
IT University of Copenhagen 1

Functional programming 1
Where are we today

Peter Sestoft
IT University of Copenhagen

Ingeniørforeningen, IDA-IT

Wednesday 2014-09-24

IT University of Copenhagen

The speaker
•  MSc 1988 computer science and mathematics and

PhD 1991, DIKU, Copenhagen University
•  Programming languages, compilers,

software development, ...
•  Open source software:

–  Moscow ML, a functional language, since 1994
–  C5 Generic Collection Library for C#/.NET, since 2006

•  Author of some books:

1993 2002, 2005, 2015 2004, 2012 2007 2012 2014

My current obsession: new ITU course

3

IT University of Copenhagen

Plan for today
•  Programming language genealogy
•  Why functional programming, why now
•  F#, an ML dialect
•  Algebraic datatypes
•  Pattern matching
•  Higher-order functions
•  Polymorphic type inference
•  Sequences
•  Functional programming in the mainstream

– C# 5
–  Java 8
– Scala

4

IT University of Copenhagen

What is it? In a nutshell
•  Compute with values, not locations

– Data values are immutable
– Functions have no side effects

•  Build results as new data
– Do not destructively update existing data
– Example: add(set,x) produces a new set instead

of updating the existing collection set!
– Cheap: immutable data structures can be shared

•  Higher-order functions
•  Static type, polymorphic types, and more

5

IT University of Copenhagen

Why functional programming?
•  Powerful modularization facilities:

– abstraction: higher-order functions
–  statically checkable documentation: types

•  Easier to reason about
•  Types without tears due to type inference
•  Easier to parallelize, exploit multicore

– Shared mutable data is the root of all evil
– Avoid mutable, and many problems go away

6

SCHEME

ML

SASL HASKELL

LISP

COBOL

VISUAL BASIC

GJ

JAVA

2000

C#

BASIC

CCPL BBCPL

FORTRAN77

2010

Java 5

C# 2 C# 4

STANDARD ML

OCAMLCAML LIGHT

VB.NET 10

F#

Scala

FORTRAN90

ADA ADA95 ADA2005

FORTRAN2003

BETA

ERLANG
Java 8

FORTRAN

ALGOL

PASCAL

C++ALGOL 68

SIMULA

SMALLTALK

PROLOG

1956 1970 1980 19901960

Mostly-
functional

Old
mainstream

Modern
mainstream

IT University of Copenhagen

Why now? It has been here for ages
•  Functional programming languages are old

– Lisp 1960, Scheme 1978, dynamic types
– ML 1978, polymorphic (generic) types
– SASL 1976, Miranda, Lazy ML, Haskell 1989, lazy

•  Also many classic books
– Burge: Recursive programming techniques, 1975
– Henderson: Functional programming, 1980
– Peyton-Jones: Implementation func prog lang, 1987
– Bird & Wadler: Intro functional programming, 1988

•  Many old applications
– Program analysis and transformation, artificial

intelligence, computer-aided design, ...

8

IT University of Copenhagen

 Affordable, acceptable, necessary
•  Technological advances: affordable now

– Hardware has become bigger and faster
– Garbage collection technology has matured

•  Psychological advances: acceptable now
–  Java Virtual Machine (1994) and .NET (2000) led to

accept of “managed platforms”, garbage collection
•  Harder problems: better tools needed now

– Generic types for modelling and specification
– Higher abstractions are useful and effective

•  Eg. bulk data processing with C# LINQ and Java streams

– Most functional computations are easy to parallelize
•  Eg. Parallel LINQ and Java 8 parallel streams

9

General trend towards functional

10

Bloch: Effective Java,
2008, p. 73

A serious Java (or
C#) developer
should own and
use this book

Josh Bloch
designed the Java
collection classes

IT University of Copenhagen

The F# functional language
•  Runs on Microsoft .NET and Mono platforms

– Can use standard .NET libraries, interface C#
– Excellent performance

•  Descends from OCaml and ML
•  Many innovations:

– Asynchronous computations
– Units of measure type system
– Type providers

•  Used in finance and data analysis
•  Don Syme, Microsoft Research UK

11

IT University of Copenhagen

Recommended F# textbook

12

Hansen and Rischel: Functional Programming
 with F#, Cambridge University Press 2013

Used at DTU and ITU

Written at DTU

IT University of Copenhagen

F# values, declarations and types

•  Bindings to immutable variables, not assignment
•  Types inferred automatically

F# Interactive for F# 3.1 (Open Source Edition)
> let res = 3+4;;
val res : int = 7

> let y = sqrt 2.0;;
val y : float = 1.414213562

> let large = 10 < res;;
val large : bool = false

Computed value Inferred type

IT University of Copenhagen 14

F# function definitions

•  Calling a function:

> let circleArea r = System.Math.PI * r * r;;
val circleArea : r:float -> float

> let mul2 x = 2.0 * x;;
val mul2 : x:float -> float

> circleArea 10.0;;
val it : float = 314.1592654

> circleArea(10.0);;
val it : float = 314.1592654

Function type

IT University of Copenhagen

•  Defining factorial

•  Same, using pattern matching:

15

F# recursion, pattern matching

> let rec fac n =
- match n with
- | 0 -> 1
- | _ -> n * fac(n-1);;

val fac : n:int -> int

> let rec fac n =
- if n=0 then 1
- else n * fac(n-1);;

val fac : n:int -> int

IT University of Copenhagen 16

F# pairs and tuples

> let p = (2, 3);;
val p : int * int = (2, 3)

> let w = (2, true, 3.4, "blah");;
val w : int * bool * float * string
 = (2, true, 3.4, "blah")

> let add (x, y) = x + y;;
val add : x:int * y:int -> int

Pair type

Function from pair to int

•  A “two-argument” function is really a
function from a single pair of arguments

IT University of Copenhagen 17

F# lists

•  Data structures compose to any depth
– Eg a list of pairs of name and age

> let x1 = [7; 9; 13];;
val x1 : int list = [7; 9; 13]

> let x2 = 7 :: 9 :: 13 :: [];;
val x2 : int list = [7; 9; 13]

> x1 = x2;;
val it : bool = true

> let friends = [("Hans", 52); ("Hanne", 49)];;
val friends : (string * int) list = [("Hans", 52); ("Hanne", 49)]

List of pairs of
string and int

18

List append (@)

•  F# data (lists, pairs, …) are immutable
•  This makes list tail sharing unobservable
•  Admits economy impossible in C, Java, C#, ...

> let x1 = [7; 9; 13];;
> let x3 = [47; 11];;
> let x1x3 = x1 @ x3;;
val x1x3 : int list = [7; 9; 13; 47; 11]

9

11

13

47

7

9 13 7

x1

x3

x1x3

IT University of Copenhagen 19

F# defining functions on lists
> let rec sum xs =
- match xs with
- | [] -> 0
- | x::xr -> x + sum xr;;
val sum : xs:int list -> int

> sum x1;;
val it : int = 29

20

F# algebraic datatypes
•  A person is either a teacher or a student:

type person =
 | Student of string
 | Teacher of string * int;;

> let people = [Student "Niels"; Teacher("Peter", 5083)];;
val people : person list = [Student "Niels"; Teac ...]

> let getphone person =
- match person with
- | Teacher(name, phone) -> phone
- | Student name -> failwith "no phone";;
val getphone : person:person -> int

•  Checks exhaustiveness and irredundancy
•  OO would use abstract class Person

with subclasses Teacher and Student

Defines a type and
two constructors

Matching on
constructors

IT University of Copenhagen 21

F# polymorphic functions

•  Same as a generic method in Java or C#

- let rec len xs =
- match xs with
- | [] -> 0
- | x::xr -> 1 + len xr;;

val len : xs:'a list -> int

The function
doesn’t look at

the list elements

The function type
is polymorphic

static int Count<T>(IEnumerable<T> xs) { ... }

len [7; 9; 13]
len [true; true; false; true]
len ["foo"; "bar"]
len [("Peter", 50)]

It works on any
type of list

IT University of Copenhagen 22

F# polymorphic types: generic tree

•  Same as a generic type in Java or C#
•  But in F#, types are inferred automatically

type 'a tree =
 | Lf
 | Br of 'a * 'a tree * 'a tree;;

> Br(42, Lf, Lf);;
val it : int tree = Br (42,Lf,Lf)

> Br("quoi?", Lf, Lf);;
val it : string tree = Br ("quoi?",Lf,Lf)

> Br(("Peter", 50), Lf, Lf);;
val it : (string * int) tree = Br (("Peter", 50),Lf,Lf)

Defines a
polymorphic

type ’a tree and
two constructors

IT University of Copenhagen

F# sequence expressions
•  Like “set comprehensions” in mathematics

 { 3*x | x in 1..200 }

Σ{ 1/x | x in 1..200 ∧ 5 and 7 do not divide x }

23

Seq.sum(seq { for x in 1..200 do
 if x%5<>0 && x%7<>0
 then yield 1.0/float x })

- seq { 1..200 };;
val it : seq<int>

> seq { for x in 1..200 do yield 3*x };;
val it : seq<int> = seq [3; 6; 9; 12; ...]

IT University of Copenhagen

Pattern matching example:
Symbolic differentiation

•  Represent expression by algebraic datatype:

•  Examples:

24

type expr =
 | Cst of int
 | Var of string
 | Add of expr * expr
 | Sub of expr * expr
 | Mul of expr * expr;;

> Mul(Cst 42, Var "x");;
val it : expr = Mul (Cst 42,Var "x") 42 * x

> Mul(Var "x", Mul(Var "x", Var "x")) x * (x * x)

IT University of Copenhagen

Pattern matching example:
Symbolic differentiation wrt x
diff(k) = 0
diff(x) = 1
diff(y) = 0
diff(a + b) = diff(a) + diff(b)
diff(a * b) = diff(a) * b + a * diff(b)
diff(a – b) = diff(a) – diff(b)

25

let rec diffX (e : expr) =
 match e with
 | Cst i -> Cst 0
 | Var y when y="x" -> Cst 1
 | Var y -> Cst 0
 | Add(e1, e2) -> Add(diffX e1, diffX e2)
 | Mul(e1, e2) -> Add(Mul(diffX e1, e2), Mul(e1, diffX e2))
 | Sub(e1, e2) -> Sub(diffX e1, diffX e2)

IT University of Copenhagen

Differentiation works
but results could be simplified

26

> diffX (Mul(Var "x", Mul(Var "x", Var "x")));;
val it : expr =
 Add
 (Mul (Cst 1,Mul (Var "x",Var "x")),
 Mul (Var "x",Add (Mul (Cst 1,Var "x"),Mul (Var "x",Cst 1))))

> diffX(Mul(Cst 42, Var "x"));;
val it : expr = Add (Mul (Cst 0,Var "x"),Mul (Cst 42,Cst 1))

> diffX(Mul(Var "x", Var "x"));;
val it : expr = Add (Mul (Cst 1,Var "x"),Mul (Var "x",Cst 1))

Should be:
42

Should be:
2 * x

Should be:
3 * x * x

IT University of Copenhagen

Expression simplification

27

let rec simp e =
 match e with
 | Add(Cst 0, e2) -> simp e2
 | Add(e1, Cst n) -> Add(Cst n, simp e1)
 | Sub(e1, Cst 0) -> simp e1
 | Mul(Cst 0, e2) -> Cst 0
 | Mul(Cst 1, e2) -> simp e2
 | Mul(e1, Cst n) -> Mul(Cst n, simp e1)
 | Add(Cst i1, Cst i2) -> Cst (i1+i2)
 | Mul(Cst i1, Cst i2) -> Cst (i1*i2)
 | Sub(Cst i1, Cst i2) -> Cst (i1-i2)
 | Add(e1, e2) when e1=e2 -> Mul(Cst 2, simp e1)
 | Add(e1, e2) -> Add(simp e1, simp e2)
 | Mul(e1, e2) -> Mul(simp e1, simp e2)
 | Sub(e1, e2) when e1=e2 -> Cst 0
 | Sub(e1, e2) -> Sub(simp e1, simp e2)
 | _ -> e;;

0+e = e
e+n = n+e
e–0 = e
0*e = 0
1*e = e
e*n = n*e
e+e = 2*e
e–e = 0

let rec simplify e =
 let simpler = simp e
 in if e=simpler then e else simplify simpler;;

IT University of Copenhagen

The simplifier works

•  Adding a distributive rule:

•  Need more rules:

•  Easy to add thanks to pattern matching
28

> simplify(diffX(Mul(Cst 42, Var "x")));;
val it : expr = Cst 42

> simplify(diffX(Mul(Var "x", Var "x")));;
val it : expr = Mul (Cst 2,Var "x")

> simplify(diffX(Mul(Var "x", Mul(Var "x", Var "x"))));;
val it : expr = Add (Mul (Var "x",Var "x"),
 Mul (Var "x",Mul (Cst 2,Var "x")))

OK

OK

x * x + x * (2 * x)

e1*(n*e2) = n*(e1*e2)
n*e + m*e = (n+m)*e

IT University of Copenhagen

C# adopts functional concepts
•  1.0: Object-oriented, 2001

–  simple types, delegates
•  2.0: Generic types and methods, 2005

–  iterator blocks as stream generators
•  3.0: Functional programming and LINQ, 2007

–  lambda expressions, in-core LINQ is just functions
•  4.0: Task Parallel Library, 2010

– uses functions everywhere
•  5.0: Asynchronous methods, 2012
•  6.0: More functional programming, 2015?

– pattern matching, immutable collections

29

Kennedy and Syme

Proebsting

Meijer

IT University of Copenhagen

C# anonymous functions (lambdas)
•  Anonymous method (delegate) syntax C# 3:

delegate (int x) { return x%2==0; }

(int x) => x%2==0

x => x%2==0

Same
meaning

Same
meaning

Type inferred

30

IT University of Copenhagen

C# generic delegate types

Action
Action<A1>
Action<A1,A2>
...
Func<R>
Func<A1,R>
Func<A1,A2,R>
...

unit -> unit
A1 -> unit
A1*A2 -> unit
...
unit -> R
A1 -> R
A1*A2 -> R
...

F# or
Standard ML

(1978)

.NET 3.5
(2007)

31

IT University of Copenhagen

C# functional programming
•  A method to compose a function with itself

var fun1 = Twice<int>(x => 3*x);
Func<int,int> triple = x => 3*x;
var fun2 = Twice(triple);
Func<Func<int,int>, Func<int,int>> twice
 = f => x => f(f(x));
var fun3 = twice(triple);
var res = fun1(4) + fun2(5) + fun3(6);

public static Func<T,T> Twice<T>(Func<T,T> f) {
 return x => f(f(x));
}

•  Some lambdas and computed functions

32

IT University of Copenhagen

Linq, language integrated query
•  Linq in C#:

•  Set comprehensions, ZF notation:
 { 3x | x ∈ primes, x2 < 100 }

•  Miranda (1985) list comprehensions, Haskell
•  F# sequence expressions

generator
“from”

filter
“where”

transformer
“select”

from x in primes where x*x < 100 select 3*x

33

IT University of Copenhagen

From queries to method calls
•  A query such as
from x in primes where x*x < 100 select 3*x

is transformed to an ordinary C# expression:
primes.Where(x => x*x < 100)
 .Select(x => 3 * x)

•  There Where and Select methods are higher-
order functions

•  LINQ is disguised functional programming

34

Functions as
arguments

IT University of Copenhagen

Basic extension methods for Linq
IEnumerable<T> Where<T>(this IEnumerable<T> xs,
 Func<T,bool> p)

IEnumerable<U> Select<T,U>(this IEnumerable<T> xs,
 Func<T,U> f)

•  As list comprehension:
[x | x <- xs, p(x)]

•  As list comprehension:
[f(x) | x <- xs]

Filter!

Map!

35

IT University of Copenhagen

Extension methods on IEnumerable
•  Most support Linq for collections
•  But an enumerable is nearly a lazy list, so

they also support functional programming
•  The F# sequence expression in C#:

double sum = Enumerable.Range(1, 200)
 .Where(x => x%5!=0 && x%7!=0)
 .Select(x => 1.0/x)
 .Sum();

double sum =
 (from x in Enumerable.Range(1, 200)
 where x%5!=0 && x%7!=0
 select 1.0/x).Sum();

Same Same

36

•  Java 1.1-7 have anonymous inner classes:

•  Java 8 function interface: exactly one method

•  Java 8 anonymous function, “lambda”

Java 8 function interfaces, 2014

37

Thread t = new Thread(
 new Runnable() { public void run() { ... } }
);

An anonymous inner class,
and an instance of it

Thread t = new Thread(() -> ...);

Anonymous void function,
compatible with Runnable

interface Runnable { void run(); }

IT University of Copenhagen

Java 8 streams, 2014
•  Like .NET Enumerables & extension methods

–  In package java.util.stream
•  The F# and C# example, in Java 8:

•  No LINQ-style syntactic sugar (so far)
•  Java streams are easily parallelizable

38

double sum =
 IntStream.range(1, 200)
 .filter(x -> x%5!=0 && x%7!=0)
 .mapToDouble(x -> 1.0/x)
 .sum();

Java 8 streams are parallelizable

•  Safe only if you program functionally:

39 Java 8 class library documentation

double sum =
 IntStream.range(1, 200).parallel()
 .filter(x -> x%5!=0 && x%7!=0)
 .mapToDouble(x -> 1.0/x)
 .sum();

But not
faster: too
little work

Parallel!

IT University of Copenhagen

The Scala programming language
•  Compiles to the Java platform

–  can work with Java class libraries and Java
–  is quite easy to pick up if you know Java
–  is much more concise and powerful

•  Scala has classes, like Java and C#
– Neat combination of functional and object-oriented
– No interfaces, but traits = partial classes

•  Many innovations
– Very general libraries
– Thanks to complex type system
– Many ideas get adopted by C# and Java now

•  Martin Odersky and others, EPFL, CH

40

IT University of Copenhagen

Java versus Scala

41

class PrintOptions {
 public static void main(String[] args) {
 for (String arg : args)
 if (arg.startsWith("-"))
 System.out.println(arg.substring(1));
 }
}

object PrintOptions {
 def main(args: Array[String]) = {
 for (arg <- args; if arg startsWith "-")
 println(arg substring 1)
 }
}

Singleton class;
no statics

Declaration
syntax

Array[T] is
generic type

Can use Java
class libraries

Java!

Scala! for
expression

IT University of Copenhagen

Interactive Scala
•  Scala also has an interactive top-level

– Like F#, Scheme, most functional languages

42

sestoft@mac ~/scala $ scala
Welcome to Scala version 2.10.3 (Java HotSpot(TM) 64-Bit...).

scala> def fac(n: Int): Int = if (n==0) 1 else n*fac(n-1)
fac: (n: Int)Int

scala> fac(10)
res0: Int = 3628800

scala> def fac(n: Int): BigInt = if (n==0) 1 else n*fac(n-1)
fac: (n: Int)BigInt

scala> fac(100)
res1: BigInt = 9332621544394415268169923885626670049071596
8264381621468592963895217599993229915608941463976156518286
253697920827223758251185210916864000000000000000000000000

java.util.BigInteger

IT University of Copenhagen

Commercial uses of
functional programming

•  Financial sector
– Functional is big in London and New York
– Eg Jane Street Capital, Standard Chartered Bank
– Denmark: Simcorp, financial back office systems

•  Web services
– Twitter, LinkedIn use Scala

•  Security and high-integrity systems
– Galois Inc

•  Chip design and FPGA generation
– Xilinx

•  Stochastic testing
– Qvik, QuickCheck for Erlang etc.

43

