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Abstract

Container vessel stowage planning is a hard combinatorial optimization prob-
lem with both high economic and environmental impact. We have developed an
approach that often is able to generate near-optimal plans for large container
vessels within a few minutes. It decomposes the problem into a master plan-
ning phase that distributes the containers to bay sections and a slot planning
phase that assigns containers of each bay section to slots. In this paper, we
focus on the slot planning phase of this approach and present a constraint pro-
gramming and integer programming model for stowing a set of containers in a
single bay section. This so-called slot planning problem is NP-hard and often
involves stowing several hundred containers. Using state-of-the-art constraint
solvers and modelling techniques, however, we were able to solve 90% of 236
real instances from our industrial collaborator to optimality within one second.
Thus, somewhat to our surprise, it is possible to solve most of these problems
optimally within the time required for practical application.

Keywords: (B) Container Vessel Stowage Planning, Slot Planning, Constraint
Programming, Integer Programming

1. Introduction

Approximately 90% of all non-bulk cargo is carried in container vessels. An
important economical parameter for liner shipping companies is to be able to
stow their vessels fast. This not only saves port fees but also decreases the
speed at sea which saves bunker and reduces CO2 emissions. Most stowage
plans are produced manually by stowage coordinators using graphical tools, but
due to the hardness of the problem and a potential for substantial savings, there
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recently has been an increasing interest in extending these tools with stowage
planning optimization algorithms. These algorithms must also be fast, since
stowage coordinators work under time pressure and may have to recompute
plans due to loadlist changes or for the sake of evaluating different forecast
scenarios. A runtime of more than 10 minutes is impractical according to our
industrial collaborator within the liner shipping industry.

We have developed a stowage planning optimization approach that similar
to the currently most successful approaches (e.g.,[21, 14, 1]), decomposes the
problem hierarchically. We use the 2-phase approach illustrated in Figure 1.
First, the master planning phase distributes the containers to load in the port
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Figure 1: The master planning and slot planning decomposition of stowage planning.

to bay sections of the vessel. The slot planning phase then assigns the containers
to load in each bay section to specific slots.

Our master planning approach has been presented in [16]. The focus of this
paper is the slot planning phase.1 A typical large container vessel has about
100 bay sections, which implies that the slot planning phase solves about 100
independent slot planning problems. Thus, given at most 10 minutes to generate
complete stowage plans including master planning on hardware that does not
support heavy parallelization, we aim at solving each slot planning problem in
less than one second. This is non-trivial since slot planning is NP-hard and each
bay section may hold up to several hundred containers.

Real slot planning problems include a wide variety of vessel structures and
containers. To make their study practical, we introduce the Container Stowage
Problem for Below Deck Locations (CSPBDL), a representative model for stow-
ing containers in bay sections below deck formulated in collaboration with our
industrial collaborator. Even though this is a simplified representation of the
problem, it is to our knowledge the most detailed model published to date.

We then introduce an Integer Programming (IP) and Constraint Program-
ming (CP) model for solving the CSPBDL to optimality. The CP model uses
state-of-the-art modelling techniques including multiple viewpoints, specific do-
main pruning rules, and dynamic lower bounds. The IP model is a 0-1 formu-
lation where cuts are introduced to strengthen the LP relaxation.

Despite the size and NP-hardness of slot planning problems, our compu-
tational results show that they often can be solved fast in practice. We have

1An early version of this work has been presented at the International Conference on
Principles and Practice of Constraint Programming in 2009 [9].
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derived 236 test instances from real stowage plans from a system deployed by
our industrial collaborator [12]. 92% of the instances are solved using a state-
of-the-art constraint solver on our CP model within one second. Similar but
slightly worse results were obtained with the IP model. Thus, somewhat to our
surprise, it is possible to define optimal models of slot planning problems that
can be solved fast enough to be used in stowage planning optimization tools.

The rest of the paper is organized as follows. Section 2 defines the problem
we address in this paper and related work is presented and Section 3 . In
Section 4 we give a detailed description of our IP model. Section 5 gives a brief
introduction to global constraint modelling, and in Section 6 we present our CP
model. Computational results are presented in Section 7 and conclusions and
directions for future work are discussed in Section 8.

2. Problem Statement

A container vessel is a ship that transports box formed containers on a fixed
cyclic route. The cargo space of a vessel is divided into bays. Each bay is
divided into an on deck and below deck part by a hatch cover, which is a flat,
leak-proof structure that prevents the vessel from taking in water and allows
containers to be stowed on top of it (see Figure 2). On and below deck parts of
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Figure 2: The arrangement of cargo space in a container vessel.

a bay are transversally divided into stacks that are one container wide, and are
composed of two Twenty-foot Equivalent Unit (TEU) stacks and a single Forty-
foot Equivalent Unit (FEU) stack. A location is a bay section consisting of a
set of stacks that are either on or below deck. These stacks are not necessarily
adjacent. The left drawing of Figure 3 shows a typical arrangement of locations
in a bay. A stack holds vertically arranged cells indexed by tiers. Each stack
has a weight and height limit that must be satisfied by the containers allocated
there. Cells in stacks are divided into two slots, a fore and an aft. The aft slot
is situated toward the stern of the vessel, while the fore slot is allocated on the
bow side.2 Some slots have a power plug to provide electricity to containers
in case their cargo needs to be refrigerated. Such slots are called reefer slots.
Quay cranes at ports carry out the loading and unloading of containers from
the vessel accessing only the top-most containers in stacks.

2The liner shipping industry uses another indexing standard for bays, stacks and tiers than
the one presented in this paper which is irrelevant for our purposes.
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Figure 3: Left: a front view of a vessel bay. There are four locations. Location 1 and 3 consist
of inner stacks below and on deck, respectively, while location 2 and 4 consist of outer stacks
in each side. Right: a side view of a partially loaded stack. Each power plug represents a
reefer slot. Reefer containers are drawn with electric cords.

A container is a metal box in which goods can be stored. Each container has
a weight, height, length, and port where it has to be unloaded (discharge port),
and may need to be provided with electric power (reefer container). Containers
are 20’, 40’, or 45’ long, and 8’6” or 9’6” high (high-cube containers). High-cube
20’ foot containers are rare and we assume they do not exist when modelling
the slot planning problem. Empty 20’ and 40’ containers weight around two
tons while their maximum weight is 24 and 30 tons, respectively. Pallet wide

containers are slightly wider and can only be placed side-by-side in certain pat-
terns. IMO containers carry dangerous goods and must be placed according to a
complex set of separation rules. Out-of-Gauge containers carry cargo exceeding
the inner dimensions of standard containers. The last three types of containers
are often placed in special storage areas of the vessel.

Each cell can hold one 40’ or 45’ container or two 20’ containers. 45’ contain-
ers, however, are normally only placed on deck, and some cells may be restricted
to either 20’ or 40’ containers. In addition, odd cells may exist that only can
hold one 20’ container due to the physical layout of the vessel. As an example,
the right picture of Figure 3 shows the slots of a stack below deck with a mixture
of different 20’ and 40’ containers loaded. Containers already on board of the
vessel when the stowage plan is made are called loaded containers. A container
in a stack is overstowing another container in the same stack if it is stowed
above it and discharged at a later port. An overstowing container is expensive,
since it must be removed in order to discharge the overstowed container.

In this paper, we investigate the slot planning problem which is to assign a
set of containers to slots in a location that may already hold loaded containers.
Due to the large number of constraints and objectives involved in real slot plan-
ning, we have developed with our industrial collaborator a representative version
of the problem for below deck locations called the CSPBDL. On deck locations
share most constraints and objectives with below deck locations, thus we expect
similar computational results for them. The CSPBDL covers all constraint and
objective classes of the problem, and we anticipate a high correlation with a com-
plete problem model in terms of solution algorithm performance. Specifically,
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the CSPBDL includes stacking rules for 20’ and 40’ containers, FEU and TEU
stack overlapping, reefer containers, loaded containers, and weight and height
constraints. The objectives include overstowage and three rules of thumb used
by stowage coordinators to ease the stowing of containers in downstream ports.
We limit the containers we consider to be 20’ and 40’ long, 8’6” and 9’6” high,
and reefer and non-reefer. A feasible CSPBDL must satisfy the following rules.

a) Assigned cells must form stacks (containers stand on top of each other in
the stacks. They cannot hang in the air).

b) 20’ containers cannot be stacked on top of 40’ containers.
c) A 20’ reefer container must be placed in a reefer slot. A 40’ reefer container

must be placed in a cell with at least one reefer slot.
d) The length constraint of a cell must be satisfied (some cells only hold 40’

or 20’ containers).
e) The sum of the heights and weights of the containers stowed in a stack

are within the stack limits.
f ) All loaded containers must be stowed in their original slots and they cannot

be swapped to any other slots.
g) A cell must be either empty or with both slots occupied.

Additionally, an optimal CSPBDLminimizes the sum of the following objectives.

h) Minimize overstows. A 100 unit cost is paid for each container overstowing
any containers below.

i) Avoid stacks where containers have many different discharge ports. A 20
unit cost is paid for each discharge port included in a stack.

j ) Keep stacks empty if possible. A 10 unit cost is paid for each stack used.
k) Avoid loading non-reefer containers into reefer slots. A 5 unit cost is paid

for each non-reefer container stowed in a reefer slot.

The second, third, and fourth objectives are rules of thumb of the shipping
industry when generating slot plans for downstream ports in the route of a
vessel. Using as few stacks as possible increases the available space in a location
and reduces the possibility of overstowage in future ports, so does clustering
containers with the same discharge port. Minimizing the reefer objective allows
more reefer containers to be loaded in future ports. The cost units reflect the
importance of each objective and has been defined by our industrial collaborator.

The CSPBDL is NP-Hard. We show that the bin-packing problem can be re-
duced to the CSPBDL. All items in a bin-packing problem are defined as 40’,
standard height, non-reefer containers with the same discharge port. Bins are
defined as stacks where height limits are set to be sufficiently large to be non-
restrictive and with no reefer slots. An optimal solution to an arbitrary bin-
packing problem can be found by finding an optimal solution to the CSPBDL,
showing that the CSPBDL is NP-Hard.3

3It can be shown that overstow minimization also is an NP-hard component of the
CSPBDL, but the proof requires a version of the problem with uncapacitated stacks [5].
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3. Literature review

Slot planning optimization algorithms have either been studied as embedded
into single-phase models, or as a part of multi-phase decompositions for gener-
ating stowage plans. In the first category, Avriel et al. [6], Dubrovsky and Penn
[10], and Ambrosino and Sciomachen [2] propose simple models to stow com-
plete vessels that address similar problems to slot planning optimization. Avriel
et al. introduce a 0-1 IP model and a heuristic called the suspensory heuristic to
stow vessels described as a collection of columns and rows (a rectangular bay).
They consider all containers to have the same features and focus on minimizing
re-shifting (overstowage) of containers. Dubrovsky and Penn present a genetic
algorithm model with the same assumptions as Avriel et al.’s. They claim,
however, that their approach is flexible enough to include new constraints. Am-
brosino and Sciomachen present a CSP model. Though this model is meant to
stow a complete vessel, inter-bay stability constraints can be dropped in order
to resemble the slot planning problem. This approach considers 20’ and 40’ con-
tainers, but lacks reefer and high-cube containers. Their objective is to minimize
overstowage and maximize the number of containers loaded. Aslidis [4], Botter
and Brinati [7], Sciomachen and Tanfani [18], and Li et al. [15] present more
complex models that also include several of the constraints considered in the
master planning problem. Aslidis introduce stacking heuristics for minimiz-
ing overstowage, while Botter and Brinati and Li et al. present 0-1 IP models.
Botter and Brinati also present two heuristics to stow containers since their IP
model is not scalable to real-life instances. Sciomachen and Tanfani introduce
a heuristic approach based on the 3D-packing problem. These approaches con-
sider 20’ and 40’ containers, and overstowage minimization. Sciomachen and
Tanfani also consider high-cube containers.

In the second category, where slot planning problems are solved in connec-
tion with multi-phase approaches for complete vessel stowage planning, Wilson
and Roach [21] briefly describe a tabu search algorithm for solving a version of
slot planning that must have included reefer slots, length restrictions, minimized
overstowage, and avoided discharge port mixing of stacks. They claim that near
optimal solutions could be computed fast, but only experimental results for gen-
erating a complete stowage plan for a single vessel are described. Kang and Kim
[14] describe an enumeration approach for solving a very simple version of slot
planning, where only overstow minimization and sorting of 40’ containers after
weight are considered. As for Wilson and Roach, no independent experimental
evaluation of the algorithm is provided. Ambrosino et al. [3] describe a 0-1 IP
model for stowing subsets of vessel bays holding containers with the same dis-
charge port optimally. The model minimizes the time for stowing containers.
20’ and 40’ containers are considered, and containers are sorted according to
weight in each stack. In the experimental section, complete stowage plans for a
198 and 2124 TEUs container vessels are generated. The maximum bay size is
20 TEUs for the small vessel and 120 TEUs for the big one. No computational
time is provided for solving these sub-problems. In a later work [1], Ambrosino
et al. present a constructive heuristic to solve the same sub-problem as the one
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described in [3], as part of a complete approach to stow vessels. Using this
heuristic, they are able to stow a vessel of 5632 TEUs. The heuristic uses 11.8
seconds in average to stow all the bays but the physical layout of the vessel is not
described in detail. Zhang et al. [23] and Yoke et al. [22] present multi-phase
approaches where the problems solved during the slot planning phase are not
independent of each other.

A deployed industrial system introduced by Guilbert and Paquin [12], that
provides data to our experiments, solves slot problems as linear assignment
problems with side constraints. Their model considers all containers and most
of the constraints and objectives present in the CSPBDL. Overstowage is only
considered with respect to loaded containers, and though they minimize mixed
stacks with 20’ and 40’ containers, constraint b is not present.

4. The IP model

In this section, we introduce a binary IP model formulated to solve the
CSPBDL. Table 1 presents the constant values, sets, and variables used in the
model.

Constants and Sets

I Containers index set.
J Stacks index set.
D Discharge ports index set.
Kj Cells in stack j index set.
T 20’ containers index set.
F 40’ containers index set.
Rjk Number of reefer plugs in cell k of stack j.
W s

j Weight limit of stack j in kilograms.
Hs

j Height limit of stack j in meters.
Hc

i Height in meters of container i.
W c

i Weight in kilograms of container i.
Rc

i Indicates whether container i is reefer.
Aid Indicates whether container i is unloaded at port d. It is 1

if i is unloaded in port d, 0 otherwise.
L Loaded containers index set.
M Tuple set of loaded containers and corresponding cells indices:

{(j, k, i)| j ∈ J, k ∈ Kj , i ∈ L}.

Variables

oi∈ {0, 1} Container i overstowing.
pjd∈ {0, 1} At least one container in stack j being unloaded at d.
ej∈ {0, 1} Stack j being used.

cjki∈ {0, 1} Container i being stowed in cell k, stack j.
δjkd∈ {0, 1} Container below cell k, stack j being unloaded before port d.

Table 1: Constants, sets, and variables in the IP model
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The first three sets of variables from table 1, o, p, and e, are used for com-
puting the cost of overstow (h), clustering (i), and using stacks (j ) according
to the CSPBDL. The variables in the fourth set, c, are the decision variables of
the problem, and represent the stowage plan. The fifth set represents indica-
tor variables introduced to model the overstowage objective. The IP model is
defined as:

min 100
∑

i∈I

oi + 20
∑

j∈J

∑

d∈D−{1}

pjd + 10
∑

j∈J

ej

+ 5
∑

j∈J

∑

k∈Kj

(

Rjk

∑

i∈F

cjki(1−Rc
i ) +

∑

i∈T

cjki(
1

2
Rjk −Rc

i )
)

(1)

s .t .

1

2

∑

i∈T

cj(k−1)i +
∑

i∈F

cj(k−1)i −
∑

i∈F

cjki ≥ 0 ∀j ∈ J, k ∈ Kj − {1} (2)

∑

i∈T

cjki −
∑

i∈T

cj(k−1)i ≤ 0 ∀j ∈ J, k ∈ Kj − {1} (3)

1

2

∑

i∈T

cjki +
∑

i∈F

cjki ≤ 1 ∀j ∈ J, k ∈ Kj (4)

∑

j∈J

∑

k∈Kj

cjki = 1 ∀i ∈ I (5)

∑

i′∈T

cjki′ − 2cjki ≥ 0 ∀j ∈ J, k ∈ Kj , i ∈ T (6)

∑

i∈I

Rc
i cjki −Rjk ≤ 0 ∀j ∈ J, k ∈ Kj (7)

∑

k∈Kj

∑

i∈I

W c
i cjki ≤ W s

j ∀j ∈ J (8)

∑

k∈Kj

(
1

2

∑

i∈T

Hc
i cjki +

∑

i∈F

Hc
i cjki) ≤ Hs

j ∀j ∈ J (9)

k−1
∑

k′=1

d−1
∑

d′=2

∑

i∈I

Aid′cjk′i − 2(k − 1)δjkd ≤ 0 ∀j ∈ J, k ∈ Kj , d ∈ D (10)

Aidcjki + δjkd − oi ≤ 1 ∀j ∈ J, k ∈ Kj , (11)

d ∈ D, i ∈ I

ej − cjki ≥ 0 ∀j ∈ J, k ∈ Kj , i ∈ I (12)

pjd −Aidcjki ≥ 0 ∀j ∈ J , k ∈ Kj , (13)

d ∈ D, i ∈ I

cjki = 1 ∀(j, k, i) ∈ M (14)
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The objective function (1) is a weighted sum of the four objectives as defined
in the CSPBDL. The first three objectives are calculated straightforward since
there are specific variables in the model that account for them. The fourth ob-
jective is calculated by determining the number of non-reefer containers stowed
in slots with reefer plugs. 40’ and 20’ containers are considered independently.

Inequality (2) ensures that there is either two 20’ or one 40’ container below
a cell stowing a 40’ container, while inequality (3) constraints the containers
below a cell stowing 20’ containers to be 20’ long (b). Inequality (4) requires
that all cells stow at most either two 20’ or one 40’ container. Containers are
forced to be stowed in exactly one cell by (5). Inequality (6) forces the number
of 20’ containers in a cell to be 0 or 2, since the two sides of a stack must be
synchronized (g). The reefer capacity of a cell is constrained by inequality (7),
covering the fact that all reefer containers in a cell must be provided with a
reefer plug each (c). The weight and height limits of stacks (e) are enforced
by (8) and (9), respectively. Inequality (10) ensures that the variables δjkd are
assigned the correct value according to their semantics. These variables are then
used in inequality (11) to assign the overstowage variables oi for each container.
Inequality (12) sets the variable related to the empty stack objective (j ) for
each stack, and inequality (13) does the same for the variables related to the
clustering objective (i) for each stack at each discharge port. Loaded containers
are assigned to their corresponding cell by equality (14).

4.0.1. Cuts

We add cuts that focus on removing solutions with non-integer values as-
signed to variables δjkd by the Linear Programming (LP) relaxation. First we
decompose inequality (10) into several inequalities, one for each variable cjk′i,
that combined together are semantically equivalent to (10):

Aid′cjk′i ≤ δjkd ∀j ∈ J, k ∈ Kj , d ∈ D, i ∈ I, k′ ∈ K ′, d′ ∈ D′ (15)

where K ′ = {k|k ∈ {1, ..., k − 1}} and D′ = {d|d ∈ {2, ..., d − 1}}. We then
increase the size of the left hand side term of (15) by considering at once all
containers unloaded earlier than port d. Two inequalities are introduced to
the model (16, 17), since 20’ and 40’ containers need to be treated differently.
Additionally, cut (18) adds terms to the left hand side of (15) by considering all
cells below cell k. The cuts are defined by:

1

2

∑

i∈T ′
d

cjk′i ≤ δjkd ∀j ∈ J, k ∈ Kj , d ∈ D, k′ ∈ K ′ (16)

∑

i∈F ′
d

cjk′i ≤ δjkd ∀j ∈ J, k ∈ Kj , d ∈ D, k′ ∈ K ′ (17)

k−1
∑

k′=1

Aid′cjk′i ≤ δjkd ∀j ∈ J, k ∈ Kj , i ∈ I, d ∈ D, d ∈ D′ (18)

where K ′ = {k|k ∈ {2, ..., k− 1}}, D′ = {d|d ∈ {2, ..., d− 1}} and T ′
d and F ′

d are
the set of 20’ and 40’ containers with discharge port earlier than d, respectively.
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5. Global constraint modeling

A Constraint Satisfaction Problem (CSP) is a triple (X,D,C) where X is
a set of variables, D is a mapping of variables to finite sets of integer values,
with D(x) representing the domain of x ∈ X and D(X) = Πx∈XD(x) being
the Cartesian product of domains, and C is a set of constraints. Each c ∈ C is
defined over a sequence X ′ ⊆ X as a subset of allowed combinations of D(X ′).
A solution to a CSP is a complete assignment that maps every variable to a
value from its domain that satisfies all constraints in C.

Constraint programming (CP) is a relatively new technique that combines
local consistency algorithms with search. The process of removing inconsistent
values from the domain of the variables is called propagation. A depth-first
backtracking search explores the search space of the problem incrementally. It
extends a partial solution by selecting unassigned variables fromX and assigning
them to values from their domains. This selection process is called branching,
and a strategy to select variables and values following a specific criteria is called
a branching strategy. Propagation is executed every time a new branching is
generated. If the domain of each variable has been reduced to a single value,
the CP solver has found a solution to the CSP. For a partial solution, we refer
to the minimum and maximum value of the domain of variable x as x and x,
respectively. A cost function is defined for a CSP in order to evaluate the quality
of its solutions and branch and bound is used to find optimal solutions.

Constraints in CP share information through the variables in X. Each con-
straint has a scope X ′ ⊆ X, that often is relatively small compared to the size
of X, limiting its propagation power. Global constraints have been introduced
to overcome this. A global constraint groups together a set of small constraints
capturing tractable structures for global propagation. Below is a brief descrip-
tion of the global constraints used in our CP model.

Let x be an integer variable, y a variable with finite domain, and C =
{c1, ..., cn} a set of constants. The element constraint [13] states that y is equal
to the x-th constant in C.

element(x, y, C) = {(e, f) | e ∈ D(x), f ∈ D(y), f = ce}.

Let M be a deterministic finite automaton or a regular expression recognizing
the strings in the language L(M) ⊆ Σ∗, and let X = {x1, ..., xn} be a set of
variables with D(xi) ⊆ Σ for 1 ≤ i ≤ n. Then the regular constraint [17] is
defined as

regular(X,M) = {(d1, . . . , dn) | ∀i . di ∈ D(xi), d1 · · · dn ∈ L(M)}.

Let n and v be two integer values, and X = {x1, ..., xm} a set of finite domain
variables. The exactly constraint ensures that exactly n variables in X are
assigned to value v.

exactly(n,X, v) = {(d1, . . . , dm) | ∀i . di ∈ D(xi), |{di | di = v}| = n}

Let X = {x1, ..., xn} and Y = {y1, ..., yn} be two sets of finite domain variables
with domains D(X) = D(Y ) = {1, ..., n}. The channeling constraint states that
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a value j assigned to a variable xi ∈ X represents the index of the variable
yj ∈ Y that has been assigned value i from its domain. Formally

channeling(X,Y ) = {(e1, . . . , en, f1, . . . , fn)|

∀i, j . ei ∈ D(xi), fj ∈ D(yj), ei = j ⇔ fj = i}.

A channeling constraint is used to increase the propagation power of the model
by connecting several isomorphic variable sets (also known as viewpoints [20]).
If X is a set of variables representing positions with boxes {1, . . . , n} as domains
and Y is a set of variables representing boxes with positions {1, . . . , n} as do-
mains, then clearly a channeling constraint will link them consistently together.
In particular, the channeling constraint embeds the alldifferent constraint that
in our example ensures that a position only can hold one box and vice versa.

6. The CP Model

Table 2 presents the index sets and constants of our CP model. All index
sets are integer subsets. The stack in the left most part of the location has the
lowest index in Stacks . Indices in Slots are assigned to physical slots as follows.
For each cell, the aft and fore slots have consecutive indices. The slot indices
in each stack are ordered bottom-up and the slot indices between stacks are
ordered from left to right in the location. We have Slotsk = SlotsFk ∪ SlotsAk ,
and POD i < PODj iff the vessel calls the discharge port of container i before
the discharge port of container j.

In our model, the decision variables represent the stowage plan for a set
of containers to be stowed. We use two isomorphic representations. The first
one defines a decision variable for each container in Cont to be stowed, and as
domain of the variables the slots in Slots. The second one defines a decision
variable for each slot in Slots, and as domain of the variables the set of containers
in Cont to be stowed.

The two sets of decision variables mentioned above define two different view-
points in our CP model. These two viewpoints are linked with a channeling
constraint. The current formulation of the problem, however, does not allow
a straightforward use of this constraint since in most of the cases the number
of slots is larger than the number of containers, which breaks an important
precondition of the channeling constraint. To tackle this issue, we modify the
original definition of the problem by extending the number of containers with
artificial containers to match the number of slots. First, since a 40’ container
occupies two slots, all 40’ containers are split in two parts, Aft40 and Fore40 ,
with the size of a single slot. All 40’ containers from Cont and Cont40 are re-
placed by Aft40 and Fore40 containers. We define Cont40A and Cont40F to be
the indices of Aft40 and Fore40 containers, respectively. Cont40A and Cont40F

have the same cardinality. Virtual containers, ContV , that will be stowed in
slots meant to remain empty are also added. In the remainder of the paper,
Cont will refer to this extended set of containers. Finally, Cont¬R is the set of
non-reefer containers excluding virtual containers.
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Stacks Stack index set.
Slots Slot index set.
Cont Container index set.

Slots{A,F} Aft and Fore slots index set.
Slotsk Slots of stack k index set.

Slots
{A,F}
k Aft and Fore slots of stack k index set.

Slots{R,¬R} Reefer (R) and non-reefer (¬R) slots index set.
Slots¬RC Slots in cells with no reefer plugs index set.

Slots{20 ,40} 20’ and 40’ capacity slots index set.
Cont{V ,L} Virtual (V ) and loaded (L) containers index set.
Cont{20 ,40} 20’ and 40’ containers index set.
Cont40{A,F} Aft40 , Fore40 40’ containers index set.
Cont{20R,40R} 20’ and 40’ reefer containers index set.

Cont¬R Non-reefer 20’ and 40’ containers index set.
Weight i Weight of container i.
POD i Discharge port of container i.
Lengthi Length of container i.
Height i Height of container i.
ContP=p Number of containers with discharge port p.

Cont{W=w ,H=h} Number of containers with weight w and height h.
Cont{NC ,HC} Number of normal (NC ) and high-cube (HC ) containers.

stack
{w ,h}
k Weight and height limit of stack k.

Classes Set of stack classes.
classi Set of stacks of class i.

Table 2: Index sets and constants of the CP model.

Table 3 summarizes the variables in the CP model. In addition to the two
sets of decision variables, extra sets of auxiliary variables are defined to facilitate
the modeling of the constraints and objectives. The objectives of the CP model
are given by:

ov =
∑

i∈SlotsA

ov(i) (19)

ou =
∑

k∈Stacks





∑

j∈Slotsk

pj > 0



 (20)

op =
∑

k∈Stacks





∑

ρ∈POD

∑

j∈Slotsk

(pj = ρ)



 > 0 (21)

or =
∑

i∈SlotsR

(si ∈ Cont¬R) (22)

o = 100ov + 20op + 10ou + 5or (23)
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C= {c1, ..., c|Cont|} ci ∈ Slots , slot index of container i.
S= {s1, ..., s|Slots|} sj ∈ Cont , container index of slot j.
L= {l1, ..., l|Slots|} lj ∈ Length, length of container stowed in slot j.
H= {h1, ..., h|Slots|} hj ∈ Height , height of container stowed in slot j.
W= {w1, ..., w|Slots|} wj ∈Weight , weight of container stowed in slot j.
P= {p1, ..., p|Slots|} pj ∈ POD , POD of container stowed in slot j.

HS= {hs1, . . . , hs |Stacks|} hsk ∈ {0, ..., stackh
k}, current height of stack k.

ov∈ {0, ..., |Cont |} Number of overstowing containers.
ou∈ {1, ..., |Stacks |} Number of used stacks.
op∈ {1, ..., |Stacks ||POD |} Number of different discharge ports in each stack.

or∈ {0, ..., |SlotsR|} Number of non-reefers stowed in reefer cells.
o∈ N Solution cost variable.

CV ⊂ C Virtual containers.
SE
l ⊂ S Slots with the same features in stack i.

Table 3: Variables of the CP model.

Objective (19) calculates the total number of overstows. ov(i) is the number of
overstowing containers in a cell represented by its aft slot i. We have

ov(i) =















2 if si ∈ Cont20 ∧ pi > minP(be(i)) ∧ pi+1 > minP(be(i))
1 if (si ∈ Cont40 ∧ pi > minP(be(i)))∨

(si ∈ Cont20 ∧ (pi > minP(be(i))⊕ pi+1 > minP(be(i))))
0 otherwise

where be(i) is the set of slots below slot i in the same stack, minP(I) is the
earliest discharge port among the containers assigned to a set of slots I, and
⊕ denotes the exclusive-or boolean operator. The empty stack objective (j ), is
represented by (20). The smallest discharge port index, 0, is assigned to virtual
containers. Thus, when a stack i is empty, the sum of the values assigned to the
subset of P variables in i is 0, otherwise the stack is being used. Objective (21)
calculates the number of different discharge ports of containers stowed in each
stack, and objective (22) counts the number of non-reefer containers stowed
in reefer slots. Objective (23) defines the cost function of the CSPBDL. The
branch and bound algorithm applied to solve this problem constrains the cost
variable o of the next solution to be lower than that of the solution with lowest
cost found so far. The constraints of the CP model are given by:

channeling(C, S) (24)

cfore(i) = ci + 1, ∀i ∈ {1, ..., |Cont40A|} (25)

element(si, li,Length) ∀i ∈ Slots (26)

element(si, hi,Height) ∀i ∈ Slots (27)

element(si, wi,Weight) ∀i ∈ Slots (28)

element(si, pi,POD) ∀i ∈ Slots (29)
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spos(j) = j ∀j ∈ ContL (30)

regular(Lengthπ
i , R) ∀π ∈ {A,F}, i ∈ Stacks (31)

si 6∈ Cont20R ∀i ∈ Slots¬R (32)

si 6∈ Cont40R ∀i ∈ Slots¬RC (33)

si ∈ Cont20 ∀i ∈ Slots20 (34)

si ∈ Cont40 ∀i ∈ Slots40 (35)
∑

j∈Slotsπi

hj ≤ hsi ∀π ∈ {A,F}, i ∈ Stacks (36)

∑

j∈Slotsi

wj ≤ stackw
i ∀i ∈ Stacks (37)

Constraint (24) connects the two viewpoints such that both sets of variables
C and S always have the same level of information. fore(i) is the Fore40 con-
tainer bound to Aft40 container i. Constraint (25) guarantees that the Aft40

and Fore40 part of a 40’ container are stowed in the same cell. Element con-
straints are used to bind all auxiliary variables introduced in the model to a
viewpoint. Constraints (26) , (27), (28), and (29) bind each slot variable to the
auxiliary variables representing the length, height, weight and discharge port
of the container stowed in the slot. Loaded containers are stowed in their pre-
defined slots by constraint (30), where pos(j) is the slot occupied by loaded
container j. The valid patterns that containers stowed in stacks must follow
according to their length are defined by (a) and (b). After assigning a length of
0 to virtual containers, we define a regular expression R = 20∗40∗0∗ that recog-
nizes all the valid patterns according to these two constraints. Constraint (31)
introduces a regular constraint for each aft and fore stack in order to restrict
their stacking patterns to follow those defined by R. Constraints (32) and (33)
model the reefer constraint (c). Constraints (34) and (35) restrict the domains
of slots that just have 20’ or 40’ container capacity to be the set of 20’ and 40’
containers, respectively. The height limit of each stack in the location is con-
strained by (36). All containers stowed in each side of a stack must be less or
equal to the variable representing the height limit of the stack4. Constraint (37)
restricts the weight of all containers stowed in a stack to be within the limits.

6.1. Symmetry-breaking and implied constraints

We introduce a set of constraints to the CP model that aim at reducing the
search space size and increase propagation. These constraints are implied by
existing constraints and break symmetries either already present in the problem
or introduced by our model representation.

exactly(V, 0, |ContV |) ∀V ∈ {P,W,H} (38)

4The HS variables are not necessary to define the height constraint but play an important
role in the height constraint lower bound introduced in Section 6.3.
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exactly(P, p, ContP=p) ∀ p ∈ POD (39)

exactly(W,w,ContW=w) ∀w ∈ Weights (40)

exactly(H,Hα, Contα) ∀α ∈ {N,HC} (41)

hj = hk ∀ i ∈ Stacks , j, k ∈

{(j, k)| j ∈ SlotsAi , k ∈ SlotsFi .eqCell(j, k)} (42)

sort(CV ) (43)

si 6∈ Cont40A ∀ i ∈ SlotF (44)

si 6∈ Cont40F ∀ i ∈ SlotA (45)

sj ≤ sk ∀ i ∈ Stacks , j, k ∈

{(j, k)| j ∈ SlotsAi , k ∈ SlotsFi .eqType(j, k)} (46)

sort(SE
i ) ∀ i ∈ Stacks (47)

lex (classi) ∀ i ∈ Classes (48)

Constraints (38), (39), (40), and (41) are implied constraints meant to im-
prove the propagation power of the solver with respect to the auxiliary variables
P , W , and H. Each individual auxiliary variable zi is linked to a slot variable
si with an element constraint. This ensures correctness but leads to weak prop-
agation between the two sets of variables due to a lack of global perspective by
the element constraints. To improve this, we first assign the value zero to the
weight, height, and discharge port of virtual containers (these containers are not
supposed to affect total height, weight, or overstowage of each stack). Then,
constraint (38) limits the number of variables set to zero from P , W , and H to
be the exact number of virtual containers. Additionally, constraints (39), (40),
and (41) restrict the number of variables from P , W , and H assigned to each
possible discharge port, weight or height to match the total number of contain-
ers with such feature, respectively. Constraint (42) restricts the height of the
containers stowed in the aft and fore slots of a cell to be equal. This is pos-
sible since both slots in a cell must be either empty or occupied at the same
time (g), and there are no 20’ high-cube containers available to stow. The
function eqCell(j, k) indicates that two slots j and k belong to the same cell.

The weight of the containers make each of them almost unique, limiting the
possibility of applying symmetry breaking constraints. It is possible, however,
to break some of the symmetries introduced into the problem by our model
representation. First, since all virtual containers have the same features, it is
not relevant where each container is stowed. Constraint (43) posts a sorting
constraint over the virtual containers, forcing the slots where these containers
will be stowed to follow a non-decreasing order. Second, splitting 40’ containers
into Aft40 and Fore40 parts also generates symmetrical solutions that are bro-
ken by constraint (44) and (45). Third, constraint (46) limits the possibility of
swapping containers between two slots of a cell that have the same features. The
function eqType(j, k) indicates that two slots j and k belong to the same cell and
have the same features, i.e., same reefer plug and length restrictions. Fourth,

15



when all containers have the same discharge port, symmetrical solutions are
generated by swapping containers stowed in slots with the same features within
the same stack. Constraint (47) sorts in a non-decreasing order the indices of
the containers stowed in slots with the same features of each stack. Indices
are assigned to containers such that conflicts between constraint (47) and valid
stacking patterns (31) are avoided. 20’ containers are assigned a lower index
than 40’ containers, and virtual containers have the highest index possible. Fi-
nally, symmetries between stacks with identical characteristics are considered.
Stacks are classified according to their features: slot capacity, reefer capacity,
height and weight limit. Constraint (48) removes symmetrical solutions gener-
ated by the containers stowed in similar stacks being swapped with each other,
by requiring a lexicographical ordering on the indices of the containers stowed
in these stacks.

6.2. Branching strategies

Our branching strategy takes advantage of the structure of the model and
uses the sets of different auxiliary variables in order to find high-quality so-
lutions early in the search. We decompose the branching process into four
sub-branchings: the first one focuses on finding high-quality solutions, the sec-
ond and third on feasibility of two problematic constraints, and the fourth finds
a valid assignment for the decision variables S. A detailed description of our
branching strategy can be found in [8]. In the case of the first sub-branching,
since three of the four objectives of the CSPBDL rely on the discharge port
of the containers, we start by branching over the set of discharge port vari-
ables P . Variables bound to slots with containers that favor the clustering and
overstowage objectives among the first free slots bottom-up of all stacks are pre-
ferred. After assigning all variables in P , we branch over the height and weight
variables, H and W . We start by branching over H following a best-fit decreas-
ing approach for selecting a stack, then we assign the smallest height possible
among that of the containers to be stowed into the first free slot bottom-up in
the stack. We use a similar approach for W , where the best fit is considered to
be the stack with the greatest amount of free weight. Finally, we branch over
S in order to generate a concrete stowage plan. The domain size of variables in
P are considerably smaller than any of the viewpoints, making the process of
finding valid assignments for P easier. Once a valid stowage plan is found, most
of the time the search algorithm backtracks directly to the P variables in order
to find solutions with a lower cost. Therefore, a large part of the search process
concentrates on a much smaller sub-problem. Branching is performed over the
remaining variables only when a solution with a lower cost is likely to be found.

6.3. Lower bounds

Five domain pruning rules are defined over partial solutions. Each rule
solves a relaxed version of a sub-problem related to an objective or a constraint,
generating lower bounds for their corresponding objectives and pruning values
from the domain of the variables in the scope of the constraint. The lower
bounds are described in more detail in [8].
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Overstowage. To calculate a lower bound on the overstowage of a partial solu-
tion ρ, we define a new function minP (I) = mini∈I(pi | pi ∈ P ) that selects the
minimum upper bound pi among the variables in P . Let ovρ(i) be a function
identical to ov(i) where minP substitutes minP . It is easy to show that ovρ(i)
is a lower bound of ov(i) for any completion of ρ [8]. The pruning effect of the
lower bound is achieved by adding the constraint ov ≥

∑

i∈SlotsA ovρ(i). An
additional pruning rule can be applied when the domain of ov has been reduced
to a single value that is equal to the lower bound. In this situation, we enforce
that all containers below non-overstowing containers are discharged at a later
port:

|D(ov)| = 1 ∧
∑

i∈SlotsA

ovρ(i) = ov →

∀i ∈ {k ∈ SlotsA | ovρ(k) = 0}, j ∈ be(i) . pi ≤ pj .

Empty stack. In the remainder, we refer to container i as unstowed if the domain
of ci has more than one element. For the empty stack lower bound, a relax-
ation of the stowage problem is solved. The height capacity of the stacks is the
only constraint considered and the containers to stow ContNρ = {i ∈ Cont | i 6∈

ContV , |D(ci)| > 1} are accounted as normal height containers. We first con-
sider the used stacks of ρ, StacksUρ = {i ∈ Stacks | ∃j ∈ Slotsi, |D(sj)| = 1, sj 6∈

ContV }, where there are containers already stowed. The lower bound proce-
dure stows as many containers as possible from ContNp in StacksUρ such that the
height capacity constraint is fulfilled. Once the used stacks are completely filled
up, the empty stacks are sorted in decreasing order by height capacity and filled
up with the remaining containers of ContNρ . The number of used stacks Lu

ρ is

the sum of used stacks |StacksUρ | plus the empty stacks necessary to stow all
remaining containers. Lu

ρ is a lower bound of the number of used stacks of any
completion of ρ since the approach to solve the relaxed problem uses a minimum
number of stacks. The pruning effect is achieved by adding ou ≥ Lu

ρ .

Pure stack. As with the used stack lower bound, a relaxed assignment problem
is solved considering just the height capacity constraint and all containers not yet
stowed as normal height containers. First, we introduce an alternative definition
of the pure stack objective. Let Qi = |{k ∈ Stacks | ∃j ∈ Slotsk . pj = i}| be the
number of stacks where at least one container with discharge port i is stowed.
We can express the pure stack objective as op =

∑

i∈POD Qi. For this definition
of the pure stack objective, we introduce a lower bound for a partial solution
ρ. Let ContN,P=i

ρ be the set of unstowed containers in ρ with discharge port i,

StacksP=i
ρ be the set of stacks stowing at least one container with discharge port

i, and Stacks¬P=i
ρ = Stacks \ StacksP=i

ρ be the set of stacks where no container
with discharge port i is allocated. Our goal is to generate a lower bound Lp

ρ(i)
independently for each Qi, based on the approach followed to generate lower
bounds for the used stacks objective. The pruning effect is achieved by adding
op ≥

∑

i∈POD Lp
ρ(i).
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Reefer. A lower bound Lr
ρ for the reefer objective of a partial solution ρ can

be deduced from a counting argument. Let S¬R
ρ = |{i ∈ SlotsR | si /∈ ContR,

|D(si)| = 1}| denote the number of reefer slots stowing a non-reefer container
in ρ. Clearly, or ≥ S¬R

ρ for any completion of ρ. We tighten the lower bound
of the reefer objective by considering the unstowed reefer containers and the
reefer slots with more than one container in their domain that will not stow a
virtual container. Let CR

ρ denote the number of unstowed reefer containers in ρ.

Further, let SUR
ρ be the reefer slots where no virtual container will be stowed.

If SUR
ρ > CR

ρ then at least SUR
ρ − CR

ρ extra reefer slots will stow non-reefer
containers. Thus, we can tighten Lr

ρ as follows

Lr
ρ =

{

SUR
ρ − CR

ρ + S¬R
ρ : if SUR

ρ > CR
ρ

S¬R
ρ : otherwise.

The pruning effect is achieved as usual by adding or ≥ Lr
ρ.

Height. The domains of auxiliary variables from sequences H and HS are tight-
ened, and some conditions necessary for a partial solution to be viable are
checked by solving three relaxed problems. First, the number of normal and
high-cube containers that can possibly be stowed in the remaining free space
of each stack is calculated. A stack j of some partial solution ρ has free height
hρ(j) = hsj−hs

j , where h
s
j denote the height of the stowed containers in stack j.

Let MN
ρ (j) and MHC

ρ (j) denote the maximum number of normal and high-cube
containers that can be placed in stack j, respectively. We then have

MN
ρ (j) = ⌊hρ(j)/h(N)⌋,

MHC
ρ (j) = ⌊hρ(j)/h(HC )⌋,

where h(N) and h(HC ) denote the height of normal and high-cube contain-
ers. Let CN

ρ and CHC
ρ denote the number of unassigned normal and high-cube

containers of ρ, respectively. Then, all possible stowage plans generated from
partial solution ρ must satisfy

∑

j∈Stacks

MN
ρ (j) ≥ CN

ρ ∧
∑

j∈Stacks

MHC
ρ (j) ≥ CHC

ρ .

Second, since containers cannot hang in the air, they must be stowed consec-
utively, bottom-up in all stacks. Therefore, when the sum of the height of
containers stowed below tier n equals to hsj , slots above tier n will not stow
real containers. We stow virtual containers in slots of stack j that are above
its height upper bound hsj . In the cases where the height of the container to
be stowed is not known yet, it is assumed that the container will have normal
height, since this generates an upper bound in the number of slots used in stack
j. Additionally, the virtual containers are removed from slots that are below
hsj , since these slots must stow real containers. Finally, we update hsj by
applying the bin packing propagation rule suggested in [19]

hsj ≥
∑

i∈Cont

Heighti −
∑

i∈Stacks\{j}

hsi, ∀j ∈ Stacks .
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7. Experiments

The CP and IP models have been implemented in Gecode 3.3 [11] and
CPLEX 12.2, respectively. All the experiments were run on a Linux machine
with two Quad Core Opteron processors at 1.7 GHz and 8 GB of memory. 236
slot planning instances have been derived from complete stowage plans provided
by our industrial collaborator. Each instance is made by restowing a random
location in one of the stowage plans.5 Since the plans have been applied in real
life, we can assume that the containers have been assigned to locations according
to the preferences of stowage coordinators.

In order to characterize hard instances, we have partitioned them into groups
with different features. Table 4 presents the features of each group of instances,
showing the group id, the number of instances in the group, the minimum,
maximum, and average capacity of locations (Cap.) and number of containers
to stow (Cont.) in TEUs, the features of the containers present group (40’,
20’, reefer, and high-cube), and the number of instances with 1, 2 or 3 different
discharge ports in the group.

Notice that the instances have a low number of PODs. This is to expect
from high quality stowage plans that avoid POD mixing. This does not imply
that the instances are easy since instances with a single POD still embeds the
bin-packing problem.

Grp. #inst.
Cap. (TEUs) Cont. (TEUs)

40’ 20’ R HC
#POD

min , max , avg min , max , avg 1 2 ≥ 3

1 13 16 , 116 , 63 8 , 116 , 54 * 13
2 22 8 , 168 , 68 8 , 136 , 52 * 22
3 13 30 , 124 , 74 8 , 124 , 68 * * 13
4 78 6 , 208 , 79 2 , 202 , 63 * * 78
5 36 38 , 176 , 97 8 , 170 , 81 * * * 36
6 15 42 , 172 , 73 16 , 74 , 46 * * 15
7 14 72 , 204 , 147 24 , 202 , 117 * * * * 14
8 14 40 , 148 , 96 40 , 136 , 87 * * * 14
9 17 44 , 220 , 124 36 , 200 , 111 * * * * 15 2
10 8 72 , 176 , 122 10 , 156 , 93 * * * 6 2
11 6 48 , 176 , 101 28 , 148 , 84 * * * * 3 3

Table 4: Grouping of instances.

Figure 4 shows the space utilization as a function of location size. The space
utilization is the number of TEUs to stow divided by the total TEU capacity of
the location. 172 of the 236 instances have a space utilization above 80% which
is to expect from real stowage plans.

7.1. Impact of CP enhancements

We first analyze the impact of the different enhancements of the CP model
introduced in Section 6. We define four CP models. The basic model includes
only the core constraints and objectives of the CSPBDL (19 - 37). A simple
branching strategy is used in this model, where the stacks are filled up bottom-
up from left to right and the container with the smallest index in the domain of

5This allows us to consider more aspects of the problem than the slot planning algorithms
developed for [16]. We assign concrete containers rather than container types and include
high-cube containers and real weight rather than weight classes.
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Figure 4: Utilization as a function of location capacity.

the slot variable to be branched on is stowed in the slot. The improved model
includes the symmetry-breaking and implied constraints from Section 6.1. Its
branching strategy is similar to the basic model, however, the containers are
assigned indices based on their features to avoid conflicts with some of the new
constraints introduced. Finally, the branching and advanced models include the
tailor-made branching strategy introduced in Section 6.2 and the lower bounds
introduced in Section 6.3, respectively.

Recall that we aim at solving CSPBDL instances within one second. The
solver can return an optimal solution before that, but after one second it must
return its current solution. The results are summarised in table 5. Each row
corresponds to one of the instance groups introduced in table 4. The first column
provides the id of the group, the second one shows the percentage of instances of
the group solved by all CP models, and the subsequent columns the percentage
of instances solved and proven optimal by each model independently. The last
row presents the results for the complete set of instances.

Grp. All (%)
Basic Improved Branching Advanced

sol (%) opt (%) sol (%) opt (%) sol (%) opt (%) sol (%) opt (%)

1 100 100 69 100 85 100 100 100 100
2 82 86 54 82 50 91 90 91 91
3 92 92 61 92 69 100 100 100 100
4 74 82 11 83 61 96 90 96 95
5 36 53 11 69 44 89 75 92 89
6 80 80 7 93 40 100 93 100 93
7 36 71 0 64 14 64 29 64 57
8 50 79 14 79 29 93 93 93 93
9 47 76 18 65 12 76 47 76 76
10 75 62 12 87 37 100 62 100 100
11 67 67 17 83 33 83 67 83 83

Total 66 77 21 80 48 89 80 92 90

Table 5: Percentage of instances solved and proven to optimality by the CP models.

The total number of instances solved and proven optimal increases for each
extension of the basic model. A more careful inspection of the table shows that
this does not apply to all groups individually, but overall the impact of the
model improvements are quite similar for each group. The total time needed
for processing all instances is also reduced considerably for each model, from
186.3 seconds for the basic model, to 126.9 seconds for the improved model,
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56.8 seconds for the branching model, and 34 seconds for the advanced model.
Instances not solved were accounted by one second in the total time.

To compare the runtimes of individual instances, we analyse the subset of 156
instances (66.1%) solved by all four CP models (first column of Table 5). The
left graph of Figure 5, shows the runtime of the models for each instance, where
label BA represents the basic model, IM the improved one, and BR and AD the
branching and advance models, respectively. We have sorted the instances such
that the expected runtime dominance between the models is clearly observable.
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Figure 5: Runtime (left) and optimality dominance (right) of the four CP models.

The right graph shows the optimality gap of 39 out of the 156 instances that
at least one model solved suboptimally, the labels follow the same conventions
as in the left graph. Again, we have sorted the instances to highlight a quite
robust optimality dominance between the models.

Wrt. the hardness of different instance groups, the results in Table 5 indicate
that instances with many features (group 8-11) are slightly harder than instances
with few features. In particular, instances only stowing 40’ containers (group 1
and all even groups except 2) are significantly easier than instances stowing both
20’ and 40’ containers. Interestingly, there is no significant positive correlation
between space utilization and runtime. This is surprising as one would expect
the hardness of slot planning problems to increase with space utilization.

7.2. Comparing the performance of the IP and CP models

In this section, we compare the performance of the IP and CP model using
a one second and 10 seconds runtime limit. Table 6 summarizes the percentage
of instances solved, proven to optimality, and runtime of the models over the
instance groups. The runtime of each instance group is calculated by summing
up the time taken for solving all the instances in the group. Unsolved instances
were accounted by the time limit of the experiment. The upper table shows the
results of the experiments with a one second time limit. The CP model is clearly
dominant in all groups in both, number of instances solved and instances solved
optimally. In total, the CP model solves 28% more instances than the IP model
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in a quarter of the time. When the time limit is extended to 10 seconds (lower
table in Table 6), the IP model increases the number of instances solved by a
22% and the ones solved optimally by a 17%. The runtime, however, increases
by a factor of five. The instances solved by the CP model increases by a modest
1.7%, and the ones solved optimally by 3.8%, while the runtime increases a
factor of six. The total time of the CP model, however, is still around a quarter
of the IP model.

Grp.
CP 1 sec. IP 1 sec.

sol (%) opt (%) time (s) sol (%) opt (%) time (s)

1 100 100 0.1 100 100 1.7
2 91 91 3.6 59 59 11.6
3 100 100 0.5 54 54 8.9
4 96 95 6.0 87 79 27.7
5 92 89 7.1 33 28 31.3
6 100 93 1.2 100 93 4.0
7 64 57 6.8 29 21 11.2
8 93 93 1.5 43 36 10.6
9 76 76 5.2 24 24 14.8
10 100 100 0.7 62 62 4.4
11 83 83 1.3 50 50 3.5

Total 92 90 34 64 59 129.8

Grp.
CP 10 sec. IP 10 sec.

sol (%) opt (%) time (s) sol (%) opt (%) time (s)

1 100 100 0.1 100 100 1.8
2 91 91 21.6 95 91 50.4
3 100 100 0.5 92 85 35.3
4 99 99 19.7 96 94 87.0
5 92 92 39.0 72 56 192.0
6 100 100 5.4 100 93 13.0
7 64 64 53.5 64 29 102.8
8 93 93 10.5 79 64 74.1
9 88 88 36.5 53 41 112.3
10 100 100 0.7 88 62 31.5
11 83 83 10.3 67 50 30.5

Total 94 94 198 86 76 730.9

Table 6: Results for the CP and IP models with a 1 second (upper table) and 10 seconds
(lower table) limit.

The hardness of instances for the IP model is similar to that of the CP model:
instances with many features are slightly harder than instances with few, and
instances stowing 40’ containers only are easier than instances stowing both 20’
and 40’ containers.

As in the CP experiment, we now focus on the instances solved by both
models. Table 7 summarizes the results of the experiments with one and ten
seconds time limit, showing the percentage of instances solved by both models,
only the IP model, only the CP model, and none of them. For the one second
time limit experiment, a total of 148 instances (63%) are solved by both models.
All solutions produced by the CP model are optimal. The IP model produced 2
suboptimal solutions with optimality gap of 67% and 214%. For the 10 seconds
time limit experiment, the number of instances solved by both models increased
by 19% (45 instances). The number of suboptimal solutions also increased for
the IP model (from 2 to 8), with optimality gap ranging from 3.1% to 317%.
The suboptimal instances are spread over 6 different groups.

8. Conclusions

In this paper, we have introduced an accurate definition called CSPBDL of
stowing a set of containers in a bay section. The CSPBDL is NP-hard and is
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Grp.
1 sec. 10 sec.

both (%) IP (%) CP (%) none (%) both (%) IP (%) CP (%) none (%)

1 100 0 0 0 100 0 0 0
2 55 5 35 5 82 14 4 0
3 54 0 46 0 92 0 8 0
4 86 1 10 3 95 1 4 0
5 33 0 58 9 67 6 24 3
6 100 0 0 0 100 0 0 0
7 29 0 36 35 50 14 22 14
8 43 0 50 7 71 8 21 0
9 24 0 53 24 53 0 35 12
10 62 0 38 0 88 0 12 0
11 50 0 33 17 67 0 17 16

Tot 63 1 29 7 82 4 11 3

Table 7: Results for the instances solved by any of the two models with one and 10 seconds
time limit.

an important sub-problem of the successful multi-phase approaches to stowage
planning optimization. We have developed two CP and IP models to solve the
CSPBDL optimally. Our computationally results show that both models can be
solved fast and that it is possible to improve the performance of the CP model
such that it can produce optimal solutions for 90% of 236 industrial instances
in less than one second, which is well within the time requirements for practical
stowage support tools. Future research includes improving the performance
and stability of our solvers (e.g., diving heuristics and other techniques may be
used to improve the IP model) and extending the CSPBDL to include on deck
locations and special containers such as out-of-gauge, pallet-wide, and containers
with dangerous goods.
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