Asynchronous and parallel F# 3
&
Asynchronous and parallel C# 4.5

Peter Sestoft
BSWU 2015-03-12

ié IT University of Copenhagen www.itu.dk

Agenda

e Why is parallel programming important?
e CPU-bound parallelism in F# 3.0
e I/O-bound parallelism in F# 3.0

e Tasks in .NET 4.0, illustrated with C#
e Asynchronous programming in C# 4.5

& 1T University of Copenhagen www.itu.dk

Why parallel programming?

Until 2004, CPUs became faster every year
— So sequential software became faster every year

Today, CPUs are still ca. 3 GHz as in 2004
— S0 sequential software has not become much faster

Instead, we get
— Multicore: 2, 4, 8, ... CPUs on a chip
— Vector instructions (4 x MAC) built into CPUs

— Superfast Graphics Processing Units (GPU)
e 384 simple CUDA codes in this 2014 laptop
e 2880 simple (single-precision) CUDA cores in Nvidia GK110

Herb Sutter: The free lunch is over (2005)

More speed requires parallel programming
— But parallel programming is difficult and errorprone
- ... with existing means: threads, synchronization, ...

& 1T University of Copenhagen www.itu.dk

Herb Sutter: The free lunch is over, Dr Dobbs, 2005.

Figure updated August 2009.

http://www.gotw.ca/publications/concurrency-ddj.htm

The free lunch is over:
No more growth in single-core speed

10,000,000
/
Dug s ul /
1,000,000 -
-]
Intel CPU Trends 4
(sources: Intel, Wikipedia, K. Olukotun) -
100,000
10,000
1,000
100 —_—
10
1 m Transistors (000) -
PY ° ° @ Clock Speed (MHz)
X] A Power (W)
© Perf/Clock (ILP)
0 l l l
1970 1975 1980 1985 1990 1995 2000 2005 2010

Why parallel
programming?
e What is the purpose of synchronization?
— To avoid conflicting updates of shared data

e Functional programming
— No updates to shared data

- Instead: copying, partial sharing, intermediate
data structures, message passing, agents, ...

e Some consensus this is the way forward

— Even in the press: Economist, 2 June 2011
http://www.economist.com/node/18750706

— Hiperfit project, www.hiperfit.dk
— Actulus project, www.actulus.dk
— MSc course http://www.itu.dk/people/sestoft/itu/PCPP/E2014/

&> [T University of Copenhagen www.itu.dk 6

CPU-bound

parallel programming in F#
e A slow, CPU-consuming operation:

let rec slowfib n =
if n<2 then 1.0 else slowfib(n-1) + slowfib(n-2);;

let fib42 = slowfib (42);; -

// Real: 00:00:02.328, CPU: 00:00:02.328 Mono 3.12.0
MacOS 10.9.5

e Computing two Fibonacci numbers: [inteli7. 4 core

let fibs = [slowfib(41l); slowfib(42) 1];;
// Real: 00:00:03.778, CPU: 00:00:03.778

e Doing it in parallel

let fibs =
let tasks = [async

eturn slowfib (41l) };
{ return slowfib (42) }]

Async.RunSynch ously (Async.Parallel tasks);;
// Real: 00:00402.462) CPU: oo:oo

parallelfib.fs

More CPU-bound
parallel programming in F#
e Computing 43 Fibonacci numbers:

let fibs = [for 1 in 0..42 do yield slowfib (i)];;
// Real: 00:00:06.385, CPU: 00:00:06.386

e Doing it in parallel:

let fibs =
let tasks =
[for 1 in 0..42 do yield async { return slowfib(i) }]
Async.RunSynchronously (Async.Parallel tasks);;
// Real: 00:00:02.662, CPU: 00:00:07.352

2.4 x faster on a 4-core machine

&> [T University of Copenhagen www.itu.dk 8

Dissecting the example

let tasks = [for 1 in 0..42 do yield async { return slowfib (i) }
Async.RunSynchronously (Async.Parallel tasks);;

async { return slowfib (i) } Async<float>
An asynchronous task that will produce a float

let tasks = Async<float> list
[for i in 0..42 do yield async { return slowfib(i) }]

List of asynchronous tasks that each will produce a float

Async.Parallel tasks Async<float []>

An asynchronous task that will produce a £loat array

Async.RunSynchronously (Async.Parallel tasks) float []
A float array

& 1T University of Copenhagen www.itu.dk 9

Asynchronous operations in F#

e An async { ... } expression produces an
asynchronous task, Async<t>

— In return r inside { ... } the r must have type t

« let! res = e Will run e and bind the result
to res of type u, when e has type Async<u>

e Async.RunSynchronously(asy) will run
computation asy and wait for its completion

e Async.Parallel(asys) creates a new
asynchronous task that will run all asys and
return an array of their results

&> [T University of Copenhagen www.itu.dk 10

Finding prime factors

e Prime factors of a number

factors 973475; ;
val it : int list = [5; 5; 23; 1693]

Array.init : int -> (int -> 'a) -> 'a []

Prime factors of 0..500000

Array.init 200000 factors;;
Real: 00:00:09.070, CPU: 00:00:09.072

val it : int list [] =
[101; [1; [21; [31; [2; 2]; [51; [2; 31; [7]1; ... |1

e Same, in parallel, 4.6 x faster

let factors200000 = Array.Parallel.init 200000 factors;;
Real: 00:00:01.948, CPU: 00:00:15.124
val factors200000 : int list [] =

[101: [1; [21; [31; [2; 2]; [5]1:; [2; 31; [71; ... |1

&> [T University of Copenhagen www.itu.dk

11

parallel2015.fs

The number of prime factors

let histogram = Array.init 200000 (fun i -> 0)
let incr i = histogram.[i] <- histogram.[i] + 1
Array.iter (fun fs -> List.iter incr fs) factors200000;;

Real: 00:00:00.114, CPU: 00:00:00.115

val histogram : int []
[10; O; 199988; 99996; 0, 49993; 0, 33330; 0, O0; O;
19997; 0; 16665; 0; O, O0,; 12498; O, 11110; O0; O; O;
9089; 0; O0; O0; O, O, 7141; 0O0; 6665; 0, 0; O; O; ... |1

e The heavy task, factorization, is parallelized
e The easy task, counting, is sequential

Compare “imperative” C# version next slide

J [T University of Copenhagen www.itu.dk 12

The same In C#

readonly int[] histogram = new int[200000];
static List<int> Factors(int n) {
List<int> factors = new List<int> () ;
int d = 2;

while (n > 1) {
if (n $d == 0) {
factors.Add (d) ;

lock (histogram)
histogram[d]++;
n /= d;
} else
d++;
}

return factors;

}

List<int>[] factors200000 = new List<int>[200000];
Parallel.For (0, 200000,
n => { factors200000[n] = Factors(n); });

e Exact same performance as F#
— But easy to forget locking => wrong results!!

FactorsParallel.cs

.’IC;? IT University of Copenhagen www.itu.dk 13

Better: Functional parallel C#

e Parallelize the hard work:

var factors200000 =
Enumerable.Range (0, range)
.AsParallel ()
.Select (i => Factors(1i));

e Then do the fast work sequentially:

int[] histogram = new int[range];
foreach (List<int> factors in factors200000)
foreach (int factor in factors)
histogram|[factor] ++;

e Learn functional programming also to
become better C# and Java developers
— Not least for parallel programming

&> [T University of Copenhagen www.itu.dk

14

FactorsStreams.cs

More concurrency: I/0-bound
parallel programming in F#
e | et us find the sizes of some homepages

let urls = ["http://www.itu.dk"; "http://www.diku.dk";
N

let lengthSync (url : string) =

let wc = new WebClient()
let html = wc.DownloadString (Uri (url))

html .Length; ;
lengthSync ("http://www.diku.dk") ;;

[for url in urls do yield lengthSync url];;

&> [T University of Copenhagen www.itu.dk 15

Doing it in parallel,
even with just 1 CPU
e Because the webservers work in par.

let lens =
let tasks = [for url in urls do yield async { return lengthSync url }
Async.RunSynchronously (Async.Parallel tasks);;

e Better: Let I/O system deal with responses:

let lengthAsync (url : string) =
async {
printf ">>>%s>>>\n" url
let wc = new WebClient ()
let! html = wc.AsyncDownloadString (Uri (url))
printf "<<<%$s<<<\n" url
return html.Length

} i

async.cs

let lens =
let tasks = [for url in urls -> lengthAsync url])
Async.RunSynchronously (Async.Parallel tasks);;
16

Why not async { ... lengthSync ... }?

e The thread will block while waiting for
synchronous call wc.DownloadString(...)

e Better use wc.AsyncDownloadString(...)
which is asynchronous
— Will send a web request
— Will release the calling thread

— When a response arrives, it will continue
computation (maybe on a different thread)

e S0 can have many more active requests than
there are threads
- Very bad to have more than 500 threads
— But 50,000 async concurrent requests is fine

& 1T University of Copenhagen www.itu.dk 17

Parallel and asynchronous C#

e The async { ... } concept arose in F# 2.0

e The C# and .NET people adopted it
— And changed it somewhat

o It is part of .NET 4.5 and C# 4.5

&> [T University of Copenhagen www.itu.dk

18

Reminder: C# delegates, lambdas

delegate R Func<R>() ; —
delegate R Func<Al,R>(Al x1); E—

delegate void Action() ;
delegate void Action<Al> (Al x1); —

Func<int> funl = delegate() { return 42; };
Func<int> fun2 = () => 42;

Func<int,double> fun3 = x => x*Math.PI;

int rl = funl () + fun2();

double r2 = fun3(2);

Action actl = delegate() { Console.Write("Hello!"); };
Action act2 = () => { Console.Write("Hello!"); }:
Action<int> act3 = x => { rl += x; };

actl(); act2(); act3(42);

Parallel.For in .NET via C#

e Example: 50x50 matrix multiplication

for (int r=0; r<rRows; r++)
for (int c=0; c<rCols; c++) {
double sum = 0.0;
for (int k=0; k<aCols; k++)
sum += A[r,k]*B[k,c];
R[r,c] = sum;

}

Parallel.For (0, rRows, r => {
for (int c=0; c<rCols; c++) {
double sum = 0.0;
for (int k=0; k<aCols; k++)
sum += A[r,k]*B[k,c];
R[r,c] = sum;
}
}) g

Sequential,
5575 ms/mult

Parallel,
1800 ms/mult

4-core Xeon

Examplel68.cs

20

What does Parallel.For do

Parallel.For (0, rRows, r => {
for (int c=0; c<rCols; c++) {
double sum = 0.0;
for (int k=0; k<aCols; k++)
sum += A[r,k]*B[k,c];
R[r,c] = sum;
}
}) g

Parallel.For(m, n, body)
executes body (m), body (m+1), ..., body (n-1)
in some order, possibly concurrently

21

':é;’ IT University of Copenhagen www.itu.dk

static double SlowFib(int n) { ... heavy job ... }

e Assume we need to compute this:

double result = SlowFib(40) * 3 + SlowFib (43) ;

e Use Invoke to compute in parallel:

double f£ib40 = 0.0, fib43 = 0.0;
Parallel.Invoke (delegate { fib40 = SlowFib (40); },
delegate { fib43 = SlowFib (43); });

double result = £fib40 * 3 + fib43;

e Sanity check: What is the best speed-up this
can give?

& 1T University of Copenhagen www.itu.dk

Examplel69.cs

Parallel.For for web access

e Get a protein's amino acid sequence from
NCBI:

static String NcbiEntrez (String query) {
byte[] bytes = new WebClient () .DownloadData(new Uri(...))

return ASCIIEncoding.ASCII.GetString (bytes) ;

}
static String NcbiProtein (String id) {

return NcbiEntrez ("efetch. fcgi?db=protein&id=" + id) ;
}

e Get many proteins in parallel:

static String[] NcbiProteinParallel (params String[] ids) {
String[] res = new String[ids.Length];

Parallel.For (0, ids.Length,
i => { res[i] = NcbiProtein(ids[i]); });

return results;
} This is thread-safe. Why?

Examplel70.cs

&> [T University of Copenhagen www.itu.dk 23

Locking
e Try to put results into an array list (wrong):

IList<String> results = new List<String>() ;
Parallel.For (0, ids.Length,
i => { String res = NcbiProtein(ids[i]) ;
results.Add (res) ;
});

e Need to lock on the array list:

IList<String> results = new List<String>() ;
Parallel.For (0, ids.Length,
i => { String res = NcbiProtein(ids[i]) ;
lock (results)
results.Add (res) ;

':é} IT University of Copenhagen www.itu.dk 24

Asynchronous actions; GUI example

e Actions may block the GUI thread

- Eg long-running computations
— Eg access to network, disk, remote server

e Asynchronous actions avoid this problem

bl.Click += delegate (Object sender, EventArgs e)

{

bl .Enabled = false;

bl.Text = " (Computing)";
Console.Write ("\nComputing SlowFib ({0}) = ", n);
double result = SlowFib (n++) ;

Console.WriteLine (result) ;
bl.Text = "Next Fib";
bl .Enabled = true;

&> [T University of Copenhagen www.itu.dk 25

async/Gui.cs

General tasks for asynchrony

e Class Task
— Asynchronous activity that returns no result
— Typically created from an Action delegate
— Executed on a thread pool by a task scheduler
- ... SO can execute many tasks on few threads
— A task is not a thread

e Class Task<T> subclass of Task

— Asynchronous activity that returns result of type T
— Typically created from a Func<T> delegate
— Called a "Future" by Lisp and Java people

& 1T University of Copenhagen www.itu.dk 26

Operations on Task and Task<T>

Task.Run(Action act)
— started Task that executes act ()

Task.Run(Func<T> fun)
— started Task<T> that executes fun (), gives its result

Task.Delay(ms)

— started task that delays for ms milliseconds

t.Wait()

— block until t is complete

t.Result

— block until t is complete and then return its result

(when t is Task<T>)

t.ContinueWith(Action<Task> cont)

- task that executes cont(t) when t completes

o t.ContinueWith<U>(Func<Task,U> cont)
- task that executes cont(t,u) when t completes with u

&> IT University of Copenhagen

www.itu.dk

27

A task to compute SlowFib

e Create Task<double> from delegate:

static Task<double> SlowFibTask (int n) { é
return Task.Run(() => SlowFib(n)) ; =
} o
e Returns a task, that when run, will compute
SlowFib(n)
e How to use the task:
Task<double> task = SlowFibTask (n) ;
. task may now be running ...
Console.Writeline (task.Result) ;
www.itu.dk 28

&> IT University of Copenhagen

Task states (task.Status)

e RanToCompletion = terminated successfully
e Faulted = task threw exception
e Canceled = was cancelled, acknowledged it
e Completed = any of the above

Task.Run(...)
task.ContinueWith(...)

task throws other

and others .
exception

Start()
WaitingToRun

task is cancelled

new Task(...

N

)

returns
RanToCompletion

task is cancelled and throws
OperationCanceledException

Canceled

&> [T University of Copenhagen www.itu.dk 29

Tasks for web access
e Read bytes, then convert to String:

static Task<String> NcbiEntrezTask (String query) {
return new WebClient () .DownloadDataAsync (new Uri(...))

.ContinueWith ((Task<byte[]> task) =>

Examplel72.cs

ASCITIEncoding.ASCII.GetString(task.Result));
New (4.5)

e The result of the method is a started task t
e The task performs the download asynchrono
e When the download completes,

e the download task is bound to task

e the task.Result byte array is transformeu to a
String and becomes the result of the task t

static Task<String> NcbiProteinTask (String id) {
return NcbiEntrezTask ("efetch.fcgi?...&db=protein&id="+id) ;

}

&> [T University of Copenhagen www.itu.dk 30

Aggregate task operations (C# 4.5)

e Task.WhenAll(params Task][] ts)

— task that completes when all of tasks ts complete
(aka concurrency "barrier")

e Task.WhenAll(params Task<T>[] ts)

- task that completes when all of ts complete,
returning a T[] containing their results

e Task.WhenAny(params Task[] ts)

e Task.WhenAny(params Task<T>[] ts)

— task that completes when any of the ts complete,
returning one of the ts that completed

&> [T University of Copenhagen www.itu.dk 31

e Get many proteins in parallel

static Task<String[]> NcbiProteinParallelTasks (String[] ids) {
IEnumerable<Task<String>> tasks
= from id in ids select NcbiProteinTask (id) ;

return Task.WhenlAll (tasks) ;

e How to use it:

ShowResult (NcbiProteinParallelTasks ("P01308", ...) .Result);

>gi|124617|sp|P01308.1|INS HUMAN RecName: Full=Insulin;
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGG

GPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN

>gi|12643972|sp|P01315.2|INS PIG RecName: Full=Insulin;
MALWTRLLPLL. . .

&> IT University of Copenhagen

Implementing task timeouts
e Use WhenAny to await task or a Delay:

static Task<double> SlowFibTimeoutlTask (int n) {
Task<double> slow = SlowFibTask (n) ;
return Task.WhenAny (slow, TaskEx.Delay (1000))
.ContinueWith<double> ((Task<Task> task) =>
task.Result==slow ? slow.Result : -1

) ;

Examplel73.cs

e When the slow task or the belay complete
so does the WwhenAny task

e The whenAny task gets bound to variab
e The task.Result is the completed tas
o If the slow task completed, return its result
e Otherwise the slow task timed out, return -1

&> [T University of Copenhagen www.itu.dk 33

Task cancellation

e One cannot "kill", "stop" or "suspend" a task

e But one can request cancellation, and the
task can check for and acknowledge (or not)

public static void ComputeTask (CancellationToken token) {
for (int i=0; i<100000000; i++)

token.ThrowIfCancellationRequested() ; -
}

CancellationTokenSource cts = new CancellationTokenSource () ;
CancellationToken token = cts.Token;

Task task = Task.Run(() => ComputeTask (token), token)

cts Cancel); ___ SGHEEIEEN

// task.Wait() ;

,_

34

Exceptions In tasks

e An exception exn thrown by a task is not
propagated to the task's creator

e Instead

— the task is moved to state Faulted

— t.Wait() and t.Result will throw an
AggregateException containing exn

— WaitAll collects thrown exceptions from subtasks

& 1T University of Copenhagen www.itu.dk

35

e A task is executed on a task scheduler
— Typically many tasks run on a few threads

— Because tasks may be blocked not on CPU work
but input/output, GUI, net, GPU, ...

— A task typically takes up few resources (just a
representation of what to do when resumed)

e A thread might be used to represent a task

— But a thread takes up many more resources
— Each thread has a method call stack in the VM
- Many threads slow down garbage collection

e The default task scheduler uses ThreadPool
— and very clever work-stealing queues for tasks

& 1T University of Copenhagen www.itu.dk

Asynchronous methods (C# 4.5)

Tasks allow compositional asynchrony
But using ContinueWith gets rather hairy

C# 4.5 has asynchronous methods

— Declared using async keyword

— Must return Task or Task<T> or void

— May contain await e where e is a task

— The rest of the method is the continuation of e

Implementation of asynchronous method:
- the compiler rewrites it to a state machine
— much like yield return in iterator methods

J [T University of Copenhagen www.itu.dk

Asynchronous web download

e Declare the method async
e Use await instead of ContinueWith(...)

Examplel76.cs

static async Task<String> NcbiEntrezAsync (String query) {
byte[] bytes = await new WebClient () .DownloadDataAsync(...));

return ASCIIEncoding.ASCII.GetString (bytes) ;
}

e Use as before, or from other asyne methods:

static async Task<String> NcbiProteinAsync (String id) {
return await NcbiEntrezAsync ("efetch.fcgi?...&id=" + id);

}

static async Task<String[]> NcbiProteinParallelAsync(... ids) {
var tasks = from id in ids select NcbiProteinAsync (id) ;

return await Task.WhenAll (tasks) ;
}

&> [T University of Copenhagen www.itu.dk 38

Timeout rewritten with async/await

e Much clearer than the ContinueWith version:

static async Task<double> SlowFibTimeoutAsync (int n) {
Task<double> slow = SlowFibTask (n) ;
Task completed = await Task.WhenAny(slow, Task.Delay(1000)) ;
return completed == slow ? slow.Result : -1;

}

e Use as before ...

Examplel79.cs

&> [T University of Copenhagen www.itu.dk 39

Composing asynchronous methods

e An NCBI PubMed query is done in two phases

— First do an esearch to get a WebKey in XML
— Then use efetch and the WebKey to get results

e To do this asynchronously using Task and

ContinueWith would be quite convoluted

e Rather easy with asynchronous methods:

static async Task<String> NcbiPubmedAsync (String term) ({

}

String search = String.Format ("esearch.fcgi?...", term);
XmlDocument xml = new XmlDocument () ;

xml . LoadXml (await NcbiEntrezAsync (search)) ;

XmlNode node xml ["eSearchResult"] ;

String fetch

node["WebEnv"] . InnerText) ;
return await NcbiEntrezAsync("efetch.fcgi?...&" + fetch)

&> [T University of Copenhagen www.itu.dk

String.Format(". .. &db=Pubmed&WebEnv={1}", ...

40

Composability, general timeout

e Async methods can be further composed, eg
— do all tasks asynchronously using WhenAll
— do some task asynchronously using WhenAny
— do task, subject to timeout
- efc

e A general timeout task combinator

static async Task<T> Timeout<T>(Task<T> task, int ms, T alt) {

if (task == await Task.WhenAny (task, Task.Delay(ms)))
return task.Result;
else

return alt;

&> [T University of Copenhagen www.itu.dk 41

Rules for C# asynchronous methods

e Cannot have out and ref parameters

o If the method's return type is Task
— it can have no value-returning return e; stmts.

o If the method's return type is Task<T>

— then all paths must have a return e; stmt.
where e has type T

e In an await e expression,
- if e has type Task then await e has no value
- if e has type Task<T> then await e has type T

&> [T University of Copenhagen www.itu.dk 42

References

The importance of "popular parallel programming”
— Free Lunch is Over: http://www.gotw.ca/publications/concurrency-ddj.htm

- http://www.cra.org/uploads/documents/resources/rissues/
computer.architecture_.pdf

— http://www.nitrd.gov/subcommittee/hec/materials/ACAR1_REPORT.pdf
- http://www.scala-lang.org/sites/default/files/pdfs/esynopsis.pdf

F# 3.0 asynchronous programming

— http://msdn.microsoft.com/en-us/library/dd233250.aspx (Asynch Workfl)
— http://msdn.microsoft.com/en-us/library/ee353679.aspx (WebClient)

— http://tomasp.net/blog/csharp-fsharp-async-intro.aspx

— http://en.wikibooks.org/wiki/F_Sharp_Programming/Async_Workflows

F# parallel programming

- http://tomasp.net/blog/fsharp-parallel-samples.aspx

- http://tomasp.net/blog/fsharp-parallel-pling.aspx

- http://tomasp.net/blog/fsharp-parallel-aggregate.aspx

- http://tomasp.net/blog/fsharp-parallel-adash.aspx

C# parallel (4.0) and asynchronous (5.0) programming

— Sestoft: C# Precisely 2nd ed chapters 22 and 23
— Microsoft technical notes, see refs. in C# Precisely chapter 34

& 1T University of Copenhagen www.itu.dk 43

