pull operation; stage (c) is after two cars have
been pushed over the hump, stage (d) is the final configuration.

Setting Here, we introduce the basic concepts of the situation, including the
typical variable name for certain quantities.

The presented results assume the following classical layout of a shunting yard:
There is a certain number w of parallel classification tracks, also called classi-
fication bowl, that can be accessed only from the same side, i.e., these tracks
are dead ends. The access to the tracks is over a single hump, and there is a
collection of switches, called the ladder, between the hump and the classifica-
tion tracks. This layout supports a sorting operation by repeatedly doing the
following, which we call a track pull (operation), as visualized in Figure 1:

– Connect the cars of one classification track into a pseudotrain (a)
– Pull the pseudotrain over the hump (b)
– Disconnect the cars in the pseudotrain

– Push the pseudotrain slowly over the hump, yielding single cars that run
down the hill from the hump towards the classification tracks

– Control the switches such that every single car goes to a specified track (c,d)

Our main complexity measure for a shunting operation is the number of track
pulls t that are performed to achieve a certain (set of) train(s). We assume that
the order of the cars in such an outgoing train is completely specified as the
goal of the operation. The total number of times a car is pushed over the hump,
that is, the sum of the lengths of all pseudotrains, is usually denoted by m, the
number of car pulls.

A concrete shunting yard can be described by its width w, the number of
classification tracks, and the lengths of these classification tracks. We denote
by c the number of cars that fit on all tracks. We usually assume that all tracks
have the same length, and that all cars occupy the same amount of space on the
track.

The number of cars in a train is usually denoted by n.

Related Work The starting point of the considerations here was a collaboration
with the freight section of Swiss Federal Railways [5]. There, we show NP-
completeness for a sequencing problem of the incoming and outgoing trains with
the aim of limiting the number of cars that are simultaneously in the shunting
yard. This problem does not address any specific operations at the yard.

It seems that the operations research and computer science literature barely
discusses the reclassification operation at a shunting yard with a hump. A shunt-
ing yard with the same layout is discussed in [2]. However, there one step of the
shunting operation consists of concatenating all classification tracks into one
pseudotrain, which is then pushed over the hump, called a humping step. For a
shunting yard with w classification tracks, this operation can be easily simulated
by w track pulls (our measure): The first (w−1) tracks are pulled in the correct
order and all cars are guided onto track w, which is finally pulled and the hump-
ing step is performed. Given the difference in the operation and cost model it is
not surprising that the radix-sort based scheme of [2] achieving logw n humping
steps translates into a shunting scheme in our model with cost w logw n, which is
suboptimal by a factor w/ log2 w in our cost model. Situations where the order
of the outgoing train is not completely specified are discussed in [1, 2], where the
respective optimization problem is shown to be NP-complete.

Other work that considers shunting operations does not address the specific
situation of a shunting yard with a hump, like [3, 6].

Results and structure of the paper First, in Section 2, we model the shunting task
as a problem of finding a set of binary codes. This immediately yields a optimal
shunting plans if the shunting yard is sufficiently big. Then, in Section 3, we
consider the situation that the shunting yard has sufficiently many different
track, but there is a uniform capacity limit for these tracks, and the incoming
train is not ordered (or reversed). Again, it is possible to produce an optimal
shunting plan. Also for the situation where the number of tracks is limited, but

the capacity of each track is sufficiently big, it is possible to produce an optimal
shunting plan, as detailed in Section 4.

One situation that leads to an NP-hard optimization problem is discussed
in Section 5, namely the situation of a presorted train and a shunting yard with
limited track length. Here, we also find that it is possible to approximate the
necessary number of track pulls within a factor of 2 in polynomial time.

Not surprisingly, all of the optimization problems considered in this paper can
easily be seen to be in NP. This amounts to the observation that the capacity
restrictions and correctness restrictions translate into easy conditions on the
codes that represent a shunting plan.

2 Preliminaries

First, we should describe a precise formulation of a plan for a shunting task on a
shunting yard with a hump. In general, such a plan has to specify a sequence of
track pull operations, given by the track whose cars are pulled, and for every car
which track it is sent to. We will name the tracks according to the time they are
pulled, i.e., T = {1, . . . , h}. This means that one physical track might get several
such names (numbers) if it is pulled several times during the shunting plan. In
such situations, the logical track is annotated by the name of a physical one. Of
course, if there is no limit on the number of tracks (w ≥ h), there is no need to
reuse a track, and this annotation by names of physical tracks is not necessary.
With this numbering of the tracks, the itinerary of a car can be described by
the sequence of logical tracks it visits. For the task at hand, it is convenient to
specify this sequence as a bitstring or code b1 · · · bh where the different bits stand
for the logical tracks, and there is a 1 if and only if the car visits that track.
Now, if track i is pulled, the new destination of a car is given by its next 1 in its
code, i.e., the lowest index i′ > i with bi′ = 1.

In a situation where the order of the cars in one train is rearranged, naturally
the incoming train is pulled first, and the track on which the outgoing train is
composed is pulled last. Because all cars visit these two logical tracks, we can
omit them from the code, such that the number h stands for the intermediate
tracks.

Now let us analyze the (outgoing) train resulting from the shunting opera-
tions specified by a set of codes. Consider two cars that have assigned the codes
a and b. If the two cars have the same code a = b, they will have the same order
in the outgoing train as in the incoming train. Now assume that the cars of the
outgoing train on the logical classification h are numbered from car 1, the one
furthest from the hump to n, the one closest to the hump. Then, two cars that
are consecutive in the outgoing train can get the same code if they are in the
correct order in the incoming train. A maximal interval of cars in the outgoing
train that have this property are called a run (similar to a chain of [2]), and the
split of the cars into runs can easily be computed by scanning over the outgoing
train and starting a new run whenever two cars are in the wrong order in the
incoming train.

If the two codes a and b are different, the relative position of the two cars
in the outgoing train is given by the highest (numbered) bit where the two
codes are different, and the car that has the 1 is closer to the hump. This is
in fact the same as considering the codes as binary representations of numbers
by C =

∑h
i=1 ci2i−1. With this, the outgoing train is given by the values of the

codes, the car furthest from the hump has the smallest value, the one closest to
the hump the highest.

These definitions immediately lead to the following characterization of the
number of track-pulls that are necessary to reorder a given train, if the shunting
yard is sufficiently big.

Theorem 1. An incoming train that consists of r runs as defined by the outgo-
ing train can be shunted over a hump in h = dlog2 re intermediate track pulls,
assuming there are h physical tracks, each of which long enough to hold the
complete train.

Proof. No two cars of different runs can have the same code. By assigning the
codes corresponding to increasing binary numbers to the runs, a correct shunting
plan is specified. There are 2h different binary codes with h bits.

An alternative proof of the lower bound in Theorem 1 extends the notion of
runs to an arbitrary intermediate situation in the shunting yard. When consid-
ering the cars of the outgoing train in their natural order (towards the hump)
we define a run to stop for every backward jump on a track, and for every jump
to a different track. Now a single track pull operation can unite many runs, but
each resulting run stems from at most two runs before the track pull: If there
would be three different runs that are united into one two of these runs would
have to reside on the same track, which is impossible for different runs. Now
the best case is that all the runs on the currently pulled track unite with one
other run, and the number of runs halves with every track pull. This also yields
a lower bound h = dlog2 ne.

3 Restricted Capacity

In this section we consider the case where all intermediate tracks can hold up
to c cars. There is one physical track per logical track, i.e., we assume that the
shunting yard consists of sufficiently many classification tracks.

3.1 Unordered Incoming Train

Assume that the order of the cars in the incoming train is not known in advance,
or equivalently, that the order of the cars in the incoming train is the reverse of
the order in the outgoing train, and that hence all runs consist of a single car.

To be precise, we assume that there is one track that is long enough to hold
the complete train, and this track is only used to assemble the outgoing train,

but not to be pulled over the hump. Similarly, the incoming train resides on a
long track that cannot be used in the later shunting operations.

This naturally leads to the following question: What is the maximal length
of an (unordered) train that can be sorted (reversed) with h track pulls, where
each track holds at most c cars? In the world of the codes, this translates into
the question: what is the maximal size of a set of binary codes over h positions,
such that the total number of ones at any position is at most c.

First, we discuss an algorithm that produces one such optimal set of codes.
Then we also discuss the asymptotics.

Algorithm to produce an optimal code Let us first make a detour to
a slightly different objective, namely the total number of car pulls m. In the
setting of the tracks of limited capacity c, it is clear that pulling h tracks can
pull at most a total of m = h · c cars. In the world of the codes, this means
that the total number of ones used in the set of codes is limited by h · c. By a
knapsack argument, it is optimal to only use codes with a certain number ones
if all codes with fewer ones are used. Hence, if we find a subset of codes that
usese all codes with less than ` ones, some codes with precisely ` codes and no
codes with more than ` ones, for some number `, and the total number of ones
is between m − j + 1 and m, then this subset achieves the maximal number of
different codes subject to the constraints h and c.

Let K(h, m) stand for the maximal number of different bitcodes of length h
that have a total number of ones less than m.

Theorem 2. For integers c, h, if c ≤ 2h then there is a set of K(h, h ·c) bitcodes
of length h such that at every position at most c codes have a one.

The following Lemma implies Theorem 2, and also gives an efficient way to
compute such a set of codes.

Lemma 1. For positive integers h, n, i, h ≥ i. Assume n ≤ ·
(
h
i

)
. Then there is a

set of n codes of length h with precisely i ones in each, such that the total number
of ones at two positions differs by at most one. That is, there are number h1 +
h2 = h and c = dni

h e such that in h1 positions the total number of ones is c, and
in h2 positions the total number of ones is c− 1.

Proof. By induction on h, using well known identities of binomial coefficients.
In one inductive step a set S1 of c codes with ones in the last position is

created. The remaining ones of the codes in S1 are equally distributed over all
remaining positions. Again inductively, the remaining space is filled with codes
with i ones.

If h = i, the assumption about n implies n = 1. The code consisting of i = h
ones (and no zeros) shows the statement of the lemma.

Now assume h > i and inductively assume that the lemma holds for all h′ <
h, h′ ≥ i. We construct a set of codes as the (disjoint) union of two sets S1 and S2,
where |S1| = c, all codes in S1 have a one at the last position, whereas all codes

in S2 have a zero in the last position. This leads to two (recursive) applications
of the lemma, namely to chose the remaining i− 1 ones for the codes of S1, and
the whole codes in S2. To that end, we have to decide upon where the remaining
ones of S1 and S2 should be placed. Fitting to the formulation of the lemma,
we choose to distribute the ones of S1 equally among all the remaining h − 1
positions, such that also the ones of S2 can be equally distributed. It remains to
show that the required numbers of ones, numbers of positions, and numbers of
codes fulfill the assumptions of the lemma.

To this end, we define some abbreviations with the following naming con-
ventions: Primed values are associated with the invocation of the lemma for S1,
double primed values for S2. It is convenient to combine the two “fill-heights”
(or deviation from the maximal possible fill height), c and c−1, into an averaged
value. Such a value is marked by a hat.

Note that the bound on n implies c ≤
(
h−1
i−1

)
(an alternative way to describe

the assumption of the lemma) because of ni ≤ i ·
(
h
i

)
= h

i · i ·
(
h−1
i−1

)
which reads

as c ≤
(
h−1
i−1

)
). Let us define e =

(
h−1
i−1

)
− c. Because we are interested in the

remaining positions, we define the average goal height for these positions only,
and not for all positions: ĉ = h1−1

h c + h2
h (c − 1) = ni−c

h−1 , and the corresponding
ê =

(
h−1
i−1

)
− ĉ. Observe that e ≤ ê(≤ e + 1).

The average height resulting from S1 on the remaining positions is necessarily
ĉ′ = c(i− 1)/(h− 1). For S2 we hence get ĉ′′ = ĉ− ĉ′.

Now we invoke the lemma twice inductively (recursively). Once with h′ =
h − 1 code length, i′ = i − 1 number of ones per code, and n′ = c as the
number of codes, resulting in S′, where the positions with more ones are higher
numbered. We invoke it another time with h′′ = h − 1 as code length, i′′ = i
ones per code, and n′′ = n − c codes, resulting in the set of codes S′′, where
the positions with more ones are lower numbered. Assuming, as we will argue
for later, that the assumptions of the lemma are fulfilled, we can now create the
required set of codes. We extend S′ to S1 by appending a one, and S′′ to S2 by
appending a zero. By the sorting of the positions in S′ and S′′, there are only
two types of positions, and their respective total number of ones differs by at
most one. Additionally, the higher of these numbers is c if they are different, and
otherwise c− 1. Hence the statement of the lemma is achieved.

Now, lets verify that the assumptions of the inductive invocations of the
lemma are satisfied. With the alternative formulation of the assumption, we
should check ĉ′ ≤

(
h−2
i−2

)
for the first invocation: By definition ĉ′ = c(i− 1)/(h−

1) = i−1
h−1

(
h−1
i−1

)
− i−1

h−1e =
(
h−2
i−2

)
− i−1

h−1e.
For the second invocation we should check ĉ′′ ≤

(
h−2
i−1

)
. So, ĉ′′ = ĉ − ĉ′ =(

h−1
i−1

)
− ê−

(
h−2
i−2

)
+ i−1

h−1e =
(
h−2
i−1

)
+ i−1

h−1e− ê ≤
(
h−2
i−1

)
, where the last inequality

relies upon h ≥ i making the coefficient of e smaller than one, so that this whole
term is at most ê (by e ≤ ê).

The recursive procedure implied by the proof of Lemma 1 is efficient: The initial
task of using h · i ones in codes is split into two subtasks. Hence, the number of
leafs in the recursion tree is O(h · i), and the total running time is polynomial.

3.2 Connection to Entropy

We have seen the connection between a set of codes and the shunting plan.
This means in particular, that it is sufficient to identify a particular car (or
run) to know which tracks (in time) this car visits. Now, we can consider the
random experiment of uniformly choosing a car, leading to the h binary indicator
variables Xi, where a one means that the chosen car visits track i. Because a
single variable has an entropy of at most 1, whereas the total entropy of the
experiment (choosing a car) has entropy log n, we have an alternative proof that
it is impossible to achieve the sorting in less than log n steps. Again, we see
that this bound is tight for n being a power of two, such that all variables have
entropy precisely one (there are precisely n/2 cars that visit the track), and all
variable are independent (even all pairs of disjoint sets of variables).

Now, if there is a capacity constraint k on all tracks, this means that the
entropy of a single variable is at most the entropy of a k/n biased coin, i.e.,
E(k

n) = k
n log n

k + n−k
n log n

n−k . This leads to the lower bound on h, the number
of used tracks, of log n

E(k/n) . Naturally, the lower bounds on the number of tracks
used is weaker than what comes out of the optimal code of the previous section,
but in return it is a nice analytical bound. In many situation it is actually quite
good, the next paragraph discusses an example.

Consider the situation where the optimal code uses half the codes with two
ones. More precisely, we consider any h such that h − 1 is a multiple of four,

define n = h+ h(h−1)
4 , and set the capacity constraint k = h·1+ h(h−1)

4 ·2
h = 1+ h−1

2 .
By Theorem 2, this is an optimal set of codes. Now, we compare the lower bound
resulting from the entropy with the (optimal) value of h. Asymptotically, for large
values of h, the ration between this lower bound and h is 1, and for h ≥ 2 this
ratio is bigger than .5.

4 Restricted Width

In this section, we consider the case where one train should be sorted, every
track can hold the complete train, but the number of tracks in the shunting
yard is limited by w ≥ 2. We assume that the incoming train is located on one
of the tracks, and that the outgoing train can be created at any of the tracks.
To simplify the exposition, we slightly deviate from the notation in the other
sections and assume that pulling the incoming track is counted as a track-pull
(all codes start with a 1), and that the track of the outgoing train is also counted
and part of the code (all codes end with a 1). The number of track pulls is h,
and the case h − 1 ≤ w is basically that of Theorem 1 for h − 2. For the sake
of concreteness, assume the tracks are called T1, . . . , Tw, and that the incoming
train is located on track T1.

We can represent a shunting plan in this situation by binary codes of length h
and the order in which the tracks are pulled, i.e., a sequence of track names of
length h. By defintion we have that the first pulled track is the input track T1,
and the last pulled track is the output track, such that all codes have a one at

the first and at the last position. Now, the binary codes have length h, but are
restricted by the destination track being available. More precisely, assume that
a code has a one at a certain position. Then there are precisely w next choices
for tracks, namely the first occurence of a ti in the remaining sequence of track
pulls, and these are the only possibilities for the next one. For example, if the
tracks are pulled in a round robin fashion there may not be w consecutive zeros
in any of the codes.

Let us analyse the number of runs that can be shunted with h track pulls
on w tracks that are used round-robin, called Rh. We have R1 = R2 = 1, and
Rh = 2h−2 for 3 ≤ h ≤ w because there are h− 2 positions with an unrestricted
binary code.

Then, we get the recursion Rh =
∑h−1

i=h−w Ri for h > w: All valid codes with
length h start with a one, then have the next 1 at a position in the range h−w to
h− 1. Now the number of such codes is the sum of the number of codes starting
with a 1 at this particular position, having a trailing 1, and no w consecutive
zeros.

For w = 2 these numbers are the Fibonacci numbers Fi, for larger values
of w a generalization of them. In any case we have Fh ≤ Rh ≤ 2h−2.

Now it remains to be shown that it is optimal to pull the tracks in a round
robin fashion. We will do this inductively. Of course for h ≤ w this is the case.
Assume we already know that the maximal number of codes on h′ positions (for
the best possible track sequence) is Rh′ for all h′ < h. Now take one optimal
track sequence and set of codes for h track pulls. The codes divide into at most w
classes by their second one (the positions depend on the track sequence). Order
the classes according to this position of the second one. Then, the first class has
codes of length at most h − 1, the second of length at most h − 2, and so on.
Hence, the number of codes in the classes is bounded by Rh−1, Rh−2 and so on
(even if the different classes would be allowed to have different track sequences),
leading to the conclusion that at most Rh codes are possible.

5 Limited track length and presorted trains

In this section, we consider other NP-hard variants of the shunting problem.
Consider the situation of many independent trains that need to be rear-

ranged. We assume that there is no restriction on the number of available tracks,
but the capacity is limited. Independent here means that there is a one to one
correspondence between incoming and outgoing trains, and a car goes only into
the outgoing train corresponding to its incoming train. Accordingly, the order
in which the incoming trains are pulled is irrelevant, the order on the track be-
tween cars from different trains is not important. The only interaction between
the shunting processes for the different trains is the shared capacity constraint
of the tracks.

In this setting, a train is completely specified by the lengths of its runs.
Because there is a dedicated track for the outgoing train, the first (bottommost)
car of the outgoing train is the last of the incoming train, and is the only car

that can be shunted directly. Now, the list of run-lengths specifies the runs of the
outgoing train, and the incoming train has the same runs just in reverse order.

5.1 Strange setting, easy proof

Assume that the different tracks can have different capacities, and that the order
in which the tracks are pulled is part of the input.

Problem “Shunting Independent Trains on Given Capacities with cars being
pulled once”

Input A set of trains, specified by the lengths of the runs (i.e. an ordered list
of numbers per train);
A list of capacities of tracks.

Output Is it possible to shunt all the trains using the tracks of the specified
capacities in their given order, with the constraint that every car can par-
ticipate in only one track pull.

Theorem 3. “Shunting Independent Trains on Given Capacities with cars being
pulled once” is NP-hard.

Proof. By reduction from “Not all equal 3-SAT”, which is known to be NP-
hard [4, LO3]. We take an instance S of this problem and transform it, using
the following observations. In our setting, no two cars of different runs of the
same train may be planned to visit the same track. We choose that all the M
trains (as described later) have precisely one run less than there are track pulls.
Hence, for every train there is only one local decision, namely which of the runs
to unnecessarily split (and how), or between which runs to put an unused track.
Almost all runs of the trains consist of a single car, and most tracks have the
according capacity M .

For every variable of S, we have one train and enforce that the mentioned
split run is either at the beginning or at the end. Then, the value of the variable
is represented by the middle part of the train being “left” or “right”. Now, it
is easy to code a “not all equal” clause. This requires two neighboring specific
tracks of capacity M + 2k, and runs of length k + 1 at the corresponding posi-
tion in the trains representing the variables of the clause. Now, if the clause is
satisfied the capacity requirement is M + 2k,M + k or M + k,M + 2k which is
feasible. Otherwise the capacity requirement is M + 3k,M or M,M + 3k which
is infeasible.

To make sure that the whole middle part of a train does not contain the split
run, we employ the following construction, introducing a second train. Both have
at a specific beginning position a run of length k ≥ 2, and at a specific ending
position a run of length k + 1. For both there is a window of two neighboring
tracks that have capacity M + k. This fits easily if one of the trains does not
use the first of the beginning tracks, and the other does not use the second of
the ending tracks, and there is no split run or unused track in the middle. Now
it is impossible that one of the trains has the split run or the unused track in

the middle: In this case, it would necessarily occupy all of the capacity at the
first track at the beginning, and the second track at the end. But then the other
train would need to have both of these tracks left empty, which is impossible.

In the concrete setting, it is sufficient to choose k = 2, i.e., one additional car
in the described runs. Setting k to the number of used trains shows that keeping
a strict bound on the car pulls makes it impossible to approximate the relative
overload of a track to a factor better than 4/3.

5.2 Extensions

Here, we sketch a reduction that shows that even the problem of rearranging a
single train on tracks of limited length is NP-hard.

First, we want to replace the individual capacity constraints by a uniform
one. To this end, we add one train that has precisely as many runs as there
are track pulls. Now, because every car is only allowed to be pulled once, the
shunting plan for this train is unique. By adjusting the lengths of the runs of
this train, the differences in the capacity constraints can be adjusted.

To enforce that every car is pulled at most once, we add one train with one
big non-trivial run. Assume the capacity constraint is c, the number of car pulls
is h, and the total number of cars in the trains is n. We choose the length of this
run to be hc − n. Now, if any car would be pulled twice another car could not
be pulled at all, which is impossible in a correct shunting plan.

Finally, we can transform the setting of many trains into one of one train.
Changing from many incoming trains to one incoming train is no problem, we
can have the very same structure of runs. Changing to one outgoing train is not
that straightforward because it would specify an order between the runs of the
different trains, dictating the solution.

To this end, we make sure that again only codes with one one and two ones
are allowed. It is convenient to choose fairly long tracks, and to have the single
pull cars use most of the track and adjust the remaining height. This is possible
as formulated in the following lemma, which leads to the claimed NP-hardness
result.

Lemma 2. Given a set S of m independent trains, specified by a number of
runs li, and the length of the runs aij, and a capacity constraint c, and a num-
ber of track pulls h. Assume further, that the total number of cars in S is hc,
such that S can only be shunted with single car pulls, if at all. Then there is a
polynomial time computable single train T and polynomial capacity constraint C
and number of track pulls H, such that T can be shunted within the constraints
if and only if the set of trains could be shunted within their constraints.

5.3 2-approximation

In this section we again consider the situation of a single incoming train with n
cars in a given order, that is shunted into a single outgoing train. The shunting
yard has sufficiently many different tracks, but each track can only hold c cars.

Note that several incoming trains that are first shunted in a particular order are
equivalent to a single incoming train.

Assume we know the optimal number h of track pulls, for example by trying
all possible values for h ≤ n. Then the number of car pulls is bounded by m = c·h.
Now assume that we can find a code that uses at most this number of ones in
total, and only h positions (this is quite different from the capacity constraint).
Now, we transform this into a code that obeys the capacity constraint and has 2h
positions. If position i is overfull, say it has k > c ones, we split this position
into d = dk/ce positions in the following way: We split all codes at position i,
insert d−1 zeroes, and continue with the code, effectively moving the positions >
i by d − 1 to the right. We take the k codes that have a one at position i and
arbitrarily split it into d classes, the first d− 1 having c codes, and the last class
with fewer codes. The codes in the first class remain unchanged, the codes in
the second class change the one in position i into a one in position i + 1, and
so on. None of the positions i, . . . , i + d− 1 have more than c codes. We repeat
this procedure for all positions that have more than c codes. At the end, there
at most h full tracks (because otherwise there would be more than c · h ones in
total), and at most h not-full tracks (because every position of the original code
with h positions can lead to at most one position with less than c ones), yielding
a 2-approximation.

This leaves us with the task of deciding if it is possible to bound the car pulls
by m and the track pulls h. Let the number of cars in the train be n.

Let us consider the following optimization problem: what is the minimal
number of car pulls necessary to shunt the train with h track pulls? We observe
that there are at most

(
n
2

)
runs possible, the intervals of the outgoing train.

Denote for a run X the number of cars in that run by |X|. Now, we generalize
the question to “what is the minimal number of car pulls necessary to create
run X on track i?” Every track pull unites only pairs of runs, so that X must
stem from two sub-runs X1, X2, and X1 is created on track i with m1 car pulls,
whereas X2 is created on track i′ < i with m2 car pulls, and the number of
car pulls is m1 +m2 + |X2|. This immediately suggests a dynamic programming
approach, where the tabel is indexed by ’run’, ’track’, and the entry is ’minimal
car pulls’, the table size is O(n2h). We allow the entry +∞ and fill this table
track by track, starting from the small (number of cars) runs. To fill the table
for run X on track i we have to minimize over the i − 1 choices for track i′,
and the |X| choices of splitting the runs. This dynamic programming runs in
polynomial time, namely O(n3h2). By inspecting the table for the complete run
on the different tracks, it is easy to find all h that allows the complete run/train
with at most h · c car pulls. Because of h ≤ n, this dynamic programming runs
in O(n5) time.

6 Acknowledgment

I would like thank Marc Nunkesser and Sebastian Stiller for inspiring discussions
about the problem.

References

1. E. Dahlhaus, P. Horák, M. Miller, and J. F. Ryan. The train marshalling problem.
Discrete Applied Mathematics, 103(1-3):41–54, 2000.

2. E. Dahlhaus, F. Manne, M. Miller, and J. Ryan. Algorithms for combinatorial
problems related to train marshalling. In Proceedings of AWOCA 2000, In Hunter
Valley, pages 7–16, July 2000.

3. R. Freling, R. Lentink, L. Kroon, and D. Huisman. Shunting of passenger train
units in a railway station. Transportation Science, 39(2), 2005.

4. M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.
5. M. Gatto, R. Jacob, and M. Nunkesser. Optimization of a railway hub-and-spoke

system: Routing and shunting. In Poster Proceedings of the 4th International Work-
shop on Efficient and Experimental Algorithms (WEA05). CTI Press, 2005.

6. M. E. Lübbecke and U. T. Zimmermann. Shunting minimal rail car allocation.
Comput. Optim. Appl., 31(3):295–308, 2005.

