
Programming language
specification and implementation

Peter Sestoft[0000−0002−5843−6021]

Computer Science Department, IT University of Copenhagen, Denmark
sestoft@itu.dk

Abstract. The specification of a programming language is a special
case of the specification of software in general. This paper discusses the
relation between semantics and implementation, or specification and pro-
gram, using two very different languages for illustration. First, we con-
sider small fragments of a specification of preliminary Ada, and show
that what was considered a specification in VDM in 1980 now looks
much like an implementation in a functional language. Also, we discuss
how a formal specification may be valuable even though seen from a
purely formal point of view it is flawed. Second, we consider the simple
language of spreadsheet formulas and give a complete specification. We
show that nondeterminism in the specification may reflect run-time non-
determinism, but also underspecification, that is, implementation-time
design choices. Although specification nondeterminism may appear at
different binding-times there is no conventional way to distinguish these.
We also consider a cost semantics and find that the specification may
need to contain some “artificial” nondeterminism for underspecification.

Keywords: Specification · Implementation · Programming languages ·
Nondeterminism · Underspecification.

1 Introduction

This paper investigates the relation between specification (or modeling) and
programming in the special case where the specification describes a programming
language and its implementations, rather than some other software artefact.
We study two examples of programming language specification to make several
observations.

We first use a large but incomplete specification (of an Ada language subset)
to make two observations. One observation is that the 1980 VDM formal spec-
ification looks very much like a functional program today. This indicates that
the distinction between specification and programming may be one of degree,
contingent on (specification and programming) language sophistication and no-
tational support for the use of sets, maps, sequences and other useful structures.
The other observation is that although the VDM specification is incomplete and
has some formal deficiencies, it enabled its authors to subsequently develop a

2 P. Sestoft

validated compiler for full Ada. Hence the value of an attempted formal spec-
ification may lie as much in the knowledge that its authors acquire through
developing the specification as in the resulting formal text itself.

We next use a small but complete example specification (of simple spread-
sheet formulas) to discuss the role of nondeterminism in specifications. We ob-
serve that specification nondeterminism may reflect desired run-time nondeter-
minism in the implementation; or it may reflect language aspects left unspecified
and hence open to implementation-time choices; or both. The first case is illus-
trated by the spreadsheet RAND function which is expected to produce a new
pseudorandom number at each evaluation. The second case is illustrated by un-
specified argument evaluation order in function calls, where a sequential imple-
mentation may choose left-right or right-left or any other fixed order. The third
case is illustrated by the run-time nondeterminism exhibited by truly parallel im-
plementations of argument evaluation order. We note that there is no standard
way to describe the intended binding-time (run-time or implementation-time)
of specification nondeterminism. We further observe that a richer instrumented
semantics eg. accounting also for the cost of expression evaluation may need to
have additional nondeterminism so as not to overconstrain the possible imple-
mentations.

2 Example: A Formal Description of Ada

In this section we study the book “Towards a Formal Description of Ada” [3] from
1980 and present some reflections on it. That book uses the VDM specification
language [2] to give a formal description of a preliminary version of the Ada
programming language, at the time a novel, advanced and complex but rather
well-designed language. The bulk of the 630-page book is based on MSc theses
written by five software students (Bundgaard, Schultz, Pedersen, Løvengreen,
Dommergaard) at the Technical University of Denmark, under the supervision
of Dines Bjørner and Hans Bruun. It represents an impressive amount of work.

We make the following observations:

– The formal description of Ada from 1980 can today be considered a (very
large) functional program, an implementation of the language. We discuss
this in Sec. 2.1 and show some concrete examples of a transliteration of the
VDM specification into the F# programming language [23].

– From a purely formal viewpoint, the Ada description in [3] is incomplete
and inconsistent, and most likely wrong in several details. Some functions
are not defined, names are misspelt, types are wrong, and so on. In Sec. 2.2
we show and discuss some examples.

– However, to consider the specification a failure would be to completely mis-
understand its significance and utility. Some of the authors of the specifica-
tion went on to develop a full-fledged Ada compiler, the first European one
to be validated, and founded the company DDC International, now DDC-I,
to sell it [4]. We discuss this in Sec. 2.3.

Language specification and implementation 3

2.1 The Ada Formal Description as a Functional Program

The 1980 formal description of Ada consists of VDM domain definitions, which
are type definitions in modern functional programming terms, and VDM formu-
lae, which are function definitions. The specification consists of hundreds of such
formulae, most of which are admirably short and comprehensible, representing
a careful factorization of the many interacting aspects of the Ada language.

In this section we consider a few fragments (around two percent) of the VDM
description of the Ada static semantics and show how some of the advanced
constructs used in the VDM formulae can be expressed in a modern functional
programming language. Specifically, we express them in F#, developed at Mi-
crosoft Research Cambridge UK [23], but we might have used the Haskell or
Scala languages instead. Historically, F# descends from the ML programming
language which was created in the 1970es and whose first description was pub-
lished in 1979 [9]. It is possible that the designs of VDM and of ML may have
inspired each other at the time, and hence not necessarily a surprise that VDM
can be translated into F#.

Nevertheless, the translation supports our point of view that what was con-
sidered a specification in 1980 can be considered an implementation in 2018,
thanks to advances in programming language design and implementation.

For space reasons we present only fragments of the VDM formulae, and no
domain definitions, so we do not expect the reader to understand all details of
the examples.

Figs. 1 and 2 show how VDM record update, record field selection, pattern
matching and lambda expressions can be expressed in F#.

Figs. 3 and 4 show how VDM list comprehension and iteration over indices
can be expressed elegantly using F# sequence expressions, and how F#’s nested
pattern matching can be used to good effect.

Figs. 5 and 6 show how the VDM combination of choice of an element,
recursion, and production (or not) of a value can be expressed using F# sequence
expressions.

Figs. 7 and 8 show how the VDM nondeterministic construction “such that”
(s.t.), which here simply produces a list without duplicates, and be expressed
in F# using its Set module in combination with sequence expressions.

2.2 Some Flaws in the 1980 Formal Description of Ada

This section shows that from a purely formal point of view, the Ada description
in [3] has some flaws. The purpose is not to blame the authors of that spec-
ification, who did an admirable job given the tools of the time; there is little
value in finding hairs in the soup four decades later. The VDM specification
was developed without tool support, so even misspelt variable names and type
names, wrong argument order, wrong declared return type of a function, and
similar fairly trivial mistakes would have to be discovered by human proofread-
ing. Given the magnitude of the work, the number of such errors is modest.

One drawback of the Ada formal description is that it is incomplete:

4 P. Sestoft

Fig. 1. Fragment of the Ada static semantics [3, page 148] expressed in VDM. The
VDM notation “btype + ...” represents record field update, and “cases ds:” repre-
sents pattern matching. Due to typesetting limitations at the time, a lambda expression
λd.e was written as Ld.e in line 4. The formula can be expressed in a functional lan-
guage such as F#, see Fig. 2.

let rec lookup_base_type (btype : Type) (sur : Surroundings) : Type =

let ds = sel_ds(btype)(sur)

{ btype

with

s_ds =

match ds with

| Access { s_map = fct; s_com = compl } ->

Some (Access { s_map =

function d -> lookup_base_type (fct(d)) { sur with s_dict = d };

s_com = compl });

s_sub =

match ds with

| Array _ -> Nil

| Record _ -> Nil

| _ -> btype.s_sub

}

Fig. 2. An F# version of the VDM formula in Fig. 1. Record update is expressed as
“{ btype with ...}”, and pattern matching as “match ds with”. A constructor such
as Array is written without the mk- prefix that is customary in VDM.

Language specification and implementation 5

Fig. 3. Fragment of the Ada static semantics [3, page 194] in VDM. The notation
“< e | i ∈ ind descrl>” spanning lines 3–8 evaluates VDM expression e for each
index i into sequence descrl. (The latter is a misspelling of descr-list in line 2).
This creates a sequence of zero- or one-element sequences, flattened into one sequence
using the conc VDM function. This can be expressed in F# as shown in Fig. 4.

let lookup_all_name (All_name(name’) : All_name) (sur : Surroundings)

: seq<Descr> =

seq { for di in lookup_name(name’)(sur) do

match di with

| Obj_descr { s_tp = { s_ds = Some (Access {s_map = fct }) } }

-> yield Obj_descr { s_tp = fct(sur.s_dict); s_con = None }

| _ -> ()

}

Fig. 4. An F# version of the VDM formula in Fig. 3. An F# sequence expression “seq
{ ...}”, similar to list comprehensions in Haskell and to mathematical set comprehen-
sions, neatly expresses the more complicated construct in the original’s lines 3-8. Also,
the original’s nested cases expressions can be expressed concisely by nested patterns
in the argument to the Obj descr constructor match.

6 P. Sestoft

Fig. 5. Fragment of the Ada static semantics [3, page 195] expressed in VDM. This
VDM formula uses recursion to process the elements of the set pset one at a time,
producing a zero- or one-element sequence for each, and concatenating the results into
a single sequence using sequence concatenation (̂). The formula can be expressed
concisely in F# as shown in Fig. 6.

let get_available_obj_list (parms : seq<Act_parm>) (pset : Set<Subprgr_descr>)

(sur : Surroundings) : seq<Descr> =

seq { for Subprgr_descr(_, _, entrance) in pset do

match entrance.s_return with

| Some typ when parameter_checker(parms)(entrance)(sur) ->

yield Obj_descr { s_tp = typ; s_con = Some CONSTANT }

| None -> ()

}

Fig. 6. An F# version of the VDM formula in Fig. 5. In the sequence expression,
“for ... in pset” combines the nondeterministic choice of d (original line 2) with
decomposition (original line 3). The match expression with side condition (when) neatly
expresses the conditional and selection in the original lines 4–5.

Language specification and implementation 7

Fig. 7. Fragment of the Ada static semantics [3, page 197] expressed in VDM. The
“conc < ...| i in ind descrl> in lines 2-11 works as in Fig. 3 to create a sequence
of Types or Pseudotypes from a sequence of descriptions. Lines 5-8 nondeterministically
choose a list of Types such that (s.t.) it has no duplicates and it has one element
for each type appearing in a Literal-descr in the sequence ds of descriptions. This can
be expressed equally concisely in F# as shown in Fig. 8.

let extract_name_types (name : Name) (sur : Surroundings)

: seq<TypeOrPseudoType> =

let descrl = lookup_name(name)(sur)

seq { for di in descrl do

match di with

| Obj_descr { s_tp = otype } -> yield (TOPT_Type otype)

| Overload_descr(ds) ->

yield! Set.ofSeq(Seq.choose

(function | Literal_descr(ltype) -> Some (TOPT_Type(ltype))

| _ -> None) ds)

| Number(v) -> yield TOPT_Pseudotype(v)

| _ -> ()

}

Fig. 8. An F# version of the VDM formula in Fig. 7. The outer sequence expression
corresponds to lines 2–11 in the original. The construct Set.ofSeq(Seq.choose(...))
corresponds to the nondeterministic choice of list in the original’s lines 5–8. The
type TypeOrPseudoType and constructors such as TOPT Type are artefacts of F#’s type
system being more picky about subtypes than VDM is.

8 P. Sestoft

– First of all, the formal description covers a subset of preliminary Ada called
A6, and does not claim to be complete. The static semantics chapter has a
list of “aspects of Ada not covered” [3, page 131], and several sections called
“Missing functions” [3, pages 176, 185, 190, 202].

– The dynamic semantics chapter has a list of “functions used in this model
but not defined” [3, page 305].

Also, when investigating the formulae shown in Sec. 2.1 we came across a few
mistakes:

– Formula lookup-unitname [3, page 148], not shown here, is declared to have
return type Dict, but the correct type is Descr.

– Formula parameter-checker [3, page 163], not shown here, is declared
to have parameter order entrance actual-parm-list sur but in formula
get-available-obj-list, shown in Fig. 5, it is called with the opposite
argument order parms entrance sur.

– Some constructors and types are spelled inconsistently, for instance Simp_name
versus Simple_name [3, pages 139 and 191], as well as Sub_prgr_descr ver-
sus Subprgr_descr [3, pages 141 and 195].

– Some local variables are spelled inconsistently, for instance descr_list ver-
sus descrl, as shown in Fig. 3.

Flaws such as those listed above are of course easily fixed, but from a purely
formal point of view they show that the description is not a consistent formal
object. Moreover, given what we know about human fallibility, it is reasonable
to assume that in addition to these superficial inconsistencies there are more
substantial, semantically important, mistakes in the description.

The next section argues that the specification is valuable and useful anyway.

2.3 Formal Specification, Valuable Despite Formal Flaws

This section argues that a “formal” specification may be valuable and useful even
though, from a purely formal point of view, it is incomplete and even inconsis-
tent. One indication is that, thirty-eight years after the publication of [3], the
DDC-I Ada compiler and the DDC-I company still exist [25], in contrast to most
competitors from that time. It is clear that to develop the specification in [3]
the authors had to scrutinize the informal description of Ada, develop and dis-
cuss illustrative examples, and so on, and thereby gained a deep understanding,
invaluable when subsequently developing the Ada compiler.

One of the authors, Hans Henrik Løvengreen, said: “It has been shown how
the Ada Compiler [...] can be systematically derived from the formal definition.
The idea is that problems should be revealed and solved at the abstract level,
such that the implementation will be straightforward.” [3, page 318].

Also, a 1988 US Institute for Defense Analyses assessment says “[. . .] the
formal definition was not mechanically transformed into a compiler. Rather, the
formal definition was used by the compiler writers as the reference instead of a

Language specification and implementation 9

natural language requirements document. DDC personnel with whom we have
spoken claim that the extra up-front effort taken to first formalize the definition
of Ada led to efficiences in the long run.” [19, page 8].

Hence the chief value of a formal specification may be that the very work
of developing it forces and motivates the authors to immerse themselves in the
domain (whether a programming language or an application) and its intricacies,
thereby building a comprehensive mental model of it. This viewpoint was sug-
gested by Naur in 1985 concerning programming: “programming in this sense
must be the programmers’ building up knowledge of a certain kind, knowledge
taken to be basically the programmers’ immediate possession, any documenta-
tion being an auxiliary, secondary product” [17, page 253]. Replacing “program-
ming” with “writing a formal specification”, the view would be that much of
the value of writing a formal specification lies in “building up knowledge” in
the minds of the specification’s authors, and that the resulting formal text or
model may actually not be the most significant outcome of this activity. The
story of the 1980 Ada description [3] seems to corroborate this view: The value
of (attempted) formalization may to a large extent lie in forcing the specifica-
tion’s authors to pay attention to details that would be more easily glossed over
if writing (only) in English or another natural language.

Nevertheless, despite its utility in subsequently implementing a validated Ada
compiler, it must have been recognized at the time that the Ada description [3]
had some shortcomings. Several of its authors became involved in a subsequent
1984–1987 European project to develop a more complete formal specification
of Ada [4, Sec. 3.2] [19, Sec. 1.2]. The more complete specification of (revised)
Ada resulting from this effort is difficult to locate today, having been published
mostly as technical reports. The above-mentioned US assessment laments the
complexity of the latter more complete formal specification, the high level of
computer science theory background required to understand it, and the poor
English of the exposition [19, Sec. 4].

The early, less complete and less formal 1980 Ada specification [3] appears
in the end to have been the more useful one.

3 Example: Spreadsheet Semantics

Here we consider a simple “programming language”, namely spreadsheet formu-
las. We use a combination of operational semantics and axiomatic semantics.
The former specifies evaluation of the formula in a single spreadsheet cell. The
latter specifies the expected consistency of all cells.

3.1 Formulas, Cells and Sheets

In our simplified spreadsheet model, a spreadsheet consists of a grid of cells.
Each cell is either blank or contains a formula =e where e is an expression as
shown in Fig. 9. Each non-blank cell in addition contains its formula’s computed
value, which is shown to the spreadsheet user.

10 P. Sestoft

e ::= n number constant
| ca cell reference
| IF(e1,e2,e3) conditional expression
| RAND() volatile function
| F(e1, . . . ,en) built− in function call

Fig. 9. Syntax of the simplified spreadsheet formula language.

3.2 Characteristics of Spreadsheets

Spreadsheets and spreadsheet formulas have some peculiar characteristics:

(a) Consistency after recalculation: A cell’s computed value after a recalculation
must be the result (or rather, a possible result) of evaluating the cell’s for-
mula, given the computed values of all other cells. A reference to a cell such
as A2 must have the same value wherever it appears, so A2=A2 must be true.

(b) Error values: An expression always has a value; there is no notion of exception
or failed evaluation. Thus some expressions, such as 1/0 and ASIN(2), must
evaluate to error values such as #DIV/0! and #NUM!.

(c) Error strictness: If an argument to a built-in function evaluates to an error
value, then the function call evaluates to that error value.

(d) Volatile functions and cells: Some functions (RAND(), NOW()) are nondeter-
ministic: each evaluation may produce a different result, so RAND()=RAND()

may be false. Any cell that involves a nondeterministic function must be
recomputed in a recalculation.

(e) Non-strictness of IF(e1,e2,e3): The “then” branch e2 should not be eval-
uated unless e1 evaluates to true; and similarly for the “else” branch e3.

(f) Cyclic cell reference dependencies: The evaluation of formula in a cell may
refer to the value of that cell itself, directly or indirectly. In that case, no
ordinary number value may be found for the cell, but an error value such as
#CYCLE! may be found instead.

(g) Side effect freedom: The evaluation of a formula has no side effects.

These characteristics are not accidents of design, but essential for the practical
utility of spreadsheets. They do have some non-trivial consequences for imple-
mentations.

It follows from (a) that the value held in a cell may need to be recalculated
after an update to any cell on which it depends, directly or indirectly.

By (d), (e) and (f), if cell A2 contains the formula =IF(RAND()<0.2,A2+1,42)
then there may or may not be a cyclic dependency of A2 on itself, depending
on the value of RAND() in this particular recalculation. Hence cycles must be
detected during evaluation, not by a preceding topological sorting of cells.

It follows from side effect freedom (g) that it is not observable whether a
formula is evaluated once or twice or not at all, or whether it is evaluated before,
at the same time as, or after, another formula. This allows an implementation

Language specification and implementation 11

to choose evaluation order (sequential or parallel), evaluate a cell zero times
(reuse cached cell value), once (when precedents are up to date), or multiple
times (evaluate it speculatively, maybe in parallel on multiple processors). It
also allows cell areas with copy-equivalent formulas to be replaced by map-reduce
style bulk array operations [1].

3.3 Formal Evaluation Semantics

The formal semantics of spreadsheet evaluation given here is from our book [22,
Sec. 1.8]. It uses operational semantics [14, 18] to specify the local evaluation of
each cell’s formula (Sec. 3.3) and an axiomatic semantics to specify the global
consistency of a spreadsheet after a recalculation (Sec. 3.4).

This gives fine control over formula evaluation, accounting for spreadsheet
characteristics (b) through (e) in Sec. 3.2, while leaving completely unconstrained
the recalculation mechanism required to obtain spreadsheet characteristics (a)
consistency of the recalculated spreadsheet and (f) detection of reference cycles.

Operational Semantics of Expressions We describe a spreadsheet’s formu-
las using a map φ : Addr → Expr so that when ca ∈ Addr is a cell address,
φ(ca) is the formula in cell ca. If cell ca is blank, then φ(ca) is undefined. The
domain dom(φ) of φ is the set of non-blank cells. The φ function is not affected
by recalculation, only by editing the formulas in the spreadsheet.

We describe the evaluation of expressions (Fig. 9) using the semantic sets
and functions in Fig. 10. For instance, V alue = Number + Error is the set of
values, and Addr contains cell addresses ca such as B2.

We describe the result of a recalculation by a function σ : Addr → V alue so
that σ(ca) is the computed value in cell ca. The σ function gets updated by each
recalculation and must satisfy consistency requirements described in Sec. 3.3.

n ∈ Number = { proper numbers }
Error = { #NUM!, #DIV/0!, #CYCLE! }

ca ∈ Addr = { cell addresses }
v ∈ V alue = Number + Error
e ∈ Expr = { formulas, see Fig. 9 }
φ ∈ Addr → Expr
σ ∈ Addr → V alue

Fig. 10. Sets and maps used in the spreadsheet semantics: Number is the set of proper
floating-point numbers, excluding NaNs and infinities; Error is the set of error values;
Addr the set of cell addresses; V alue the set of values (either number or error); and
Expr the set of formulas.

We describe the evaluation of an expression e by an evaluation judgment of
the form σ ` e ⇓ v, which says: When σ describes the calculated values of all

12 P. Sestoft

cells, then formula e may evaluate to value v. The “may” is important because,
in general, an expression may evaluate to multiple different values. For instance,
RAND() may evaluate to any number between 0.0 (included) and 1.0 (excluded).
Hence, 7+1/RAND() may evaluate to some number greater than 8 or to the error
value #DIV/0! in case RAND() produces 0.0.

The complete set of inference rules that describe when a formula evaluation
judgment σ ` e ⇓ v holds are given in Fig. 11.

-- (e1)
σ ` n ⇓ n

ca /∈ dom(σ)
-- (e2b)
σ ` ca ⇓ 0.0

ca ∈ dom(σ) σ(ca) = v
-- (e2v)

σ ` ca ⇓ v

σ ` e1 ⇓ v1 ∈ Error
-- (e3e)
σ ` IF(e1,e2,e3) ⇓ v1

σ ` e1 ⇓ 0.0 σ ` e3 ⇓ v
-- (e3f)

σ ` IF(e1,e2,e3) ⇓ v

σ ` e1 ⇓ v1 v1 6= 0.0 σ ` e2 ⇓ v
-- (e3t)

σ ` IF(e1,e2,e3) ⇓ v

0.0 ≤ v < 1.0
--- (e4)
σ ` RAND() ⇓ v

σ ` ei ⇓ vi ∈ Error
-- (e5e)
σ ` F(e1, . . . ,en) ⇓ vi

σ ` e1 ⇓ v1 6∈ Error . . . σ ` en ⇓ vn 6∈ Error
--- (e5v)

σ ` F(e1, . . . ,en) ⇓ f(v1, . . . , vn)

Fig. 11. Evaluation rules for simplified spreadsheet formulas. From [22].

The formula evaluation rules in Fig. 11 may be explained as follows:

– Rule (e1) says that a number constant n evaluates to that constant’s value.
– Rule (e2b) says that a reference ca to a blank cell evaluates to 0.0.
– Rule (e2v) says that a reference ca to a non-blank cell evaluates to the value
σ(ca) calculated for that cell. This value may be a number or an error.

– Rule (e3e) says that the expression IF(e1,e2,e3) may evaluate to error v1 if
the condition e1 may evaluate to error v1.

Language specification and implementation 13

– Rule (e3f) says that IF(e1,e2,e3) may evaluate to v provided the condition
e1 may evaluate to zero and the “false branch” e3 may evaluate to v.

– Rule (e3t) says that IF(e1,e2,e3) may evaluate to v provided e1 may evaluate
to some non-zero number v1 and the “true branch” e2 may evaluate to v.

– Rule (e4) says that function call RAND() may evaluate to any number v
greater than or equal to zero and less than one. Hence, this rule models
nondeterministic choice.

– Rule (e5e) says that a call F(e1, . . . ,en) to a built-in function F may evaluate
to error vi if one of its arguments ei may evaluate to error vi. If more than
one argument may evaluate to an error, then the function call may evaluate
to any of these. Hence, the semantics does not prescribe an evaluation order
for arguments, such as a left to right, or right to left, or all in parallel.

– Rule (e5v) says that a call F(e1, . . . ,en) to a function F may evaluate to value
v if each argument ei may evaluate to non-error value vi, and applying the
actual function f to arguments (v1, . . . , vn) produces value v. The final result
v may be a number such as 5, for instance, if the call is +(2, 3); or it may
be an error such as #DIV/0!, for instance, if the call is /(1.0, 0.0).

There are five groups of rules (e1), (e2x), (e3x), (4), (e5x), in Fig. 11, each
corresponding to one of the five kinds of formulas in Fig. 9. One can easily write
a program whose five cases of the match correspond exactly to the five groups of
rules; see the F# program in Fig. 12: the distance from specification (operational
semantics in Fig. 11) to program (implementation) is short.

However, the various appearences of nondeterminism in the specification have
been treated differently in the implementation. Whereas the (e4) RAND rule’s
nondeterminism has been explicitly retained in the interpreter, the (e5e) rule’s
nondeterminism has been quietly eliminated through the use of the F# tryFind

function, which searches a list sequentially from the head for a value that satisfies
the predicate isError.

It is not at all clear from the specification (Fig. 11) whether nondeterminism
in a given rule is essential and must be retained in an implementation (as in e4),
or whether it is merely underspecification intended to provide some implemen-
tation freedom (as in e5e).

3.4 Axiomatic Semantics of Recalculation

The previous subsection describes how to evaluate a formula, given values (via
σ) of all cells in the worksheet. Now we can describe the requirements on a
recalculation: It must find a value for every non-blank cell ca in the sheet, and
that value σ(ca) must be a possible result of evaluating the formula φ(ca) in that
cell. These consistency requirements on a recalculation are stated in Fig. 13.

These requirements leave it completely unspecified how a spreadsheet recal-
culation works: whether it recalculates all cells or only some cells; whether it
calculates a cell only once or multiple times; whether it does so sequentially, and
if so in what order, or in parallel; whether it guesses the values or computes

14 P. Sestoft

let rec eval (sigma : env) (e : expr) = // Rule:

match e with

| Const d -> Num d // e1

| CellRef (c,r) ->

match Map.tryFind (c,r) sigma with

| None -> Num 0.0 // e2b

| Some v -> v // e2v

| If (e1, e2, e3) ->

let v1 = eval sigma e1

match v1 with

| Error _ -> v1 // e3e

| Num 0.0 -> eval sigma e3 // e3f

| Num _ -> eval sigma e2 // e3t

| Rand -> Num (random.NextDouble()) // e4

| Func (f, es) ->

let vs = List.map (eval sigma) es

match List.tryFind isError vs with

| Some vi -> vi // e5e

| None -> evalBuiltin f vs // e5v

Fig. 12. An interpreter (in F#) for simple spreadsheet expressions, closely following the
operational semantics in Fig. 11. The left-hand side of (->) in a match case corresponds
to the conclusion of a rule group, and the right-hand side’s conditions and recursive
calls correspond to rule premises.

(1) dom(σ) = dom(φ)
(2) ∀ca ∈ dom(φ). σ ` φ(ca) ⇓ σ(ca)

Fig. 13. The consistency requirements, or axioms, for spreadsheet recalculation. Re-
quirement (1) says that a recalculation must find a value σ(ca) for every non-blank
cell ca. Requirement (2) says that the computed value σ(ca) must agree with the cell’s
formula φ(ca). Considered as a “definition” of σ it is circular in that σ appears both on
the left of the (`) and on the right. This is necessary, since the evaluation of a formula
φ(ca) may depend on the value σ(ca′) of any cell ca′.

Language specification and implementation 15

them; and so on. This underspecification is intentional: it is essential to permit
a range of implementation strategies and optimizations.

While it is entirely obvious that formula evaluation can be implemented
as specified in Sec. 3.3, it is much less clear how to implement recalculation,
and whether it can be implemented as specified. A simple sequential (single-
threaded) approach is to equip each non-blank cell with a state that is either
Dirty (the initial state), Computing or Uptodate. Then while there is at least
one Dirty cell, pick one, change its state to Computing, evaluate its formula, and
if successful, set the cell’s computed value to the formula’s value and its state to
Uptodate. A cell reference encountered during evaluation may be handled like
this: If the referred-to cell is Uptodate, use its computed value; if it is Dirty,
recursively compute its values; and if it is Computing, there is dependency cycle
in the spreadsheet. This procedure performs a form of depth-first traversal of the
depends-on (or precedents) graph, with cycle detection. However, this describes
a mechanism, not a specification, and is heavily biased towards single-threaded
evaluation. How to make a parallel multi-threaded version of this mechanism so
that it correctly discovers (dynamic) dependency cycles is far from clear, and
certainly not something one would want to put into a specification.

Hence in this case, the distance from the specification (axiomatic semantics in
Fig. 13) to a program (implementation) is considerable and not easily overcome.

One could nevertheless imagine an specification language with a general fix-
point construct that would find a σ satisfying Fig. 13 with reasonable efficiency.
When in the next section we extend the semantics to further specify the cost of
spreadsheet evaluation, this seems less plausible.

4 Example: Spreadsheet Cost Semantics

In this section we extend the evaluation semantics from Sec. 3.3 to a cost seman-
tics, which in addition to a possible computed value of the expression describes
the possible cost of computing it. More precisely, the semantics describes the
work, that is, uni-processor cost [5], of the computation. In a parallel implemen-
tation, some of that work may be performed in parallel.

The cost semantics presented here was developed to enable a (static) cost
analysis of spreadsheets, for the purpose of partitioning and scheduling parallel
evaluation of spreadsheets; see [6].

The cost of a computation is described by a non-negative integer represent-
ing a number of computation steps, for instance the number of evaluation rule
applications, plus some measure of the cost of calling a built-in function. This
notion of work can reasonably be assumed to be within a constant factor of the
actual number of nanoseconds required to evaluate an expression.

4.1 Cost Semantics for Expressions

The evaluation judgment σ ` e ⇓ v gets extended to σ ` e ⇓ v, c, which states
that when σ describes the calculated values of all cells, then formula e may

16 P. Sestoft

evaluate to value v at computational cost c. As in Section 3.3, the semantics
is nondeterministic (“may”) in the sense that the evaluation of an expression e
could produce many different values v at many different costs c.

The inference rules defining the cost judgment σ ` e ⇓ v, c are given in
Fig. 14.

-- (c1)
σ ` n ⇓ n, 1

ca /∈ dom(σ)
-- (c2b)
σ ` ca ⇓ 0.0, 1

ca ∈ dom(σ) σ(ca) = v
-- (c2v)

σ ` ca ⇓ v, 1

σ ` e1 ⇓ v1, c1 v1 ∈ Error
--- (c3e)
σ ` IF(e1,e2,e3) ⇓ v1, 1 + c1

σ ` e1 ⇓ 0.0, c1 σ ` e3 ⇓ v, c3
--- (c3f)
σ ` IF(e1,e2,e3) ⇓ v, 1 + c1 + c3

σ ` e1 ⇓ v1, c1 v1 6= 0.0 σ ` e2 ⇓ v, c2
--- (c3t)

σ ` IF(e1,e2,e3) ⇓ v, 1 + c1 + c2

0.0 ≤ v < 1.0
-- (c4)
σ ` RAND() ⇓ v, 1

J ⊆ {1, . . . , n}
∀j ∈ J. σ ` ej ⇓ vj , cj vi ∈ Error for some i ∈ J
--- (c5e)

σ ` F(e1, . . . ,en) ⇓ vi, 1 +
∑

j∈J
cj

σ ` e1 ⇓ v1, c1 . . . σ ` en ⇓ vn, cn
∀i. vi 6∈ Error

--- (c5v)
σ ` F(e1, . . . ,en) ⇓ f(v1, . . . , vn), 1 +

∑
j=1,n

cj + work(f, v1, . . . , vn)

Fig. 14. Cost semantics rules for simplified spreadsheet formulas. From [6].

These rules are mostly straightforward extensions of the formula evaluation
rules in Fig. 14:

– Rule (c1) says that evaluating a number constant n requires 1 computation
step, and similarly for cell references by rules (c2b) and (c2v).

– Rule (c3e) says that if e1 may evaluate to error v1 in c1 computation steps,
then IF(e1,e2,e3) may evaluate to error v1 in 1 + c1 computation steps.

Language specification and implementation 17

– Rule (c3f) says that if e1 may evaluate to zero in c1 computation steps
and the “false branch” e3 may evaluate to v in c3 computation steps, then
IF(e1,e2,e3) may evaluate to value v in 1 + c1 + c3 computation steps.

– Rule (c3t) is similar, for when e1 may evaluate to some non-error non-zero
number v1 in c1 computation steps.

– Rule (c4) says that function call RAND() may evaluate to any (non-error)
number v between zero and one, in one computation step.

– Rule (c5e) is quite different from the corresponding evaluation rule (e5e) in
Fig. 11. It says that an implementation may choose to evaluate just a subset
{ej | j ∈ J} of the arguments when some ei with i ∈ J evaluates to an error
vi, and then let vi be the result of the function call. Also, it says that the
total cost of this is the cost

∑
j∈J cj of evaluating that subset of arguments,

plus one. The rationale for this is discussed in Section 4.2.
– Rule (c5v) says that if each argument ei may evaluate to non-error value vi in
ci computation steps and applying the actual function f to argument values
(v1, . . . , vn) produces value v at a cost of work(f, v1, . . . , vn) computation
steps, then the call F(e1, . . . ,en) may evaluate to value v using a total of
1 +

∑
j=1,n cj + work(f, v1, . . . , vn) computation steps.

Here work(f, v1, . . . , vn) describes the cost of applying function f to argu-
ment values (v1, . . . , vn). For instance, one would expect work(+, v1, v2) = 1
since the cost of addition is independent of the numbers added.

Since each cost rule adds 1 to the cost incurred by subexpression evaluations,
the cost semantics essentially counts the number of rule applications.

4.2 Rationale for Cost of an Error Argument

While most of the cost semantics rules in Fig. 14 are obvious extensions of the
evaluation rules in Fig. 11, this is not the case for rule (c5e) which is quite
different from rule (e5e). Here we discuss why.

It is possible to imagine a cost rule (c5bad) as a trivial extension of rule
(e5e), like this:

σ ` ei ⇓ vi, ci vi ∈ Error
--- (c5bad)
σ ` F(e1, . . . ,en) ⇓ vi, 1 + ci

This rule says that if one of the arguments ei may evaluate to an error vi using
ci computation steps, then the call F(e1, . . . ,en) to a function F may evaluate
to error vi in 1 + ci computation steps. However, this cost is unrealistically
low: a conforming implementation would have to correctly guess which (if any)
argument expression ei can evaluate to an error, and then evaluate only that
expression. Such an implementation would seem implausibly clever.

A more realistic rule might stipulate instead that the cost is the sum of
the costs of evaluating all argument expressions. However, this is needlessly
pessimistic since an implementation may stop evaluating arguments once one of
them evaluates to an error.

18 P. Sestoft

Another realistic cost rule might correspond to implementations that evaluate
argument expressions e1, e2, . . . from left to right until one of them (if any)
evaluates to an error. However, this restricts the possible implementations and
would preclude or complicate parallel evaluation of arguments.

Instead we propose rule (c5e) in Fig. 14 which corresponds to implementa-
tions that may evaluate the argument expressions in any order (or in parallel)
but may avoid evaluating all of them in case one evaluates to an error. This
corresponds to choosing a subset J ⊆ {1, . . . , n} of the argument indexes and
evaluating only those ej for which j ∈ J , to values vj at costs cj , where one of
the vj is an error, and then stating that the total cost of the call is the sum∑
j∈J cj of the costs of the arguments actually evaluated, plus one. Through

different choices of J , rule (c5e) subsumes all three alternative rules discussed
above.

Since the set J may be chosen in many ways, this introduces nondeterminism
in the evaluation cost, in addition to nondeterminism in the computed value.

Clearly the choice of the set J is a specification artefact of little interest to
a spreadsheet implementer, not to speak of a spreadsheet user. Yet apparently
the J set is necessary for the specification to permit realistic implementations
without favoring any particular ones. See also the discussion in Sec. 5.1.

4.3 Cost Semantics for Recalculation

Sections 4.1 and 4.2 above gave evaluation-and-cost rules for evaluation of spread-
sheet formulas. How do we describe the cost of recalculation in terms of these?

First, we introduce a cost environment γ : Addr → Nat0 such that γ(ca) is
the cost of evaluating the formula at cell address ca. Then we slightly change
the recalculation consistency requirements from Fig. 13 to also record the cost
of evaluation for each cell, as shown in Fig. 15.

(1) dom(σ) = dom(γ) = dom(φ)
(2) ∀ca ∈ dom(φ). σ ` φ(ca) ⇓ σ(ca), γ(ca)

Fig. 15. Recalculation consistency requirements recording also evaluation cost, for sim-
ple formulas. The judgment σ ` e ⇓ v, c is defined in Fig. 14. Compared to Fig. 13,
requirement (2) has been extended to record the evaluation cost of cell ca in γ(ca).

Using the cost environment γ we can now express the cost of a full recalcu-
lation of a spreadsheet described by φ. This is simply the cost of evaluating the
formula of every non-blank cell once:

fullcost =
∑
ca∈dom(φ) γ(ca)

In general, it is wasteful to perform full recalculation after only a single cell has
been edited by the spreadsheet user. This does not matter here.

Language specification and implementation 19

5 Specification and Implementation

5.1 Nondeterminism versus Underspecification

It should be clear from the discussion in Sec. 4.2 of the Fig. 14 rule (c5e) that
rule nondeterminism in the specification may reflect either run-time nondeter-
minism in an implementation (rules e4 and c4) or underspecification, that is,
implementation-time design choices (rules e5e and c5e), or a mixture of those.

The difference is one of binding-time (as in language implementations and
in partial evaluation): when is the nondeterministic choice made, and the cho-
sen value henceforth fixed? Should there be a (formal) way to describe stages
(implementation design stage, program linking stage, load-time stage, run-time
stage, . . .) and to describe when a given choice should be made? For instance,
a RAND() function whose value gets fixed at 0.500 at the implementation design
stage would disappoint many spreadsheet users.

Yet it is not so easy to separate the implementation design stage and the
run-time stage even in the simple case of rule (c5e) discussed Sec. 4.2. At what
stage does it make sense to choose the set J?

If one has decided on a sequential (singlethreaded, uniprocessor) implementa-
tion, one would probably decide at implementation design time on an evaluation
order (maybe left to right) for actual arguments. Also, one may or may not stop
evaluation once an argument evaluates to an error value. In any case this leaves
no nondeterminism at run-time, but corresponds to J always having the form
{1, 2, . . . , i} or {1, 2, . . . , n}. In this case, the choice of the set J in rule (c5e)
represents underspecification, or an implementation-time design choice.

By contrast, if one has decided on a parallel (multithreaded, multiprocessor)
implementation, one may evaluate function argument expressions in parallel on
multiple threads. Any thread that evaluates an argument to an error value vi
may cancel other argument evaluation threads and make the function call return
vi, discarding the remaining argument evaluations. In this case, the choice of the
set J in rule (c5e) represents an implicit nondeterministic run-time choice in the
implementation. However, the apparently nondeterministic choice is not made
by explicitly choosing a set J , but by the run-time system’s scheduler, which
appears random due to other loads on the machine, outside interrupts, and
truly unpredictable races between multiple cores accessing the same memory.

5.2 Does a Cost Semantics Make Sense?

The cost semantics may seem to be overly specific in prescribing the cost of a
computation in addition to its result. Is it sensible for a formal specification to
do that?

We believe that this is useful and meaningful for two reasons: First, a cost se-
mantics may be abstracted to a (static) cost analysis, which can then be used in
programmer feedback, scheduling decisions and the like [6]. Second, a semantics
with additional detail may provide better understanding of the specified lan-
guage. For instance, a call-by-name semantics for lazy evaluation may correctly

20 P. Sestoft

specify the values that an implementation of lazy evaluation must compute, but
give the wrong impression of time and memory consumption. A slightly more
complicated semantics that properly models arbitrary data graphs in memory
will prescribe the same computed values but additionally provide insight into
time and memory consumption, and into possible implementations. Indeed, we
have previously shown that a proper such semantics for lazy evaluation [15] may
be rich enough that an abstract machine and an implementation can be derived
from it [21].

In the late 1980es several researchers proposed “instrumented” versions of
denotational semantics for programming languages. An abstract interpretation
based on the instrumented semantics would then be used to provide static ref-
erence count analysis, variable escape analysis, and the like. Thus the instru-
mentation built some implementation-related properties, or expectations, into
the denotational semantics [20, Sec. 2.4]. Of course it is possible for an “in-
strumented” specification to go overboard and specify something that cannot
be implemented, witness the unrealistic cost rule (c5bad) discussed in Sec. 4.2.
This problem is not specific to instrumented semantics; an ordinary semantics
may well be unimplementable, for instance by specifying a fair nondeterministic
choice between infinitely many possibilities.

However, an “instrumented” semantics is likely to contain some internal re-
dundancy, and therefore more likely to be contradictory. For instance, rule (c5v)
specifies both that all of a function’s arguments must be evaluated once before
calling the function and that the cost of a function call includes the sum of the
costs of the argument evaluations. By mistake or design the rule might leave
out one of these aspects and thereby specify a language that has only strange
implementations.

5.3 The Distance from Specification to Implementation

The plain spreadsheet evaluation semantics in Sec. 3 remained reasonably close
to an implementation. It is imaginable that even the axiomatic specification of
recalculation in Fig. 13 could be handled by a specification language with a
general fixpoint computation mechanism.

For the spreadsheet cost semantics in Sec. 4, this is much harder to imag-
ine, since the semantics specifies a property of the implementation besides the
computed value, namely the time (or number of computation steps) that the im-
plementation consumes to compute the value. Even when the cost semantics is
consistent and admits reasonable implementations (as we believe the one in Sec. 4
does), it is hard to imagine a general and usable specification/programming lan-
guage mechanism that can that guarantee both correct result and correct time
consumption.

6 Related Work

The view that programming languages are becoming so expressive that they
can conveniently be used as specification languages is certainly not new [7, 10].

Language specification and implementation 21

Already the liberation from manual memory management in Lisp (1960) and
the liberation from explicit evaluation order in Prolog (1972) must have given
these languages the flavor of “describing what, not how” relative to other pro-
gramming languages at the time, making programs in those languages look like
specifications. In a 1994 experiment with prototyping, a working Haskell pro-
gram, solving a programming challenge, was so concise and elegant that it was
mistaken for “a mixture of requirements specification and top-level design” by
a group of highly experienced software engineers [12, page 14].

The study of the Ada formal description in Sec. 2 is just further evidence
that one decade’s specification may be a later decade’s program.

Also the research on semantics-directed compiler generation [8, 13] in the
1980es and 1990es implicitly conflated specification and implementation. If a
programming language implementation can be automatically generated from a
sufficiently detailed semantics or specification, then that specification is itself just
a program (in a sophisticated language) that can be transformed or compiled
into an implementation of the language it specifies. This view is explicit in Tofte’s
work [24], which also expressed skepticism as to the feasibility and generality of
this approach.

Our study in Sec. 2 was loosely inspired by Naur’s critique [16, Sections 4
and 5] of Jones and Henhapl’s VDM semantics for Algol 60 [11]. But where Naur’s
paper broadly questions the presumed advantages of formal specifications, taking
flaws in Jones and Henhapl’s specification as evidence, our view is that even a
(formally) flawed formal specification may be valuable because of the insight
acquired while developing it.

As mentioned in Sec. 2.3, this view is in fact similar to the 1985 view pro-
posed, in the realm of programming, by Naur himself [17].

7 Conclusion

This paper investigated the relation between specification (or modeling) and
programming in the special case where the specification describes a programming
language (semantics) and its implementations.

We observed that an Ada formal description written in VDM in 1980 looks
very much like a function program today, suggesting that the difference between
specification and program may be one of degree. We also argued that while from
a formal point of view the specification is incomplete and flawed (and hence its
text not usable for purely formal purposes), it was still highly valuable, due to
the knowledge acquired by its authors in the process of developing it.

We observed that nondeterminism in a specification may reflect either in-
tended run-time choice in implementations, or permissible choice between possi-
ble implementations, but that there is no conventional way to distinguish these
roles or binding-times of specification nondeterminism. We also observed that
while operational and denotational semantics specification often suggest an im-
plementation, and even axiomatic specifications can sometimes be implemented

22 P. Sestoft

(for instance using search or inference), this is much harder when the semantics
specifies also the computational cost of the implementation.

Hence there are still simple cases where it is truly hard to regard a seman-
tics (specification) as an implementation (program), or to see how one could
mechanically produce an implementation from the semantics.

References

1. Biermann, F., Dou, W., Sestoft, P.: Rewriting high-level spreadsheet structures
into higher-order functional programs. In: International Symposium on Practical
Aspects of Declarative Languages (2018)

2. Bjørner, D., Jones, C. (eds.): The Vienna Development Method: The Meta-
Language, Lecture Notes in Computer Science, vol. 61. Springer-Verlag (1978)

3. Bjørner, D., Oest, O.N. (eds.): Towards a formal description of Ada. Lecture Notes
in Computer Science, vol. 98. Springer (1980)

4. Bjørner, D., Gram, C., Oest, O.N., Rystrøm, L.: Dansk datamatik center. In: His-
tory of Nordic Computing 3 - Third IFIP WG 9.7 Conference, HiNC 3, Stockholm,
Sweden, October 18-20, 2010, pp. 350–359. Springer (2011)

5. Blelloch, G.: Programming parallel algorithms. CACM 39(3), 85–97 (March 1996)

6. Bock, A., Bøgholm, T., Leth, L., Sestoft, P., Thomsen, B.: Concrete and abstract
cost semantics for spreadsheets. Tech. Rep. ITU-TR-2018-203, IT University of
Copenhagen (2018), (To appear)

7. Broy, M., Havelund, K., Kumar, R.: Towards a unified view of modeling and pro-
gramming. In: Margaria, T., Steffen, B. (eds.) 7th International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation. LNCS,
vol. 9952, pp. 238–260. Springer (2016)

8. Ganzinger, H., Jones, N. (eds.): Programs as Data Objects, Copenhagen, Denmark,
October 1989. Springer-Verlag (1986)

9. Gordon, M., Milner, R., Wadsworth, C.: Edinburgh LCF. A Mechanised Logic of
Computation, Lecture Notes in Computer Science, vol. 78. Springer-Verlag (1979)

10. Havelund, K.: Closing the gap between specification and programming: VDM++
and Scala. In: HOWARD-60: A Festschrift on the Occasion of Howard Barringer’s
60th Birthday. EPiC Series in Computing, vol. 42, pp. 210–233 (2014)

11. Henhapl, W., Jones, C.B.: A formal definition of Algol 60 as described in the 1975
modified report. In: Bjørner and Jones [2], pp. 305–336

12. Hudak, P., Jones, M.P.: Haskell vs. Ada vs. c++ vs. Awk vs. . . . : An experiment in
software prototyping productivity. Tech. Rep. YALEU/DCS/RR-1049, Yale Uni-
versity, Department of Computer Science (October 1994)

13. Jones, N.D. (ed.): Semantics-Directed Compiler Generation, Aarhus, Denmark,
January 1980. (Lecture Notes in Computer Science, vol. 94). Springer-Verlag (1980)

14. Kahn, G.: Natural semantics. In: Brandenburg, F., Vidal-Naquet, G., Wirsing, M.
(eds.) STACS 87. 4th Annual Symposium on Theoretical Aspects of Computer
Science, Passau, Germany (Lecture Notes in Computer Science, vol. 247). pp. 22–
39. Springer-Verlag (1987)

15. Launchbury, J.: A natural semantics for lazy evaluation. In: Twentieth ACM Sym-
posium on Principles of Programming Languages, Charleston, South Carolina, Jan-
uary 1993. pp. 144–154. ACM (1993)

16. Naur, P.: Formalization in program development. BIT 22(4), 437–453 (1982)

Language specification and implementation 23

17. Naur, P.: Programming as theory building. Microprocessing and Microprogram-
ming 15, 253–261 (1985)

18. Nielson, H., Nielson, F.: Semantics with Applications. An Appetizer. Springer-
Verlag (2007)

19. Platek, R.A.: The European formal definition of Ada. A U.S. perspective. IDA
Memorandum Report M-389, Institute for Defense Analyses (1988)

20. Sestoft, P.: Analysis and Efficient Implementation of Functional Programs. Ph.D.
thesis, DIKU, University of Copenhagen, Denmark (1991), DIKU Research Report
92/6

21. Sestoft, P.: Deriving a lazy abstract machine. Journal of Functional Programming
7(3), 231–264 (May 1997)

22. Sestoft, P.: Spreadsheet Implementation Technology. Basics and Extensions. MIT
Press (2014), ISBN 978-0-262-52664-7. 325 pages

23. Syme, D., Granicz, A., Cisternino, A.: Expert F#. Apress, 4th edn. (2015)
24. Tofte, M.: Compiler Generators. What They Can Do, What They Might Do, and

What They Will Probably Never Do. Monographs in Theoretical Computer Sci-
ence, Springer (1990)

25. Wikipedia: DDC-I. Webpage, at https://en.wikipedia.org/wiki/DDC-I

