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Abstract

We consider the multiplication of a sparse N ×N matrix A with a
dense N ×N matrix B in the I/O model. We determine the worst-case
non-uniform complexity of this task up to a constant factor for all
meaningful choices of the parameters N (dimension of the matrices),
k (average number of non-zero entries per column or row in A, i.e.,
there are in total kN non-zero entries), M (main memory size), and B
(block size), as long as M ≥ B2 (tall cache assumption).

For large and small k, the structure of the algorithm does not
need to depend on the structure of the sparse matrix A, whereas for
intermediate densities it is possible and necessary to find submatrices
that fit in memory and are slightly denser than on average.

The focus of this work is asymptotic worst-case complexity, i.e.,
the existence of matrices that require a certain number of I/Os and
the existence of algorithms (sometimes depending on the shape of the
sparse matrix) that use only a constant factor more I/Os.

1 Introduction
Traditionally, the aim of a good algorithmic design is to achieve a task with
as few CPU-operations as possible. In a setting where the main calculation is
phrased as matrix and vector operations, this usually means that the matrices
are kept sparse and it is exploited that many entries are zero. This reduction
of CPU-operation sometimes comes at the price of irregular access patterns
induced by the sparse matrix operations, which can lead to a situation where
memory access is the real bottleneck of the computation.

One successful way of modeling this bottleneck is the so called I/O-
model (also known as Disk-Access-Model DAM) introduced by Aggarwal and
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Vitter [1]. It assumes that the CPU can only operate on a main memory of
size M whereas further intermediate results (just like input and final result)
must be stored on an infinite disk, that is organized in blocks of size B. The
resulting performance measure counts the number of read/write operations of
the disk, the so called I/O-operations (or I/Os for short). By now this model
is accepted and the I/O-complexity of many tasks is well understood.

We consider the multiplication of a sparse N ×N matrix A containing
kN non-zero entries (A is called k-sparse) with a dense N × N matrix B,
computing C = A · B. Throughout the paper, we abbreviate this task
as SDMk. We study the worst case complexity of this task in the I/O-model,
i.e., we determine up to some constant factor the number of I/Os that are
necessary and sufficient to compute C. Here, we use the so-called semiring
I/O-machine, where algorithms can only use addition and multiplication, but
cannot rely upon subtraction or division (as detailed in Section 2 “Model of
Computation”). We consider worst-case complexities, where the worst case
is taken over the shape (or conformation) of the matrix A as given by the
positions of the non-zero entries. Our notion of an algorithm is non-uniform
in the sense that we ask for a program that, depending on the conformation
of A, computes C with few I/Os irrespective of the complexity to create this
program.

This model of computation and notion of sparseness has been successfully
used in [3] to study multiplying a sparse matrix with a dense vector. It also
coincides with the notion of “independent evaluation” of Hong and Kung [5] to
study the multiplication of two dense matrices. In this case (in our notation
k = N), we do know that this is a restriction as it disallows algorithms like
Strassen’s. However, the algebraic complexity of dense matrix multiplication
is still unknown [7]. In this computational model, our notion of k-sparseness
of A has the effect that the matrix multiplication requires precisely kN2

multiplications of numbers.
In this paper, we determine the complexity to multiply two N×N matrices,

one of which is k-sparse in the semiring I/O-model with tall cache M ≥ B2

to be
Θ

(
max

{
kN2

B∆
,
kN2

B
√
M
,
N2

B
, 1

})
where

∆ = max

 ln N
M

ln
N ln2 N

M

Mk

,

√
kM

N

 ,

and ln is defined by lnx = max{1, lnx}.
This expression yields three interesting ranges of the parameter k, but for

all k the I/O-complexity boils down to the question how many of the kN2
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elementary products can be performed onM elements that are simultaneously
in memory (i.e. in one so called Hong-Kung round). For large k the situation is
basically that of two dense matrices, in particular, for k = N it coincides with
the classical result of Hong and Kung [5] that multiplying two dense square
matrices has complexity Θ

(
N3

B
√
M

)
, i.e, that at most M

3
2 multiplications per

round are possible and can be achieved by using
√
M ×

√
M tiles. For small k

it resembles that of A being a permutation matrix where M multiplications
per round are best possible (i.e. loaded elements cannot be reused).

Additionally, there is a density from which point on the complexity (reuse
of loaded operands) can be described by above average dense submatrices
consisting of M entries and having on average min{∆,

√
M} entries per row

and column. Our complexity analysis proceeds by showing that there exist
matrices that have essentially no denser submatrices. We get a matching upper
bound by showing that every matrix that has sufficiently many entries must
have such dense submatrices. The resulting algorithm hence depends upon
the conformation (shape) of the sparse input matrix in a complicated manner
(which does not influence the theoretical statement). How difficult it is to
actually compute a good program is not completely understood. We only have
preliminary results [8] showing that finding such a program is NP-complete,
and that determining the maximum possible density cannot be approximated
within an arbitrarily small constant factor. This limited structural insight is
already more than what is known for the multiplication of a sparse matrix
with a dense vector [3], where it is only clear that difficult matrices exist (by
a counting argument), but there is no characterization of which (permutation)
matrices are difficult to multiply with. One key difference in the consideration
of this paper and [3] is that here the block size B is basically irrelevant (it is
only the scaling factor to translate I/O-volume to number of I/Os), whereas
matrix vector multiplication becomes trivial if B = 1.

For the sake of clarity, throughout the paper we stick to the case where all
matrices are square. The results naturally generalize to non-square situations
as long as the smallest dimension (side-length) is at least

√
M ≥ B.

Clearly, the results presented here are theoretical in nature, and the
presented algorithms are stated more to complement the lower bounds than
to be implemented. The real goal is to devise and evaluate practical algorithms,
and the results presented here give important limits on what to expect from
them. Further, such practical algorithms exist and are implemented in many
sparse matrix libraries, which indicates that the considered problem is of a
certain practical relevance. Also there it has been recognized that memory
access patterns are an important factor in the overall execution time, and
memory aware algorithms have been proposed [2, 9, 4].
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Here, it is worth noting that our notion of k-sparseness fits to the estab-
lished experimental performance measure “number of floating point operations
performed per second”. Because the number of floating point operations is pre-
cisely kN2 this immediately translates to running time, and hence if memory
is the bottleneck, to number of I/Os.

In contrast to the mentioned practical considerations, our work is the-
oretical in nature, with all the well known consequences: The presented
results are mathematical theorems, stating all assumptions and having a
clear conclusion. This generality of course comes at a price, in our context
mainly the abstraction of the model of computation (neglecting everything
but the memory access patterns of a program, and disallowing Strassen-like
algorithms) and the focus on the worst-case input (where practitioners can
and have to exploit the special structure in the input at hand). Nevertheless,
we believe that our theoretical findings and understanding give an important
reference point also for the practical work: What are the difficult instances?
In what respect are practical inputs easy? What is a good worst-case behavior
of an algorithm?

Outline of the paper. We introduce the precise model of computation in
Section 2. This is followed by Section 3 where some easy to derive inequalities,
so called Observations are given. In Section 4 we describe the different
algorithms, depending on the density parameter k, whereas Section 5 shows
that there exist matrices that require the stated number of I/Os.

2 Model of Computation
We consider the number of I/Os induced by a program as a measurement
of costs. Therefore, we use the model described in [3] which consists of two
memory layers, as is standard. We assume a single processing unit with a
fast memory of limited capacity M assigned to it. Calculations can only be
performed on the elements residing in this internal memory, whereas the
programs input and any (intermediate) results are stored on an external
memory of infinite size which is organized in blocks of size B. Elements are
moved between memory layers in blocks, where the movement of a block
incurs costs 1.

Memory elements are to belong to a commutative semiring S = (R,+, ·),
i.e., a set R with operations addition (+) and multiplication (·) that are
associative, distributive and commutative. Further, there is a neutral element
0 for addition, 1 for multiplication and 0 is annihilating with respect to
multiplication. In contrast to rings and fields, inverse elements are neither
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guaranteed for addition nor for multiplication, i.e., the program is not allowed
to use subtraction and division.

Definition [3] The semiring I/O machine consists of an internal memory
which can hold up to M elements of a commutative semiring S, and an
external memory of infinite size which is organized in blocks of B consecutive
elements. The current configuration of a machine is described by the content
M = (m1, . . . ,mM), mi ∈ R of internal memory, and an infinite sequence of
blocks ti ∈ RB, i ∈ N of external memory. An operation is a transformation
of one configuration into another, which can be one of the following types

• Computation, performs any operation of S on elements inM.

• Input, replaces some chosen elements mi1 , . . . ,miB inM by a block ti.

• Output, replaces a block ti of external memory by some chosen elements
mi1 , . . . ,miB ofM.

Using this, we define a program P as a finite sequence of operations. The
number of input and output operations describes the I/O costs of P . An
algorithm is a family of programs where the program can be chosen according
to the parameters N , k, and the conformation of A, i.e., the position of the
non-zero entries in A. By L(k,N), we denote the required number of I/Os
induced by an algorithm for SDMk with N ×N matrices, and kN non-zero
entries in A for all kinds of conformations.

The value of an element cij of the result matrix C := A · B is given
by
∑

l∈Ai
ail · blj where Ai ⊆ {1, . . . , N} describes the positions of non-zero

elements in the i-th row of A. Since our model is based on a semiring, the
computation of C includes the calculation of exactly kN2 elementary products
ail · blj. Further, any intermediate result can be seen as a sum

∑
l∈S ail · blj

for a subset S ⊆ Ai. If |S| < |Ai|, we refer to this as a partial result of cij.
Since we can assume that every program requires at least one I/O, when

writing complexity using O, Θ, or Ω at least 1 is meant.

3 Math
For the proofs provided in Section 4 and 5, the following Observations are
necessary.

Observation 1. For 0 ≤ x ≤ 1/2, it holds that ln(1− x) ≥ −2x.

Observation 2. For 0 < a ≤ e, for any x > 0 it holds x ≥ a lnx.
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Observation 3. For x ≥ y ≥ 1 it holds(
x

y

)y (a)

≤
(
x

y

)
(b)

≤
(
ex

y

)y
.

Observation 4. For n ≥ k ≥ a ≥ 1 it holds(
n

k

)
≥
(
n− k
k

)a(
n

k − a

)
.

Proof. By definition of binomial coefficients(
n

k

)
·
(

n

k − a

)−1

=
n!(n− k + a)!(k − a)!

(n− k)!k!n!
=

a∏
i=1

n− k + i

k − a+ i
.

By showing that for each 1 ≤ i ≤ a, n−k+i
k−a+i

≥ n−k
k

the statement follows. This
is equivalent to (a − 2i)k ≤ (a − i)n which holds for any 1 ≤ k ≤ n and
1 ≤ i ≤ a.

Observation 5. For D, f, x > 0, the inequality D ln fD ≤ x is satisfied for
D ≤ x

lnxf
where lnx = max{1, lnx}.

Proof. By substitution, we obtain

D ln fD ≤ x

lnxf
ln

(
f

x

lnxf

)
≤ x

lnxf
ln
(
f
x

1

)
≤ x.

Observation 6. For D, f, x ≥ 0, the inequality D ln fD > x is fulfilled if
D > 2x

ln 2xf
.

Proof. Substituting D yields

D ln fD >
2x

ln 2xf
ln

(
f

2x

ln 2xf

)
≥ 2x

ln 2xf
ln
√

2xf = x

where we use
√

2xf ≥ 2 ln
√

2xf given by Observation 2.

4 Algorithms
Theorem 1. For 1 ≤ k ≤ N , SDMk is possible with

O
(

max

{
kN2

B∆
,
kN2

B
√
M
,
N2

B

})
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I/Os for

∆ = max

 ln N
M

ln
N ln2 N

M

Mk

,

√
kM

N


if M = Ω (B2). Note that ∆ is lower bounded by a constant.

For the sake of clarity, we omit the use of ceiling functions from now on.
Since all the fractions are greater or equal 1, this only increases the bounds
by constant factors.

4.1 Layouts

For the algorithms presented, we either need the dense matrices B and
C in column major layout where elements are saved column wise, or row
major layout. As we prove by lower bounds, a different layout chosen by the
algorithm does not lead to an asymptotic speed up. For the first and the
third algorithm presented in this section, a row major layout is required, i.e.,
elements are saved row wise in external memory. If B is saved in column
major layout, the matrix has to be transposed first. In [1], Aggarwal and
Vitter showed that this is possible with O (N2/B) I/Os assuming a tall cache,
i.e., M ≥ B2. Similarly, if required, C has to be transposed in the end. For
the tile-based approach, the matrices are read in tiles. However, assuming a
tall cache, the algorithm is applicable if B is in column major layout. This
also applies for small instances where M ≥ kN +N .

For all algorithms presented, we assume that A is a list of the non-
zero entries in arbitrary order. For the direct algorithm, the ordering is
indeed unimportant, whereas the desired layout for the other algorithms
can be obtained by sorting. Sorting the elements of A is possible with
O
(
kN
B

logM/B
kN
M

)
I/Os [1]. Since k ≤ N , this is at most 2ckN

B
logM/B

N√
M
≤

c kN2

B
√
M

since M ≥ 2B. Note that this is less than the number of I/Os required
for the computation itself.

4.2 Direct algorithm

The direct algorithm for permuting can simply be extended to any 1 ≤ k ≤ N .
Let bi be the i-th row of B, and ci the i-th row of C. By one scan of A
while adding for each non-zero entry aij the product aij · bj to ci, the result
matrix C is computed with O

(
kN2

B

)
I/Os. As we will see, for k ≤ (N/M)1−ε

and any constant ε > 0 this algorithm is asymptotically optimal since ∆ in
Theorem 1 becomes a constant.
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a

a

a

M/a

Figure 1: An illustration of the tiles in A and B. C is partitioned similarly
to B.

4.3 Tile-based algorithm

For denser cases of A, there is a modification of the tile-based algorithm in [6]
that clearly outperforms the direct algorithm. More precisely, this algorithm
works for any k ≥ N

M
and M ≤ kN . For the ease of notation, let 3M be the

size of internal memory. For this approach, matrices B and C have to be
partitioned into tiles of size a×M/a for a =

√
MN/k, while A is partitioned

into tiles of size a × a (cf. Fig. 1). Let Aij,Bij, and Cij denote the j-th
tile within the i-th tile row of the corresponding matrix. Clearly, it holds
Cij =

∑n
l=1 AilBlj for n = N/a. Throughout the calculation of a certain Cij ,

partial results can be kept in internal memory while Ail and Blj are loaded
consecutively for each l. Since each B-tile contains exactly M elements, each
such tile can be loaded in a whole and only once per calculation of a Cij.
The same holds for tiles of A containing at most M entries. For tiles with
more non-zero entries, elements are loaded in bunches of M elements while
the corresponding B-tile is kept in memory.

Hence, for saving all C-tiles no more than N2

B
I/Os are required. Loading

B-tiles costs at most N2

M
·nM

B
I/Os. Each tile, and thus, each element in A has

to be loaded for the calculation of no more than N/M
a

tiles of C. Therefore,
loading the non-zero elements of A requires at most kN

B
N
√
N√

kM
I/Os. Altogether,

this sums up to

O

(√
kN

M

N2

B

)
I/Os for the computation of C.

4.4 Using dense parts of A

In this section, we show that by loading M elements from each matrix, even
for k < N

M
a number of ω (M) elementary products can be obtained, i.e., more
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than the direct algorithm achieves. This is done by loading dense parts from
A.

For the sake of illustration, we consider the matrix A as an adjacency
matrix of a bipartite graph G = (U ∪ V,E), where aij 6= 0 constitutes a
connection between the i-th node of U and the j-th node of V . If there are
sufficiently many subgraphs containing O (M) edges, with average degree
Ω (D), SDMk is possible in time O

(
kN2

BD

)
.

Lemma 1. Given a bipartite graph G = (U∪V,E), |U | = |V | = N , |E| = kN ,
i.e., k is the average degree.

Then, for 2 ≤ k ≤ N
32M

ln2 N
M

and M ≤ N/4 there exist two subsets
X ⊆ U , Y ⊆ V , such that the subgraph induced by X and Y has average
degree at least

D = min

 ln N
M

2 ln
N ln2 N

M

4Mk

,

√
M

2


and it holds that |X|, |Y | ≤M/D. This D satisfies D ≤ k/2.

Before showing this, we need the following preliminary lemma.

Lemma 2. For k ≤ N
32M

ln2 N
M
, M ≤ N , and D according to Lemma 1 the

inequality

k ≤ ND

4M
ln
N

M
(1)

is satisfied.

Proof. For D =
ln N

M

2 ln N
4Mk

ln2 N
M

, (1) holds as follows. Substituting D yields

k ln
N ln2 N

M

4Mk
≤ N

8M
ln2 N

M
.

Observe, that for x
k
≥ e, the term k ln x

k
for x > 0 is monotonously increasing

in k. Its derivative is ln x
k
− 1, and hence, positive for x

k
≥ e. Since by

assumption N ln2 N
M

4Mk
≥ e, we can substitute k resulting in

N ln 8

32M
ln2 N

M
≤ N

6M
ln2 N

M

which is obviously true.
If the second term of the minimum in D applies, i.e. D =

√
M/2, we

have to distinguish the cases N
32M

ln2 N
M
≤ N , i.e., M ≥ ln2 N

M

32
and vice versa,

i.e. only k ≤ N has to hold. By substituting D and k in (1) both cases hold
within the desired range.
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Lemma 1. In order to make a statement about the minimal degree of a node,
we transform G such that the maximal degree in V is restricted to at most k.
Therefore, split each node vi ∈ V with degree di > k into vi,1, . . . , vi,ddi/ke such
that each node has degree no more than k. Let V ′ denote this transformation
of V , E ′ the transformed set of edges and G′ = (U ∪ V ′, E ′) the created
graph. By construction, the size of V will increase by no more than N , i.e.,
|V ′| ≤ 2N . From this, we can conclude that there are at least N/2 nodes
with degree no less than k/2: Suppose that c nodes in the original set V have
degree less than k/2. Hence, the degrees of the remaining N − c nodes sum
up to at least (N − c/2)k. By construction of V ′, for each node with degree
di > k, there will be at most one new node with degree less than k/2. This
leads to no less than (N − c/2)k − (N − c)k/2 = kN/2 edges that have to
belong to nodes with degree at least k/2. Since all nodes have degree at most
k, there have to be at least N/2 nodes of degree at least k/2. We call the
subset of these nodes V ′k/2.

Observe that any subgraph G′S in G′ with average degree D consisting
of nodes X ⊆ U and Y ⊆ V ′ can be transformed into a subgraph GS of
G with average degree at least D by simply replacing any vi,j ∈ Y by the
corresponding node vi of the original graph. The subgraph GS contains at
least the amount of edges of G′S, but no more nodes than G′S. Hence, it
suffices to show the existence of the desired X and Y for G′. To this end, we
will prove that in G′ for a random X ⊆ U , |X| = M/D, the expected number
of nodes in V ′ that have degree ≥ D into X is at least M/D.

Now, choose X ⊆ U uniformly at random and consider a vertex vi ∈ V ′k/2.
The number of vertices chosen for X in the neighborhood of vi is given by a
hypergeometric distribution, resembling drawing at least k/2 times without
replacement from an urn with N marbles, M/D of which are black. The
event we are interested in is that at least D of the drawn marbles are black.

We lower bound this probability by considering only the case of drawing
precisely D black marbles. The probability can be expressed in the following
way: Consider drawing the k/2 marbles one after another, and choose pre-
cisely D positions where black marbles are drawn. The probability of such a
drawing can then be calculated as the product of the fractions of black (white)
marbles that are left in the urn before each drawing. For black marbles the
fraction is at least p = (M

D
−D)/N , for white it is at least q = 1− M

D
/(N − k

2
).

In the following, we use D ≤
√
M/2, i.e., D ≤ M

2D
, and k ≤ N to simplify

these expressions.
The overall probability of drawing D black marbles can then be bounded

by summing the probabilities of all possible choices to position the D black
marbles in the consecutive drawing. Let Xi be the number of black marbles
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drawn, i.e. the number of edges from vi into X. Thus, we can lower bound
the probability similar to a binomial distribution:

P (Xi ≥ D) ≥
(
k/2

D

)
pDqk/2−D ≥

(
k

2D

M

2DN

)D (
1− 2M

DN

)k/2
.

Taking logarithm we get

ln P (Xi ≥ D) ≥ D ln
Mk

4ND2
+
k

2
ln

(
1− 2M

ND

)
≥ D ln

Mk

4ND2
− k 2M

ND

where the last inequality is justified by Observation 1 and 4M ≤ N .
Since we consider at least N/2 nodes, the goal is now to choose the

biggest D satisfying

D ln
4ND2

Mk
+ k

2M

ND
≤ ln

ND

2M
.

By Lemma 2, k ≤ ND
4M

ln N
M
, i.e., k 2M

ND
≤ 1

2
ln N

M
, holds. Hence, we are

interested in
D ln

4ND2

Mk
≤ 1

2
ln
N

M
+ ln

D

2

which is implied by

D ln
2
√
ND√
Mk

≤ 1

4
ln
N

M
(2)

for D ≥ 2. Otherwise, since k ≥ 2 one can obtain the desired subgraph by
choosing M adjacent edges in G. This yields a subgraph consisting of at most
M + 1 vertices, i.e. with average degree at least 2/(1 + 1/M).

Now, we can use Observation 5 with f =
√

4N
Mk

and x = 1
4

ln N
M
, and get

the approximation

D ≤ x

lnxf
=

ln N
M

2 ln
N ln2 N

M

4Mk

for which inequality (2) holds.
Finally, we check D ≤ k/2. To this end, we plug k/2 as D into (2) and

get
k

2
ln

4N · k2

Mk · 4
≤ 1

2
ln
N

M
k
2

ln Nk
M
≤ 1

2
ln N

M
, assuming k ≤ 1, contradicting one of the assumptions.
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In the following, we assume an internal memory of size 2M to ease notation.
Now consider a subgraph GS = (US ∪ VS, ES) with M edges and average
degree D. By construction of G = (U ∪ V,E), we considered a non-zero entry
aij as an edge between ui and vj. Let IU , IV be the set of indices of vertices
in US, VS respectively. In order to create elementary products corresponding
to ES, the M corresponding non-zero entries aij with i ∈ IU , j ∈ IV have
to be loaded. Then, for each column 1 ≤ k ≤ N , by loading all elements
bjk with row indices j ∈ IV together, M elementary products for rows with
indices IU in C can be obtained.

To efficiently load certain elements of a column in B, we extract these
rows into a separate |IV |×N matrix and transpose it to column major layout.
This is possible with 2NM

DB
I/Os, since we assume B to be in row major layout.

Then, elements corresponding to a certain column can be loaded with at
most M

DB
I/Os. Similarly, partial products can be stored into a |IU | × N

matrix in column major layout. Transposing this, and adding the rows to the
corresponding rows in C requires no more than 3NM

DB
I/Os. Hence, given a

subgraph with M edges and average degree D, NM elementary products can
be created with at most 6NM

DB
+ M

B
= O

(
NM
DB

)
I/Os.

Lemma 1 only states the existence of at least one dense subgraph. However,
after creating all the elementary products corresponding to the edges of a
dense subgraph, one can think of removing these edges. This will decrease
the number of edges by no more than M , and we can use Lemma 1 for graphs
with kN −M edges again. Clearly, half of the elementary products can be
obtained by subgraphs with average degree D(k/2). This is possible with
O
(

kN2

2D(k/2)B

)
I/Os.

Let D1(k) = ln N
M
/(2 ln

N ln2 N
M

4Mk
), i.e., the first argument of the minimum

of D in Lemma 1. Altogether, the number of I/Os necessary to create all
elementary products for C is bounded from above by

L(k,N) ≤ kN

B
+
∞∑
i=1

6 max

{
2kN2

2iB
√
M
,

kN2

2iD1(k/2i)B

}

≤ kN

B
+

12kN2

B
√
M

+ 6kN2

∞∑
i=0

ln
N ln2 N

M

4Mk
+ ln 2i

2iB ln N
M

= O
(
kN2

DB

)
.

Observe that for k ≥ N
32M

ln2 N
M
,
√

kN
M

= Ω
(
ln N

M

)
and thus, the tile-based

algorithm is asymptotically better.
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4.5 Small instances

For smaller instances where M ≥ kN , neither the tile-based algorithm is
applicable, nor does the proof of dense subgraphs hold. Once M ≥ kN +N ,
a degenerated version of the tile-based approach becomes the one of choice:
Initially, all non-zero entries of A are loaded into internal memory. Afterwards,
B is loaded in whole columns. For each column, the corresponding column in
C can be calculated directly and written to external memory. This requires
only O

(
N2

B

)
I/Os.

5 Lower bounds
Theorem 2. For 1 ≤ k ≤ N any program for SDMk needs

Ω

(
max

{
kN2

B∆
,
kN2

B
√
M
,
N2

B

})
I/Os, with ∆ according to Theorem 1.

Theorem 2 will be proven throughout this section. Therefore, we make
use of the following technique introduced by Hong and Kung in [5].

Lemma 3. A round-based program consists of q rounds where each round
consists of M/B input operations, followed by M/B output operations such
that after the round internal memory is empty. A lower bound on the number
of rounds qmin of any round-based program with internal memory of size 2M
can be transformed into a lower bound on the number of I/Os l of any (normal)
program with internal memory of size M by l ≥ M

B
· (qmin − 1).

Recall that the overall number of elementary products that have to be
produced for SDMk is kN2. Thus, given an upper bound on the number of
elementary products that can be made during one round, a lower bound on
the number of necessary rounds is obtained. We will do this by showing that
there are matrices with only few dense parts. In the following, we consider
the matrix A again as an adjacency matrix.

Lemma 4. Let G be the family of bipartite graphs G = (U ∪ V,E) with
|U | = |V | = N and |E| = kN for k ≤ N/2.

For any M ≤ kN there is a graph G ∈ G such that G contains no subgraph
GS = (US ∪ VS, ES) with |ES| = M and average degree

D′M > max

 8 ln N
M

ln
16N ln2 N

M

Mk

, e4 ·
√
kM

N

 . (3)
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Proof. We will show this by upper bounding the number of graphs containing
at least one such dense subgraph and compare this to the cardinality of G.
The upper bound is given by the number of possibilities to choose 2M/D′M
vertices from U ∪V and the number of possibilities to insert M edges between
the selected vertices. Furthermore, the remaining kN −M edges are chosen
uniformly within the graph. The former presumes M/D′M ≤ N . However,
since M ≤ kN and D′M >

√
kM
N

this is implied. Further, we can assume

D′M ≤
√
M since this is the maximum average degree of a subgraph consisting

of M edges. Hence, if the inequality(
2N

2M/D′M

)(
(M/D′M)2

M

)(
N2

kN −M

)
<

(
N2

kN

)
holds for the parameters given, Lemma 4 is proven.Observation 4 yields(

2N

2M/D′M

)(
(M/D′M)2

M

)
<

(
N2 − kN
kN

)M
.

Estimating binomial coefficients according to Observation 3, taking logarithms
and multiplying by D′M/M , we obtain

2 ln
eD′MN

M
+D′M ln

eM

D′M
2 < D′M ln

N2 − kN
kN

= D′M ln
N

k
+D′M ln

(
1− k

N

)
.

The last term can be estimated for k ≤ N/2 by Observation 1 resulting in

2 ln
eD′MN

M
+D′M ln

eM

D′M
2 < D′M ln

N

k
−D′M

2k

N
.

And by simple transformations, we obtain

D′M ln
D′M

2N

kM
> 2 ln

N

M︸ ︷︷ ︸
Term 1

+ 2 ln eD′M +D′M

(
1 + 2

k

N

)
︸ ︷︷ ︸

Term 2

. (4)

Equation 4 is implied if Terms 1 and 2 are both bounded by 1
2
D′M ln

D′
M

2N

kM
.

We first check this for Term 2 only. By Observe 2 ln eD′M ≤ D′M . Thus,

1

2
D′M ln

D′M
2N

kM
> 2 ln eD′M + 2D′M

is implied by D′M > e4 ·
√

kM
N

. For any such D′M Inequality 4 holds if

D′M ln
D′M
√
N√

kM
> 2 ln

N

M
. (5)
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By substitution ofD′M by e4·
√

kM
N

, (5) already holds for
√
k > 1

2e4

√
N
M

ln N
M
,

i.e. especially for M ≥ N . For
√
k ≤ 1

2e4

√
N
M

ln N
M
, we use Observation 6.

Altogether, for

D′M > max

 8 ln N
M

ln
16N ln2 N

M

Mk

, e4 ·
√
kM

N


not all possible graphs in G are covered and therefore, Lemma 4 holds. Since
the second term is a sufficient bound for any

√
k > 1

2e4

√
N
M

ln N
M
, we use ln

instead of ln to derive a closed formula by bounding the first term. Finally,
note that D′M > 4 holds for k ≥ 1.

Lemma 5. Let G be the family of bipartite graphs G = (U ∪ V,E) with
|U | = |V | = N and |E| = kN for k ≤ N/2.

For any M ≤ kN , there is a graph G ∈ G such that G contains at most
M − 1 edges in subgraphs GS = (US ∪ VS, ES) with |ES| ≤ M and average
degree D′ ≥ 2e4∆ where ∆ is defined according to Theorem 2.

Proof. By Lemma 4, this holds already for subgraphs consisting of exactly
M edges. For smaller subgraphs, we prove the statement by contradiction.

Suppose that there are at least M edges in subgraphs with average degree
at least D′ consisting of less thanM edges. Let S be the set of such subgraphs.
Since each subgraph in S has less than M edges, there exists a subset S ′ of
subgraphs in S with a total number of cM edges for 1 ≤ c < 2. The subgraph
GS′ = (US′ ∪VS′ , ES′) induced by S ′ has obviously still average degree at least
D′.

Wlog let |US′| ≥ |VS′ | and consider the vertices US′ in GS′ . Now choose
the

⌈
M
D′

⌉
vertices in US′ with highest degree, and let U ′S′ denote the set of

these. Since the vertices US′ have average degree D′ in GS′ , the subset U ′S′

cannot have a lower average degree. Hence, the subgraph G′S′ induced by U ′S′

and VS′ contains at least M edges, but consists of no more than M
D′ + cM

D′ + 1
vertices. Therefore, any subgraph induced by exactly M edges of G′S′ has
average degree at least 2MD′

M+cM+D′ . Since D′ ≤
√
M , the average degree is at

least 2D′

2+c
≥ 1

2
D′. This contradicts Lemma 4 for any D′ ≥ 2D′M .

Using this, we can finally prove Theorem 2. Recall that Lemma 4, and
thus, 5 fails for D′M >

√
M . However, the maximum degree of a subgraph

with M edges is
√
M . The total number of elementary products, necessary

for SDMk is kN2. By Lemma 5, there are at most N(M − 1) elementary
products which might be calculated faster than the rest. For the remaining
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kN2 − NM + N elementary products, the following holds. Consider any
round-based program for SDMk. Within each round, there are at most 2M
elements of B and C loaded. Let sij, tij be the number of elements from the
j-th column of B, C respectively, loaded in round i. By Lemma 5 and the
observation that any subgraph has degree at most

√
M , there can be made

no more than
∑N

j=1 min{D′,
√
M} · sijtij = 2M ·min{D′,

√
M} elementary

products during each round. Hence, there have to be at least

kN2 −MN +N

2M ·min{D′,
√
M}

rounds. This yields a lower bound of

M

B

(
kN2 −MN +N

2M ·min{D′,
√
M}
− 1

)
= Ω

(
max

{
kN2

B∆
,
kN2

B
√
M

})
I/Os for SDMk.

5.1 Closing the parameter range

Recall that Lemma 5 only holds for k ≤ N/2. However, Ω
(
max

{
kN2

B∆
, kN2

B
√
M

})
is a lower bound for N/2 ≤ k ≤ N as well since increasing the number of
non-zero entries in A cannot decrease the number of I/Os. For M ≥ kN a
scanning bound of Ω

(
N2

B

)
holds for the output of C.
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