
Partial Evaluation and Mixed Computation
D. Bj~rner, A.P. Ershov and ND. Jones (Editors)
Elsevier Science Publishers B.V. (North-Holland)
© IFIP, 1988

Automatic Call Unfolding in a Partial Evaluator

Peter Sestoft

DIKU, University of Co~enhagen
Universitetsparken 1, DK-2100 Copenhagen 0, Denmark

Partial evaluation of a functional language may be done by specialization of
functions, implemented by reduction of expressions and unfolding of
function calls. Expression reduction is fairly straightforward, but it is
difficult to decide when to unfold a function call and when to leave it in the
program produced by partial evaluation. A call unfolding strategy must be
adopted in order to make this decision in each particular case.

In the partial evaluators reported in the literature, this strategy is not
formalized, and the user of a partial evaluator must guide the call unfolding
by his own informal criteria. This is an obstacle to many applications of
partial evaluation.

In the present paper we describe a simple two-phase call unfolding
method which is fully automatic. The first phase is based on static call
annotations, obtained by a local analysis to avoid infinite unfolding and a
global analysis to avoid call duplication. The second phase does additional
unfolding based on a global analysis. The method has been employed in a
recent version of the partial evaluator mix, developed by Neil D. Jones,
Harald S~ndergaard, and the author.

1. INTRODUCTION

485

The program transformation technique called partial evaluation has attracted much
attention in recent years and partial evaluators have been developed for a variety of
languages and purposes. Most partial evaluators however require some user
assistance, and so are not fully automatic program transformers. This is true also of
the early versions of mix, a partial evaluator for a small subset of pure Lisp
developed by Neil D. Jones, Harald S¢ndergaard, and the author.

In this paper we describe the problems that required user assistance in mix

and propose a rather simple way of automating their solution, thus achieving fully
automatic partial evaluation of a large class of programs. In particular, this class
includes the partial evaluator itself, a~d so the partial evaluator is self-applicable.

The setting of the problem we attempt to solve is this: the partial evaluator
produces a residual program from specializations of the given subject program's
functions. This is done by a function specialization phase which reduces expressions
and unfolds function calls in the subject program, making use of its known input.
Reduction of an expression depends only on the form of the expression and the
symbolic values of the variables occurring in it and so is quite straightforward. On
the other hand, the decision whether a call should be unfolded or not requires a

2. BACKGROUND

more global view of the program, in order to avoid infinite unfolding for exam 1
F h · P e.

or.t IS reason, call unfolding was left to be decided by the user in the early
verSIOns of mix. This implied that the user had to understand the workings of mix as
well as of th.e progr~ ~o b: partially evaluated. Naturally, this has provided an
obstacle to Its applIcatIOn III some cases. Therefore it would be desirable to
automate the decision on call unfolding in the function specialization phase.

.The solution des.cribed in this paper exploits the results of the binding time
analySIS (done by the fIrst phase of mix) to find calls that may safely be unfolded
(during the functi?n specialization phase), and forbids unfolding of all other calls.
Bec~us.e 0: the .sImplicity of this strategy, the program produced by function
speCIalIzatIOn WIll have many very small functions and will hardly be readable to
humans. Therefore a postprocessing phase is employed that unfolds calls to such
small functions. .

. The st~cture of the rest of the paper is as follows. First, we briefly
mtr~duce partIal evaluation and outline the structure of the partial evaluator mix in
SectIOn 2. On that background we discuss call unfolding in Section 3. The method
we have developed is presented in Section 4, and results from its use are discussed'S . . m

ectIOn 5. The paper closes with a summary, acknowledgements, and a list of
references.

A program that will produce a residual program r when given a subject program p
and part of its input d1 is called a partial evaluator. A partial evaluator that may be
used to partially evaluate itself (letting the subject programp be the partial
evaluator itself) is said to be self-applicable.

A partial evaluator may be used for many interesting purposes, for instance,
to compile by partial evaluation of an interpreter with respect to a source program.
This is useful for cheaply implementing special purpose languages such as the
language of pattern expressions as interpreted by a general purpose pattern
matcher. Furthermore, a self-applicable partial evaluator may be used for
generating compilers (by partial evaluation of the partial evaluator with respect to
an interpreter), and for generating a compiler generator (by partial evaluation of
the partial evaluator with respect to itself).

Precursors to partial evaluation are found in Kleene's S-m-n theorem, in
optimizing compilers, and in the paper [Lombardi 1967]. Futamura wa~ th~JirstJQ

describep~~i~evall.!~tioll a~.(lt.<?~~~ its ow~ right. and to see its possible
applications in compilation and compiler generation [Futamura 1971]. The first
expositions of the possibility of generating a compiler generator are found in
[Beckman et al. 1976], [Turchin 1979] and [Ershov 1982]. A partial evaluator for
Lisp (with property lists and imperative features) is described in [Beckman et al.
1976]; partial evaluation of imperative languages is discussed in [Ershov 1978] and
[Bulyonkov 1984].

487Automatic Call Unfolding in a Partial EvaluatorP. Sestoft486

In this section we first give a very brief introduction to partial evaluation and th
d 'b en
esc~I e ~e ~ain fe~tures of the partial evaluator mix to provide background for

the dIscussIOn m SectIOn 3 and the description of our method in Section 4.

2.1 Partial Evaluation

Partial evaluation deals with specialization of programs. Suppose we are given a
program p with two input parameters, and suppose that the value d of the first. . . . 1
parameter IS avaIlable whIle that of the second parameter is not. Then obviously the
program p c~nnot be evaluated to yield a result. It may however be partially
evaluated WIth respect to the known value of the first parameter. This yields
another program r, a so-called residual program. This program will compute the
"rest" of p when given a value d2 of the second parameter. That is, when evaluated
o~ t?e remaining input, the residual program r will give the same result as the
ongmal subject program p when evaluated on all of its input, or in symbols,

Eval p (d1, d2) = Eval r (d2) for all data d
2

.

2.2 The Structure of the Partial Evaluator Mix

The subject language (i.e., language of subject programs) of mix is Mixwell, a small
subset of pure Lisp with lexical scoping. A Mixwell program is a list of definitions
of functions f1, ... , fh with the first function f1 as the goal function. Input to the
program is through the variables of that function:

The body ej of function f j is constructed from variables appearing in the variable list
of f j, from constants (quote ...), and operators atom, car, cdr, cons, equal (as in
Lisp), a conditional if, and a function call call. The only data type is well-founded
(i.e., non-circular) S-expressions as known from Lisp. All operators except the
conditional if are strict in all positions, and defined functions are called by value.

The binding time analysis phase takes as input a description of which parts of
the program's input are known, and does a global analysis of the subject program to
compute a description of each variable of each function as either Static or Dynamic.
A variable is described as Static if it c~ take on only values dependent on the known
input, and as Dynamic if it may possibly take on a value dependent on the unknown
input. During the function specialization phase, a Static v~riable will have an
ordinary value such as '(a b) whereas a Dynamic one will in general have a symbolic
value, possibly containing variables, for example (cons '(a b) (car x)). The variable
list of every function is split into two variable lists: one for Static variables and one
for Dynamic variables.

The function specialization phase takes as input the actual values of the known
input and produces a residual program built from specializations of the subject
program's functions fi, ... , fh• A function fj is specialized by symbolically evaluating
its body ej in a symbolic environment that binds each of its variables to an
expression. Symbolic evaluation of other expressions than function calls is simple
reduction, but for a function call (call f sel ...semdel ...den) it must be decided
whether it is to be unfolded or suspended (i.e., not unfolded). Here sel ...sem are the
argument expressions for the Static variables of f, and del ...den are the argument
expressions for the Dynamic variables of f.

If the call is to be unfolded, then the call (call f sel ...sem del ...de
n
) is

replaced by the body of f with the symbolic values of the argument expressions
se l .. ·sem de l,,·de n substituted"for variable occurrences, and the resulting
expression is symbolically evaluated. Hence a call that is unfolded during the
function specialization phase disappears completely.

If the call is to be suspended, then the call expression is replaced by a call to
an f-variant f*, the variables of which are 1's Dynamic variables. Let sel *...sem* be
the (ordinary) values of the Static argument expressions sel ... sem, and let
del*...den* be the symbolic values of the Dynamic argument expressions del ...den
The resulting expression then is (call f* del*...den*). The variant f* is constructed
by specializing the body of f to the values se I * sem* of its Static variables. So
symbolic evaluation of a call (call f sel sem del den) that is to be suspended will
result in a specialized call (call f* del* den*) to a specialized function f*.

The difficult point here is to decide whether a call met during s.ymbolic
evaluation is to be unfolded or to be suspended. To make good use of the known
input, not too many calls should be suspended, whereas to make symbolic evaluation
terminate, not too many calls should be unfolded. Unfolding the "wrong" calls may

3. PROBLEMS WITH CALL UNFOLDING

3.1 Call Unfolding Strategies

489Automatic Call Unfolding in a Partial Evaluator

• by a dynamic strategy, making the decision anew each time the call
expression is met during the function specialization phase.

• by a static strategy, making the decision for each textual call in advance of
the function specialization phase~

• Never unfold any call
• Always unfold all calls

Call unfolding takes place in the function specialization phase of the partial
evaluator as described in Section 2.2 above. The topic of this section is the various
possible kinds of call unfolding strategies. Two obvious extremes as regards call
unfolding strategies are:

produce enormous residual programs, or may make them monstrously slow. In
Section 3 we shall study the various pitfalls to avoid when developing a call
unfolding strategy.

For a much more comprehensive description of mix, see [Jones, Sestoft,
S¢ndergaard 1985], [Sestoft 1986], or [Jones, Sestoft, S¢ndergaard 1987].

This section discusses call unfolding strategies and the various problems to be
avoided when choosing a call unfolding strategy.

Neither of these is useful in general. The first alternative, never to unfold any call,
will lead to trivial residual programs and bad partial evaluation results as shown in
Section 3.2 below. On the other hand, the second alternative, always to unfold all
calls, will cause the partial evaluator to loop in all but trivial cases as shown in
Section 3.3 below.

We must look for a call unfolding strategy which is an intermediate between
these two extremes: a decision on unfolding must be made for each particular call
expression. There are two very different ways to make this decision:

The difference is that by a dynamic strategy, if the same textual call expression is
met several times during function specialization, it may be unfolded on one occasion
and not unfolded on another. This does not happen with a static strategy; in this case
either the call expression is unfolded every time it is ~met, or it is suspended every
time. Dynamic strategies are more flexible and may give better results than static

P. Sestoft

The partial evaluator is divided into two major phases:

• a binding time analysis phase, and
• a function specialization phase.

488

• too little unfolding, yielding trivial residual programs,
• too much unfolding, making partial evaluation loop,
• unfolding in the wrong place, yielding very slow residual programs,
• unfolding in the wrong place, yielding very large residual programs.

ones, and the class of dynamic strategies properly contains the class of static ones.
Fuller and Abramsky describe a part~~l evaluator f()rPr()l()g_~I!!P~'?Jinga dynamic
~~~~t~gy_~ased on loop detection [Fuller, Abramsky 1987]. -------------

The partial evaluator mix described in Section 2.2 above is restricted to the
use of static strategies; this requires to decide on unfolding/suspension for each call
appearing in the text of the subject program in advance of function specialization.
This is mainly for reasons of simplicity: a dynamic strategy would require the
function specialization phase of the pqrtial evaluator to maintain some extra data
structures to guide the dynamic unfolding decisions. The restriction to static
strategies allows to represent the unfolding decision by a simple annotation of each
call expression.

With static call unfolding strategies, four possible pitfalls can be clearly
identified and will be discussed by means of examples below:

3.3 Infinite Unfolding

491Automatic Call Unfolding in a Partial Evaluator

9 (x z) = (if (equal x (car z)) then (cdr z)
else (call 9 x (cdr z)))

9 (z) = (if (equal 'A (car z)) then (cdr z)
else (call 9 (cdr z)))

and assume x ='A to be known and z to be unknown. If we (wisely) choose to
suspend the call to g, we will get 9 specialized to the value 'A of its Static variable x.
The residual program would be

Moral: Calls to functions with only Static variables should always be unfolded.
Note that this may still make the function specialization phase loop in case the
subject program already contains a non-terminating loop that does not depend on
Dynamic variables.

Too much unfolding may make function specialization loop infinitely. Consider the
program

P. Sestoft490

Furthermore, there are situations where no satisfactory decisions on call
unfolding can be made in the (static) framework of mix. These have to do with
infinite specialization. One such case will be discussed in Section 4.3 below.

If on the other hand we (stupidly) attempted to unfold the call every time it is
encountered during function specialization, then we would in effect try to build an
infinite expression:

3.2 Trivial Residual Programs

Too little unfolding happens only when we decide to suspend a call to a function
with only Static variables. Consider the program

9 (x z) = (if (call f x) then z else (cons z z))
f (y) = (null y)

and assume x ='nil to be known, z unknown. Then x and yare Static, z is Dynamic,
and if the call to f were (wisely) unfolded, we would get the residual program

I 9 (z) =z I

9 (z) = (if (equal 'A (car z)) then (cdr z)
. else (if (equal 'A (cadr z)) then (cddr z)
else (if (equal fA (caddr z)) then (cdddr z)
else ...

The observable effect however is that partial evaluation will not terminate in this
case. Moral: Every strategy for call unfolding must somehow ensure that infinite
unfolding is not attempted. This may be done by imposing an arbitrary limit on the
number of unfoldings that may take place, or (better) by allowing unfolding only
where a bound on the number of unfoldings is known to exist. The latter idea is
applied in our method as described in Section 4.1.1 below.

Ifhowever (stupidly) the call to f is suspended, then the onlything that can be done is
to specialize f to the value 'nil of its Static parameter y, and so we would get·

9 (z) = (if (call f) then z else (cons z z))

f 0 = 't

3.4 Call Duplication

Extremely slow residual programs may result from call duplication. This happens
when an argument expression of a call to be unfolded contains a suspended call, and
this (inner) call is duplicated by unfolding the outer call. Consider this program,



the run time of which is linear in the length of (list) z:

9 (x z) = (if (null z) then x

else (call f (call 9 x (cdr z))))
f (w) = (cons w w)

with x ='A known and z unknown. From the similarity to the previous example it
should be clear that the call to 9 must be suspended, or else infinite unfolding will
result. IT we (wisely) suspend the call to f too, we will obtain the reasonable residual
program

493Automatic Call Unfolding in a Partial Evaluator

and in general, if x is a list of length n, the body of 9 in the residual program will
contain n nested calls to 1. If however (stupidly) the call to f is Unfolded, we will get
(again for x ='(A A A)),

with X = 'CA A A) known and z unknown. The call to 9 may be unfolded or
suspended; neither will lead to trouble, so assume that it will be unfolded. If we
(wisely) suspend the call to f, we get the residual program

9 (z) = (call f (c,all f (call f z)))
f (w) = (cons w w)

P. Sestoft492

9 (z) = (if (null z) then 'A
else (call f (call 9 (cdr z))))

f (w) = (cons w w)

9 (z) = (cons (cons (cons z z) (cons z z))
(cons (cons z z) (cons z z)))

which still has run time linear in the length of z. IT however (stupidly) the call to f is
unfolded, we will get

9 (z) = (if (null z) then 'A

else (cons (call 9 (cdr z)) (call 9 (cdr z))))

which has run time exponential in the length of z. The reason is that the call to 9 was
duplicated and this happened because the body of f has two occurrences of the
variable w in the argument position corresponding to the one with the call to g. We
refer to this phenomenon as call duplication. Moral: A call to a function f with a
suspended call to a function 9 in an argument expression should be unfolded only if
the variable corresponding to t?atargument position appears at most once in the
body of 1. In fact, it is sufficient to require that the variable appears at most once in
any conditional branch in the body of f.

3.5 Code Duplication

Extremely large residual programs may result from code duplication. This is a
phen.omenon similar to the above, but in this case the size (and not necessarily the
run tIme) of the program explodes. This happens when an argument expression of a
call to be unfolded contains a (sizeable) residual expression, and that expression is
duplicated by unfolding the call. Consider the program

and in general, if x is a list of length n, the body of 9 will have 2n-l cons operators
and 2n occurrences of the variable z. Moral: A call with a sizeable residual
argument expression should be unfolded only if the variable corresponding to that
argument position appears at most once in the body of the unfolded function.

4. SIMPLE ANNOTATIONS AND POSTPROCESSING

In this section we describe our method for deciding on call unfolding. It has two
phases. First, a preprocessing phase computes annotations to direct the call
unfolding that takes place during the function specialization phase. This way a
simple static call unfolding strategy is implemented. Secondly, the residual
program resulting from the function specialization phase is improved by a
postprocessing phase that eliminates simple functions by unfolding the calls to them.

These two phases are described in Sections 4.1 and 4.2 below. The section
closes with a discussion of the limitations of the method in Section 4.3.

The preprocessing phase of our call unfolding method is based on the results
of the binding time analysis done by mix and hence must be preceded by that. Thus
the phases fit with the phases of mix in the way illustrated by Figure 4.1 on the next

page.

4.1 Avoiding Infinite Unfolding and Call Duplication

9 (x z) = (if (nUll x) then z

else (call f (call 9 (cdr x) z)))
f (w) = (cons w w)

The basic idea is to use a static call unfolding strategy, that is, to decide on call
unfolding in advance of function specialization. Unfolding decisions are made for...,
each individual call expression appearing in the subject program and are
represented by armotations of the call expressions.



494 P. Sestoft
Automatic Call Unfolding in a Partial Evaluator 495

Here the sVI'" sVm are the Static variables of f, and the dVI'" dVn are the Dynamic
ones. Correspondingly, the sel ... sem are the Static argument expressions, and the

del" .den are the Dynamic ones.
We shall say that a Static variable SVj is inductive in the call from f to itself if

and only if the corresponding argument expression sej computes a value which is a
proper substructure of the value of sV j • For instance, se jmay be (car SVj) or (cdr SVi)·

Let us define that a call satisfies the structural induction condition if there is
at least one inductive Static variable in the-~;Ii~;~d~th;'~~~;~;j;gStatic variables

are either unchanged or inductive.
A call satisfying the structural induction condition cannot be unfolded

infinitely often, and so it can safely be made eliminable. To see this, consider the
totality of 1's Static variables. In every call satisfying the structural induction
condition, the total number of cons-cells in the values of the Static variables must

This first subphase of the call annotation phase makes ca~ annotations that guarantee
absence of infinite unfolding. When deciding on the annotation of calls, two cases
are distinguished: a call to a function having only Static variables, and a call to a

function with at least one Dynamic variable.
A call to a function with only Static variables is always made eliminable as

was argued for in Section 3.2.
The decision for a call to a function with at least one Dynamic variable makes

use of the concept of an in4JJ:..~ltY!L.y'gLi.gJJ1~. The idea is to make a function call
eliminable only if it can be ensured that it cannot be unfolded infinitely during
function specialization. Infinite unfolding can of course happen only when a
function calls itself recursively (possibly through calls to other functions).

To simplify the discussion (and the algorithm) we consider only the case of a
direct recursive call from a function f to itself, .. .__ H.. .. '" .. - .

--""-"'-~"'''-- -, " _,..... • .

4.1.1 Simple Annotations Based on Inductive Variables

Both of the subphases are designed to avoid the pitfall of too little unfolding
(when all variables in a call are Static), but n~.SJIe..~if!L~J!J~L~Jakenof the risk of
9-Q.g~.~~P'!~~~!~5>._~' Both of the subphases mak;use of the de~~ripti~~~f'~~~h'-~;ri~b~
as Static or Dynamic which is computed by the preceding binding time analysis phase
of mix. The first analysis subphase, avoidance of infinite unfolding, is quite simple.
It is based on the recognition of inductive variables and is described in Section 4.1.1
below. The second analysis subphase, avoidance of call duplication, is more
involved. It alternates between a duplication risk analysis and a transformation that
makes more calls residual. This second subphase is described in Section 4.1.2.

First phase ofmix

First phase ofcall
unfolding method

Second phase of mix

Second phase ofcall
. unfolding method

Subject program
w. call annotations

Intennediate residual
program

Postprocessing phase:
Further call unfolding

Figure 4.1: Structure of Mix with Call Unfolding

. ~f ~e call ~s .to be suspended every time it is met during function
specIalIzatIOn, then It IS annotated with an "r" yielding callr. This will be referred to
as a residual call, that is, one to be left in the residual program. If the call is to be
always unfolded during function specialization, then it is not marked, and will be
referred to as an eliminable call. So by definition every residual call met durin
function specialization will be suspended, and every eliminable call met will b~
unfolded.

~e annotations (representing call unfolding decisions) must satisfy at least

_!~?_!e'l~~ren:en~s as discussed in Section 3: there must be}!9!Ilfmite unfolding, .and
_~() ~~~l dllP!Ic_aJ!~~ A set of annotations (,that satisfies these _two requirements is
f?und by two analyses done in separate subphases of the call annotation phase. In the
fIrst s~bphase, sufficiently many calls are made residual to ensure that infinite
unfoldmg cannot take p~ace during function specialization. In the second subphase,'
more calls are made resIdual to remove possible call duplication risks until there is
no such risk anymore. Obviously, making more calls residual cannot reintroduce
risk of infinite unfolding. a



In these two cases it will be made eliminable.

4.1.2 Duplication Risk Analysis

497Automatic Call Unfolding in a Partial Evaluator

(during the function specialization phase) may contain a call expression. This
requires a call abstract interpretat~qrLwhich is a global analysis of the subject
program (including annotated calls), and which is quite similar to the binding time
analysis used in mix.

The call abstract interpretation is an abstraction of the symbolic computation
with expressions as data values that takes place during the function specialization
phase of mix. It uses the abstract data values E and C, where E is the abstract value
corresponding to symbolic expressions not containing a call, and C is the abstract
value corresponding to expressions that may contain a call subexpression.

The call abstract interpretation will, for every function in the subject
program, compute a description of its Dynamic variables and its result. A Dynamic
variable dv of a function f is described as C if there is an eliminable (unfoldable) call
to f in which the argument expression corresponding to dv has abstract value C.
Otherwise the variable is described as E. Static variables are always described as E

since the symbolic values of Static variables must be constant expressions; these
cannot contain call subexpressions.

Given an assignment of abstract values to Dynamic variables (i.e., an abstract
environment), it is straightforward to compute the abstract value of an expression.
The only non-trivial case is that of aneliminable call e~pression. In this case we
define (slightly c0t:l~_~!y(itively) that its abstract value is C if any of its argument
expressions has abstract value C, or if the called function's body expression has
abstract value C regardless of the abstract values of its Dynamic variables.

Below we describe the call abstract interpretation more formally for the sake
of precisi~n and brevity.

Let p be a Mixwell program with call annotations from the first call annota
tion subphase, p = (fj (SVj I ... svjm)(dvj I ... dVjn) = ej)j=I, ... ,h' let

v E Deall ={E, C}
be the domain of abstract values, let

pER =DVarnames ~ Dean
be an environment assigning an abstract value to each Dynamic variable of a
function, and let

1t E I1 = FctNames ~ R x Dean
be a global environment assigning ~,~~!~ll:~!~rgllJ!l~~t and ~~_ll_!~values to every
function in the program p. For 1t EIland f E FctNames we will write

1targ(f) for let (p, vres) = 1t(f) in p
1tres(f) for let (p, vres) = 1t(f) in vres '

All the sets above are equipped with reflexive partial orderings as follows:

Dean: E < C
R: PI ~ P2 iff V dv E DVarnames . PI(dv) ::; P2(dv)
I1: 1t1 ::; 1t2 iff V f E FctNames. 1t1,argO) ~ 1t2,arg(f) t\ 1t1,res(f) ::; 1t2,res(f)

P. Sestoft496

decrease. Since only calls having no Dynamic variables or satisfying the structural
induction condition will be unfolded, infinite unfolding during function specializa
tion must involve only calls satisfying the structural induction condition. Hence
infinite unfolding would imply decreasing the number of cons-cells infinitely many
times, which is impossible, and therefore infinite unfolding cannot happen. Notice
that it is crucial that the only kind of data in Mixwell is non-circular S-expressions,
for with circular S-expressions there would be no bound on the "decrease" of
cons-cells.

.This technique could of course be extended to cover indirect recursive calls
i.e., recursive call chains involving more than one function call. '

In summary, a function call will be made residual by this subphase of the
preprocessing unless

• it is a call to a function with only Static variables, or
• it is a direct recursive call satisfying the structural induction condition.

This second subphase of the call annotation phase analyses the annotations produced
by the first subphase to see whether there is a call duplication risk. If so, more calls
are made residual until no call duplication risk remains.

The core of this subphase is a duplication risk analysis that pheck§ _eyery
~iJ!lj_1?_~~~l?_ call in the following way. Each argument expression is che~ked to see
whether its symbolic value (during function specialization) may be an expression
containing a call as a subexp~essibn. If there is an argument expression with this
property for which the corresponding variable (in the function called by the
eliminable call) ~ppears twice OI!I12.!"~!!I the. same conditional branch of the called
function's body~ then there is a call dupli~~i~;-;i~k-.-- Wh~~~~~r such a risk is
discovered, the eliminable call is made residual, and the duplication risk analysis is
done over again. If no duplication risk is found in the program, the current set of
annotations is accepted and is used by the function specialization phase. This is
guaranteed to lead neither to infinite unfolding nor to call duplication.

Such a set of annotations will eventually be found by the algorithm for the
following two reasons. Eirst, the algorithm must teillliI!/ge since there are only
finitely many eliminable calls and at least one of these is made residual by every
iteration.~e~9pd, if the boundary case is reached where every call (except those
having only Static variables) has been made residual, no duplication can happen.

The duplication risk analysis outlined above is fairly straightforward except
for the problem of deciding whether the symbolic value of an argument expression



1t = F[et](1targ(f»1t for all f
1tres(f) = A[ef](t.. dv:DVarnamesf · E)1t for all f

t '.;,.,,:lcc( V"(,'.cl

We define two functions to do the call abstract interpretation using these
ordered sets. The function F computes a new approximation to the final description
of each function's Dynamic variables, whereas the function A computes the abstract
value of an expression in a given abstract environment.

We want a final description 1t E n that is consistent and has as few C's as
possible. This must be the least fixed point for the simultaneous equations

4.2 Call Graph Analysis and Unfolding by Postprocessing

499Automatic Call Unfolding in a Partial Evaluator

The call abstract interpretation realized by these functions is the basis of the
duplication risk analysis. The 4uplicati()nIj~k@~~y~isused in this second subphase

of the call annotation phase does not dependo_~_t:!?-_~_"Y~~_~?ta!~~?~~!~_~ad~jllJ:b.e

first subphase. It can be used with any call annotations as long as they are consistent
'with theStatic/Dynamic classification of variables. Therefore the second subphase
need not be modified in case the first subphase is improved to make better call
aIUlotations or is changed for other reasons.

P. Sestoft498

Here ef is the body of function f and DVarnamesf is the set of its Dynamic variables.
This fixed point exists, because for any given program p, n is a lattice of finite
height, and the functions A and F given below are monotonic in 1t. This fixed point
can be computed by a standard algorithm.

F: Mixwell-expr x R x n -t n

F[variable v]P1t = 1t

F[(quote S-expression)]p1t =1t

F[(car e)]p1t = F[e]p1t same for cdr, atom
F[(cons e1 e2)]p1t = F[e1 ]P1t U F[e2]p1t same for equal
F[(if e1 e2 e3)]p1t = F[e1 ]p1t U F[e2]p1t U F[e3]p1t
F[(calJr f( )(de1 '" den»]p1t = U {F[dej]p1t I j=l,...,n}
F[(call f( )(del ... den))]p1t =

let 1tnew = U {F[dej]p1t Ij=l ,... ,n}

Pnew = [ dVj ~ A[dej]p1t for j=l,... ,n ]
in 1tnew [ f ~. (1targ (f) U pnew' 1tres(f»]

where the called function f has Dynamic variables dV1, ... , dv
n
.

A: Mixwell-expr x R x n -t Dean

The annotations of every call as residual or eliminable produced by the call

aIUlotation phase are used by the subsequent function specialization phase. ~e
simplicity of the first subphase of the call aIUlotation phase implies that. th:re .w.Ill
often be more residual calls than is in principle necessary to aVOId mfmlte
unfolding, call duplication and other anomalies. Every residual call encountered
during function specialization gives rise to a (possibly new) residual function, and
for that reason the residual program will often contain many very simple residual
functions, some consisting of just a call to another function. This impairs
readability and slows down execution of the residual program somewhat.

It is the purpose of the postprocessing phase described here to reduce the
number of residual functions by doing further call unfo~ding in the residual
program.

The postprocessing phase has two stages, or subphases. The first one does an
analysis of the residual program to be processed to see which functions n:ay be
unfolded and which may not. The second subphase then does the unfoldmg of
function calls (and some further reduction of expressions made possible by
unfolding) while using the information gathered by the first subphase.

The important observation behind the analysis done by the first subphase is
this: infinite unfolding must involve a recursive call chain from a function f
(possibly through several others) back to itself, e.g., f -t. 9 -t h -t f in

By suspending all calls to at least one function in such a recursive chain, i~finite

unfolding of the chain will be prevented. The idea now is to select one functIon (to
be called a cutpoint) in each recursive call chain, and then suspend calls to that
function.

A[variable v]p1t = E if v is Static

p(v) if v is Dynamic
A[(quote S-expression)]p1t = E

A[(car e)]p1t = A[e]p1t same for cdr, atom
A[(cons e1 e2)]p1t = A[el ]p1t U A[e2]p1t same for equal
A[(if e1 e2 e3)]p1t = A[el ]p1t U A[e2]p1t U A[e3]p1t
A[(callr f( )(...»]P1t = c
A[(call f( )(del ... den»]p1t =

let (pi, vres) = 1t(t) in vres U (U {A[dej]p1t I j=l,... ,n})

f ( )

9 ( ) =

h ( ) =

... (call 9 ) .

." (call h ) .

... (call f ) ..



4.2.1 Call Graph Analysis

The two subphases of the postprocessing phase will be described in Sections
4.2.1 ~d 4.2.2 be.low. But first we give definitions of the concepts of call graph and
recurSIve call cham. The call graph of a Mixwell program r is a directed multigra h
that has the program's functions as nodes, and has an edge from function f ~o
function 9 for each call to 9 in the body of 1. A recursive call chain is a cycle in the
call graph, that is, a non-empty sequence of edges (i.e., calls) f ~ ..• ~ f such that
the first and last nodes are the same.

mark f visited, then

extend the current path by f, then
for every function 9 called by f,

if 9 is on the current path, then

a recursive call chain has been discovered: make 9 a cutpoint
else if 9 is not already vi~ited, then visit g,
remove f from the end of the current path.

501Automatic Call Unfolding in a Partial Evaluator

4.2.2 Unfolding

4.3 Limitations of the Method

The second subphase of the postprocessing phase traverses the residual program
produced by the function specialization phase and unfolds calls to s~all,functions

while avoiding infinite unfolding, call duplication, and code duplIcatIOn. The
traversal starts with the goal function and consists in a symbolic evaluation
(computing with expressions as values) in the same way as does the function

specialization phase. . .
Again symbolic evaluation of expressions other than calls IS straightforward,

so we will discuss only the treatment of calls.
Consider a call (call 9 el ... en) to a function g. First the reduced versions

e I * ... en* of the argument expressions e 1." en are computed; ,the argument
expressions may themselves contain calls that should be unfolded. EI~er the c~ll to
9 will be unfolded, i.e., replaced by the body e of 9 with the symbolIc expresslO~s

e * e * substituted for occurrences of the corresponding variables vI'" vn; or It1 '" n

will be left as itis, with el ...en replaced by el* ...en*.
Which of these two actions to take will be decided as follows. If 9 has been

chosen as a cutpoint by the preceding call graph<'analysis, then the call will not.be
unfolded. If 9 has not been chosen as a cutpoint, it will be ~l!e(;~~d wp~.ther there IS !i.
risk ofeall. d)lplicatiop Or .code duplication when unfolding..the call. The check
';orks like this: if the reduced form et of an argument expression in the call to 9
contains a call itself, or is a sizeable expression, then it is checked whether the
corresponding variable v· appears more than once in any branch of g's body
expression e. If so, ther~ is a risk of call duplication or code duplication for
variable Vj' If there is such a risk for any of g's variables, then the call will not be
unfolded; otherwise it will.

The transformations done by the unfolding phase are }lot fu!1y semantics
l~res_erYin& The errors are however on the "safe" side: a postprocess~d ~rogram

~;-y-terminate more_ gften than the one input to the postprocessing. ThIS IS due to

the caU:.l1y-name nature of unfolding.

In this section we shall look at a case where the partial evaluator mix will not work
with our call unfolding method (or any other for that matter). .

Consider the example program

P Sestoft500

The call gr~ph anal~sis of a M~xwell program r works by traversing the call graph
of r to find ItS recurSIve call chams and then select a cutpoint for each of these.

. Th~ call graph anal~sis does a recursive depth-first traversal of the graph,
startmg WIth the goal JunctIOn, and is an instance of a general scheme for depth-first
traversal of directed graphs [Aho, Hopcroft, Ullman 1974].

'. The algorithm maintains a marking of the functions that have already been
VIsIted and keeps account of the current path from the goal function to the function
currently being visit~d (inclusive). Furthermore, the al~orithm records the
cutpoints for the recursive call chains found so far. A visit to a function f consists of
the actions

When the initial visit of the goal function is finished, (at least) one cutpoint has been
found for every recursive call chain in the program. Note that the current path will
never contain a recursive call chain, and that every function on the current path has
already been marked visited.

Note that the algorithm visits each function once and does one traversal of its
bod~. S~ provided. the operations of marking and mark testing and the path
mampulatIOn operatIOns each take constant time, the a,lg()rithm will run in time
liI!~i!! inJh~~~~_oiJh~_PJQgX~!P: being analyzed. ~ ...------

9 (x z) = (if (null z) then x
else (call 9 (cons 'A x) (cdr z)))

and assume x = '0 is known and z is unknown. We will see that in the framework of



90 (z) = (if (null z) then '0 else (call g(A) (cdr z)))
9(A) (z) = (if (null z) then '(A) else (call 9(A A) (cdr z)))
g(A A) (z) = (if (null z) then '(A A) else (call 9(A AA) (cdr z)))

mix, no satisfactory call annotation is possible.

For if the call is made eliminable then clearly infinite unfolding will result.
If,on the other hand the call. is,made residual, an i~nitY_Qf.§p'~_~j1l1iz~c!Y~!§J9I!~ of 9
will be produced, each specIalIzed to a value of the Static variable x:

It is a basic principle of mix to specialize each function to the possible values
of its Static variables. For this to work, the nu~~r ~rpgssiblevaluesfor each
function must be _fin!!~l and in fact mix~Q~~_~_"Y~Lo1!__gr_Qg£~~i- __~l!t!~fYiIJ.g tb-i~
requir~:n:!~!1:t· (The class of such programs has been called "analyzer programs with
fmitely defined memory" by Bulyonkov [Bulyonkov 1984, 1985].)

From the specialization point of view, the classification of x as Static by the
J~!!J:cl..t'~1.g .._~iJP._~ ~~_a.:!Y_~1~_§!~pIY_~~2_~g-" The set of possible values of x is not
statically detennined: it depends on the value of the DynariJic variable, and there is
no statically determined bound on the size of the set of x's possible values.

These problems and related issues have recently been treated by Jones in a
thorough reconsideration of the concept of bin,ding time analysis [Jones 1988J.

503Automatic Call Unfolding in a Partial Evaluator

where the structural induction conditioI!_is._sati~fi~d,__ and this will result in a fair
~~t;~--~~alls bei;g-~~d~-;i~iri~bl~~- Satisfactory results for precisely this class
of programs are important, because compilation by partial evaluation of an
interpreter is a yery interes.ting..applic"a.tjQILQ.tP.~rtiC!J_~y_~!~at~??::

A great advantage of using call annotations that are generated automatically
is that i~ contrast to human-made ones, they are guaranteed not to give trivial
residl:!~JJ.ro g_~~~~_~_~~Ili~~ll11foldi.Il_g, .or ca~~uplication.------------_u_------_~u_ ---
------- The call annotation algorithms are quite fast, in particular the first subphase
which does only a local analysis of the program. The second subphase (which does
one or more global analyses) is slower than the first, but still spends only
approximately 5 cpu seconds on a 500 line Mixwell program.

As to future developments, it is tempting to improve on the first subphase so
that it would recognize more situations where calls can safely be unfolded. This
could be done without affecting the second subphase at all, as the second subphase
does not depend on the way the call annotations are made. To make better call
annotations, the first subphase would have to ta~e a more global view of the
program than it does presently. Information about the structure of the call graph of
the subject program should be relevant, and so should information about the
behaviour of Static variables along recursive call chains in the graph. This would
allow to take into -account also indirect recursive calls satisfying the structural
induction condition. Call annotations that are of the same quality as those produced
by an experienced user are probably very hard to make ~utomatical1y.

P. Sestoft502

5. RESULTS AND ASSESSMENT

In this section we give some results from the use of our call unfolding method in the
partial evaluator mix.

5.1 Simple Annotations Based on Inductive Variables

Partial evaluation using simple call annotations based on inductive variables gives
residual programs that have a reasonable structure and a not too overwhelming size.
These residual programs in general have very many small functions, which makes
them quite unreadable to humans. On the other hand, they are usually almost as fast
as and of approximately the same size as residual programs produced from subject
programs that were carefully call annotated by hand. In particular, the method
works well on the Qartial evaillatoLils.elf, and so it is fully automatic and seIf
applicable.

The method is :Y~.rY __W~U_§l!it~cl for application to interpreters and other
p!..qgraI!:~_!!?-~wQ.!:_lLby recursiv~descent": they decompose part of their input in
the Course of recursion or iteration. Such programs will often have_se_y~_ra.!_pla_~~~

5.2 Effects of Unfolding by Postprocessing

We briefly illustrate the effect of postprocessing on mix-produced residual
programs. Below cocom is the compiler generator produced by mix, comp is a
compiler for a tiny imperative language (produced by cocom), and target is a target
program (produced by comp) for a program to compute xY, i.e., x raised to the y'th
power.

First we give examples of the size reduction achieved by postprocessing. The
number of-lines is for prettyprinted Lisp listings. As can be seen, the effect on the
size of the programs is considerable. Also the readability of the programs is
improved, mostly because the plethora of calls to functions with non-telling names
are replaced by the called functions' bodies substituted in-line.



6. SUMMARY

We have discussed the problem of call unfolding in a partial evaluator for (first
order) pure Lisp, and we presented an automatic two-phase call unfolding method.
Some results from its use were reported and discussed.

We concluded that the metI:!~~ __~2!-15.LW~~1 for a large class of programs,
notably tm~mI~J:~r.:JH(~__ PIQgr.~m~ __WQr.!c.!!!.gJ~y recursiye desc~nt. This class
includes the partial evaluator mix, and this is· c-;';d~iio·~ -~eif-~ppiicability of the
partial evaluator. For other programs, the method will fail due to problems with
infinite specialization. .

For programs on which the method works well, the second (i.e.
postprocessing) phase mainly contributes by improving the readability of the
resulting programs.

We have also found that reasonable speed-ups (running-time reduced by
between 5 and 50 per cent) have been achieved by applying the postprocessing. For
some larger programs, such as the compiler generator cocom, the speed-up
achieved by postprocessing is negligible, and the main reason for applying it is the
desire to get programs that are readable by humans. "

The postprocessing phase itself is tolerably fast, taking 11 cpu seconds for
processing the compiler generator cocom mentioned above. However, it is a
drawback that, in contrast to the call annotation phase, it cannot be optimized by
partial evaluation of the partial evaluator' itself. For this reason it would be
desirable to obviate the need for a postprocessing phase altogether, with the
implication that a more sophisticated way to find call annotations would be needed.
Such an improvement would concern the first subphase of the call annotation phase
only, and is discussed above at the end of Section 5.1.

505Automatic Call Unfolding in a Partial Evaluator

[Futamura 1971] . h i1
Y. Futamura. Partial evaluation of computatIon process - an approac to a camp er-
compiler. Systems, Computers, Controls 2,5 (1971) 45-50.

[Jones 1988] . . . . . fr b' ., les In
N D Jones Automatic program specIahzatIon: a re-exammanon am aSIC P~CIP .
D' B:¢ er'A P Ershov and N. D. Jones (eds.): Workshop on Partial Evaluatzon and.
Mixld~or:zp~tation,Gf. Avernces, Denmark, October 1987. North-Holland, 1988. (ThIS

volume).

[Aho, Hopcroft, Ullman 1974]
A. V. Aho, 1. E. Hopcroft, J. D. Ullman. The Design and Analysis o/Computer
Algorithms. Addison-Wesley, 1974.

[Beckman et al. 1976] . . 1 A ifi . I
L. Beckman [et al.]. A partial evaluator, and ItS use as a programnnng too. rtz Cia

Intelligence 7, 4 (1976) 319-357.

[Bulyonkov 1984] . A [,F. tica
M. A. Bulyonkov. polyvariant mixed computatlon for analyzer programs. cta nJorma
21 (1984)473-484.

[Bulyonkov 1985] . d fi d 'th
M. A. Bulyonkov. Mixed computati?ns for programs over fimtely e me memory WI
strict partitioning. Soviet Mathematzcs Doklady 32, 3 (1985) 807-811.

[Ershov 1978] . . ld ( d)' F l D 'ption 0/A. P. Ershov. On the essence of compIlatIon. In EJ. Neuho e.. onna escn
Programming Concepts, 391-420. North-Holland,1978.

[Ershov 1982] . .' d bl t' dA. P. Ershov. Mixed computation: PotentIal apphcatlons an pro ems lor stu y.
Theoretical Computer Science 18 (1982) 41-67.

[Fuller, Abramsky 1987] . I D B' A
D A Fuller and S. Abramsky. Mixed computatIOn of Prolog programs. n '. J~rner, .
P.· Er~hov, and N. D. Jones (eds.): Workshop Compendium" Workshop on Partzal
Evaluation and Mixed Computation, Gl. ;4verna;s, D~nmark, October 1987,83-101.
Department of Computer Science, Techmcal UmversIty of Denmark, Lyngby, Denmark,

1987.

8. REFERENCES

I am most grateful towards Neil D. Jones and Harald S¢ndergaard for introducing
me to partial evaluation and for our exciting collaboration on the development of

the self-applicable partial evaluator mix. . .
Thanks also go to Niels Carsten Kehler Holst and OltvIer ~anvy for

suggesting, among other things, improvement~ to the ca~ graph analYSIS, and to
Tarben Mogensen for discussions on call unfoldmg strategIes.

7. ACKNOWLEDGEMENTS

P. Sestoft

Figure 5.1: Size Improvement by Postprocessing

Program Before unfolding After unfolding

No. of functions 37 6
target No. of lines 112 36

No. of cons cells 474 253

No. of functions 148 24
comp No.oflines 600 303

No. of cons cells 3387 2426

No. of functions 400 49
cocom No. of Enes 1904 -:1062

No. of cons cells 11351 8853

504



[Jones, Sestoft, Sl/lndergaard 1985]
N. D. Jones, P. Sestoft, and H. Sl/lndergaard. An experiment in partial evaluation: The
generation of a compiler generator. In I.-P. Jouannaud (00.): Rewriting Techniques and
Applications. Lecture Notes in Computer Science 202 (1985) 124-140. Springer-Verlag.

[Jones, Sestoft, SfIlndergaard 1987]
N. D. Jones, P. Sestoft, and H. SfIlndergaard. :MIX: A Self-Applicable Partial Evaluator for
Experiments in Compiler Generation. DIKU Report 87/8 (June 1987). DIKU, University
of Copenhagen, Denmark.

[Lombardi 1967]
L. A. Lombardi. Incremental computation. In F. L. Alt and M. RQbinoff (eds.): Advances
in Computers 8 (1967) 247-333. Academic Press.

[Sestoft 1986]
P. Sestoft. The structure of a self-applicable partial evaluator. In H. Ganzinger and N.D.
Jones (eds.): Programs as Data Objects. Lecture Notes in Computer Science 217 (1986)
236-256. Springer-Verlag.

[Turchin 1979]
V. F. Turchin. A supercompiler system based on the language Refal. SIGPLAN Notices
14,2 (1979) 46-54.

1988

NEIL D. JONES
University of Copenhagen
Copenhagen, Denmark

ANDREI P. ERSHOV
USSR Academy of Sciences
Novosibirsk, USSR

~ORTH-HOLLAND

AMSTERDAM· NEW YORK· OXFORD· TOKYO

edited by

DINES BJ0RNER
Technical University ofDenmark
Lyngby, Denmark

Proceedings of the IFIP TC2 Workshop on
Partial Evaluation and Mixed Computation
Gammel Avernres, Denmark, 18-24 October, 1987

PARTIAL EVALUATION
AND MIXED COMPUTATION

P. Sestoft506




