
Java performance
Reducing time and space consumption

Peter Sestoft (sestoft@dina.kvl.dk)

Royal Veterinary and Agricultural University, Copenhagen, Denmark
and

IT University of Copenhagen, Denmark

Version 2 of 2005-04-13

Abstract: We give some advice on improving the execution of Java programs by reducing their time
and space consumption. There are no magic tricks, just advice on common problems to avoid.

1 Reducing time consumption

1.1 Standard code optimizations

Do not expect the Java compiler (such as javac or jikes) to perform many clever optimizations.
Due to Java’s rather strict sequencing and thread semantics there is little the compiler can safely do to
improve a Java program, in contrast to compilers for less strictly defined languages such as C or Fortran.
But you can improve your Java source code yourself.

• Move loop-invariant computations out of loops. For example, avoid repeatedly computing the
loop bound in a for-loop, like this:

for (int i=0; i<size()*2; i++) { ... }

Instead, compute the loop bound only once and bind it to a local variable, like this:

for (int i=0, stop=size()*2; i<stop; i++) { ... }

• Do not compute the same subexpression twice:

if (birds.elementAt(i).isGrower()) ...
if (birds.elementAt(i).isPullet()) ...

Instead, compute the subexpression once, bind the result to a variable, and reuse it:

Bird bird = birds.elementAt(i);
if (bird.isGrower()) ...
if (bird.isPullet()) ...

1



• Every array access requires an index check, so it is worth-while to reduce the number of array
accesses. Moreover, usually the Java compiler cannot automatically optimize indexing into mul-
tidimensional arrays. For instance, every iteration of the inner (j) loop below recomputes the
indexing rowsum[i] as well as the indexing arr[i] into the first dimension of arr:

double[] rowsum = new double[n];
for (int i=0; i<n; i++)

for (int j=0; j<m; j++)
rowsum[i] += arr[i][j];

Instead, compute these indexings only once for each iteration of the outer loop:

double[] rowsum = new double[n];
for (int i=0; i<n; i++) {

double[] arri = arr[i];
double sum = 0.0;
for (int j=0; j<m; j++)
sum += arri[j];

rowsum[i] = sum;
}

Note that the initialization arri = arr[i] does not copy row i of the array; it simply assigns
an array reference (four bytes) to arri.

• Declare constant fields as final static so that the compiler can inline them and precompute
constant expressions.

• Declare constant variables as final so that the compiler can inline them and precompute constant
expressions.

• Replace a long if-else-if chain by a switch if possible; this is much faster.

• If a long if-else-if chain cannot be replaced by a switch (because it tests a String,
for instance), and if it is executed many times, it is often worthwhile to replace it by a final
static HashMap or similar.

• Nothing (except obscurity) is achieved by using ‘clever’ C idioms such as performing the entire
computation of a while-loop in the loop condition:

int year = 0;
double sum = 200.0;
double[] balance = new double[100];
while ((balance[year++] = sum *= 1.05) < 1000.0);

1.2 Fields and variables

• Access to local variables and parameters in a method is much faster than access to static or instance
fields. For a field accessed in a loop, it may be worthwhile to copy the field’s value to a local
variable before the loop, and refer only to the local variable inside the loop.

• There is no runtime overhead for declaring variables inside nested blocks or loops in a method.
It usually improves clarity to declare variables as locally as possible (with as small a scope as
possible), and this may even help the compiler improve your program.

2



1.3 String manipulation

• Do not build strings by repeated string concatenation. The loop below takes time quadratic in the
number of iterations and most likely causes heap fragmentation as well (see Section 2):

String s = "";
for (int i=0; i<n; i++) {

s += "#" + i;
}

Instead, use a StringBuilder object and its append method. This takes time linear in the
number of iterations, and may be several orders of magnitude faster:

StringBuilder sbuf = new StringBuilder();
for (int i=0; i<n; i++) {

sbuf.append("#").append(i);
}
String s = sbuf.toString();

• On the other hand, an expression containing a sequence of string concatenations automatically
gets compiled to use StringBuilder.append(...), so this is OK:

String s = "(" + x + ", " + y + ")";

• Do not process strings by repeatedly searching or modifying a String or StringBuilder.
Repeated use of methods substring and index from String may be legitimate but should
be looked upon with suspicion.

1.4 Storing tables of constants in arrays

• Declaring an initialized array variable inside a method causes a new array to be allocated at every
execution of the method:

public static int monthdays(int y, int m) {
int[] monthlengths =

{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
return m == 2 && leapyear(y) ? 29 : monthlengths[m-1];

}

Instead, an initialized array variable or similar table should be declared and allocated once and for
all as a final static field in the enclosing class:

private final static int[] monthlengths =
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

public static int monthdays(int y, int m) {
return m == 2 && leapyear(y) ? 29 : monthlengths[m-1];

}

• More complicated initializations can use a static initializer block static { ... } to precom-
pute the contents of an array like this:

3



private final static double[] logFac = new double[100];
static {
double logRes = 0.0;
for (int i=1, stop=logFac.length; i<stop; i++)
logFac[i] = logRes += Math.log(i);

}

public static double logBinom(int n, int k) {
return logFac[n] - logFac[n-k] - logFac[k];

}

The static initializer is executed when the enclosing class is loaded. In this example it precomputes
a table logFac of logarithms of the factorial function n! = 1 · 2 · · · (n − 1) · n, so that method
logBinom(n,k) can efficiently compute the logarithm of a binomial coefficient. For instance,
the number of ways to choose 7 cards out of 52 is Math.exp(logBinom(52, 7)) which
equals 133 784 560.

1.5 Methods

• Declaring a method as private, final, or static makes calls to it faster. Of course, you
should only do this when it makes sense in the application.

• For instance, often an accessor method such as getSize can reasonably be made final in a
class, when there would be no point in overriding it in a subclass:

class Foo {
private int size;
...
public final int getSize() {
return size;

}
}

This can make a call o.getSize() just as fast as a direct access to a public field o.size.
There need not be any performance penalty for proper encapsulation (making fields private).

• Virtual method calls (to instance methods) are fast and should be used instead of instanceof
tests and casts.

• In modern Java Virtual Machine implementations, such as Sun’s HotSpot JVM and IBM’s JVM,
interface method calls are just as fast as virtual method calls to instance methods. Hence there is
no performance penalty for maintenance-friendly programming, using interfaces instead of their
implementing classes for method parameters and so on.

1.6 Sorting and searching

• Never use selection sort, bubblesort or insertion sort, except on very short arrays or lists. Use
heapsort (for arrays) or mergesort (for doubly linked lists) or quicksort (for arrays; but you must
make a good choice of pivot element).

• Even better, use the built-in sorting routines, which are guaranteed to be fast: O(n log(n)) time
for n elements, and sometimes faster if the data are nearly sorted already:

4



For arrays, use java.util.Arrays.sort, which is an improved quicksort; it uses no ad-
ditional memory, but is not stable (does not preserve the order of equal elements). There are
overloaded versions for all primitive types and for objects.

For ArrayList<T> and LinkedList<T>, implementing interface java.util.List<T>,
use java.util.Collections.sort, which is stable (preserves the order of equal ele-
ments) and smooth (near-linear time for nearly sorted lists) but uses additional memory.

• Avoid linear search in arrays and lists, except when you know that they are very short. If your
program needs to look up something frequently, use one of these approaches:

– Binary search on sorted data:

For arrays, use java.util.Arrays.binarySearch. The array must be sorted, as if
by java.util.Arrays.sort. There are overloaded versions for all primitive types and
for objects.

For ArrayList<T>, use java.util.Collections.binarySearch. The array
list must be sorted, as if by java.util.Collections.sort.

If you need also to insert or remove elements from the set or map, use one of the approaches
below instead.

– Hashing: Use HashSet<T> or HashMap<K,V> from package java.util if your key
objects have a good hash function hashCode. This is the case for String and the wrapper
classes Integer, Double, . . . , for the primitive types.

– Binary search trees: Use TreeSet<T> or TreeMap<K,V> from package java.util
if your key objects have a good comparison function compareTo. This is the case for
String and the wrapper classes Integer, Double, . . . , for the primitive types.

1.7 Exceptions

• The creation new Exception(...) of an exception object builds a stack trace, which is costly
in time and space, and especially so in deeply recursive method calls. The creation of an object
of class Exception or a subclass of Exception may be between 30 and 100 times slower
than creation of an ordinary object. On the other hand, using a try-catch block or throwing an
exception is fast.

• You can prevent the generation of this stack trace by overriding method fillInStackTrace
in subclasses of Exception, as shown below. This makes creation exception instances roughly 10
times faster.

class MyException extends Exception {
public Throwable fillInStackTrace() {
return this;

}
}

• Thus you should create an exception object only if you actually intend to throw it. Also, do not
use exceptions to implement control flow (end of data, termination of loops); use exceptions only
to signal errors and exceptional circumstances (file not found, illegal input format, and so on). If
your program does need to throw exceptions very frequently, reuse a single pre-created exception
object.

5



1.8 Collection classes

Java’s collection classes in package java.util.* are well-designed and well-implemented. Using
these classes can improve the speed of your program considerably, but you must beware of a few pitfalls.

• If you use HashSet<T> or HashMap<K,V>, make sure that your key objects have a good
(uniform) and fast hashCode method, and that it agrees with the objects’ equals method.

• If you use TreeSet<T> or TreeMap<K,V>, make sure that your key objects have a good
and fast compareTo method; or provide a Comparator<T> resp. Comparator<K> object
explicitly when creating the TreeSet<T> or TreeMap<K,V>.

• Beware that indexing into a LinkedList<T> is not a constant-time operation. Hence the loop
below takes time quadratic in the size of the list lst if lst is a LinkedList<T>, and should
not be used:

int size = lst.size();
for (int i=0; i<size; i++)

System.out.println(lst.get(i));

Instead, use the enhanced for statement to iterate over the elements. It implicitly uses the collec-
tion’s iterator, so the traversal takes linear time:

for (T x : lst)
System.out.println(x);

• Repeated calls to remove(Object o) on LinkedList<T> or ArrayList<T> should be
avoided; it performs a linear search.

• Repeated calls to add(int i, T x) or remove(int i) on LinkedList<T> should be
avoided, except when i is at the end or beginning of the linked list; both perform a linear traversal
to get to the i’th element.

• Repeated calls to add(int i, T x) or remove(int i) on ArrayList<T> should be
avoided, except when i is at the end of the ArrayList<T>; it needs to move all elements after
i.

• Preferably avoid the legacy collection classes Vector, Hashtable and Stack in which all
methods are synchronized, and every method call has a runtime overhead for obtaining a lock
on the collection. If you do need a synchronized collection, use synchronizedCollection
and similar methods from class java.util.Collection to create it.

• The collection classes can store only reference type data, so a value of primitive type such as int,
double, . . . must be wrapped as an Integer, Double, . . . object before it can be stored or
used as a key in a collection. This takes time and space and may be unacceptable in memory-
constrained embedded applications. Note that strings and arrays are reference type data and need
not be wrapped.

If you need to use collections that have primitive type elements or keys, consider using the Trove
library, which provides special-case collections such as hash set of int and so on. As a result
it is faster and uses less memory than the general Java collection classes. Trove can be found at
<http://trove4j.sourceforge.net/>.

6



1.9 Input and output

• Using buffered input and output (BufferedReader, BufferedWriter, BufferedInput-
Stream, BufferedOutputStream from package java.io) can speed up input/output by
a factor of 20.

• Using the compressed streams ZipInputStream and ZipOutputStream or GZIPInput-
Stream and GZIPOutputStream from package java.util.zip may speed up the input
and output of verbose data formats such as XML. Compression and decompression takes CPU
time, but the compressed data may be so much smaller than the uncompressed data that it saves
time anyway, because less data must be read from disk or network. Also, it saves space on disk.

1.10 Space and object creation

• If your program uses too much space (memory), it will also use too much time: Object allocation
and garbage collection take time, and using too much memory leads to poor cache utilization and
possibly even the need to use virtual memory (disk instead of RAM). Moreover, depending on the
JVM’s garbage collector, using much memory may lead to long collection pauses, which can be
irritating in interactive systems and catastrophic in real-time applications.

• Object creation takes time (allocation, initialization, garbage collection), so do not unnecessarily
create objects. However, do not introduce object pools (in factory classes) unless absolutely nec-
essary. Most likely, you will just add code and maintenance problems, and your object pool may
introduce subtle errors by recycling an object in the pool although it is still being referred to and
modified from other parts of the program.

• Be careful that you do not create objects that are never used. For instance, it is a common mistake
to build an error message string that is never actually used, because the exception in which the
message is embedded gets caught by a try-catch that ignores the message.

• GUI components (created by AWT or Swing) may claim much space and may not be deallocated
aggressively enough. Do not create GUI components that you do not necessarily need.

1.11 Bulk array operations

There are special methods for performing bulk operations on arrays. They are usually much faster than
equivalent for loops, in part because they need to perform only a single bounds check.

• static void java.lang.System.arrayCopy(src, si, dst, di, n) copies el-
ements from array segment src[si..si+n-1] to array segment dst[di..di+n-1].

• static bool java.util.Arrays.equals(arr1, arr2) returns true if the arrays
arr1 and arr2 have the same length and their elements are pairwise equal. There are overloads
of this method for arguments of type boolean[], byte[], char[], double[], float[],
int[], long[], Object[] and short[].

• static void java.util.Arrays.fill(arr, x) sets all elements of array arr to x.
This method has the same overloads as Arrays.equals.

• static void java.util.Arrays.fill(arr, i, j, x) sets elements arr[i..j-1]
to x. This method has the same overloads as Arrays.equals.

• static int java.util.Arrays.hashcode(arr) returns a hashcode for the array com-
puted from the hashcodes of its elements. This method has the same overloads as Arrays.equals.

7



1.12 Scientific computing

If you are doing scientific computing in Java, the Colt open source library provides many high perfor-
mance and high quality routines for linear algebra, sparse and dense matrices, statistical tools for data
analysis, random number generators, array algorithms, mathematical functions and complex numbers.
Don’t write a new inefficient and imprecise numerical routine if the one you need is here already. Colt
can be found at <http://hoschek.home.cern.ch/hoschek/colt/>

1.13 Reflection

• A reflective method call, reflective field access, and reflective object creation (using package
java.lang.reflect) are far slower than ordinary method call, field access, and object cre-
ation.

• Access checks may further slow down such reflective calls; some of this cost may be avoided by
declaring the class of the called method to be public. This has been seen to speed up reflective
calls by a factor of 8.

1.14 Compiler and execution platform

• As mentioned above, a Java compiler cannot perform many of the optimizations that a C or Fortran
compiler can. On the other hand, a just-in-time (JIT) compiler in the Java Virtual Machine (JVM)
that executes the bytecode can perform many optimizations that a traditional compiler cannot
perform.

• For example, a test (x instanceof C) conditionally followed by a cast (C)x may be opti-
mized by a JVM so that at most one test is performed. Hence it is not worth the trouble to rewrite
your program to avoid either the instanceof test or the cast.

• There are many different Java Virtual Machines (JVMs) with very different characteristics:

– Sun’s HotSpot Client JVM performs some optimizations, but generally prioritizes fast startup
over aggressive optimizations.

– Sun’s HotSpot Server JVM (option -server, not available for Microsoft Windows) per-
forms very aggressive optimizations at the expense of a longer startup delay.

– IBM’s JVM performs very aggressive optimizations, comparable to Sun’s HotSpot Server
JVM.

– The JVMs in implementations of J2ME (mobile phones) and PersonalJava (some PDAs) do
not include JIT compilation and probably perform no optimizations at all. Hence in this case
it is even more important that you do as many optimizations as possible in the Java code
yourself.

– I do not know the optimization characteristics of Oracle’s JVM, the Kaffe JVM, Intel’s Open
Runtime Platform, IBM’s Jikes RVM, . . .

You can see what JVM you are using by typing java -version at a command-line prompt.

8



1.15 Profiling

If a Java program appears to be too slow, try to profile some runs of the program. Assume that the
example that performs repeated string concatenation in Section 1.3 is in file MyExample.java. Then
one can compile and profile it using Sun’s HotSpot JVM as follows:

javac -g MyExample.java
java -Xprof MyExample 10000

The result of the profiling is shown on standard output (the console):

Flat profile of 19.00 secs (223 total ticks): main

Interpreted + native Method
1.3% 1 + 0 java.lang.AbstractStringBuilder.append
1.3% 1 + 0 java.lang.String.<init>
2.6% 2 + 0 Total interpreted

Compiled + native Method
51.3% 0 + 40 java.lang.AbstractStringBuilder.expandCapacity
29.5% 23 + 0 java.lang.AbstractStringBuilder.append
10.3% 8 + 0 java.lang.StringBuilder.toString
6.4% 0 + 5 java.lang.String.<init>
97.4% 31 + 45 Total compiled

Thread-local ticks:
65.0% 145 Blocked (of total)

Flat profile of 0.01 secs (1 total ticks): DestroyJavaVM

Thread-local ticks:
100.0% 1 Blocked (of total)

Global summary of 19.01 seconds:
100.0% 929 Received ticks
74.6% 693 Received GC ticks
0.8% 7 Other VM operations

It says that 51.3% per cent of the computation time was spent in native method expandCapacity and
a further 29.5% was spent in method append, both from class AbstractStringBuilder. This
makes it plausible that the culprits are + and += on String, which are compiled into append calls.

But what is even more significant is the bottom section, which says that 74.6% of the total time was
spent in garbage collection, and hence less than 25% was spent in actual computation. This indicates a
serious problem with allocation of too much data that almost immediately becomes garbage.

9



2 Reducing space consumption

• In a JVM, data are allocated on a call stack (for method parameters and local variables) and on
a heap (for objects, including strings and arrays). There is a separate stack for every thread of
execution, and a joint heap for all the threads. The stack of a thread grows and shrinks with
the depth of method calls. Object, strings and arrays are allocated in the heap by the executing
threads; they are deallocated (garbage-collected) by an autonomous garbage collector.

• Three important aspects of space usage are allocation rate, retention and fragmentation:

– Allocation rate is the rate at which your program creates new objects, strings, and arrays.
A high allocation rate costs time (for allocation, object initialization, and deallocation) and
space (because the garbage collector may set aside more memory for efficiency reasons)
even when the allocated data has a very short lifetime.

– Retention is the amount of live heap data, that is, the heap data transitively reachable from
the call stacks at any point in time. A high retention costs space (obviously) and time (the
garbage collector must perform more administrative work both for allocation and dealloca-
tion).

– Fragmentation is the creation of fragments: small unusable chunks of memory. Allocation of
increasingly larger objects, such as increasingly longer strings or arrays, may cause memory
fragmentation, leaving many small memory fragments that cannot be used. Such fragmen-
tation costs time (to search for a sufficiently large hole at allocation) and space (because the
fragments go unused). Most garbage collectors take care to avoid fragmentation, but that
itself may cost time and space, and may not be done in embedded JVM implementations.

• A space leak is unwanted or unexpected retention, which usually causes memory consumption
to grow linearly with execution time. A space leak is caused by objects, strings or arrays be-
ing reachable from live variables although those objects will actually never be used again. For
instance, this may happen if you cache computation results in a HashMap: the results remain
reachable from the HashMap even if you will never need them again. This can be avoided by
using a WeakHashMap instead.

• A space leak may be caused by a deeply tail-recursive method that should have been written as
a loop. A Java compiler does not automatically optimize a tail-recursive method to a loop, so all
data reachable from the execution stack will be retained until the method returns.

• The kind of garbage collector (generational, mark-sweep, reference counting, two-space, incre-
mental, compacting, . . . ) strongly influences the time and space effects of allocation rate, reten-
tion, and fragmentation. However, a functioning garbage collector will never in itself cause a
space leak. Space leaks are caused by mistakes in your program.

• Make sure that constant fields shared among all objects of a class are static, so that only one
field is ever created. When all Car objects have the same icon, do not do this:

public class Car {
ImageIcon symbol = new ImageIcon("porsche.gif");
...

}

Instead, do this:

10



public class Car {
final static ImageIcon symbol = new ImageIcon("porsche.gif");
...

}

• When you are not sure that an object will actually be needed, then allocate it lazily: postpone its
allocation until needed, but allocate it only once. This will unconditionally create a Button for
every Car object, although the Button may never be requested by a call to the getButton
method:

public class Car {
private Button button = new JButton();

public Car() {
... initialize button ...

}

public final JButton getButton() {
return button;

}
}

Instead, you can allocate the Button lazily in getButton:

public class Car {
private Button button = null;

public Car() { ... }

public final JButton getButton() {
if (button == null) { // button not yet created, so create it
button = new JButton();
... initialize button ...

}
return button;

}
}

This saves space (for the Button object) as well as time (for allocating and initializing it). On
the other hand, if the button is known to be needed, it is more efficient to allocate and initialize it
early and avoid the test in getButton.

3 Other resources

The book J. Noble and C. Weir: Small Memory Software, Addison-Wesley 2001, presents a number of
design patterns for systems with limited memory. Not all of the advice is applicable to Java (for instance,
because it requires pointer arithmetics), but most of it is useful albeit somewhat marred by pattern-speak.

4 Acknowledgements

Thanks to Morten Larsen, Jyrki Katajainen and Eirik Maus for useful suggestions.

11


