
www.itu.dk

Asynchronous and parallel F# 3
&

Asynchronous and parallel C# 4.5

Peter Sestoft
BSWU 2014-04-24

1

www.itu.dk

Agenda
•  Why is parallel programming important?
•  CPU-bound parallelism in F# 3.0
•  I/O-bound parallelism in F# 3.0

•  Tasks in .NET 4.0, illustrated with C#
•  Asynchronous programming in C# 4.5

2

www.itu.dk

Why parallel programming?
•  Until 2004, CPUs became faster every year

–  So sequential software became faster every year
•  Today, CPUs are still 2-4 GHz as in 2004

–  So sequential software has not become much faster
•  Instead, we get

–  Multicore: 2, 4, 8, ... CPUs on a chip
–  Vector instructions (4 x MAC) built into CPUs
–  Superfast Graphics Processing Units (GPU)

•  96 simple CUDA codes in this 2009 laptop
•  448 simple but fast CUDA cores in Nvidia Tesla co-processor
•  1536 simple (single-precision) CUDA cores in Nvidia Kepler

•  Herb Sutter: The free lunch is over (2005)
•  More speed requires parallel programming

–  But parallel programming is difficult and errorprone
–  ... with existing means: threads, synchronization, ...

3

www.itu.dk

Why functional parallel
programming?

•  What is the purpose of synchronization?
– To avoid conflicting updates of shared data

•  Functional programming
– No updates to shared data
–  Instead: copying, partial sharing, intermediate

data structures, message passing, agents, ...
•  Some consensus this is the way forward

– Even in the press: Economist, 2 June 2011
http://www.economist.com/node/18750706

– Hiperfit project, www.hiperfit.dk
– Actulus project, www.actulus.dk

4

www.itu.dk

Nvidia's chief scientist says...

5

Making it easy to program a machine that requires 10
billion threads to use at full capacity is also a challenge.

While a backward compatible path will be provided to
allow existing MPI codes to run, MPI plus C++ or Fortran
is not a productive programming environment for a
machine of this scale.

We need to move toward higher-level programming
models where the programmer describes the
algorithm with all available parallelism and
locality exposed, and tools automate much of the
process of efficiently mapping and tuning the program
to a particular target machine.

Bill Dally in HPC Wire, 15 April 2013

CPU-bound
parallel programming in F#

•  A slow, CPU-consuming operation:

6

let rec slowfib n =
 if n<2 then 1.0 else slowfib(n-1) + slowfib(n-2);;

•  Computing two Fibonacci numbers:
let fibs = [slowfib(39); slowfib(40)];;
// Real: 00:00:04.263, CPU: 00:00:04.264

•  Doing it in parallel, F# 2.0:
let fibs =
 let tasks = [async { return slowfib(39) };
 async { return slowfib(40) }]
 Async.RunSynchronously (Async.Parallel tasks);;
// Real: 00:00:02.657, CPU: 00:00:04.260

let fib40 = slowfib(40);;
// Real: 00:00:02.634, CPU: 00:00:02.634

Two CPUs

F# 3.0.0.0
Mono 3.2.7
MacOS 10.6.8
Core 2 Duo

www.itu.dk

More CPU-bound
parallel programming in F#

7

•  Computing 41 Fibonacci numbers:
let fibs = [for i in 0..40 -> slowfib(i)];;
// Real: 00:00:06.908, CPU: 00:00:06.908

•  Doing it in parallel:
let fibs =
 let tasks = [for i in 0..40 -> async { return slowfib(i) }]
 Async.RunSynchronously (Async.Parallel tasks);;
// Real: 00:00:03.665, CPU: 00:00:06.887

Same as
"do yield"

www.itu.dk

Dissecting the example

8

async { return slowfib(i) }

let tasks =
 [for i in 0..40 -> async { return slowfib(i) }]

Async.Parallel tasks

Async.RunSynchronously (Async.Parallel tasks)

let tasks = [for i in 0..40 -> async { return slowfib(i) }]
Async.RunSynchronously (Async.Parallel tasks);;

Async<float>

Async<float> list

Async<float []>

float []

An asynchronous task that will produce a float

List of asynchronous tasks that each will produce a float

An asynchronous task that will produce a float array

A float array

www.itu.dk

Asynchronous operations in F#
•  An async { ... } expression produces an

asynchronous task, Async<t>
•  When return e inside where e has type t
•  let! res = e will run e and bind the result

to res of type u, when e has type Async<u>
•  Async.RunSynchronously(asy) will run

computation asy and wait for its completion
•  Async.Parallel(asys) creates a new

asynchronous task that will run all asys and
return an array of their results

9

www.itu.dk

Finding prime factors
•  Prime factors of a number

•  Prime factors of 0..100000

•  Same, in parallel

10

factors 973475;;
val it : int list = [5; 5; 23; 1693]

Array.init 100000 factors;;
Real: 00:00:03.036, CPU: 00:00:03.035, GC gen0: 1, gen1: 0
val it : int list [] =
 [|[]; []; [2]; [3]; [2; 2]; [5]; [2; 3]; [7]; ... |]

let factors100000 = Array.Parallel.init 100000 factors;;
Real: 00:00:01.550, CPU: 00:00:03.048, GC gen0: 1, gen1: 0
val factors100000 : int list [] =
 [|[]; []; [2]; [3]; [2; 2]; [5]; [2; 3]; [7]; ... |]

Array.init : int -> (int -> 'a) -> 'a []

www.itu.dk

The number of prime factors

•  The heavy task, factorization, is parallelized
•  The easy task, counting, is sequential
•  Compare C# version cs/FactorsParallel.cs

– Exactly same performance
– Easy to forget synchronization => wrong results!!

11

let histogram = Array.init 100000 (fun i -> 0)
let incr i = histogram.[i] <- histogram.[i] + 1
Array.iter (fun fs -> List.iter incr fs) factors100000;;

Real: 00:00:00.054, CPU: 00:00:00.054, GC gen0: 0, gen1: 0

val histogram : int [] =
 [|0; 0; 99989; 49995; 0; 24994; 0; 16662; 0; 0; 0;
 9997; 0; 8331; 0; 0; 0; 6249; 0; 5554; 0; 0; 0;
 4544; 0; 0; 0; 0; 0; 3570; 0; 3332; 0; 0; 0; ... |]

www.itu.dk

More concurrency: I/O-bound
parallel programming in F#

•  Let us find the sizes of some homepages

12

let urls = ["http://www.itu.dk"; "http://www.diku.dk";
 ...];;

let lengthSync (url : string) =
 printf ">>>%s>>>\n" url
 let wc = new WebClient()
 let html = wc.DownloadString(Uri(url))
 printf "<<<%s<<<\n" url
 html.Length;;

lengthSync("http://www.diku.dk");;

[for url in urls -> lengthSync url];;

Doing it in parallel,
even with just 1 CPU

•  Because the webservers work in parallel

13

let lens =
 let tasks = [for url in urls -> async { return lengthSync url }]
 Async.RunSynchronously(Async.Parallel tasks);;

•  Better: Let IO system deal with responses:
let lengthAsync (url : string) =
 async {
 printf ">>>%s>>>\n" url
 let wc = new WebClient()
 let! html = wc.AsyncDownloadString(Uri(url))
 printf "<<<%s<<<\n" url
 return html.Length
 };;

let lens =
 let tasks = [for url in urls -> lengthAsync url])
 Async.RunSynchronously(Async.Parallel tasks);;

Not optimal

www.itu.dk

Why not async { ... lengthSync ... }?
•  The thread will block while waiting for

synchronous call wc.DownloadString(...)
•  The new wc.AsyncDownloadString(...) is

asynchronous
– Will send a web request
– Will release the calling thread
– When a response arrives, it will continue

computation (maybe on a different thread)
•  So can have many more active requests than

there are threads
– Very bad to have more than 1,000 threads
– But 50,000 async concurrent requests is fine

14

www.itu.dk

Parallel and asynchronous C#
•  The async { ... } concept arose in F# 2.0
•  The C# and .NET people adopted it

– And changed it somewhat
•  It is part of .NET 4.5 and C# 4.5

15

Reminder: C# delegates, lambdas
delegate R Func<R>();
delegate R Func<A1,R>(A1 x1);
...
delegate void Action();
delegate void Action<A1>(A1 x1);
...

unit -> R
A1 -> R

Func<int> fun1 = delegate() { return 42; };
Func<int> fun2 = () => 42;
Func<int,double> fun3 = x => x*Math.PI;
int r1 = fun1() + fun2();
double r2 = fun3(2);

Action act1 = delegate() { Console.Write("Hello!"); };
Action act2 = () => { Console.Write("Hello!"); };
Action<int> act3 = x => { r1 += x; };
act1(); act2(); act3(42);

Ty
pe

s
Ex

pr
es

si
on

s

unit -> unit
A1 -> unit

Parallel.For in .NET via C#
•  Example: 50x50 matrix multiplication

17

for (int r=0; r<rRows; r++)
 for (int c=0; c<rCols; c++) {
 double sum = 0.0;
 for (int k=0; k<aCols; k++)
 sum += A[r,k]*B[k,c];
 R[r,c] = sum;
 }

Parallel.For(0, rRows, r => {
 for (int c=0; c<rCols; c++) {
 double sum = 0.0;
 for (int k=0; k<aCols; k++)
 sum += A[r,k]*B[k,c];
 R[r,c] = sum;
 }
});

Sequential,
5575 ms/mult

Parallel,
1800 ms/mult

4-
co

re
 X

eo
n

www.itu.dk

What does Parallel.For do

Parallel.For(m, n, body)
executes body(m), body(m+1), ..., body(n-1)
in some order, possibly concurrently

18

Parallel.For(0, rRows, r => {
 for (int c=0; c<rCols; c++) {
 double sum = 0.0;
 for (int k=0; k<aCols; k++)
 sum += A[r,k]*B[k,c];
 R[r,c] = sum;
 }
});

Delegate of
type

Action<int>

www.itu.dk

Parallel.Invoke

19

static double SlowFib(int n) { ... heavy job ... }

•  Assume we need to compute this:

double fib40 = 0.0, fib43 = 0.0;
Parallel.Invoke(delegate { fib40 = SlowFib(40); },
 delegate { fib43 = SlowFib(43); });
double result = fib40 * 3 + fib43;

•  Use Invoke to compute in parallel:

double result = SlowFib(40) * 3 + SlowFib(43);

•  Sanity check: What is the best speed-up this
can give?

www.itu.dk

Parallel.For for web access

20

•  Get a protein's amino acid sequence from
NCBI:

static String[] NcbiProteinParallel(params String[] ids) {
 String[] res = new String[ids.Length];
 Parallel.For(0, ids.Length,
 i => { res[i] = NcbiProtein(ids[i]); });
 return results;
}

•  Get many proteins in parallel:

static String NcbiEntrez(String query) {
 byte[] bytes = new WebClient().DownloadData(new Uri(...));
 return ASCIIEncoding.ASCII.GetString(bytes);
}
static String NcbiProtein(String id) {
 return NcbiEntrez("efetch.fcgi?db=protein&id=" + id);
}

This is thread-safe. Why?

www.itu.dk

IList<String> results = new List<String>();
Parallel.For(0, ids.Length,
 i => { String res = NcbiProtein(ids[i]);
 results.Add(res);
 });

Locking

21

•  Try to put results into an array list (wrong):

Multiple concurrent
updates, so wrong results

•  Need to lock on the array list:
IList<String> results = new List<String>();
Parallel.For(0, ids.Length,
 i => { String res = NcbiProtein(ids[i]);
 lock (results)
 results.Add(res);
 });

Why not inline res in the call:
results.Add(NcbiProtein(ids[i]))?

www.itu.dk

b1.Click += async delegate(Object sender, EventArgs e)
 {
 b1.Enabled = false;
 b1.Text = "(Computing)";
 Console.Write("\nComputing SlowFib({0}) = ", n);
 double result = await SlowFibAsync(n++);
 Console.WriteLine(result);
 b1.Text = "Next Fib";
 b1.Enabled = true;
 };

Asynchronous actions; GUI example
•  Actions may block the GUI thread

– Eg long-running computations
– Eg access to network, disk, remote server

•  Asynchronous actions avoid this problem

22

www.itu.dk

General tasks for asynchrony
•  Class Task

– Asynchronous activity that returns no result
– Typically created from an Action delegate
– Executes on a task scheduler
–  ... which can execute many tasks on few threads
– A task is not a thread

•  Class Task<T> subclass of Task
– Asynchronous activity that returns result of type T
– Typically created from a Func<T> delegate
– Called a "Future" by Lisp and Java people

23

www.itu.dk

Operations on Task and Task<T>
•  Task.Run(Action act)

–  started Task that executes act()
•  Task.Run(Func<T> fun)

–  started Task<T> that executes fun(), gives its result
•  Task.Delay(ms)

–  started task that delays for ms milliseconds

•  t.Wait()
–  block until t is complete

•  t.Result (when t is Task<T>)
–  block until t is complete and then return its result

•  t.ContinueWith(Action<Task> cont)
–  task that executes cont(t) when t completes

•  t.ContinueWith<U>(Func<Task,U> cont)
–  task that executes cont(t) when t completes

24

www.itu.dk

static Task<double> SlowFibTask(int n) {
 return Task.Run(() => SlowFib(n));
}

A task to compute SlowFib

25

•  Create Task<double> from delegate:

•  Returns a task, that when run, will compute
SlowFib(n)

•  How to use the task:
Task<double> task = SlowFibTask(n);
... task may now be running ...
Console.WriteLine(task.Result);

type Func<double>

www.itu.dk

Task states (task.Status)
•  RanToCompletion = terminated successfully
•  Faulted = task threw exception
•  Canceled = was cancelled, acknowledged it
•  Completed = any of the above

26

www.itu.dk

static Task<String> NcbiEntrezTask(String query) {
 return new WebClient().DownloadDataAsync(new Uri(...))
 .ContinueWith((Task<byte[]> task) =>
 ASCIIEncoding.ASCII.GetString(task.Result));
}

Tasks for web access

27

•  Read bytes, then convert to String:

•  The result of the method is a started task t
•  The task performs the download asynchronously
•  When the download completes,

•  the download task is bound to task
•  the task.Result byte array is transformed to a

String and becomes the result of the task t

New (4.5)

static Task<String> NcbiProteinTask(String id) {
 return NcbiEntrezTask("efetch.fcgi?...&db=protein&id="+id);
}

www.itu.dk

Aggregate task operations (C# 4.5)
•  Task.WhenAll(params Task[] ts)

–  task that completes when all of tasks ts complete
(aka concurrency "barrier")

•  Task.WhenAll(params Task<T>[] ts)
–  task that completes when all of ts complete,

returning a T[] containing their results

•  Task.WhenAny(params Task[] ts)
•  Task.WhenAny(params Task<T>[] ts)

–  task that completes when any of the ts complete,
returning one of the ts that completed

28

www.itu.dk

static Task<String[]> NcbiProteinParallelTasks(String[] ids) {
 IEnumerable<Task<String>> tasks
 = from id in ids select NcbiProteinTask(id);
 return Task.WhenAll(tasks);
}

Tasks for parallel web access

29

•  Get many proteins in parallel

•  How to use it:
 ShowResult(NcbiProteinParallelTasks("P01308", ...).Result);

>gi|124617|sp|P01308.1|INS_HUMAN RecName: Full=Insulin; ...
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGG
GPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN

>gi|12643972|sp|P01315.2|INS_PIG RecName: Full=Insulin; ...
MALWTRLLPLL...

www.itu.dk

static Task<double> SlowFibTimeout1Task(int n) {
 Task<double> slow = SlowFibTask(n);
 return Task.WhenAny(slow, TaskEx.Delay(1000))
 .ContinueWith<double>((Task<Task> task) =>
 task.Result==slow ? slow.Result : -1
);
}

Implementing task timeouts

30

•  Use WhenAny to await task or a Delay:

•  When the slow task or the Delay completes,
so does the WhenAny task

•  The WhenAny task gets bound to variable task
•  The task.Result is the completed task

•  If the slow task completed, return its result
•  Otherwise the slow task timed out, return -1

www.itu.dk

Task cancellation
•  One cannot "kill", "stop" or "suspend" a task
•  But one can request cancellation, and the

task can check for and acknowledge (or not)

31

public static void ComputeTask(CancellationToken token) {
 for (int i=0; i<100000000; i++)
 token.ThrowIfCancellationRequested();
}

CancellationTokenSource cts = new CancellationTokenSource();
CancellationToken token = cts.Token;
Task task = Task.Run(() => ComputeTask(token), token);

cts.Cancel();
// task.Wait();

Check and
acknowledge

Running
Canceled

Would throw AggregateException
containing TaskCanceledException

www.itu.dk

Exceptions in tasks
•  An exception exn thrown by a task is not

propagated to the task's creator
•  Instead

–  the task is moved to state Faulted
–  t.Wait() and t.Result will throw an

AggregateException containing exn
– WaitAll collects thrown exceptions from subtasks

32

www.itu.dk

Tasks versus threads
•  A task is executed on a task scheduler

– Typically many tasks run on a few threads
– Because tasks may be blocked not on CPU work

but input/output, GUI, net, GPU, ...
– A task typically takes up few resources (just a

representation of what to do when resumed)
•  A thread might be used to represent a task

– But a thread takes up many more resources
– Eg each thread has a method call stack in the VM
– Eg many threads slow down garbage collection

(certainly in IBM JVM, not sure about .NET)
•  The default task scheduler is based on the

ThreadPool (in .NET 4.0 and 4.5)

33

www.itu.dk

Asynchronous methods (C# 4.5)
•  Tasks allow compositional asynchrony
•  But using ContinueWith gets rather hairy

•  C# 4.5 has asynchronous methods
– Declared using async keyword
– Must return Task or Task<T> or void
– May contain await e where e is a task
– The rest of the method is the continuation of e

•  Implementation of asynchronous method:
–  the compiler rewrites it to a state machine
– much like yield return in iterator methods

34

www.itu.dk

static async Task<String> NcbiEntrezAsync(String query) {
 byte[] bytes = await new WebClient().DownloadDataAsync(...));
 return ASCIIEncoding.ASCII.GetString(bytes);
}

Asynchronous web download

35

•  Declare the method async
•  Use await instead of ContinueWith(...)

•  Use as before, or from other async methods:

static async Task<String> NcbiProteinAsync(String id) {
 return await NcbiEntrezAsync("efetch.fcgi?...&id=" + id);
}

static async Task<String[]> NcbiProteinParallelAsync(... ids) {
 var tasks = from id in ids select NcbiProteinAsync(id);
 return await Task.WhenAll(tasks);
}

www.itu.dk

static async Task<double> SlowFibTimeoutAsync(int n) {
 Task<double> slow = SlowFibTask(n);
 Task completed = await Task.WhenAny(slow, Task.Delay(1000));
 return completed == slow ? slow.Result : -1;
}

Timeout rewritten with async/await

36

•  Much clearer than the ContinueWith version:

•  Use as before ...

www.itu.dk

Composing asynchronous methods
•  An NCBI PubMed query is done in two phases

– First do an esearch to get a WebKey in XML
– Then use efetch and the WebKey to get results

•  To do this asynchronously using Task and
ContinueWith would be quite convoluted

•  Rather easy with asynchronous methods:

37

static async Task<String> NcbiPubmedAsync(String term) {
 String search = String.Format("esearch.fcgi?...", term);
 XmlDocument xml = new XmlDocument();
 xml.LoadXml(await NcbiEntrezAsync(search));
 XmlNode node = xml["eSearchResult"];
 String fetch = String.Format("...&db=Pubmed&WebEnv={1}", ...
 node["WebEnv"].InnerText);
 return await NcbiEntrezAsync("efetch.fcgi?...&" + fetch);
}

www.itu.dk

Composability, general timeout
•  Async methods can be further composed, eg

– do all tasks asynchronously using WhenAll
– do some task asynchronously using WhenAny
– do task, subject to timeout
– etc

•  A general timeout task combinator

38

static async Task<T> Timeout<T>(Task<T> task, int ms, T alt) {
 if (task == await Task.WhenAny(task, Task.Delay(ms)))
 return task.Result;
 else
 return alt;
}

www.itu.dk

Rules for C# asynchronous methods
•  Cannot have out and ref parameters
•  If the method's return type is Task

–  it can have no value-returning return e; stmts.
•  If the method's return type is Task<T>

–  then all paths must have a return e; stmt.
where e has type T

•  In an await e expression,
–  if e has type Task then await e has no value
–  if e has type Task<T> then await e has type T

39

www.itu.dk

References
•  The importance of "popular parallel programming"

–  Free Lunch is Over: http://www.gotw.ca/publications/concurrency-ddj.htm
–  http://www.cra.org/uploads/documents/resources/rissues/

computer.architecture_.pdf
–  http://www.nitrd.gov/subcommittee/hec/materials/ACAR1_REPORT.pdf
–  http://www.scala-lang.org/sites/default/files/pdfs/esynopsis.pdf

•  F# 3.0 asynchronous programming
–  http://msdn.microsoft.com/en-us/library/dd233250.aspx (Asynch Workfl)
–  http://msdn.microsoft.com/en-us/library/ee353679.aspx (WebClient)
–  http://tomasp.net/blog/csharp-fsharp-async-intro.aspx
–  http://en.wikibooks.org/wiki/F_Sharp_Programming/Async_Workflows

•  F# parallel programming
–  http://tomasp.net/blog/fsharp-parallel-samples.aspx
–  http://tomasp.net/blog/fsharp-parallel-plinq.aspx
–  http://tomasp.net/blog/fsharp-parallel-aggregate.aspx
–  http://tomasp.net/blog/fsharp-parallel-adash.aspx

•  C# parallel (4.0) and asynchronous (5.0) programming
–  Sestoft: C# Precisely 2nd ed chapters 22 and 23
–  Microsoft technical notes, see refs. in C# Precisely chapter 34

40

