
www.itu.dk

Asynchronous and parallel F# 3
&

Asynchronous and parallel C# 4.5

Peter Sestoft
BSWU 2015-03-12

1

www.itu.dk

Agenda
•  Why is parallel programming important?
•  CPU-bound parallelism in F# 3.0
•  I/O-bound parallelism in F# 3.0

•  Tasks in .NET 4.0, illustrated with C#
•  Asynchronous programming in C# 4.5

3

www.itu.dk

Why parallel programming?
•  Until 2004, CPUs became faster every year

–  So sequential software became faster every year
•  Today, CPUs are still ca. 3 GHz as in 2004

–  So sequential software has not become much faster
•  Instead, we get

–  Multicore: 2, 4, 8, ... CPUs on a chip
–  Vector instructions (4 x MAC) built into CPUs
–  Superfast Graphics Processing Units (GPU)

•  384 simple CUDA codes in this 2014 laptop
•  2880 simple (single-precision) CUDA cores in Nvidia GK110

•  Herb Sutter: The free lunch is over (2005)
•  More speed requires parallel programming

–  But parallel programming is difficult and errorprone
–  ... with existing means: threads, synchronization, ...

4

The free lunch is over:
No more growth in single-core speed

5

H
er

b
S
ut

te
r:

 T
he

 f
re

e
lu

nc
h

is
 o

ve
r,

D
r

D
ob

bs
,

20
05

.
Fi

gu
re

 u
pd

at
ed

 A
ug

us
t

20
09

.
ht

tp
:/

/w
w

w
.g

ot
w

.c
a/

pu
bl

ic
at

io
ns

/c
on

cu
rr

en
cy

-d
dj

.h
tm

Moore’s law

Clock speed

www.itu.dk

Why functional parallel
programming?

•  What is the purpose of synchronization?
– To avoid conflicting updates of shared data

•  Functional programming
– No updates to shared data
–  Instead: copying, partial sharing, intermediate

data structures, message passing, agents, ...
•  Some consensus this is the way forward

– Even in the press: Economist, 2 June 2011
http://www.economist.com/node/18750706

– Hiperfit project, www.hiperfit.dk
– Actulus project, www.actulus.dk
– MSc course http://www.itu.dk/people/sestoft/itu/PCPP/E2014/

6

CPU-bound
parallel programming in F#

•  A slow, CPU-consuming operation:

7

let rec slowfib n =
 if n<2 then 1.0 else slowfib(n-1) + slowfib(n-2);;

•  Computing two Fibonacci numbers:
let fibs = [slowfib(41); slowfib(42)];;
// Real: 00:00:03.778, CPU: 00:00:03.778

•  Doing it in parallel
let fibs =
 let tasks = [async { return slowfib(41) };
 async { return slowfib(42) }]
 Async.RunSynchronously (Async.Parallel tasks);;
// Real: 00:00:02.462, CPU: 00:00:03.970

let fib42 = slowfib(42);;
// Real: 00:00:02.328, CPU: 00:00:02.328

Two tasks

F# 3.1
Mono 3.12.0
MacOS 10.9.5
Intel i7, 4 core

pa
ra

lle
lfi

b.
fs

www.itu.dk

More CPU-bound
parallel programming in F#

8

•  Computing 43 Fibonacci numbers:
let fibs = [for i in 0..42 do yield slowfib(i)];;
// Real: 00:00:06.385, CPU: 00:00:06.386

•  Doing it in parallel:

 2.4 x faster on a 4-core machine

let fibs =
 let tasks =
 [for i in 0..42 do yield async { return slowfib(i) }]
 Async.RunSynchronously (Async.Parallel tasks);;
// Real: 00:00:02.662, CPU: 00:00:07.352

www.itu.dk

Dissecting the example

9

async { return slowfib(i) }

let tasks =
 [for i in 0..42 do yield async { return slowfib(i) }]

Async.Parallel tasks

Async.RunSynchronously (Async.Parallel tasks)

let tasks = [for i in 0..42 do yield async { return slowfib(i) }]
Async.RunSynchronously (Async.Parallel tasks);;

Async<float>

Async<float> list

Async<float []>

float []

An asynchronous task that will produce a float

List of asynchronous tasks that each will produce a float

An asynchronous task that will produce a float array

A float array

www.itu.dk

Asynchronous operations in F#
•  An async { ... } expression produces an

asynchronous task, Async<t>
–  In return r inside { ... } the r must have type t

•  let! res = e will run e and bind the result
to res of type u, when e has type Async<u>

•  Async.RunSynchronously(asy) will run
computation asy and wait for its completion

•  Async.Parallel(asys) creates a new
asynchronous task that will run all asys and
return an array of their results

10

www.itu.dk

Finding prime factors
•  Prime factors of a number

•  Prime factors of 0..500000

•  Same, in parallel, 4.6 x faster

11

factors 973475;;
val it : int list = [5; 5; 23; 1693]

Array.init 200000 factors;;
Real: 00:00:09.070, CPU: 00:00:09.072
val it : int list [] =
 [|[]; []; [2]; [3]; [2; 2]; [5]; [2; 3]; [7]; ... |]

let factors200000 = Array.Parallel.init 200000 factors;;
Real: 00:00:01.948, CPU: 00:00:15.124
val factors200000 : int list [] =
 [|[]; []; [2]; [3]; [2; 2]; [5]; [2; 3]; [7]; ... |]

Array.init : int -> (int -> 'a) -> 'a [] pa
ra

lle
l2

01
5.

fs

www.itu.dk

The number of prime factors

•  The heavy task, factorization, is parallelized
•  The easy task, counting, is sequential

•  Compare “imperative” C# version next slide

12

let histogram = Array.init 200000 (fun i -> 0)
let incr i = histogram.[i] <- histogram.[i] + 1
Array.iter (fun fs -> List.iter incr fs) factors200000;;

Real: 00:00:00.114, CPU: 00:00:00.115

val histogram : int [] =
 [|0; 0; 199988; 99996; 0; 49993; 0; 33330; 0; 0; 0;
 19997; 0; 16665; 0; 0; 0; 12498; 0; 11110; 0; 0; 0;
 9089; 0; 0; 0; 0; 0; 7141; 0; 6665; 0; 0; 0; 0; ... |]

www.itu.dk

The same in C#

•  Exact same performance as F#
– But easy to forget locking => wrong results!!

13

List<int>[] factors200000 = new List<int>[200000];
Parallel.For(0, 200000,
 n => { factors200000[n] = Factors(n); });

Fa
ct

or
sP

ar
al

le
l.c

s

readonly int[] histogram = new int[200000];
static List<int> Factors(int n) {
 List<int> factors = new List<int>();
 int d = 2;
 while (n > 1) {
 if (n % d == 0) {
 factors.Add(d);
 lock (histogram)
 histogram[d]++;
 n /= d;
 } else
 d++;
 }
 return factors;
}

... but must lock
for atomic update

Tempting to
count while
factorizing

www.itu.dk

Better: Functional parallel C#
•  Parallelize the hard work:

•  Then do the fast work sequentially:

•  Learn functional programming also to
become better C# and Java developers
– Not least for parallel programming

14

Fa
ct

or
sS

tr
ea

m
s.

cs

var factors200000 =
 Enumerable.Range(0, range)
 .AsParallel()
 .Select(i => Factors(i));

int[] histogram = new int[range];
foreach (List<int> factors in factors200000)
 foreach (int factor in factors)
 histogram[factor]++;

www.itu.dk

More concurrency: I/O-bound
parallel programming in F#

•  Let us find the sizes of some homepages

15

let urls = ["http://www.itu.dk"; "http://www.diku.dk";
 ...];;

let lengthSync (url : string) =
 printf ">>>%s>>>\n" url
 let wc = new WebClient()
 let html = wc.DownloadString(Uri(url))
 printf "<<<%s<<<\n" url
 html.Length;;

lengthSync("http://www.diku.dk");;

[for url in urls do yield lengthSync url];;

Doing it in parallel,
even with just 1 CPU

•  Because the webservers work in parallel

16

let lens =
 let tasks = [for url in urls do yield async { return lengthSync url }]
 Async.RunSynchronously(Async.Parallel tasks);;

•  Better: Let I/O system deal with responses:
let lengthAsync (url : string) =
 async {
 printf ">>>%s>>>\n" url
 let wc = new WebClient()
 let! html = wc.AsyncDownloadString(Uri(url))
 printf "<<<%s<<<\n" url
 return html.Length
 };;

let lens =
 let tasks = [for url in urls -> lengthAsync url])
 Async.RunSynchronously(Async.Parallel tasks);;

Not optimal

as
yn

c.
cs

www.itu.dk

Why not async { ... lengthSync ... }?
•  The thread will block while waiting for

synchronous call wc.DownloadString(...)
•  Better use wc.AsyncDownloadString(...)

which is asynchronous
– Will send a web request
– Will release the calling thread
– When a response arrives, it will continue

computation (maybe on a different thread)
•  So can have many more active requests than

there are threads
– Very bad to have more than 500 threads
– But 50,000 async concurrent requests is fine

17

www.itu.dk

Parallel and asynchronous C#
•  The async { ... } concept arose in F# 2.0
•  The C# and .NET people adopted it

– And changed it somewhat
•  It is part of .NET 4.5 and C# 4.5

18

Reminder: C# delegates, lambdas
delegate R Func<R>();
delegate R Func<A1,R>(A1 x1);
...
delegate void Action();
delegate void Action<A1>(A1 x1);
...

unit -> R
A1 -> R

Func<int> fun1 = delegate() { return 42; };
Func<int> fun2 = () => 42;
Func<int,double> fun3 = x => x*Math.PI;
int r1 = fun1() + fun2();
double r2 = fun3(2);

Action act1 = delegate() { Console.Write("Hello!"); };
Action act2 = () => { Console.Write("Hello!"); };
Action<int> act3 = x => { r1 += x; };
act1(); act2(); act3(42);

Ty
pe

s
Ex

pr
es

si
on

s

unit -> unit
A1 -> unit

Parallel.For in .NET via C#
•  Example: 50x50 matrix multiplication

20

for (int r=0; r<rRows; r++)
 for (int c=0; c<rCols; c++) {
 double sum = 0.0;
 for (int k=0; k<aCols; k++)
 sum += A[r,k]*B[k,c];
 R[r,c] = sum;
 }

Parallel.For(0, rRows, r => {
 for (int c=0; c<rCols; c++) {
 double sum = 0.0;
 for (int k=0; k<aCols; k++)
 sum += A[r,k]*B[k,c];
 R[r,c] = sum;
 }
});

Sequential,
5575 ms/mult

Parallel,
1800 ms/mult

4-core Xeon

Ex
am

pl
e1

68
.c

s

www.itu.dk

What does Parallel.For do

Parallel.For(m, n, body)
executes body(m), body(m+1), ..., body(n-1)
in some order, possibly concurrently

21

Parallel.For(0, rRows, r => {
 for (int c=0; c<rCols; c++) {
 double sum = 0.0;
 for (int k=0; k<aCols; k++)
 sum += A[r,k]*B[k,c];
 R[r,c] = sum;
 }
});

Delegate of
type

Action<int>

www.itu.dk

Parallel.Invoke

22

static double SlowFib(int n) { ... heavy job ... }

•  Assume we need to compute this:

double fib40 = 0.0, fib43 = 0.0;
Parallel.Invoke(delegate { fib40 = SlowFib(40); },
 delegate { fib43 = SlowFib(43); });
double result = fib40 * 3 + fib43;

•  Use Invoke to compute in parallel:

double result = SlowFib(40) * 3 + SlowFib(43);

•  Sanity check: What is the best speed-up this
can give?

Ex
am

pl
e1

69
.c

s

www.itu.dk

Parallel.For for web access

23

•  Get a protein's amino acid sequence from
NCBI:

static String[] NcbiProteinParallel(params String[] ids) {
 String[] res = new String[ids.Length];
 Parallel.For(0, ids.Length,
 i => { res[i] = NcbiProtein(ids[i]); });
 return results;
}

•  Get many proteins in parallel:

static String NcbiEntrez(String query) {
 byte[] bytes = new WebClient().DownloadData(new Uri(...));
 return ASCIIEncoding.ASCII.GetString(bytes);
}
static String NcbiProtein(String id) {
 return NcbiEntrez("efetch.fcgi?db=protein&id=" + id);
}

This is thread-safe. Why?

Ex
am

pl
e1

70
.c

s

www.itu.dk

IList<String> results = new List<String>();
Parallel.For(0, ids.Length,
 i => { String res = NcbiProtein(ids[i]);
 results.Add(res);
 });

Locking

24

•  Try to put results into an array list (wrong):

Multiple concurrent
updates, so wrong results

•  Need to lock on the array list:
IList<String> results = new List<String>();
Parallel.For(0, ids.Length,
 i => { String res = NcbiProtein(ids[i]);
 lock (results)
 results.Add(res);
 });

Why not inline res in the call:
results.Add(NcbiProtein(ids[i]))?

www.itu.dk

b1.Click += async delegate(Object sender, EventArgs e)
 {
 b1.Enabled = false;
 b1.Text = "(Computing)";
 Console.Write("\nComputing SlowFib({0}) = ", n);
 double result = await SlowFibAsync(n++);
 Console.WriteLine(result);
 b1.Text = "Next Fib";
 b1.Enabled = true;
 };

Asynchronous actions; GUI example
•  Actions may block the GUI thread

– Eg long-running computations
– Eg access to network, disk, remote server

•  Asynchronous actions avoid this problem

25

as
yn

c/
G

ui
.c

s

www.itu.dk

General tasks for asynchrony
•  Class Task

– Asynchronous activity that returns no result
– Typically created from an Action delegate
– Executed on a thread pool by a task scheduler
–  ... so can execute many tasks on few threads
– A task is not a thread

•  Class Task<T> subclass of Task
– Asynchronous activity that returns result of type T
– Typically created from a Func<T> delegate
– Called a "Future" by Lisp and Java people

26

www.itu.dk

Operations on Task and Task<T>
•  Task.Run(Action act)

–  started Task that executes act()
•  Task.Run(Func<T> fun)

–  started Task<T> that executes fun(), gives its result
•  Task.Delay(ms)

–  started task that delays for ms milliseconds

•  t.Wait()
–  block until t is complete

•  t.Result (when t is Task<T>)
–  block until t is complete and then return its result

•  t.ContinueWith(Action<Task> cont)
–  task that executes cont(t) when t completes

•  t.ContinueWith<U>(Func<Task,U> cont)
–  task that executes cont(t,u) when t completes with u

27

www.itu.dk

static Task<double> SlowFibTask(int n) {
 return Task.Run(() => SlowFib(n));
}

A task to compute SlowFib

28

•  Create Task<double> from delegate:

•  Returns a task, that when run, will compute
SlowFib(n)

•  How to use the task:
Task<double> task = SlowFibTask(n);
... task may now be running ...
Console.WriteLine(task.Result);

type Func<double>

Ex
am

pl
e1

71
.c

s

www.itu.dk

Task states (task.Status)
•  RanToCompletion = terminated successfully
•  Faulted = task threw exception
•  Canceled = was cancelled, acknowledged it
•  Completed = any of the above

29

new Task(...)

Created WaitingToRun RanToCompletion

Faulted

Canceled
OperationCanceledException
task is cancelled and throws

task throws other
exception

Task.Run(...)

task.ContinueWith(...)

and others

Running
Start() returns

task is cancelled

www.itu.dk

static Task<String> NcbiEntrezTask(String query) {
 return new WebClient().DownloadDataAsync(new Uri(...))
 .ContinueWith((Task<byte[]> task) =>
 ASCIIEncoding.ASCII.GetString(task.Result));
}

Tasks for web access

30

•  Read bytes, then convert to String:

•  The result of the method is a started task t
•  The task performs the download asynchronously
•  When the download completes,

•  the download task is bound to task
•  the task.Result byte array is transformed to a

String and becomes the result of the task t

New (4.5)

static Task<String> NcbiProteinTask(String id) {
 return NcbiEntrezTask("efetch.fcgi?...&db=protein&id="+id);
}

Ex
am

pl
e1

72
.c

s

A continuation!

www.itu.dk

Aggregate task operations (C# 4.5)
•  Task.WhenAll(params Task[] ts)

–  task that completes when all of tasks ts complete
(aka concurrency "barrier")

•  Task.WhenAll(params Task<T>[] ts)
–  task that completes when all of ts complete,

returning a T[] containing their results

•  Task.WhenAny(params Task[] ts)
•  Task.WhenAny(params Task<T>[] ts)

–  task that completes when any of the ts complete,
returning one of the ts that completed

31

www.itu.dk

static Task<String[]> NcbiProteinParallelTasks(String[] ids) {
 IEnumerable<Task<String>> tasks
 = from id in ids select NcbiProteinTask(id);
 return Task.WhenAll(tasks);
}

Tasks for parallel web access

32

•  Get many proteins in parallel

•  How to use it:
 ShowResult(NcbiProteinParallelTasks("P01308", ...).Result);

>gi|124617|sp|P01308.1|INS_HUMAN RecName: Full=Insulin; ...
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGG
GPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN

>gi|12643972|sp|P01315.2|INS_PIG RecName: Full=Insulin; ...
MALWTRLLPLL...

www.itu.dk

static Task<double> SlowFibTimeout1Task(int n) {
 Task<double> slow = SlowFibTask(n);
 return Task.WhenAny(slow, TaskEx.Delay(1000))
 .ContinueWith<double>((Task<Task> task) =>
 task.Result==slow ? slow.Result : -1
);
}

Implementing task timeouts

33

•  Use WhenAny to await task or a Delay:

•  When the slow task or the Delay completes,
so does the WhenAny task

•  The WhenAny task gets bound to variable task
•  The task.Result is the completed task

•  If the slow task completed, return its result
•  Otherwise the slow task timed out, return -1

Ex
am

pl
e1

73
.c

s

Task cancellation
•  One cannot "kill", "stop" or "suspend" a task
•  But one can request cancellation, and the

task can check for and acknowledge (or not)

34

public static void ComputeTask(CancellationToken token) {
 for (int i=0; i<100000000; i++)
 token.ThrowIfCancellationRequested();
}

CancellationTokenSource cts = new CancellationTokenSource();
CancellationToken token = cts.Token;
Task task = Task.Run(() => ComputeTask(token), token);

cts.Cancel();
// task.Wait();

Check and
acknowledge

Running
Canceled

Would throw AggregateException
containing TaskCanceledException

www.itu.dk

Exceptions in tasks
•  An exception exn thrown by a task is not

propagated to the task's creator
•  Instead

–  the task is moved to state Faulted
–  t.Wait() and t.Result will throw an

AggregateException containing exn
– WaitAll collects thrown exceptions from subtasks

35

www.itu.dk

Tasks versus threads
•  A task is executed on a task scheduler

– Typically many tasks run on a few threads
– Because tasks may be blocked not on CPU work

but input/output, GUI, net, GPU, ...
– A task typically takes up few resources (just a

representation of what to do when resumed)
•  A thread might be used to represent a task

– But a thread takes up many more resources
– Each thread has a method call stack in the VM
– Many threads slow down garbage collection

•  The default task scheduler uses ThreadPool
– and very clever work-stealing queues for tasks

36

www.itu.dk

Asynchronous methods (C# 4.5)
•  Tasks allow compositional asynchrony
•  But using ContinueWith gets rather hairy

•  C# 4.5 has asynchronous methods
– Declared using async keyword
– Must return Task or Task<T> or void
– May contain await e where e is a task
– The rest of the method is the continuation of e

•  Implementation of asynchronous method:
–  the compiler rewrites it to a state machine
– much like yield return in iterator methods

37

www.itu.dk

static async Task<String> NcbiEntrezAsync(String query) {
 byte[] bytes = await new WebClient().DownloadDataAsync(...));
 return ASCIIEncoding.ASCII.GetString(bytes);
}

Asynchronous web download

38

•  Declare the method async
•  Use await instead of ContinueWith(...)

•  Use as before, or from other async methods:

static async Task<String> NcbiProteinAsync(String id) {
 return await NcbiEntrezAsync("efetch.fcgi?...&id=" + id);
}

static async Task<String[]> NcbiProteinParallelAsync(... ids) {
 var tasks = from id in ids select NcbiProteinAsync(id);
 return await Task.WhenAll(tasks);
}

Ex
am

pl
e1

76
.c

s

www.itu.dk

static async Task<double> SlowFibTimeoutAsync(int n) {
 Task<double> slow = SlowFibTask(n);
 Task completed = await Task.WhenAny(slow, Task.Delay(1000));
 return completed == slow ? slow.Result : -1;
}

Timeout rewritten with async/await

39

•  Much clearer than the ContinueWith version:

•  Use as before ...

Ex
am

pl
e1

79
.c

s

www.itu.dk

Composing asynchronous methods
•  An NCBI PubMed query is done in two phases

– First do an esearch to get a WebKey in XML
– Then use efetch and the WebKey to get results

•  To do this asynchronously using Task and
ContinueWith would be quite convoluted

•  Rather easy with asynchronous methods:

40

static async Task<String> NcbiPubmedAsync(String term) {
 String search = String.Format("esearch.fcgi?...", term);
 XmlDocument xml = new XmlDocument();
 xml.LoadXml(await NcbiEntrezAsync(search));
 XmlNode node = xml["eSearchResult"];
 String fetch = String.Format("...&db=Pubmed&WebEnv={1}", ...
 node["WebEnv"].InnerText);
 return await NcbiEntrezAsync("efetch.fcgi?...&" + fetch);
}

www.itu.dk

Composability, general timeout
•  Async methods can be further composed, eg

– do all tasks asynchronously using WhenAll
– do some task asynchronously using WhenAny
– do task, subject to timeout
– etc

•  A general timeout task combinator

41

static async Task<T> Timeout<T>(Task<T> task, int ms, T alt) {
 if (task == await Task.WhenAny(task, Task.Delay(ms)))
 return task.Result;
 else
 return alt;
}

www.itu.dk

Rules for C# asynchronous methods
•  Cannot have out and ref parameters
•  If the method's return type is Task

–  it can have no value-returning return e; stmts.
•  If the method's return type is Task<T>

–  then all paths must have a return e; stmt.
where e has type T

•  In an await e expression,
–  if e has type Task then await e has no value
–  if e has type Task<T> then await e has type T

42

www.itu.dk

References
•  The importance of "popular parallel programming"

–  Free Lunch is Over: http://www.gotw.ca/publications/concurrency-ddj.htm
–  http://www.cra.org/uploads/documents/resources/rissues/

computer.architecture_.pdf
–  http://www.nitrd.gov/subcommittee/hec/materials/ACAR1_REPORT.pdf
–  http://www.scala-lang.org/sites/default/files/pdfs/esynopsis.pdf

•  F# 3.0 asynchronous programming
–  http://msdn.microsoft.com/en-us/library/dd233250.aspx (Asynch Workfl)
–  http://msdn.microsoft.com/en-us/library/ee353679.aspx (WebClient)
–  http://tomasp.net/blog/csharp-fsharp-async-intro.aspx
–  http://en.wikibooks.org/wiki/F_Sharp_Programming/Async_Workflows

•  F# parallel programming
–  http://tomasp.net/blog/fsharp-parallel-samples.aspx
–  http://tomasp.net/blog/fsharp-parallel-plinq.aspx
–  http://tomasp.net/blog/fsharp-parallel-aggregate.aspx
–  http://tomasp.net/blog/fsharp-parallel-adash.aspx

•  C# parallel (4.0) and asynchronous (5.0) programming
–  Sestoft: C# Precisely 2nd ed chapters 22 and 23
–  Microsoft technical notes, see refs. in C# Precisely chapter 34

43

