
Electronic Notes in Theoretical Computer Science 45 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume45.html 9 pages

Demonstrating Lambda Calculus Reduction

Peter Sestoft 1

Department of Mathematics and Physics

Royal Veterinary and Agricultural University, Denmark

and

IT University of Copenhagen, Denmark

Abstract

We describe lambda calculus reduction strategies using big-step operational seman-
tics and show how to efficiently trace such reductions. This is used in a web-based
lambda calculus reducer, at http://www.dina.kvl.dk/~sestoft/lamreduce/.

1 Introduction

The pure untyped lambda calculus [2] is often taught as part of the computer
science curriculum. It may be taught in a computability course as a classical
computation model [3]. It may be taught in a semantics course as the founda-
tion for denotational semantics. It may be taught in a functional programming
course as the archetypical minimal functional programming language. It may
be taught in a programming language concepts course for the same reason, or
to demonstrate that a very small language can be universal, e.g. can encode
arithmetics (as well as data structures, recursive function definitions and so
on), using encodings such as these:

two ≡ λf.λx.f(fx)

four ≡ λf.λx.f(f(f(fx)))

add ≡ λm.λn.λf.λx.mf(nfx)

(1)

This paper is motivated by the assumption that to appreciate the opera-
tional aspects of pure untyped lambda calculus, students must experiment
with it, and that tools encourage experimentation with encodings and reduc-
tion strategies by making it less tedious and more fun.

In this paper we describe a simple way to create a tool for demonstrating
lambda calculus reduction. Instead of describing a reduction strategy by a

1 sestoft@dina.kvl.dk, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.

c©2001 Published by Elsevier Science B. V.

http://www.dina.kvl.dk/~sestoft/lamreduce/
mailto:sestoft@dina.kvl.dk

Sestoft

procedure for locating the next redex to be contracted, we describe it by
a big-step operational semantics. We show how to trace the β-reductions
performed during reduction.

We also discuss the relation between programming language concepts such
as call-by-name and call-by-value, and lambda calculus concepts such as nor-
mal order reduction and applicative order reduction.

2 The Pure Untyped Lambda Calculus

We use the pure untyped lambda calculus [2]. A lambda term is a variable x,
a lambda abstraction λx.e which binds x in e, or an application (e e):

e ::= x | λx.e | e e(2)

Lambda terms may have free variables, not bound by any enclosing lambda
abstraction. Term identity e1 ≡ e2 is taken modulo renaming of lambda-
bound variables, as usual. The notation e[ex/x] denotes substitution of ex for
x in e, with renaming of bound variables to avoid capture.

3 Functional Programming Languages

In practical functional programming languages such as Scheme [11], Standard
ML [6] or Haskell [10], programs (terms) cannot have free variables, and reduc-
tions are not performed under lambda abstractions or other variable binders,
as this would considerably complicate their efficient implementation [9].

However, an implementation of lambda calculus reduction must perform
reductions under lambda abstractions. Otherwise, add two two would not
reduce to four using the encodings (1), which would disappoint students.

Because free variables and reduction under abstraction are absent in func-
tional languages, it is unclear what the programming language concepts call-
by-value and call-by-name mean in the lambda calculus. In particular, how
should free variables be handled, and to what normal form should call-by-value
and call-by-name evaluate? We propose the following answers:

• A free variable is similar to a data constructor (in Standard ML or Haskell),
that is, an uninterpreted function symbol. If the free variable is in function
position (x e2), then call-by-value should reduce the argument expression e2,
whereas call-by-name should not. This is consistent with constructors being
strict in strict languages (e.g. ML) and non-strict in non-strict languages
(e.g. Haskell).

• Functional languages perform no reduction under abstractions, and thus
reduce to weak normal forms only. In particular, call-by-value reduces to
weak normal form, and call-by-name reduces to weak head normal form.

2

Sestoft

4 Lazy Functional Programming Languages

Under lazy evaluation, a variable-bound term is evaluated at most once, re-
gardless how often the variable is used [9]. This evaluation mechanism may
be called call-by-need, or call-by-name with sharing of argument evaluation.
Lazy languages also permit the creation of cyclic terms, or cycles in the heap,
by definitions such as this, which creates a finite (cyclic) representation of an
infinite list of 1’s:

val ones = 1 :: ones

Substitution of terms for variables cannot truly model such constant-size cyclic
structures created by lazy evaluation, only approximate it by unbounded un-
folding of a recursive term definition (e.g. encoded using some version of the
recursion combinator Y). To properly express sharing of subterm evaluation,
and the creation of cyclic terms, one must extend the calculus (2) with mutu-
ally recursive bindings:

e ::= x | λx.e | e e | letrec {xi = ei} in e(3)

The sharing of subterm evaluation and the creation of cyclic terms may be
modelled using either graph reduction (Wadsworth 1971, Turner 1979, and
subsequent work [1,9]), or an explicit heap [5,12].

In any case, proper modelling of lazy evaluation requires syntactic exten-
sions as well as a more complicated evaluation model than just term reduction.
We shall not consider lazy evaluation any further in this paper, and shall con-
sider only the syntax in (2) above.

5 Normal Forms

We need to distinguish four different normal forms, depending on whether
we reduce under abstractions (in the lambda calculus) or not (in functional
programming languages), and depending on whether we reduce the arguments
before substitution (in strict languages) or not (in non-strict languages).

The table below summarizes the four normal forms using context-free
grammars. The grammar symbol E denotes a term in the relevant normal
form, e denotes an arbitrary lambda term generated by (2), and n ≥ 0. Note
how the two dichotomies generate the four grammars just by varying e or E:

Reduce under abstractions

Reduce arguments Yes No

Yes Normal form
E ::= λx.E | xE1 . . . En

Weak normal form
E ::= λx.e | xE1 . . . En

No Head normal form
E ::= λx.E | x e1 . . . en

Weak head normal form
E ::= λx.e | x e1 . . . en

3

Sestoft

6 Reduction Strategies and Reduction Functions

We present some reduction strategies using big-step operational semantics, or
natural semantics [4], and their implementation in Standard ML. We exploit
that Standard ML has a well-defined semantics [6]: it evaluates a function’s
arguments before calling the function, it evaluates the right-hand side of let-
bindings before binding the variable, and it evaluates terms from left to right.

We model lambda terms x, λx.e and (e e) as ML constructed data, repre-
senting variables by strings:

datatype lam = Var of string

| Lam of string * lam

| App of lam * lam

We also assume an auxiliary function subst : lam -> lam -> lam that im-
plements capture-free substitution, so subst ex (Lam(x, e)) is the ML rep-
resentation of e[ex/x], the result of β-reduction of (λx.e) ex.

6.1 Call-by-name Reduction

Call-by-name reduction e
bn
−→ e′ is leftmost weak reduction:

x
bn
−→ x

(λx.e)
bn
−→ (λx.e)

e1
bn
−→ (λx.e) e[e2/x]

bn
−→ e′

(e1 e2)

bn
−→ e′

e1
bn
−→ e′1 6≡ λx.e

(e1 e2)

bn
−→ (e′1 e2)

(4)

It is easily seen that all four rules generate terms in weak head normal form.
The following ML function cbn computes the weak head normal form of a
lambda term, contracting redexes in the order implicit in the operational se-
mantics (4) above. The two first function clauses below implement the two
first semantics rules above. The third function clause below implements the
third and fourth rule, discriminating on the result of reducing e1:

fun cbn (Var x) = Var x

| cbn (Lam(x, e)) = Lam(x, e)

| cbn (App(e1, e2)) =

case cbn e1 of

Lam (x, e) => cbn (subst e2 (Lam(x, e)))

| e1’ => App(e1’, e2)

4

Sestoft

6.2 Normal Order Reduction

Normal order reduction e
no
−→ e′ is leftmost reduction. The function term e1

in an application (e1 e2) must be reduced using call-by-name (4). Namely, if
e1 reduces to an abstraction (λx.e), then ((λx.e) e2) is a redex outside any
redex in e, and must be reduced first.

x
no
−→ x

e
no
−→ e′

--
(λx.e)

no
−→ (λx.e′)

e1
bn
−→ (λx.e) e[e2/x]

no
−→ e′

(e1 e2)

no
−→ e′

e1
bn
−→ e′1 6≡ (λx.e) e′1

no
−→ e′′1 e2

no
−→ e′2

(e1 e2)

no
−→ (e′′1 e

′

2)

(5)

These rules are easily seen to generate normal form terms only. The im-
plementation of the reduction strategy as a function nor in Standard ML is
straightforward. It uses the function cbn from Section 6.1 above:

fun nor (Var x) = Var x

| nor (Lam (x, e)) = Lam(x, nor e)

| nor (App(e1, e2)) =

case cbn e1 of

Lam(x, e) => nor (subst e2 (Lam(x, e)))

| e1’ => let val e1’’ = nor e1’

in App(e1’’, nor e2) end

6.3 Call-by-value Reduction

Call-by-value reduction e
bv
−→ e′ is defined below. It differs from call-by-name

(Section 6.1) only by reducing the argument of an application (e1 e2) before
contracting the redex, and before building an application term:

e1
bv
−→ (λx.e) e2

bv
−→ e′2 e[e′2/x]

bv
−→ e′

--
(e1 e2)

bv
−→ e′

e1
bv
−→ e′1 6≡ (λx.e) e2

bv
−→ e′2--

(e1 e2)
bv
−→ (e′1 e

′

2)

(6)

These rules are easily seen to generate weak normal form terms only. The im-
plementation of the rules by an ML function is straightforward and is omitted.

5

Sestoft

6.4 Applicative Order Reduction

Applicative order reduction e
ao
−→ e′ is defined below. It differs from call-by-

value (Section 6.3) only by reducing under abstractions. The rules are easily
seen to generate only normal forms:

e
ao
−→ e′

--
(λx.e)

ao
−→ (λx.e′)

(7)

7 Tracing: Side-Effecting Substitution, and Contexts

The reducers defined in ML above perform the substitutions e[e2/x] in the
same order as prescribed by the operational semantics, thanks to Standard
ML semantics: strict evaluation and left-to-right evaluation. But they only
return the final reduced lambda term; they do not trace the intermediate steps
of the reduction, which is often more interesting from a pedagogical point of
view.

ML permits expressions to have side effects, so we can make the substi-
tution function report (e.g. print) the redex just before contracting it. To
do this we define a modified substitution function csubst which takes as ar-
gument another function c and applies it to the redex App(Lam(x, e), ex)

representing (λx.e) ex just before contracting it:

fun csubst (c : lam -> unit) ex (Lam(x, e)) =

(c (App(Lam(x, e), ex));

subst ex (Lam(x, e)))

The function c : lam -> unit is evaluated for its side effect only, as shown
by the trivial result type unit. Evaluating csubst c ex (Lam(x, e)) has
the effect of calling c on the redex App(Lam(x, e), ex), and the result of
evaluating subst ex (Lam(x, e)), which is the contracted redex.

We can define a function printlam : lam -> unit that prints the lambda
term as a side effect. Then we can replace the call subst e2 (Lam(x, e)) in
cbn of Section 6.1 by csubst printlam e2 (Lam(x, e)). Then the reduction
of a term by cbn will produce a printed trace of all the redexes ((λx.e) ex) in
the order in which they are contracted.

This still does not give us a usable trace of the evaluation: we do not know
where in the current term the redex in question occurs. This is because the
function c is applied only to the redex itself; the term surrounding the redex
is implicit. To make the context of the redex explicit, we can use contexts,
or terms with a single hole, such as λx.[] and (e1 []) and ([] e2). Filling the
hole of a context with a lambda term produces a lambda term. The following
grammar generates all contexts:

C ::= [] | λx.C | eC | C e(8)

6

Sestoft

A context can be represented by an ML function of type lam -> lam.
The four forms of contexts (8) can be built using four ML context-building
functions:

fun id e = e

fun Lamx x e = Lam(x, e)

fun App2 e1 e2 = App(e1, e2)

fun App1 e2 e1 = App(e1, e2)

For instance, App1 e2 is the ML function fn e1 => App(e1, e2) which repre-
sents the context ([] e2). Filling the hole with the term e1 is done by computing
(App1 e2) e1 which evaluates to App(e1, e2), representing (e1 e2).

Function composition (f o g) composes contexts. For instance, the com-
position of contexts λx.[] and ([] e2) is Lamx x o App1 e2, which represents
the context λx.([] e2). Similarly, the composition of the contexts ([] e2) and
λx.[] is App1 e2 o Lamx x, which represents ((λx.[]) e2).

8 Reduction in Context: Call-by-name

To produce a trace of the reduction, we modify the reduction functions defined
in Section 6 to take an extra context argument c and to use the extended
substitution function csubst, passing c to csubst. Then csubst will apply c
to the redex before contracting it. We take the call-by-name reduction function
cbn (Section 6.1) as an example; the other reduction functions are handled
similarly. The reduction function must build up the context c as it descends
into the term. It does so by composing the context with the appropriate
context builder (in this case, only in the App branch):

fun cbnc c (Var x) = Var x

| cbnc c (Lam(x, e)) = Lam(x, e)

| cbnc c (App(e1, e2)) =

case cbnc (c o App1 e2) e1 of

Lam (x, e) => cbnc c (csubst c e2 (Lam(x, e)))

| e1’ => App(e1’, e2)

By construction, if c : lam -> lam and the evaluation of cbnc c e involves a
call cbnc c′ e′, then c[e] −→∗

β c
′[e′]. Also, whenever a call cbnc c′ (e1 e2) is eval-

uated, and e1
bn
−→ (λx.e), then function c′ is applied to the redex ((λx.e) e2)

just before it is contracted. Hence a trace of the reduction of term e can be
obtained just by calling cbnc as follows:

cbnc printlam e

where printlam : lam -> unit is a function that prints the lambda term as
a side effect. In fact, computing cbnc printlam (App (App add two) two),
using the encodings from (1), prints the two intermediate terms below. The
third term shown is the final result (a weak head normal form):

7

Sestoft

(\m.\n.\f.\x.m f (n f x)) (\f.\x.f (f x)) (\f.\x.f (f x))

(\n.\f.\x.(\f.\x.f (f x)) f (n f x)) (\f.\x.f (f x))

\f.\x.(\f.\x.f (f x)) f ((\f.\x.f (f x)) f x)

A web-based interface can be created by defining a function htmllam that
prints HTML code, and calling cbnc from a CGI script on the webserver with
htmllam as argument. Such an implementation written in Moscow ML [7] is
available at http://www.dina.kvl.dk/~sestoft/lamreduce/.

9 Single-stepping Reduction

For experimentation it is useful to be able to perform one beta-reduction at
a time, or in other words, to single-step the reduction. Again, this can be
achieved using side effects in the meta-language Standard ML. We simply
make the context function c count the number of redexes contracted (substi-
tutions performed), and set a step limit N before evaluation is started.

WhenN redexes have been contracted, c aborts the reduction by raising an
exception Enough e′, which carries as its argument the term e′ that had been
obtained when reaching the limit. An enclosing exception handler handles this
exception and reports e′ as the result of the reduction. The next invocation
of the reduction function simply sets the step limit N one higher, and so on.
Thus the reduction of the original term starts over for every new step, but we
create the illusion of reducing the term one step at a time.

The main drawback of this approach is that the total time spent performing
n steps of reduction is O(n2). In practice, this does not matter: one does not
care to single-step very long computations.

10 Conclusion

We have described a simple way to implement lambda calculus reduction,
describing reduction strategies using big-step operational semantics, imple-
menting reduction by straightforward reduction functions in Standard ML,
and instrumenting them to produce a trace of the reduction, using contexts.
This approach is easily extended to other reduction strategies describable by
big-step operational semantics. The extension to lazy evaluation, whether us-
ing graph reduction or an explicit heap, would be complicated mostly because
of the need to print the current graph or heap.

The functions for reduction in context were useful for creating a web in-
terface also, running the reduction functions as a CGI script written in ML.
The web interface provides a simple platform for students’ experiments with
lambda calculus encodings and reduction strategies.

8

http://www.dina.kvl.dk/~sestoft/lamreduce/

Sestoft

References

[1] Augustsson, L., A Compiler for Lazy ML, in 1984 ACM Symposium on Lisp
and Functional Programming, Austin, Texas, 218–227.

[2] Barendregt, H.P., “The Lambda Calculus. Its Syntax and Semantics”, North-
Holland 1984.

[3] Church, A., A Note on the Entscheidungsproblem, Journal of Symbolic Logic 1

(1936) 40–41, 101–102.

[4] Kahn, G., Natural Semantics, in STACS 87. 4th Annual Symposium on
Theoretical Aspects of Computer Science, Passau, Germany. (Lecture Notes
in Computer Science, vol. 247, Springer-Verlag 1987, 22–39.

[5] Launchbury, J., A Natural Semantics for Lazy Evaluation, in Twentieth
ACM Symposium on Principles of Programming Languages, Charleston, South
Carolina, January 1993, 144–154.

[6] Milner, R., M. Tofte, R. Harper and D.B. MacQueen, “The Definition of
Standard ML (Revised)”, The MIT Press 1997.

[7] Moscow ML is available at http://www.dina.kvl.dk/~sestoft/mosml.html

[8] Paulson, L.C., “ML for the Working Programmer”, second edition, Cambridge
University Press 1996.

[9] Peyton Jones, S.L., “The Implementation of Functional Programming
Languages”, Prentice-Hall 1987.

[10] Peyton Jones, S.L. and J. Hughes (editors): “Haskell 98: A Non-Strict, Purely
Functional Language”, 1999, at http://www.haskell.org/onlinereport/

[11] “Revised4 Report on the Algorithmic Language Scheme”, IEEE Std 1178-1990,
Institute of Electrical and Electronic Engineers 1991.

[12] Sestoft, P., Deriving a lazy abstract machine, Journal of Functional
Programming 7, 3 (1997) 231–264.

9

http://www.dina.kvl.dk/~sestoft/mosml.html
http://www.haskell.org/onlinereport/

