Implementing Function Spreadsheets

Peter Sestoft (sestoft@itu.dk)
IT University of Copenhagen, Denmark

ABSTRACT

A large amount of end-user development is done with spread-
sheets. The spreadsheet metaphor is attractive because it is
visual and accommodates interactive experimentation, but
as observed by Peyton Jones, Blackwell and Burnett [6],
the spreadsheet metaphor does not admit even the most ba-
sic abstraction: that of turning an expression into a named
function. Hence they proposed a way to define a function
in terms of a worksheet with designated input and output
cells; we shall call it a function sheet.

The goal of our work is to develop implementations of
function sheets and study their application to realistic ex-
amples. Therefore, we are also developing a simple yet com-
prehensive spreadsheet core implementation for experimen-
tation with this technology.

Here we report briefly on our experiments with function
sheets as well as other uses of our spreadsheet core imple-
mentation.

Categories and Subject Descriptors

D.1.7 [Programming Techniques]: Visual Programming;
D.3.2 [Programming Languages]: Language Classifica-
tions; D.3.4 [Programming Languages]: Processors; K.8.1
[Personal Computing]: Application Packages

General Terms

Human Factors, Languages, Performance

1. MOTIVATION AND RELEVANCE

The overall goal of this research is to experiment with new
spreadsheet features and spreadsheet technology. This posi-
tion paper focuses on the ability of end users to define new
functions while staying within the spreadsheet metaphor,
as proposed by Nuiiez [5] and Peyton Jones, Blackwell and
Burnett [6]. We use the term function sheet for a worksheet
that defines a function.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WEUSE IV, May 12, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-034-0/08/05 ...$5.00.

What is the relevance of function sheets to reliability in
end-user software engineering? Many skilled and highly ed-
ucated people create complex spreadsheet models, because
the spreadsheet metaphor is intuitive and has a low entry
barrier. However, even the simplest form of abstraction —
from formula to function — is not supported inside the
spreadsheet metaphor, only by external languages such as
VBA. When users eschew VBA, they have to fall back on
duplication of formulas and the introduction of extraneous
columns or rows, which leads to redundancy and scope for
error.

By offering functional abstraction within the spreadsheet
metaphor, function sheets permit users to avoid redundancy
and to hide irrelevant detail, and hence lead to much more
robust models. As in other software engineering, this may
give rise to libraries of sharable function sheets that are doc-
umented, tested and reviewed, and more reliable than ad hoc
spreadsheet formulas.

Even more importantly, it is much easier for an end user to
customize a single function sheet than to locate and consis-
tently modify all copies of a formula in a spreadsheet model.
Hence function sheets would boost reliability of spreadsheet
model maintenance.

Our specific goal therefore is to provide an implementation
of function sheets that permits realistic experiments.

2. INTERPRETIVE IMPLEMENTATION

An early implementation of function sheets was developed
by Cortes and Hansen [1] under my supervision and based
on our spreadsheet core implementation (see section 4).

The implementation demonstrated the utility of function
sheets, including array formulas and recursive and higher-
order function sheets, drawing on examples from the life in-
surance industry. Actuarians, when informally interviewed,
found the concept understandable and highly useful.

However, although this early implementation can evaluate
function sheets, it lacks a user interface for editing them, is
cumbersome to use, and does not provide competitive per-
formance. Hence we have recently started creating a faster
implementation with a better user interface; see section 3.

Figure 1 is a screenshot of a function sheet to compute the
area 1/s(s —a)(s — b)(s — ¢) of a triangle with side lengths
a, b and ¢, where s = (a+b+c)/2 is computed in the function
sheet’s cell B4. The function can be called from an ordinary
worksheet using an expression such as =TriArea(A2,B2,C2).

The function is trivial to express as a function sheet, but
expressing it in an ordinary worksheet would either require
an extra column to hold s, and hence pollute the end user’s

o5 Spreadsheet

Bl View
= ch:;m Tridvea(a(B1), b{B2). c(B3))=B5
an
S Functions =(B4°(B4-81)(B4B2(B4BI)"05
Trdrea :
[~ THEN - 2 5
1 & a0 B1 Ll
2 b 40 62 &
3 e 50 g3 £
1 o 50 85 Result
5.

Figure 1: Function sheet TriArea calculates the area
of a triangle. Cells B1:B3 are input cells, B4 con-
tains the semiperimeter s, and B5 is the output cell.
The B5 formula is shown in the formula bar.

working area with this irrelevant detail, or would involve
this formula:

=SQRT ((A2+B2+C2) /2* ((A2+B2+C2) /2-A2)
*((A2+B2+C2) /2-B2) * ((A2+B2+C2) /2-C2)

whose correctness is not entirely obvious due to the dupli-
cation of the expression for s.

Nevertheless, using a function sheet to compute the area
of a triangle is primarily a matter of convenience and clarity.
By contrast, the examples shown in figures 2 and 3 would
be impossible to express as pure spreadsheet formulas.

2.1 Recursivefunction sheets

Recursive function sheets were explicitly ruled out in the
work of Peyton Jones, Blackwell and Burnett [6, 4.1], who
argued that they did not fit with the cognitive model and
that there is little need for recursive functions on numbers.
We disagree on the latter point and hence do permit recur-
sive function sheets.

Recursion and higher-order functions are well-known ab-
stractions to mathematically inclined spreadsheet users, such
statisticians and physicists, although many of their current
tools, such as SAS [3] and the Fortran programming lan-
guage, can express these abstractions only through arcane
encodings.

Figure 2 shows a recursive and higher-order function sheet
Integrate that computes the integral f; f(x)dz of function
f by adaptive numerical integration.

The bounds a and b and the function f are parameters
of the function sheet. To compute the integral, Integrate
computes two different approximations to it. If they are al-
most equal, we have found the integral. Otherwise the inter-
val [a, b] is split in two at ¢ = (a+b)/2 and Integrate calls
itself recursively to compute the integrals of both halves,
and then adds them:

/abf(a:)dx = /:f(m)dx—i- /cbf(ac)dac

The beauty of recursion here is that the algorithm automat-
ically uses a coarse subdivision of the z axis where f varies
little, and a fine subdivision where f varies much.

2.2 Higher-order function sheets

It is natural to pass the function f being integrated as
an argument, so function Integrate in figure 2 is higher-
order. A recent paper on integration of spreadsheets and a

functional language gives another example of using higher-
order functions [10].

A further reason to support higher-order functions is that
they go well together with array calculations, where an ar-
bitrary number of columns or rows are to be processed in
the same way.

IHE Spreadsheet

Eile Wiew
= Warkbook Integrate(i(B1), alB2), b{B3)-CE
Main
= Functions =IF[Converged(CE.LT).CE Integrate(B 18284 +HIntegiate{B1 84 83))
. A 6 t
OneDveid 1 f= f % Sine
Goarverged 2 |a=] 0
% b= 3.14159 2.65358979335273E-06
4 c= 1.570795 0.99599999999912
5 h= 3141589
6 simpson = 20943947227 4668
7 midpoint = 3 14158999999723
-8 | 200000000032112]

Figure 2: Recursive and higher-order function sheet
Integrate to calculate the integral of f over [a,b].
Cells B1:B3 are input cells, B4 holds the midpoint
¢, C2:C4 contain the function values, C6 and C7 con-
tain the two initial approximations to the integral,
and output cell C8 holds the final approximation.
The C8 formula is shown in the formula bar; it con-
tains two recursive calls to Integrate.

3. COMPILED IMPLEMENTATION

To address the shortcomings of the interpretive implemen-
tation of function sheets mentioned in section 2, we have
recently embarked on a compiled implementation. This im-
plementation has a user interface for editing and evaluating
ordinary worksheets, and for converting ordinary worksheets
into function sheets. The implementation provides high per-
formance, thanks to runtime bytecode generation and elimi-
nation of boxing and unboxing of intermediate values. How-
ever, this implementation does not yet support array calcu-
lations or recursive or higher-order function sheets. This is
joint work with Morten Poulsen and Poul Serek.

There are some initial indications that numerical compu-
tations implemented as function sheets on this platform are
just as fast as Excel’s built-in functions. Figure 3 show a
somewhat non-trivial function sheet, defining the cumulative
distribution function of the Gaussian (normal) distribution.
It is more accurate than Excel’s corresponding NORMDIST
built-in function. Also, although ours is a function defined
by an end user, it is no slower than Excel’s built-in function,
when evaluated with our new prototype implementation.

The challenges when compiling function sheets to byte-
code include:

e Scheduling calculations. This is done by a topological
sort in dependency order, provided there are no static
dependency cycles in the function sheet, which is a
reasonable assumption.

e Avoiding boxing and unboxing of numerical interme-
diate results. This requires a type analysis of the func-
tion sheet’s cells, and an careful representation of un-
boxed values to accommodate error values.

e Lazy evaluation of non-strict functions, such as IF().
This requires (1) scheduling the evaluation of the func-
tion sheet’s cells according to an augmented depen-
dency graph labeled with conditions, and (2) making
evaluation of a cell ¢ dependent on the disjunction,
over all paths from ¢ to output cells, of the conjunc-
tion of augmented dependency graph labels along that
path.

4. THE CORECALC IMPLEMENTATION

The function sheet implementations described in sections 2
and 3 are based on Corecalc, a spreadsheet core implemen-
tation that we developed as a platform for experiments with
spreadsheet technology [8]. Notable features of CoreCalc
include:

e The formula language and the calculation engine sup-
port absolute and relative references, array formulas,
arrays as cell values, non-strict and volatile built-in
functions, sharing-preserving copying of formulas, and
an easily extensible set of built-in functions.

e A rudimentary graphical user interface allows editing,
moving and copying of cell contents, including formu-
las and array formulas.

e Corecalc is written in C# using Windows Forms for
the graphical user interface. The C#/.NET platform
is safe (unlike C and C++), efficient and widely avail-
able. Also, C# supports high-level functional and
object-oriented abstractions, so the implementation is
concise (4,100 lines of code) and easily modifiable.

e Despite the managed platform and the simplicity of
the implementation, it achieves very good recalcula-
tion speed. Full recalculations are typically no more
than 10 times slower than in Microsoft Excel, and gen-
erally faster than Gnumeric and OpenOffice Calc, two
open source spreadsheet implementations.

In addition to functions sheets, a few other experiments have
been based on Corecalc, including:

e Runtime bytecode generation from spreadsheet formu-
las for faster recalculation [4].

e A new technique to reduce recalculation in spread-
sheet models, based on a so-called support graph. This
achieves performance comparable to industrially used
spreadsheet programs on large real-life spreadsheet mod-
els from finance, insurance, protein modeling, nuclear
physics, role-playing games, and probability theory,
with between 1,000 and 594,000 active cells [7, 9].

5. FUNCTION SHEETSIN EXCEL?

Using Microsoft Visual Studio tools for MS Office, it may
be possible to create a C# component that works with MS
Excel, such that:

e The C# component uses Excel events to intercept cre-

ation and editing of Excel worksheets with special names,

such as @MySheet, and where named ranges within the
sheet designates input and output cells. For each such
sheet, the C# component parses the Excel formulas in
the sheet and generates a .NET method corresponding
to the function defined by that sheet.

e The C# component and a little VBA glue code installs
the generated method as a WorksheetFunction callable
from Excel formulas.

Then an Excel user can define function sheets as ordinary,
but specially named, sheets within an Excel workbook, and
call the defined functions just like ordinary Excel built-in
functions. We have not yet pursued this line of work be-
cause early experiments indicated it would not work. Also,
the interface from C# to Excel’s object model is somewhat
unattractive and imposes seemingly arbitrary limitations.
For instance, some methods in the API require 30 argu-
ments, most of which are ignored.

6. RELATED WORK

Nufez [5] describes an extended spreadsheet with many
innovations, including function sheets, and Peyton Jones,
Blackwell and Burnett [6, 4.1] investigated the implications
of this idea in much more depth. However, none of these
works provides an efficient compiled implementation of func-
tion sheets.

There are several, mostly commercial, tools available for
converting spreadsheet models into imperative program code,
for instance to create web services. Presumably such tools
address some of the problems involved in code generation
from function sheets, but most documentation does not throw
much light on this, except for Waldau’s patent application
(US2003226105) and Francoeur’s compiled-mode implemen-
tation [2]. However, these works do not address efficient
compilcation of non-strict functions such as IF.

Our technical report [8] contains many more references to
the literature and to spreadsheet-related patents.

7. FUTURE WORK

Many issues have not been addressed by our work yet,
including:

e Completion, quality assurance and performance test-
ing of the compiled implementation of function sheets
in section 3.

e Construction of a more robust and usable user inter-
face, so that realistic experiments involving end-users
can be conducted. Although it seems exceedingly plau-
sible, we do not have empirical data to show that func-
tion sheets are easier to use and cause fewer reliability
problems than VBA.

e Visualization of function sheet evaluation, so that end-
users can debug and test function sheets the same as
ordinary work sheets.

We intend to:

e Complete the compiled function sheet implementation
discussed in section 3, including array formulas and
higher-order and recursive function sheets;

e Further develop and maintain the spreadsheet core im-
plementation described in section 4 and to continue to
make it available to others for use or experimentation;

e Investigate whether the technology developed in sec-
tion 3 can be implemented in an Excel plugin or sim-
ilar, as hypothesized in section 5. That would make
adoption of this technology much more likely.

G |z=
1 7 1p= |=IF(BE<0, B171, 1-B11) 1=NORMDIST(BE,D,1,1) Y=B7-C7

| & |zabs = =ABS(BB)

| 9 |expntl = =EXP{-B5*B5/2)
|10 |pdf = =BY/SART(Z*FI())

11 |p' = [=IF(Ba>37 0F(B8<7.071 BI"B14/D14,810/(B6+]

|12 |

13 | pi gi
|14 |220 20687812376 |=A14+5B$8°B15 440 413735824752 =C 1444886015
15 |221.213596169931 =A15+B5°B16 793.826512519948 =C15+B8°D16
16 [112.07929149787 =A16+$B35°B17 537.333633378531 =C16+B6"D17
17 |33.912866078383 =A17+B5°B16 296 564248779673 =C17+B6°018
16 |6.37996220353165 =A18+3836'B19 B6 70732202946 =C18+B6*D13
19 |0.70035306444 3668 =A19+B5°620 16.0641775792069 =C15+$8$6°D20
| 20 |0.035262496599891 =A20 1.75566716318264 =C20+$8$6"D21
21 | 0.05853853476453184 =C21

Figure 3: Function sheet to calculate the cumulative distribution function of the Gaussian distribution. Cell
B6 is the input cell and cell B7 is the output cell. The sheet involves constants in A14:A20 and C14:C21,
and arithmetic operations, built-in functions and conditional expressions in other cells.

8. REFERENCES

[1] Daniel S. Cortes and Morten Hansen User-defined
functions in spreadsheets. Master’s thesis, IT
University of Copenhagen, September 2006. At
http://www.itu.dk /people/sestoft /corecalc/CortesHansen2006.pdf.

[2] Joe Francoeur. Algorithms using Java for spreadsheet
dependent cell recomputation. Technical Report
¢s.DS/0301036v2, arXiv, June 2003. At
http://arxiv.org/abs/cs.DS/0301036.

[3] SAS Institute. Homepage. At http://www.sas.com.

[4] Thomas S. Iversen Runtime code generation to speed

up spreadsheet computations. Master’s thesis, DIKU,

University of Copenhagen, August 2006. At

http://www.itu.dk /people/sestoft /corecalc/Iversen.pdf.

Fabian Nufiez. An extended spreadsheet paradigm for

data visualisation systems, and its implementation.

Master’s thesis, University of Cape Town, November

2000. At http://citeseer.ist.psu.edu/543469.html.

[6] Simon Peyton Jones, Alan Blackwell, and Margaret
Burnett. A user-centred approach to functions in
Excel. In ICFP ’03: Proceedings of the eighth ACM
SIGPLAN international conference on Functional
programming, pages 165-176, New York, NY, USA,
2003. ACM Press.

[7] M. Poulsen and P. Serek. Optimized recalculation for
spreadsheets with the use of support graph. Master’s
thesis, I'T University of Copenhagen, Denmark, 2007.

[8] P. Sestoft. A Spreadsheet Core Implementation in C#.
Technical Report ITU-TR-2006-91, I'T University of
Copenhagen, September 2006. 135 pages.

[9] Peter Sestoft, Morten Poulsen, and Poul Serek.
Minimizing recalculation in spreadsheet
implementations. Draft paper, IT University of
Copenhagen, Denmark, 2007.

[10] David Wakeling. Spreadsheet functional programming.

Journal of Functional Programming, 17(1):131-143,
2007.

5

