
Similix 5.0 Manual
Anders Bondorf

DIKU, Department of Computer Science, University of Copenhagen

Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark

e-mail: anders@diku.dk

May 17, 1993

Abstract

Similix is an autoprojector (self-applicable partial evaluator) for a large higher-order
subset of the strict functional language Scheme. Similix treats source programs that use a

limited class of side-effects, for instance input/output operations. Similix handles partially
static data structures.

Similix is automatic: in general, no user annotations (such as unfolding information)

are required; user assistance may in some cases be required to avoid looping, however.
Similix gives certain guarantees concerning the residual programs it generates: computations

are never discarded (partial evaluation thus preserves termination properties) and never
duplicated.

Similix is well-suited for partially evaluating for instance interpreters that use environ-
ments represented as functions and interpreters written in continuation passing style. Since

Similix is self-applicable, stand-alone compilers can be generated from interpreters.
Similix is highly portable. It conforms to the IEEE and R4RS Scheme standards, but it

also runs under R3RS Scheme.
Similix 5.0 is based on the former Similix 4.0 (by Anders Bondorf and Olivier Danvy)

[Bon91c]. A part of Similix 5.0 has been written jointly by Anders Bondorf and Jesper
Jørgensen.

Relevant Similix references: [BD91, Bon91a, Bon90a, Bon91b, Bon92, BJ93a, BJ93b].

This manual summarizes some often used binding-time improvements (Section 7). These are

needed in order to obtain good results of partial evaluation. The section is partly Similix-
specific, but parts of it are of more general interest.

Please note Similix is an experimental system under development which may contain bugs
and errors. You are encouraged to mail us about bugs, comments, suggestions and the like,

but we cannot promise to give detailed answers to every communication.
Please direct any Similix communication to the author, preferably by e-mail.

1

2

Main differences between Similix 4.0 and Similix 5.0

New Similix 5.0 features

• Similix 5.0 is highly portable.

• A larger Scheme subset is handled, in particular internal definitions, letrec, and named
(recursive) let.

• Partially static data structures are now available.

• User-defined constructors are now available (extension to Scheme).

• Pattern-matching facilities are now available (extension to Scheme).

• The preprocessing phase is much faster (e.g. binding-time analysis).

• A trace facility for tracking infinite specialization is now available.

• For binding-time debugging: the show-facility for inspecting preprocessed programs
has been improved.

• User-control of specialization/memoization point insertion is now possible; this enables
dynamic choice of static values.

• The file scheme.adt is now always automatically loaded, so user-programs need no
longer contain the corresponding loadt-expression.

Similix 4.0 features not available in Similix 5.0

• Macros (extend-syntax) are no longer supported (because of portability problems).

• No binding-time debugger is available in Similix 5.0.

CONTENTS 3

Contents

1 Short Introduction to Partial Evaluation 7

1.1 Self-application . 7

1.2 Partial evaluation, operationally . 8

1.3 Preprocessing, annotations and binding-time improvements 9

2 Getting Started with Similix 9

3 The Language Treated by Similix 13

3.1 Restrictions on input to programs being partially evaluated 15

3.2 Programs relying on unspecified values . 15

3.3 Primitive operators . 15

3.4 User-defined primitive operators . 17

3.5 Restrictions on user-defined primitive operators 21

3.5.1 Higher-order values . 21

3.5.2 Primitive operators testing pointer equality 22

3.5.3 Side-effecting primitive operators . 23

3.6 Scheme extension: user-defined constructors 24

3.7 Primitive operator and constructor name clashes 25

3.8 Scheme extension: pattern matching . 25

3.9 Simulating set! . 26

3.9.1 Top-level bound variables . 26

3.9.2 Locally bound variables . 27

3.10 Similix core language . 27

4 Examples 29

4.1 Specializing an MP-interpreter . 29

4.1.1 The MP-interpreter . 29

4.1.2 Specializing the MP-interpreter . 34

4.1.3 Generating an MP-compiler . 35

4.2 Specializing a Mixwell-interpreter . 35

4.2.1 The Mixwell-interpreter . 35

4.2.2 Specializing the Mixwell-interpreter 38

4.2.3 Generating a Mixwell-compiler . 38

4.3 Specializing a LA
ZY -interpreter . 39

4.3.1 The LA
ZY-interpreter . 39

4.3.2 Specializing the LA
ZY -interpreter . 42

4.3.3 Generating a LA
ZY -compiler . 43

4 CONTENTS

5 System Overview 43
5.1 The front-end . 43

5.2 The preprocessor . 44
5.2.1 Flow analysis . 44

5.2.2 Binding-time analysis . 44
5.2.3 Specialization-point analysis . 46

5.2.4 Evaluation-order dependency analysis 46
5.2.5 Abstract occurrence-counting analysis 47

5.2.6 Redundant let-elimination analysis 47
5.3 Postprocessing residual code . 47

6 Inspecting preprocessed/annotated programs 47

7 How to Obtain Good Results when Using Similix 50
7.1 Monovariancy of binding-time analysis . 51

7.2 Some “classical” binding-time improvements 51
7.2.1 Static copies of dynamic data . 51

7.2.2 Dynamic choice of static values . 52
7.2.3 Specialization points and dynamic choice of static values 54

7.2.4 Eta-expansion . 55
7.3 Some general advice on how to write source programs 57

7.3.1 Mixing arities . 57
7.3.2 Else-branches . 57

7.3.3 Separation of compound tests . 58
7.3.4 Introducing primitives . 59

7.4 Termination and generalization . 59

8 System Guide 62

8.1 Avoiding name clashes . 62
8.2 File naming conventions . 63

8.3 Similix facilities . 63
8.3.1 Specializing . 63

8.3.2 Preprocessing . 66
8.3.3 Inspecting annotated programs . 68

8.3.4 Compiler generator . 69
8.3.5 Utilities for Similix source files . 71

8.3.6 Resetting Similix . 73
8.3.7 Help-facility . 73

8.3.8 General Scheme utilities . 73

References 75

Index 78

LIST OF FIGURES 5

List of Figures

1 Getting started session . 9

2 Program defined in file append.sim . 10
3 Similix source language, part 1 . 13

4 Similix source language, part 2 . 13
5 Primitive operators, fixed arity . 15

6 Primitive operators, variable arity . 17

7 User-defined primitive operators and constructors 18
8 Similix core language . 27

9 MP-interpreter (file MP-int.sim) . 29
10 The file MP-int.adt . 31

11 The MP-program power (file power.MP) . 33
12 Compiled power program . 34

13 Mixwell-interpreter (file mw-int.sim) . 35
14 The file mw-int.adt . 37

15 The Mixwell-program app (file app.mw) . 38
16 Compiled app program . 38

17 LA
ZY -interpreter (file com-int.sim) . 39

18 The file com-int.adt . 41

19 The file thunk.adt . 41
20 The LA

ZY-program evens (file evens.com) . 42

21 Compiled evens program . 42

22 Similix system . 43
23 Similix preprocessor . 44

24 Session inspecting annotated MP-interpreter 48

6 LIST OF FIGURES

Acknowledgements

Similix 5.0 is based on Similix 4.0 which was joint work between Olivier Danvy and the

author of this manual. The flow, binding-time, and evaluation-order dependency analyses of
Similix 5.0 are joint work with Jesper Jørgensen.

A number of people have contributed to the system in many ways. Thanks are due to Lars
Ole Andersen, Mikhail Bulyonkov, Charles Consel, Olivier Danvy, Hans Dybkjær, Harald

Ganzinger, Robert Glück, Carsten K. Gomard, Chris Hankin, Fritz Henglein, Kristoffer

Rose, Carsten Kehler Holst, Kristian Damm Jensen, Neil D. Jones, Jesper Jørgensen, John
Launchbury, Karoline Malmkjær, Torben Æ. Mogensen, Christian Mossin, Peter Sestoft, and

Jörg Süggel — and to those whom I may have undeliberately forgotten.

Overview of the paper

Section 1 contains a short general introduction to partial evaluation.

Section 2 introduces Similix by a small example session.

Section 3 describes the language treated by Similix.

Section 4 contains larger examples of Similix applications.

Section 5 gives a brief overview of the components of the Similix system.

Section 6 describes how to inspect annotated programs. Manual inspection of annotated
programs is often necessary to obtain good results of partial evaluation.

Section 7 summarizes some often used binding-time improvements. These are needed in
order to obtain good results of partial evaluation. The section is partly Similix-specific, but

parts of it are of more general interest. To get full benefit of the section, you should also
read at least Section 5 and Section 6.

Section 8 gives a systematic overview of the facilities available in Similix.

Readers familiar with Similix 4.0 are encouraged to read at least the sections 3, 6, and

7; these sections have changed significantly. Notice that the examples in Section 4.2 and
Section 4.3 are new. The binding-time analysis domain has changed (Section 5.2.2). Finally,

Section 8 contains some new and some improved facilities.

7

1 Short Introduction to Partial Evaluation

Partial evaluation [JGS93] transforms programs with incomplete input data: when given a

source program p and a part of its input s, a partial evaluator mix generates a residual
program ps by specializing p with respect to s. Partial evaluation is also referred to as

program specialization. When applied to the remaining input d, the residual program gives
the same result as the source program would when applied to the complete input:

p(s, d) = ps(d) where ps = mix(p, s)

For simplicity, we have not distinguished programs from the functions they compute. For

instance, p denotes a function in p(s, d), but a program in mix(p, s). Input s is called static
and input d is called dynamic.

The main point in partial evaluation is efficiency: running the residual program ps can be
much faster than running the source program p. Instead of running p(s, d), it may therefore

be worthwhile first to generate ps and then apply it to d. The partial evaluator knows p and
s and is therefore able to perform those of p’s computations that depend only on s. Program

ps is thus (potentially) more efficient than program p: it need not perform the computations
that depend only on s.

1.1 Self-application

Self-application means specializing the partial evaluator itself. This is also known as auto-
projection [Ers82]. Let us insert mix for p, p for s, and s for d in the equation defining a

residual program:

mix(p, s) = mixp(s) where mixp = mix(mix, p)

Specializing p with respect to s may thus be done by running mixp(s) instead of the (po-

tentially) slower mix(p, s). Notice that mixp is a curried version of p: program mixp is a
program which, when applied to s, generates a new program ps which can then be applied

to d. Program p thus takes its inputs s and d at the same time, but program mixp takes
them one at a time.

Program mixp is often called a generating extension of p [Ers78]. The generating exten-
sion is a “specialized specializer”: it is able to generate specialized versions of a particular

program p whereas the general specializer mix can specialize any program. The advantage

of generating a specialized specializer is efficiency: it is potentially faster to run a specialized
specializer than to run the general one.

We may even go one step further: we can specialize the specializer with respect to itself:

mix(mix, p) = mixmix(p) where mixmix = mix(mix, mix)

We may thus generate mixp by running mixmix(p) instead of the (potentially) slower

mix(mix, p).

8 1 SHORT INTRODUCTION TO PARTIAL EVALUATION

In the particular case where p is an interpreter int, these equations are known as the
Futamura projections [BEJ88]. Suppose that int takes two inputs, a source program written

in the language specified by int and some data input to this source program:

output = int(source, data)

Then intsource is a target program target, written in the language that the residual programs

generated by mix are written in. Program target fulfills

output = int(source, data) = intsource(data) = target(data)

Self-application generates comp = mix int. This program is a compiler since

comp(source) = intsource = target

Program mixmix plays the role of a compiler generator cogen:

cogen(int) = comp

Here cogen = mixmix . The three Futamura projections are:

1: target = mix(int, source)

2: comp = mix(mix, int)

3: cogen = mix(mix, mix)

We finally notice that mixmix has an interesting feature — it is self-generating:

mixmix = mixmix(mix)

The first successfully implemented autoprojector was Mix [JSS85]. The language treated

by Mix was a subset of statically scoped first-order pure Lisp, and Mix was able to gen-
erate compilers from interpreters written in this language. The experiment showed that

autoprojection was possible in practice; an automatic version of Mix was developed later
[JSS89].

1.2 Partial evaluation, operationally

Partial evaluation works by propagating the static input and performing statically reducible
operations. As an example, a conditional expression (if E1 E2 E3) can be reduced if ex-

pression E1 is static, that is, if the value of E1 depends only on the static input, not on
the dynamic input. In that case, the result of specializing the conditional is the result of

specializing the branch chosen by evaluating the test E1. If E1 is dynamic, that is, if its value

depends on dynamic input, the conditional is not reducible and is therefore left residual:
a residual expression (if RE1 RE2 RE3) is produced. Here REi is the residual expression

obtained by specializing Ei .

1.3 Preprocessing, annotations and binding-time improvements 9

1.3 Preprocessing, annotations and binding-time improvements

Experience has shown that an important component of an autoprojector is the preprocessor .

Preprocessing is performed before program specialization: its purpose is to add annotations
to the source program [JSS85]. Partial evaluation is then done by specializing the annotated

source program rather than the source program itself.

The annotations guide the program specializer (which actually produces the residual
program) in various ways: they tell whether variables are static or dynamic, that is, whether

they will be bound to static values or residual expressions, and they tell whether operations
can be reduced during program specialization.

In addition to this, annotations are very useful for the user of a partial evaluator: by
inspecting the annotated source program, the user can predict which operations will be re-

duced and which will appear in the residual programs generated by the specializer. Section 6
describes how to inspect preprocessed programs in Similix.

When inspecting annotated source programs, you will often experience that some opera-
tions are not annotated as you had expected them to be: typically, too much will have been

annotated as “not reducible”. By systematic rewritings of the source program, it is often
possible to improve the annotations to make more operations reducible. Some common such

binding-time improvements are described in Section 7.

2 Getting Started with Similix

This section contains an introduction to running Similix.

We assume that the Similix system has been installed as described in the README file.
Position yourself in the examples directory and start Scheme. Boring typing work can be

avoided by copying expressions to evaluate from the file getting-started.
Figure 1 contains the complete session; the numbers to the left are used for reference in

the explanation below. We used Aubrey Jaffer’s Scheme system “Scm” when running the
session.

1 > (load "../system/sim-scm.scm")
;loading "../system/sim-scm.scm"

Welcome to Similix 5.0
Copyright (C) 1993 Anders Bondorf
Contributions by Olivier Danvy and Jesper Joergensen

util langext abssyn miscspec runtime front
#<unspecified>

2 > (load "append.sim")
#<unspecified>

3 > (append1 ’(1 2 3) ’(4 5 6))
(1 2 3 4 5 6)

10 2 GETTING STARTED WITH SIMILIX

4 > (similix ’append1 (list ’(1 2 3) ’***) "append.sim")

front-end flow bt sp eod oc rl

specializing

((define (append1-0 l2_0) (cons 1 (cons 2 (cons 3 l2_0)))))

5 > (load-residual-program)

()

6 > (append1-0 ’(4 5 6))

(1 2 3 4 5 6)

7 > (define target (residual-program))

#<unspecified>

8 > (pp (showpall))

((define (_sim-goal l1:s l2:d -> d)

(append1 l1 l2))

(define (append1 l1:s l2:d -> d)

(if (null? l1)

l2

(_cons (lift (car l1)) (append1 (cdr l1) l2)))))

54

9 > (cogen ’append1 ’(static dynamic) "append.sim")

front-end flow bt sp eod oc rl

loading compiler generator

generating compiler

()

10 > (comp (list ’(1 2 3) ’***))

loading current compiler

specializing

((define (append1-0 l2_0) (cons 1 (cons 2 (cons 3 l2_0)))))

11 > (define new-target (residual-program))

#<unspecified>

12 > (equal? target new-target)

#t

13 >

Figure 1: Getting started session

The session uses an example program, a program for appending two lists:

(define (append1 l1 l2)

(if (null? l1)

l2

(cons (car l1) (append1 (cdr l1) l2))))

Figure 2: Program defined in file append.sim

11

The procedure has been named append1 in order not to conflict with the standard Scheme
procedure append. Now follows a description of the session.

1 : Loading Similix:

The Similix system is loaded by loading the file sim-scm.scm. (Its location in general

depends on the local installation.)

2–3: The example program append, located in append.sim and with goal procedure append1,

is loaded (2) and applied to two lists (3).

4 : Specialization:

The append program — with goal procedure append1 — is now specialized with respect

to a static value for its first parameter l1; the static value is the list (1 2 3). No value
is provided for the second parameter l2, so this input will be dynamic; dynamic input

is denoted by the symbol ***.

The residual program is a program that can append the list (1 2 3) to an arbitrary
list: the residual program is a specialized version of the source program append.

Note:

Partial evaluation is done in several steps as indicated by the output

front-end flow bt sp eod oc rl

specializing

The append program is first parsed (front-ending). Partial evaluation is then
done in two phases, as explained in further detail in Section 5. The first phase, the

preprocessing phase, consists of several subphases (flow, bt, sp, eod, oc, and rl).
The preprocessing generates an annotated version of the source program. The

second phase (specializing) then specializes the annotated program, generating
the residual program.

5 : The residual program is loaded.

6 : The residual program is run on an input list (4 5 6), generating the expected output.
The name append1-0 of the goal procedure of the residual program is determined by

the call to similix under point 4 (see Section 8.3.1 for details).

7 : The residual program is saved in the variable target for later use.

8 : Inspecting the annotated program:

The annotated program is inspected. Depending on the Scheme system, the pretty-

printer must be called explicitly as done here: (pp . . .)); the return value 54 is gener-

ated by the particular pretty-printer used here. Note that Similix automatically inserts
an additional goal procedure _sim-goal; this is for internal technical reasons. The pre-

processing phase has annotated append1’s first argument as static (l1:s) and its second

12 2 GETTING STARTED WITH SIMILIX

argument as dynamic (l2:d). [This coincides with what we had specified under point
4. Sometimes the parameters of the user given goal procedure get a different anno-

tation (more becomes dynamic) than the initial one provided by the user; this may
happen when there are recursive calls to the goal procedure. Notice, however, that

the additional goal procedure _sim-goal always has exactly the annotation the user
specified for the (original) goal procedure.] The return value of append1 is dynamic

(-> d).

The annotated program also indicates which operations that will be reduced and which
will occur in the residual program. The non-reducible ones are distinguished by a prefix

_ as exemplified by _cons above. Thus, the residual program will contain occurrences

of this cons-operation as we also saw under point 4. The other operations are all
reducible.

Notice the lift-form: it identifies where static values, computed during specialization,

are dumped in residual code. The first argument to occurrences of cons in the residual
program will thus (always) be a constant. The residual program generated under point

4 exemplifies this: in the expression (cons 1 (cons 2 (cons 3 l2_0))), 1, 2, and 3 are
all constants.

How to inspect annotated programs is described in detail in Section 6.

9 : Generating a generating extension (currying):

We now use the Similix compiler generator to generate a generating extension (curried

version) of append (cf. Section 1.1). The compiler generator is a general currifier,

compiler generation being just one application. The generating extension of append is
a program which, when applied to a list, generates a specialized version of append.

It is specified that the compiler generator should curry the append program with goal

procedure append1. The binding-time pattern (static dynamic) tells cogen which way
to curry append: here, l1 will be the “early” parameter and l2 will be the “late” one.

If the binding-time pattern had been specified as, say, (dynamic static) instead, the
program would have been curried the other way around.

10 : Running the generating extension:

The generating extension is now applied to the same input that append was specialized

with respect to above (line 4), generating the specialized append program that we have
already seen. Specializing by comp is faster (typically several times) than specializing

by similix, so it will often be worthwhile first to generate a generating extension by
cogen.

The procedure for running cogen-generated generating extensions is called comp because
of the way generating extensions resemble compilers: when cogen is applied to an

interpreter int, the resulting generating extension is a compiler mixint (see Section 1.1).

13

11–12: That the two specialized append programs, generated by comp and similix respectively,
are syntactically identical is verified by comparing them for equality.

The reader is strongly recommended to read (at least) Section 8 before experimenting further

with Similix.

3 The Language Treated by Similix

Similix treats source programs written in an extension of a subset of Scheme [IEE90, CR91],
see Figure 3 and Figure 4. The forms on lines marked with “♠Sec ...” are thus extensions:

these forms are not part of standard Scheme. The extensions are explained in the sections

indicated by the superscripts.
Since programs follow the syntax of Scheme, they are directly executable in a Scheme

environment. Notice that the Similix system needs to be loaded first if any of the extension
forms are used. (Programs using the extension forms can be converted to stand-alone Scheme

programs (independent of the Similix system) by the Similix procedure sim2scheme, see
Section 8.3.5.)

The Similix front-end parser syntactically expands a number of the forms in Figure 3 and
Figure 4 into simpler core forms. Thus, the programs that are actually partially evaluated

are written in this more restricted core syntax. The core language and the expansion into it
is described in Section 3.10.

The following standard Scheme syntax forms are not handled by Similix (this list may
not be exhaustive):

• References to dynamically bound top-level variables; such variables are, however, ac-

cessible though user-defined primitive operators (see Section 4.1.1 for an example).

• The forms (lambda V E) and (lambda (V∗ . V) E), that is, lambda-expressions with

variable arity.

• The form (set! . . .). See Section 3.9 for how to simulate set! by other operations.

• The form (case . . .).

• The forms (quasiquote . . .), ‘(. . .), (unquote . . .), ,(. . .), (unquote-splicing . . .),
and ,@(. . .).

• The forms (define V E) and (define (P V∗ . V) E), that is, any define-form differ-

ent from the D-form specified in Figure 3.

• The form (begin (define . . .)+).

• Any letrec-form different from the kind specified in Figure 3.

• Any top-level form different from the form TLE specified in Figure 3.

14 3 THE LANGUAGE TREATED BY SIMILIX

Π∈Program ; D∈Definition ; TLE∈TopLevelExpression ;

F∈File ; B∈Body ; E∈Expression ; K∈Constant ; V∈Variable ;

Ofa∈FixedArityPrimopName ; Ova∈VariableArityPrimopName ;

C∈ConstructorName ; S∈ SelectorName ; P∈ProcedureName ;

MPat∈CaseMatchPattern, CPat∈CaseConstrPattern, WiC∈WildCard

SE∈ SelfEvaluating ; Dat∈Datum ; Bool∈Boolean ; Num∈Number ;

Char∈Character ; Str∈ String ; Sym∈ Symbol ; Lis∈ List ; Vec∈Vector ;

Π ::= TLE∗ D TLE∗

TLE ::= D | (load F)

| (loads F) ♠Sec 3.8 loads-form

| (loadt F) ♠Sec 3.4 loadt-form

D ::= (define (P V∗) B) procedure definition

B ::= D∗ E+ body

E ::= K | V constant, variable

| (if E E E) conditional

| (if E E) one-armed conditional

| (cond (E E∗)+) conditional

| (cond (E E∗)∗ (else E+)) conditional

| (and E∗) | (or E∗) and, or

| (let ((V E)∗) B) parallel let

| (let* ((V E)∗) B) sequential let

| (let P ((V E)∗) B) named (recursive) let

| (letrec ((P (lambda (V∗) B))∗) B) letrec

| (begin E+) sequence

| Ofa fixed-arity prim. operator

| (Ova E∗) variable-arity prim. operation

| C ♠Sec 3.6 constructor

| S ♠Sec 3.6 selector

| C? ♠Sec 3.6 constr. test-predicate

| P procedure name

| (lambda (V∗) B) lambda-expression

| (E E∗) application

| (casematch E (MPat E+)∗) ♠Sec 3.8 casematch

| (caseconstr E (CPat E+)∗) ♠Sec 3.8 caseconstr

Figure 3: Similix source language, part 1

3.1 Restrictions on input to programs being partially evaluated 15

MPat ::= K | () | (MPat . MPat) | V | WiC ♠Sec 3.8

CPat ::= (C CPat∗) | V | WiC ♠Sec 3.8

WiC ::= _ | else ♠Sec 3.8

V, P, C, S ::= Sym

Ofa ::= . . . see Figure 5

Ova ::= . . . see Figure 6

K ::= SE | (quote Dat) | ’Dat

SE ::= Bool | Num | Char | Str

Dat ::= SE | Sym | Lis | Vec

Lis ::= (Dat∗) | (Dat+ . Dat) | ’Dat

Vec ::= #(Dat∗)

Figure 4: Similix source language, part 2

3.1 Restrictions on input to programs being partially evaluated

As we have seen in Section 2, a goal procedure must be specified when specializing a program.
When specializing, all static input values to the goal procedure must be first-order, acyclic

values; values constructed by user-defined constructors (cf. Section 3.6) are not allowed as
static input.

The dynamic input, which is not specified when specializing, must also be first-order

when running the residual program; values constructed by user-defined constructors are
allowed in the input to the residual program.

The restrictions on static input and on input to residual programs are not checked by
the system.

3.2 Programs relying on unspecified values

Similix gives no guarantee to preserve the semantics of programs that rely on unspecified

values (example: the return value of a one-armed conditional if the test fails).

3.3 Primitive operators

Similix distinguishes (user-defined) procedures (P) from primitive operators (Ofa, Ova), see
Figure 3 and Figure 4. Following Scheme terminology, we use the term “procedure” rather

than “function”. Primitive operators are also “procedures” in the Scheme sense [CR91],

but they differ from user-defined procedures in the way the partial evaluator treats them.
Primitive operations are “black box” operations: the specializer either reduces a primitive

operation completely or it leaves the primitive operator in the residual program. On the

16 3 THE LANGUAGE TREATED BY SIMILIX

Ofa ::= abs | assoc | boolean?

| caaaar | caaadr | caaar | caadar

| caaddr | caadr | caar | cadaar

| cadadr | cadar | caddar

| cadddr | caddr | cadr

| call-with-input-file | call-with-output-file

| car | cdaaar | cdaadr | cdaar | cdadar | cdaddr

| cdadr | cdar | cddaar | cddadr | cddar

| cdddar | cddddr | cdddr | cddr | cdr | ceiling

| char->integer | char-alphabetic? | char-ci<=?

| char-ci<? | char-ci=? | char-ci>=? | char-ci>?

| char-downcase | char-lower-case? char-numeric?

| char-upcase | char-upper-case? | char-whitespace?

| char<=? | char<? | char=? | char>=? | char>? | char?

| close-input-port | close-output-port | complex? | cons

| current-input-port | current-output-port | eof-object?

| equal? | even? | exact? | floor | gcd

| inexact? | input-port? | integer->char | integer?

| lcm | length | list->string

| list->vector | list-ref | list? | member

| modulo | negative? | not | null? | number? | odd?

| open-input-file | open-output-file | output-port?

| pair? | positive? | procedure? | quotient | rational?

| real? | remainder | reverse | round | string->list

| string->symbol | string-ci<=? | string-ci<?

| string-ci=? | string-ci>=? | string-ci>?

| string-length | string-ref | string<=? | string<?

| string=? | string>=? | string>? | string?

| substring | symbol->string | symbol? | truncate

| vector->list | vector-length

| vector-ref | vector? | zero?

| _sim-memoize ♠Sec 7.2.3

| user-defined primitive operator Sec 3.4

Figure 5: Primitive operators, fixed arity

3.4 User-defined primitive operators 17

Ova ::= * | + | - | / | < | <= | = | > | >=

| append | display | list | make-string

| make-vector | max | min | newline

| number->string | peek-char | read | read-char

| string | string->number | string-append

| vector | write | write-char

| _sim-error ♠Sec 3.3

| user-defined primitive operator Sec 3.4

Figure 6: Primitive operators, variable arity

contrary, the partial evaluator knows the code of a user-defined procedure; it can therefore

elaborate a procedure call even if some arguments are dynamic at partial evaluation time.

Primitive operators are divided into two categories: those with fixed arity and those with
variable arity. The only difference between these is that a fixed-arity primitive is an allowed

expression form in itself whereas a variable-arity primitive must be in apply-position, cf.
Figure 3; also, a fixed-arity primitive is arity checked by the Similix front-end parser when

standing in apply-position.

A number of primitive operators are available, see Figure 5 and Figure 6. Except for the
primitive operators _sim-memoize and _sim-error, these primitives constitute a subset of

the standard Scheme “essential” procedures [CR91]. Primitive operators may also be user-
defined as described in Section 3.4. The primitive _sim-error is used for aborting execution

while printing a formatted error message; see Sections 4.1, 4.2, 4.3 for examples.
The only essential procedures from [CR91] not treated are: eqv?, eq?, memq,

memv, assq, assv, set-car!, set-cdr!, string-set!, vector-set!, apply, map, for-each,
call-with-current-continuation, and load. (However, see Section 3.5.)

No non-essential procedures from [CR91] are treated. However, such forms (except
string-fill! and vector-fill!) can be defined by the user by following the guidelines

in Section 3.4 where defining the non-essential sqrt as a primitive operator is exemplified.

3.4 User-defined primitive operators

User-defined primitive operators are useful for different purposes:

• For introducing side-effecting operations and operations that reference global variables.

• For introducing aborting operations.

• For controlling termination of specialization.

Finally, introducing primitives may speed up partial evaluation (see Section 7.3.4).

18 3 THE LANGUAGE TREATED BY SIMILIX

User-defined primitive operators are defined in separate files according to the syntax
given in Figure 7. The defconstr-form for defining constructors is described in Section 3.6.

OCDs∈OpConstrDefinitions, OCD∈OpConstrDefinition,

SchE∈ SchemeExpression, SchV∈ SchemeVariable

Key∈KeyForm, Ari∈Arity,

Ss∈ SelectorForm, S∈ SelectorName

OCDs ::= OCD∗

OCD ::= (Key (Ofa V∗) SchE) primop. def. form 1f

| (Key (Ova . V) SchE) primop. def. form 1v

| (Key Ari Ofa SchV) primop. def. form 2f

| (Key Ova SchV) primop. def. form 2v

| (defconstr (C Ss∗)+) constructor definition

| (loadt F)

Key ::= defprim-transparent | defprim

| defprim-tin

| defprim-dynamic

| defprim-opaque

| defprim-abort

| defprim-abort-eoi

Ari ::= 0 | 1 | 2 | . . .

Ss ::= S | *

Figure 7: User-defined primitive operators and constructors

A program using primitive operators in file-name.adt must contain the expression

(loadt file-name.adt), cf. Figure 3. A program may use primitive operators from many
files; for each file, the program must contain an appropriate loadt-expression.

Notice from Figure 7 that a file containing primitive operator (and constructor) definitions
may itself contain loadt-expressions. Such loadt-expressions make modularization easier;

these loadt-expressions are syntactically (textually) expanded at load time, so the effect

of using such loadt-expressions is the same as if the contents of referenced file had been
textually copied into the referencing file.

Primitive operators defined within a file may call each other (also mutually recursively).
Within an expression SchE there may thus be references to top-level defined names and to

other primitives defined within the same file (or within files referenced by loadt-expressions
as described in the previous paragraph).

Here are some examples of primitive operator definitions:

3.4 User-defined primitive operators 19

(defprim-transparent (my-op x y) (cons x (cons x y))) 1f

(defprim-transparent 1 my-car car) 2f

(defprim-tin 1 sqrt sqrt) 2f

(defprim-opaque 1 read read) 2f

(defprim list list) 2v

(defprim (my-list . x) x) 1v

(defprim-abort run-time-error _sim-error) 2v

(defprim-abort-eoi syntax-error _sim-error) 2v

Some other examples can be found in the file scheme.adt in the system directory. In fact,
this file, which is always loaded automatically, defines all the primitives in Figure 5 and

Figure 6.

When a program p using primitive operators is run, the primitive operator definitions

correspond to ordinary Scheme definitions. The above definitions thus correspond to the
definitions

(define (my-op x y) (cons x (cons x y)))

(define my-car car)

(define sqrt sqrt)

(define read read)

(define list list)

(define (my-list . x) x)

(define run-time-error _sim-error)

(define syntax-error _sim-error)

When the program p is partially evaluated, however, the additional information in the
defprim-forms is used as described shortly.

The form SchE can be (almost) any Scheme expression (Section 3.5 describes some restric-
tions) and is thus not restricted to the expression subset allowed for procedure definitions

(Figure 3–4). Similix never looks “inside” SchE-expressions: as mentioned above, Similix
considers a primitive operation to be atomic. The SchV-variables are variables defined at

the Scheme top-level (such as read), or possibly primitives Ofa/Ova defined earlier in the
same primitive operator definition-file.

[Notice that in Scheme, due to its dynamic binding of top-level defined names, a top-level

definition such as (define (read x) (read x)) is not equivalent to (define read read): the

former one redefines read to a non-terminating primitive whereas the latter one binds read

to its former value and thus has no effect. This is the reason for distinguishing the forms

1f /1v from 2f /2v .]

20 3 THE LANGUAGE TREATED BY SIMILIX

The forms 1f and 2f provide Similix with primitive operator arity information. These
forms should be preferred as mentioned in Section 3.3. The forms 1v and 2v should only be

used for primitives that must be af variable arity; for instance, the primitive list is defined
as a primitive with variable arity in scheme.adt. The arity of primitives of the form 1f is

given by the number of arguments, but the arity has to be specified explicitly for the form 2f
(this is consequence of the fact that there is no way to deduce the arity of a procedure/closure

object in Scheme).

The Key specifies properties of primitive operators needed by the partial evaluator.

defprim-transparent and defprim:

These two forms are equivalent. They specify that the primitive is referentially trans-
parent, that is, does not performs any side-effects. For example, primitive operator

car is specified with defprim in the file scheme.adt.

defprim-tin:

[You may want to ignore the defprim-tin form as you can always use defprim instead:

only termination properties and appearance of the residual program is changed, not
safety (correctness of the generated residual programs).] The defprim-tin form also

specifies that the primitive operator is transparent. It is used for transparent primitives
that may be applied repeatedly an infinite number of times. For example, primitive

operator + is specified with defprim-tin in the file scheme.adt. Notice that for instance
primitive operator car can only be applied repeatedly a finite number of times to a

value (assuming the value is acyclic). Specifying a primitive with defprim-tin does
in some cases increase termination of specialization, at the expense of less reductions

being performed.

defprim-dynamic:

This form specifies a transparent primitive operator that should never be reduced
by the partial evaluator. For example, the following primitive operator implements

generalization [Tur86]:

(defprim-dynamic (generalize x) x)

Generalization forces possibly static values to become dynamic. Operationally,
generalize acts as the identity during program execution. But during partial eval-

uation, generalize is not reduced. Hence, any expression (generalize E) becomes
dynamic, even if the argument E is static. Generalization provides the user a way

to prevent infinite specialization (generating infinitely many specialized versions of a
source procedure): generalize the argument that may assume infinitely many static

values during specialization. Termination and generalization is discussed more in Sec-
tion 7.4.

defprim-opaque:

3.5 Restrictions on user-defined primitive operators 21

This form specifies a primitive operator that is evaluation-order dependent: either it
performs a side-effect itself or it depends on some (global) entity that is side-effected by

other primitives. For example, primitive operator read is specified with defprim-opaque

in the file scheme.adt: primitive operator read accesses and updates a global input

stream. As dynamic primitives, opaque primitives are never reduced by the partial
evaluator. In addition to this, the partial evaluator is careful to preserve the order in

which opaque primitives are evaluated (when running the residual program).

Sometimes it is possible to define a primitive operator as dynamic rather than opaque,
even if it makes use of a global (external) variable (in which case the primitive operator

must never be specified as transparent). For instance, if a program uses primitive
operators that access but never update some global variable(s), it is perfectly safe to

define the primitive operators dynamic: there is no evaluation-order dependency.

defprim-abort:

This form specifies a primitive operator that aborts execution. An example is the
specification of _sim-error in the file scheme.adt. Such primitives are never reduced

by the partial evaluator.

defprim-abort-eoi:

This form also specifies an aborting primitive operator, but the form is more liberal:

“eoi” stands for “evaluation-order independent” which indicates that the partial eval-
uator is allowed to ignore evaluation orders for aborting primitives of this kind. An

example is the primitive operator err (see Section 4.2) used by an interpreter for re-

porting syntax errors in a program being interpreted: it does not matter which syntax
error is reported first, so defprim-abort-eoi is used instead of defprim-abort. This

gives better results when specializing, but notice that using defprim-abort-eoi is less
safe than using defprim-abort: the semantics of a program may actually be altered

when using defprim-abort-eoi. The form defprim-abort-eoi should therefore be used
with care.

3.5 Restrictions on user-defined primitive operators

There are some important restrictions on how primitive operators may behave. These re-

strictions will be described in this section.

3.5.1 Higher-order values

A primitive operation is not allowed to return any higher-order value which is not passed

in as an argument; a primitive operation may thus not create new higher-order values.
Additionally, a primitive operator is not allowed to apply a higher-order value which is

passed in as an argument. The system does not check that these restrictions are fulfilled.
Here are two examples of illegal definitions of primitive operators:

22 3 THE LANGUAGE TREATED BY SIMILIX

(defprim (f x) (lambda (y) x))

(defprim 2 map map)

The first definition defines a primitive operator that creates a new higher-order value; the
definition should therefore be converted into a procedure definition:

(define (f x) (lambda (y) x))

The second definition defines a primitive operator that applies its argument; the definition

should therefore be converted into an explicit definition (the syntax category D, cf. Figure 3).
In order not to get a name clash with Scheme’s built-in map, some other name should be

chosen, e.g.:

(define (my-map f l)
(if (null? l)

’()
(cons (f (car l)) (my-map f (cdr l)))))

The standard Scheme forms apply and for-each should be treated similarly: these should
be defined explicitly as procedures (note: there is no obvious definition for apply).

3.5.2 Primitive operators testing pointer equality

Primitives are generally not allowed to perform “pointer-equality” tests on there arguments;

this is the reason why the primitives eqv?, eq?, memq, memv, assq, and assv are not built-in
(cf. Section 3.3). User-defined primitives must obey the same restrictions; these restrictions

are not checked by the system.

There are some cases where these restrictions may be liberalized, however. Thus, prim-

itive operators may pointer-equality test arguments if the values the arguments evaluate to
are only created, inspected, and modified by primitive operators; these primitive operators

must all be defined by defprim-dynamic (or defprim-opaque). The values may also be (part
of) of dynamic input to the program being specialized.

For example, we might specialize the program

(loadt "my-primitives.adt")

(define (f y)
(let ((x (make-value)))

(my-op (cdr (cons y x)) (cdr (cons y x)))))

with y being dynamic. Supposing that the file my-primitives.adt contains the definitions

; These definitions are not ok:

(defprim 2 my-op eq?)

3.5 Restrictions on user-defined primitive operators 23

(defprim (make-value) ’(1 2))

the residual program would become

(loadt "my-primitives.adt")

(define (f-0 y_0)
(my-op (cdr (cons y_0 ’(1 2)))

(cdr (cons y_0 ’(1 2)))))

This residual program is incorrect as for instance (f 89) evaluates to #t whereas (f-0 89)

evaluates to #f. Another example yielding an incorrect result is obtained by replacing the

call to (make-value) by the constant expression ’(1 2): now a value being pointer-equality
tested is created by a quoted construction, thus it is neither created by a primitive operator

defined with defprim-dynamic, nor does it come from the dynamic input (through the variable
y) to the program.

However, we may change the definition of make-value:

; These definitions are ok:

(defprim 2 my-op eq?)

(defprim-dynamic (make-value) ’(1 2))

Now the residual program becomes

(loadt "my-primitives.adt")

(define (f-0 y_0)
(let ((x_1 (make-value)))
(my-op (cdr (cons y_0 x_1)) (cdr (cons y_0 x_1)))))

and (f-0 89) now correctly evaluates to #t. (Note: if you in one session want to try to run
these examples, both the incorrect ones and the correct one, you need the loadt!-form, see

Section 8.3.5).

3.5.3 Side-effecting primitive operators

Primitives are generally not allowed to side-effect any of their arguments; this is why the
primitives set-car!, set-cdr!, string-set!, and vector-set! are not built-in (cf. Sec-

tion 3.3). The only kind of side-effects generally allowed by primitives are side-effects on
global entities such as top-level bound variables or input/output (example: the primitive

read); recall from Section 3.4 that primitives that either perform side-effects or depend on
entities that are side-effected must all be defined by defprim-opaque. User-defined primitives

must obey the same restrictions; these restrictions are not checked by the system.

There are some cases where these restrictions may be liberalized, however. Thus, prim-

itive operators may side-effect arguments if the values the arguments evaluate to are only

24 3 THE LANGUAGE TREATED BY SIMILIX

created, inspected, and modified by primitive operators; these primitive operators must all
be defined by defprim-opaque. The values may also be (part of) of dynamic input to the

program being specialized.

For example, Similix correctly specializes programs that manipulate “boxed” values by
the following primitives only:

(defprim-opaque (box x) (cons x ’dummy))

(defprim-opaque (unbox x) (car x))

(defprim-opaque (set-box! x v) (set-car! x v))

Similix also correctly specializes programs that handle vectors (arrays) if these are only

manipulated by primitives like the following ones:

(defprim-opaque my-make-vector make-vector)

(defprim-opaque 3 my-vector-set! vector-set!)

(defprim-opaque 2 my-vector-ref vector-ref)

(defprim-opaque 1 my-vector-length vector-length)

3.6 Scheme extension: user-defined constructors

User-defined constructors are defined in the same files as primitive operators, see Figure 7. A

defconstr-form specifies a number of constructors, selectors, and constructor test-predicates
which can then be used in expressions (cf. Figure 3). It is through user-defined constructors

that Similix offers partially static data structures.

A defconstr-form defines a family of constructors. Such a family corresponds to a “dis-
joint sum of product” type in statically typed languages such as ML. You should always

group constructors together in a family if they logically belong to the same sum type! In

particular, notice that at partial evaluation time Similix makes values dynamic when con-
structors from different families are mixed!

For each constructor in a family, a selector name must be specified for each argument

field of the constructor. The symbol * may be supplied instead of a name; then the selector is
given a default name C.i where i is the position of the field (the fields are numbered 0, 1, . . .).

The *-form is particularly relevant in connection to the caseconstr-form, see Section 3.8.
When using the *-form, beware that the automatically defined selector names do not clash

with other names!

A constructor test-predicate is defined automatically for each constructor specified. For

each constructor C, the name of the test-predicate is C?. Beware that automatically defined
test-predicate names do not clash with other names!

Here are some examples of constructor definitions:

(defconstr (makepair fst snd))

3.7 Primitive operator and constructor name clashes 25

(defconstr (mynil) (mycons mycar mycdr))

We can now implement association lists (environments) in the following way:

(define (init-env) (mynil))

(define (upd-env name value alist)

(mycons (makepair name value) alist))

(define (lookup-value name alist)

(let loop ((a alist))

(cond

((mynil? a)

(_sim-error ’lookup-value "Name ~s not bound" name))

((mycons? a)

(let ((p (mycar a)))

(if (equal? name (fst p)) (snd p) (loop (mycdr a)))))

(else

(_sim-error ’lookup-value "Ill-formed environment")))))

Such association lists may become partially static when specializing a program using them;

see Section 4.2 for an example.

It is important to notice that the only way to obtain partially static data structures with

Similix is by using user-defined constructors. In particular, notice that the built-in cons (see

Figure 5) is a primitive operator, not a constructor: primitive operator cons cannot be used
for creating partially static data. The same applies to the primitive operator list.

Also, recall from Section 3.1 that values constructed by user-defined constructors are not
allowed in static input when specializing. This in effect means that Similix does not handle

partially static input.

3.7 Primitive operator and constructor name clashes

If a name is defined (either as primitive operator, constructor, selector or constructor test-

predicate) more than once within a file or within different files loaded by the same program
(by loadt), only the last definition counts.

3.8 Scheme extension: pattern matching

Similix provides two pattern-matching extensions to Scheme, casematch and caseconstr (see
Figure 3). The casematch-form is for matching ordinary Scheme S-expressions constructed

by cons (which is considered a primitive operator by Similix); the caseconstr-form is for
matching values constructed by user-defined constructors (cf. Section 3.6).

The semantics of both casematch and caseconstr is standard: the expression is evaluated

to a value which is then matched against the patterns (starting from the top) until a match

26 3 THE LANGUAGE TREATED BY SIMILIX

is found. The variables in the matched pattern are bound to the appropriate components in
the value, and the expression(s) corresponding to the pattern is (are) evaluated.

For casematch, a pattern MPat (see Figure 4) is either a constant K, the empty list ()

(that is, no quote is needed for the empty list), a pair (MPat . MPat), a variable V, or a
wildcard pattern (either _ or else: the two forms are fully equivalent). Using casematch is

exemplified in Section 4.2.1.

For caseconstr, a pattern CPat (see Figure 4) is either a constructor pattern (C CPat∗),
a variable V, or a wildcard pattern (either _ or else: the two forms are fully equivalent).

When caseconstr is expanded into the Similix core language (described in Section 3.10), the
default selector names C.i (cf. Section 3.6) are used. That is, caseconstr can only be used

for constructors defined with the *-form for all argument fields:

(defconstr (C * . . .) . . .)

The restriction that caseconstr is only used for constructors specified with the *-form is not

checked by the system. Using caseconstr is exemplified in Section 4.2.1.

Notice that MPat is entirely for use with casematch whereas CPat is entirely for use with
caseconstr. Both casematch and caseconstr are exemplified in Section 4.2.

The form (loads F) (cf. Figure 3) is similar to the ordinary Scheme form (load F)
except that it expands the forms casematch and caseconstr into simpler forms that do

not use pattern matching. The form (loads F) can be used both at Scheme top-level to
load programs that use the pattern-matching forms and it can be used in program files, cf.

Figure 3.

3.9 Simulating set!

Similix does not handle assignment by set!, but set! can be simulated by transforming the

source program. There are two cases, assignment to top-level bound variables and assignment
to locally bound variables.

3.9.1 Top-level bound variables

In the Similix Scheme subset, top-level bound variables (top-level defined procedures being

an exception) are only accessible through user-defined primitive operators which should be
defined by defprim-opaque. Suppose you would like to write a program containing the

fragment

. . . topvar . . . (set! topvar . . .) . . .

where topvar is top-level defined. To convert this fragment into the Scheme subset treated

by Similix, write for instance

. . . (get-topvar) . . . (set-topvar! . . .) . . .

3.10 Similix core language 27

where get-topvar and set-topvar! are defined as primitive operators:

(defprim-opaque (get-topvar) topvar)

(defprim-opaque (set-topvar! value) (set! topvar value))

The store-operations in the interpreter in Section 4.1.1 give another example of global vari-

able handling in the Similix Scheme subset.

3.9.2 Locally bound variables

Assignment to locally bound variables can be done by using the user-defined primitive ope-

rations for boxed values given in Section 3.5.3. Suppose the local variable is defined in a
let-expression

(let ((localvar . . .)) E)

where E contains operations of the forms (set! localvar . . .).
To convert into the Similix subset, replace the let-binding by

(let ((localvar (box . . .))) E)

Then, in E, replace all references to (uses of) localvar by (unbox localvar), and replace all

forms (set! localvar . . .) by (set-box! localvar . . .). Remember to include definitions
of the boxed-value operations in some file referred to by a loadt-expression.

If localvar is a parameter to a procedure or anonymous lambda-expression (and thus
not defined in a let), insert a let-expression around the body B of the procedure/anonymous

lambda-expression:

(let ((localvar (box localvar))) B)

Then perform the same changes regarding occurrences of localvar in B as we did in E above.

3.10 Similix core language

The Similix front-end parser expands a number of the forms in the full Similix language from
Figure 3 and Figure 4 into simpler core forms. The core language, specified in Figure 8, is

a subset of the full Similix language. Preprocessed programs are written in an annotated
variant of the core language (Section 6).

The expansion into core form is done as follows:

• (load F) and (loads F) are replaced by the text in the referenced file F.

• The form B is expanded to a letrec-form which in turn is expanded further (see below).
If there are no “internal definitions” (D∗ is empty), E+ is expanded to a begin-form if

there is more than one expression E.

28 3 THE LANGUAGE TREATED BY SIMILIX

Π∈Program ; D∈Definition ; E∈Expression ; K∈Constant ; V∈Variable ;

O∈PrimopName ; C∈ConstructorName ; S∈ SelectorName ; P∈ProcedureName ;

SE∈ SelfEvaluating ; Dat∈Datum ; Bool∈Boolean ; Num∈Number ;

Char∈Character ; Str∈ String ; Sym∈ Symbol ; Lis∈ List ; Vec∈Vector ;

Π ::= TLE∗ D TLE∗

TLE ::= D | (loadt F)

D ::= (define (P V∗) B) procedure definition

E ::= K constant

| V variable

| (if E E E) conditional

| (let ((V E)) E) let-expression

| (begin E E) sequence

| (O E∗) primitive operation

| (C E∗) constructor application

| (S E) selector application

| (C? E) constr. test-predicate application

| (P E∗) procedure call

| (lambda (V∗) E) lambda-expression

| (E E∗) application

V, P, C, S ::= Sym

O ::= Ofa | Ova

Ofa ::= . . . see Figure 5

Ova ::= . . . see Figure 6

K ::= SE | (quote Dat) | ’Dat

SE ::= Bool | Num | Char | Str

Dat ::= SE | Sym | Lis | Vec

Lis ::= (Dat∗) | (Dat+ . Dat) | ’Dat

Vec ::= #(Dat∗)

Figure 8: Similix core language

• One-armed conditionals (if E E) are expanded into ordinary conditionals with a

dummy-value inserted in the else-branch.

• cond-conditionals are expanded into nested if-expressions.

• The and- and or-forms are expanded into if-forms (or is actually expanded into a

combination of let and if).

29

• Parallel and sequential let-expressions are expanded into nested simple let-expressions,
each with only one binding.

• Named (recursive) let-expressions are expanded into letrec which in turn is expanded
further (see below).

• Recursive let-expressions (letrec) are expanded by lambda-lifting [Joh85]: variables
that are free in the bodies of the defined procedures are added as parameters and the

definitions are lifted out to the top-level.

• Sequences are expanded to nested simple sequences with only two expressions in each

begin-form.

• Fixed-arity primitive operators that are not in apply-position are eta-expanded: the

form Ofa expands into (lambda (V1. . .Vn) (Ofa V1. . .Vn)).

• Constructors, selectors, constructor test-predicates, and procedure names that are not

in apply-position are also eta-expanded.

• Pattern-matching forms are expanded into appropriate expressions for testing matches

(conditionals) and binding variables (let-expressions).

4 Examples

This section contains some examples of Similix-applications. The examples are all inter-
preters: by specializing the interpreters, compilation into Scheme is obtained. The programs

shown in this section can all be found in the examples directory. The associated job files
(MP-job, mw-job, com-job) may be used to reproduce the results; we recommend that you do

so while reading this section.

4.1 Specializing an MP-interpreter

We first specialize an interpreter for the toy language “MP” (introduced in [Ses85]).

4.1.1 The MP-interpreter

MP is a small imperative untyped “while” language with Lisp data structures, assignments,

conditionals, and while-loops. The interpreter is given in Figure 9 and Figure 10.

; P ::= (program (pars V1*) (vars V2*) B)
; B ::= (C*)
; C ::= (:= V E)
; | (if E B1 B2) # first branch iff exp not ()
; | (while E B) # loop iff Exp not ()

30 4 EXAMPLES

; E ::= (quote Value)
; | V
; | (car E)
; | (cdr E)
; | (cons E1 E2)
; | (atom E) # () iff not atom
; | (equal E1 E2) # () iff not equal
;
; value: Value = ...
; env: Env = Var -> Loc
; Store = Loc -> Value

(loadt "MP-int.adt")

(define (run P value*)
(let* ((V2* (P->V2* P))

(env (init-environment (P->V1* P) V2*)))
(init-store! value* (length V2*))
(evalBlock (P->B P) env)))

(define (evalBlock B env)
(if (emptyBlock? B)

"Finished block"
(evalCommands (headBlock B) (tailBlock B) env)))

(define (evalCommands C B env)
(if (emptyBlock? B)

(evalCommand C env)
(begin (evalCommand C env)

(evalCommands (headBlock B) (tailBlock B) env))))

(define (evalCommand C env)
(cond

((isAssignment? C)
(update-store! (lookup-env (C-Assignment->V C) env)

(evalExpression (C-Assignment->E C) env)))
((isConditional? C)
(if (is-true? (evalExpression (C-Conditional->E C) env))

(evalBlock (C-Conditional->B1 C) env)
(evalBlock (C-Conditional->B2 C) env)))

((isWhile? C)
(if (is-true? (evalExpression (C-While->E C) env))

(begin (evalBlock (C-While->B C) env)
(evalCommand C env))

"Finished loop"))
(else
(err ’evalCommand "Unknown command: ~s" C))))

(define (evalExpression E env)
(cond

4.1 Specializing an MP-interpreter 31

((isQuote? E)
(E->E1 E))

((isVariable? E)
(lookup-store (lookup-env E env)))

((isPrim? E)
(let ((op (E->operator E)))

(cond
((is-cons? op)
(cons (evalExpression (E->E1 E) env)

(evalExpression (E->E2 E) env)))
((is-equal? op)
(eval-equal (evalExpression (E->E1 E) env)

(evalExpression (E->E2 E) env)))
((is-car? op)
(car (evalExpression (E->E1 E) env)))

((is-cdr? op)
(cdr (evalExpression (E->E1 E) env)))

((is-atom? op)
(eval-atom (evalExpression (E->E1 E) env)))

(else
(err ’evalExpression "Unknown operator: ~s" op)))))

(else
(err ’evalExpression "Unknown expression: ~s" E))))

Figure 9: MP-interpreter (file MP-int.sim)

; Syntax:

(defprim 1 P->V1* cdadr)
(defprim 1 P->V2* cdaddr)
(defprim 1 P->B cadddr)

(defprim 1 emptyBlock? null?)
(defprim 1 headBlock car)
(defprim 1 tailBlock cdr)

(defprim 1 C-Assignment->V cadr)
(defprim 1 C-Assignment->E caddr)
(defprim 1 C-Conditional->E cadr)
(defprim 1 C-Conditional->B1 caddr)
(defprim 1 C-Conditional->B2 cadddr)
(defprim 1 C-While->E cadr)
(defprim 1 C-While->B caddr)

(defprim (isAssignment? c) (and (pair? c) (equal? (car c) ’:=)))
(defprim (isConditional? c) (and (pair? c) (equal? (car c) ’if)))
(defprim (isWhile? c) (and (pair? c) (equal? (car c) ’while)))

32 4 EXAMPLES

(defprim (isQuote? e) (and (pair? e) (equal? (car e) ’quote)))

(defprim (isVariable? e) (not (pair? e)))

(defprim (isPrim? e)

(and (pair? e) (member (car e) ’(cons equal car cdr atom))))

(defprim (is-cons? op) (equal? op ’cons))

(defprim (is-equal? op) (equal? op ’equal))

(defprim (is-car? op) (equal? op ’car))

(defprim (is-cdr? op) (equal? op ’cdr))

(defprim (is-atom? op) (equal? op ’atom))

(defprim 1 E->operator car)

(defprim 1 E->E1 cadr)

(defprim 1 E->E2 caddr)

;-------------------------------------

; True and false ---

; the empty list () counts as false in MP:

(defprim (eval-equal v1 v2) (if (equal? v1 v2) #t ’()))

(defprim (eval-atom v) (if (pair? v) ’() #t))

(defprim (is-true? value) (not (null? value)))

;-------------------------------------

; Environment:

(defprim (init-environment v1* v2*) (append v1* v2*))

(defprim (lookup-env v env)

(let f ((env env) (n 0))

(if (equal? v (car env)) n (f (cdr env) (+ 1 n)))))

;-------------------------------------

; Store:

(defprim-opaque (init-store! input-V1* length-V2*)

(set! store

(append

input-V1*

(let f ((n length-V2*))

(if (= n 0) ’() (cons ’() (f (- n 1))))))))

(defprim-opaque (update-store! location value)

(set-car! (list-tail store location) value))

(defprim-opaque (lookup-store location) (list-ref store location))

;-------------------------------------

; Error:

(defprim-abort-eoi err _sim-error)

Figure 10: The file MP-int.adt

4.1 Specializing an MP-interpreter 33

As it can be seen from the syntax of MP (defined in Figure 9), there are two kinds of
variables, declared by pars and vars. The “pars” are input parameters, the “vars” are

ordinary variables. The semantics is the straightforward one; notice that the empty list ()

counts as “false”. The result of an execution is taken to be the entire store.

This is an example of an MP-program (coming from [Ses85]):

(program (pars x y) (vars out next kn)

((:= kn y)

(while kn

((:= next (cons x next))

(:= kn (cdr kn))))

(:= out (cons next out))

(while next

((if (cdr (car next))

((:= next (cons (cdr (car next)) (cdr next))) then . . .
(while kn

((:= next (cons x next))

(:= kn (cdr kn))))

(:= out (cons next out)))

((:= next (cdr next)) else . . .
(:= kn (cons ’1 kn))))))))

Figure 11: The MP-program power (file power.MP)

The program computes x to the y’th, where numbers are represented as lists (unary repre-

sentation). It is not important here how the program actually works, it simply serves as an
example of a program to be compiled.

The interpreter uses an environment (env) and a store. The environment binds variables

to locations; it is processed by the primitive operations init-environment and lookup-env.
The store binds locations to values. An interesting point with this version of the MP-

interpreter is the absence of an explicit store variable: the store is handled by primitive
operations that only have locations (and values) as parameters, not the store itself. The store

is implemented as a global variable which is updated destructively, and the store primitives
(defined in the file MP-int.adt) are hence defined by defprim-opaque (see Figure 10).

As it can be seen from the definitions of store primitives, the store is represented as a list,
but this could be changed to any other representation; using a vector (array) is an obvious

choice of a more efficient implementation.

In case of successful evaluation, the interpreter always returns some dummy (or even
undefined) value such as the string "Finished loop". The global variable store has, however,

been updated, so after the execution store contains the final values of the variables.

34 4 EXAMPLES

4.1.2 Specializing the MP-interpreter

Let us now specialize the MP-interpreter with respect to the MP-program from Figure 11.

This yields the following Scheme target program:

(loadt "MP-int.adt")

(define (run-0 value*_0)
(define (evalcommand-0-2)

(let ((g_0 (lookup-store 3)))
(if (is-true? g_0)

(begin
(let* ((g_1 (lookup-store 3))

(g_2 (car g_1))
(g_3 (cdr g_2)))

(if (is-true? g_3)
(let* ((g_4 (lookup-store 3))

(g_5 (car g_4))
(g_6 (cdr g_5))
(g_7 (lookup-store 3))
(g_8 (cdr g_7))
(g_9 (cons g_6 g_8)))

(update-store! 3 g_9)
(evalcommand-0-1)
(let* ((g_10 (lookup-store 3))

(g_11 (lookup-store 2))
(g_12 (cons g_10 g_11)))

(update-store! 2 g_12)))
(let* ((g_13 (lookup-store 3))

(g_14 (cdr g_13)))
(update-store! 3 g_14)
(let* ((g_15 (lookup-store 4))

(g_16 (cons 1 g_15)))
(update-store! 4 g_16)))))

(evalcommand-0-2))
"Finished loop")))

(define (evalcommand-0-1)
(let ((g_0 (lookup-store 4)))
(if (is-true? g_0)

(let* ((g_1 (lookup-store 0))
(g_2 (lookup-store 3))
(g_3 (cons g_1 g_2)))

(update-store! 3 g_3)
(let* ((g_4 (lookup-store 4))

(g_5 (cdr g_4)))
(update-store! 4 g_5)

4.2 Specializing a Mixwell-interpreter 35

(evalcommand-0-1)))
"Finished loop")))

(init-store! value*_0 3)
(let ((g_1 (lookup-store 1)))
(update-store! 4 g_1)
(evalcommand-0-1)
(let* ((g_2 (lookup-store 3))

(g_3 (lookup-store 2))
(g_4 (cons g_2 g_3)))

(update-store! 2 g_4)
(evalcommand-0-2))))

Figure 12: Compiled power program

The structure of the target program is quite close to assembler code. Notice that variable
offsets have been computed and that there are no parameters to the residual procedures.

There were only static parameters to eval-command in the source program (both program
syntax and environments were completely static), and therefore there are no parameters in

the residual code. The residual procedure calls correspond closely to assembler instructions
of the kind “jump subroutine”.

Also notice that the two small while-loops both have been compiled into the same pro-

cedure, evalcommand-0-1. This is of course possible since both while loops perform the same
operations. The specializer is lucky to detect this because both loops are textually identical.

They therefore correspond to identical static values for the parameter C to eval-command.

4.1.3 Generating an MP-compiler

The Similix compiler generator can generate an MP-compiler from the interpreter. Using the

generated compiler, target programs are generated significantly faster than by specializing

the interpreter. The compiler text is too large to show here, but you may generate the
compiler by running the MP-job in the examples directory.

4.2 Specializing a Mixwell-interpreter

We now specialize an interpreter for the Mixwell language of [JSS89].

4.2.1 The Mixwell-interpreter

Mixwell is a first-order Lisp-like functional language. The interpreter is given in Figure 13
and Figure 14.

; P ::= (D1 D2 ... Dn)
; D ::= (F (V1 ... Vn) = E)

36 4 EXAMPLES

; E ::= V | (quote C)
; | (car E) | (cdr E) | (atom E) | (cons E E) | (equal E E)
; | (if E E E) | (call F E1 ... En)

;-------------------------------------
(loadt "mw-int.adt")

;-------------------------------------
(define (run-mixwell P vals)
(casematch P

(((_ Vs ’= E) . _)
(ev E

(let ((arity (length Vs)))
(let loop ((i 0))
(if (= i arity)

(init-env)
(upd-env (list-ref Vs i)

(list-ref vals i)
(loop (+ 1 i))))))

P))
(else
(err ’run-mixwell "Illegal program syntax: ~s" P))))

(define (ev E r P)
(if (symbol? E)

(lookup-env E r) ; E = variable V
(casematch E
((’quote C)
C)

((’car E)
(car (ev E r P)))

((’cdr E)
(cdr (ev E r P)))

((’atom E)
(not (pair? (ev E r P))))

((’cons E1 E2)
(cons (ev E1 r P) (ev E2 r P)))

((’equal E1 E2)
(equal? (ev E1 r P) (ev E2 r P)))

((’if E1 E2 E3)
(if (ev E1 r P) (ev E2 r P) (ev E3 r P)))

((’call F . Es)
(let ((D (lookup-function F P)))

(casematch D
((F Vs = E)
(ev E

(let loop ((Vs Vs) (Es Es))
(if (null? Vs)

4.2 Specializing a Mixwell-interpreter 37

(init-env)

(upd-env (car Vs)

(ev (car Es) r P)

(loop (cdr Vs) (cdr Es)))))

P))

(else

(err ’ev "Illegal definition syntax: ~s" D)))))

(else

(err ’ev "Illegal expression syntax: ~s" E)))))

(define (init-env) (bindings-nil))

(define (upd-env V val r) (bindings-cons (binding V val) r))

(define (lookup-env V r)

(let loop ((bs r))

(caseconstr bs

((bindings-nil)

(err ’lookup-env "Name ~s not bound" V))

((bindings-cons (binding V1 val) bs)

(if (equal? V V1) val (loop bs)))

(else ; no bs argument:

(err ’lookup-env "Internal error: illegal environment")))))

Figure 13: Mixwell-interpreter (file mw-int.sim)

(defprim 2 lookup-function assoc)

(defconstr (binding * *))

(defconstr (bindings-nil) (bindings-cons * *))

(defprim-abort-eoi err _sim-error)

Figure 14: The file mw-int.adt

The Mixwell-interpreter illustrates using casematch for syntax dispatch; notice that the MP-

interpreter used primitive operators. One could also have used (user-defined) procedures.
What to use is mainly a matter of taste (however, see Section 7.3.4).

The environment is represented as a list generated by user-defined constructors. Defining

it by user-defined constructors is crucial to make it partially static: the names become static
and the values become dynamic. In the MP-interpreter, both names and values (which

were location there) were static, so there we could successfully process the environment by

primitive operators. If we had done so here, the environment would have become completely
dynamic with bad residual programs as a consequence. Notice that in the MP-interpreter,

we could have used the environment operations from the Mixwell-interpreter.

38 4 EXAMPLES

The Mixwell-interpreter also illustrates using caseconstr for testing and decomposing
values constructed by user-defined constructors. Notice that the constructors (binding,

bindings-nil, and bindings-cons) are defined using the *-form for argument fields, not by
specifying selector names: otherwise, the code which caseconstr expands into would not be

correct.

Here is an example of a Mixwell-program for appending two lists:

(goal (x y) = (call app x y))

(app (x y) =
(if (equal x ’())

y
(cons (car x) (call app (cdr x) y))))

Figure 15: The Mixwell-program app (file app.mw)

4.2.2 Specializing the Mixwell-interpreter

Let us now specialize the Mixwell-interpreter with respect to the Mixwell-program from

Figure 15. This yields the following Scheme target program:

(loadt "mw-int.adt")

(define (run-mixwell-0 vals_0)
(define (ev-0-1 r_0 r_1)

(if (equal? r_1 ’())
r_0
(cons (car r_1) (ev-0-1 r_0 (cdr r_1)))))

(ev-0-1 (list-ref vals_0 1) (list-ref vals_0 0)))

Figure 16: Compiled app program

The procedure ev-0-1 is identical to the “standard” append-program in Scheme. The “over-
head” is some initialization caused by the fact that the input to the residual program is

packed into a list.

4.2.3 Generating a Mixwell-compiler

The Similix compiler generator can generate a Mixwell-compiler from the interpreter. Using

the generated compiler, target programs are generated significantly faster than by specializ-
ing the interpreter. The compiler text is too large to show here, but you may generate the

compiler by running the mw-job in the examples directory.

4.3 Specializing a LA
ZY-interpreter 39

4.3 Specializing a LA
ZY-interpreter

We finally specialize an interpreter for LA
ZY , a lazy functional curried named combinator

language [Bon91b].

4.3.1 The LA
ZY-interpreter

The language LA
ZY is a lazy functional curried named combinator language. The interpreter

is given in Figure 17, Figure 18, and Figure 19.

; P ::= D*
; D ::= (F V* = E)
; E ::= C | V | F | (B E1 E2) | (if E1 E2 E3) | (E1 E2)

; Parsed form:
; P ::= (D*)
; D ::= (F (V*) E)
; E ::= (cst C) | (var V) | (fct F) | (binop B E1 E2)
; | (if E1 E2 E3) | (apply E1 E2)

;-------------------------------------
(loadt "com-int.adt")
(loadt "thunk.adt")

;-------------------------------------
; Values are delayed for two resons:
; (1) Environment updating is done by strict functions; therefore,
; the value argument is delayed (and then forced at lookup-time).
; (2) The interpreted language is lazy so arguments to applications
; are delayed.

(define (init-fenv)
(lambda (name)
(err ’init-fenv "Unbound function: ~s" name)))

(define (upd-fenv name value r)
(lambda (name1)
(if (equal? name name1)

(value) ; force value
(r name1))))

(define (init-venv)
(lambda (name)
(err ’init-venv "Unbound variable: ~s" name)))

(define (upd-venv name value r)
(lambda (name1)
(if (equal? name name1)

(value) ; force value
(r name1))))

40 4 EXAMPLES

;-------------------------------------
(define (_P P F v) (((fix (lambda (phi) (_D* P phi))) F) (lambda () v)))

(define (_D* D* phi)

(casematch D*
(()
(init-fenv))
(((F V* E) . D*)

(upd-fenv F
(lambda () (_V* V* E (init-venv) phi)) ; delay value
(_D* D* phi)))

(else
(err ’_D* "Illegal program syntax: ~s" D*))))

(define (_V* V* E r phi)

(casematch V*
(()
(_E E r phi))

((V . V*)
(lambda (s) (_V* V* E (upd-venv V (lambda () s) r) phi))) ; delay value
(else
(err ’_V* "Illegal parameter syntax: ~s" V*))))

(define (_E E r phi)
(casematch E
((’cst C)

C)
((’var V)
((r V))) ; force value

((’fct F)
(phi F))

((’binop B E1 E2)

(ext B (_E E1 r phi) (_E E2 r phi)))
((’if E1 E2 E3)
(if (_E E1 r phi)

(_E E2 r phi)

(_E E3 r phi)))
((’apply E1 E2)
((_E E1 r phi)

(casematch E2
((’cst C) (lambda () C))
((’var V) (r V))
;;((’fct F) (lambda () (phi F)))

(else
(save (lambda () (_E E2 r phi))))))) ; delay value

(else

(err ’_E "Illegal expression syntax: ~s" E))))

4.3 Specializing a LA
ZY-interpreter 41

(define (fix f) (lambda (x) ((f (fix f)) x)))

Figure 17: LA
ZY -interpreter (file com-int.sim)

(defprim (ext binop value1 value2)

(case binop

((cons) (cons value1 value2))

((hack-car) (car value1))

((hack-cdr) (cdr value1))

((equal?) (equal? value1 value2))

((+) (+ value1 value2))

((-) (- value1 value2))

((*) (* value1 value2))

((/) (/ value1 value2))

((=) (= value1 value2))))

(defprim-abort-eoi err _sim-error)

Figure 18: The file com-int.adt

(defprim-dynamic (save s)

(let ((v ’())

(tag #t))

(lambda ()

(if tag

(begin

(set! v (s))

(set! tag #f)))

v)))

Figure 19: The file thunk.adt

The interpreter uses “delay and force”, a classical way of implementing laziness (call-by-need)

in strict (call-by-value) languages. Notice that environments are represented by functions
here, not data structures. We could have used similar representations in the MP- and

Mixwell-interpreter examples.

Below is an example of a LA
ZY -program. The program computes a list of even numbers;

the input to the goal function goal specifies how long the list should be. Notice that the
program utilizes laziness in the definition of evens-from. Also notice that since the interpreter

implements cons (which is a “binop”) eagerly (call-by-value), a special lazy-cons is used to

42 4 EXAMPLES

construct the infinite list specified by evens-from; the definition of lazy-cons is the standard
functional λ-calculus one.

(first-n n l = if (= n 0)
’()
(cons (lazy-car l) (first-n (- n 1) (lazy-cdr l))))

(evens-from n = lazy-cons n (evens-from (+ n 2)))

(lazy-cons x y z = z x y)
(lazy-car x = x 1st)
(lazy-cdr x = x 2nd)

(1st x y = x)
(2nd x y = y)

(goal input = first-n input (evens-from 0))

Figure 20: The LA
ZY-program evens (file evens.com)

4.3.2 Specializing the LA
ZY-interpreter

Let us now specialize the LA
ZY-interpreter with respect to the LA

ZY-program from Figure 20.
This yields the following Scheme target program:

(loadt "com-int.adt")

(loadt "thunk.adt")

(define (_p-0 v_0)
(define (_v*-0-16)

(lambda (s_0)
(let ((s_2 (save

(lambda ()
((_v*-0-16)
(save (lambda () (ext ’+ (s_0) 2))))))))

(lambda (s_3) (((s_3) s_0) s_2)))))
(define (_v*-0-2)

(lambda (s_0)
(lambda (s_1)
(if (ext ’= (s_0) 0)

’()
(ext ’cons

((s_1)
(save (lambda ()

(lambda (s_3) (lambda (s_4) (s_3))))))
(((_v*-0-2) (save (lambda () (ext ’- (s_0) 1))))

43

(save

(lambda ()

((s_1)

(save (lambda ()

(lambda (s_6)

(lambda (s_7) (s_7))))))))))))))

(((_v*-0-2) (lambda () v_0))

(save (lambda () ((_v*-0-16) (lambda () 0))))))

Figure 21: Compiled evens program

The program looks quite complicated at a first sight, but it turns out that it actually closely

corresponds to the source program in Figure 20, the main differences being syntax and the
explicit delay/force operations.

4.3.3 Generating a LA
ZY-compiler

The Similix compiler generator can generate a LA
ZY -compiler from the interpreter. Using the

generated compiler, target programs are generated significantly faster than by specializing
the interpreter. The compiler text is too large to show here, but you may generate the

compiler by running the com-job in the examples directory.

5 System Overview

This section is quite technical and gives an overview of the Similix system.

In Similix, partial evaluation is done in two phases. First, the source program is prepro-
cessed, then the preprocessed program is specialized (see Figure 22). The residual program

is generated in the specialization phase. We use phrases like “at specialization time” and
“during specialization” to refer to operations done in the specialization phase.

5.1 The front-end

The front-end is a parser: it expands programs written in the language of Figure 3 and
Figure 4 into the core language of Figure 8. The resulting code is represented in an internal

abstract syntax format; this format is an acyclic Scheme data structure representation, so
the code may for instance be printed.

Conceptually, the front-end may be seen as part of the preprocessor, but it is sometimes

useful to run the front-end alone: the front-end performs various syntax checks such as arity
checks on primitive operations and procedure calls. The front-end may therefore be used for

program debugging, even if partial partial evaluation is not intended.

44 5 SYSTEM OVERVIEW

Source program (concrete syntax)

Front-end

Expanded source program p (abstract syntax)

Preprocessor

Annotated source program pann (abstract syntax)

Specializer

Residual program (concrete syntax)

Input values

Binding-time pattern

?

?

?

?

?

?

� �

� �

Figure 22: Similix system

5.2 The preprocessor

The preprocessor consists of several subphases as seen in Figure 23. Each phase updates the
analysed program destructively while computing source program annotations.

The result of preprocessing is a heavily annotated source program which is used as input
to the specializer.

5.2.1 Flow analysis

This phase determines possible value flow between constructor applications and selec-
tor/predicate applications, and it determines possible value flow between lambda-expressions

and application points. The flow analysis is described in [BJ93b].

5.2.2 Binding-time analysis

This phase propagates binding-time information about the program input — the binding-

time pattern in Figure 23 — through the program. Each program expression and each

5.2 The preprocessor 45

p

Flow analysis

Binding-time analysis

Specialization-point analysis

Evaluation-order dependency analysis

Abstract occurrence-counting analysis

Redundant let-elimination analysis

pann

Binding-time pattern

?

?

?

?

?

?

?

� �

Figure 23: Similix preprocessor

variable gets a binding-time value. The information may be read as type information about
specialization-time expression return-values and specialization-time values bound to vari-

ables.
The domain of binding-time values is the following lattice:

· · ·Cln · · ·S· · ·Psξ · · ·

D

⊥

@@

@@

HHHH

HHHH

��

��

����

����

��

��

����

����

@@

@@HHHH

HHHH

• The binding-time value S describes first-order static values.

• The binding-time values Psξ describe partially static values (generated by user-defined

constructors; there is one binding-time value Psξ for each constructor family ξ used in

46 5 SYSTEM OVERVIEW

the analysed program p).

• The binding-time values Cln describe static higher-order values (there is one binding-
time value Cln for each function/procedure arity n used in the analysed program p).

• The binding-time value D describes residual expressions (dynamic values).

• The binding-time value ⊥ means “no value yet”. If a program has occurrences of ⊥ in
a program fragment after binding-time analysis, the fragment is either never used or

definitely always non-terminating.

As indicated by the binding-time domain, the binding-time analysis makes higher-order val-
ues dynamic if they flow together with other higher-order values with a different arity. Simi-

larly, if constructed values from different constructor families flow together, the values become

dynamic rather than partially static.

The specializer does not distinguish between different Cln-values, nor does it distinguish

between different Psξ-values; the annotations given to the specializer (and the ones shown
to the user, see Section 6) are therefore collapsed into Ps and Cl.

The binding-time analysis is described in [BJ93b].

5.2.3 Specialization-point analysis

This phase finds specialization/memoization points. The Similix specializer is memoizing (as
was for instance Mix [JSS85]): if it during specialization encounters the same specialization

point expression E more than once, it checks whether the non-dynamic parts of the values
of the free variables of E have been seen before. If yes, a call to the previously generated

code is generated. It is the memoization that generates residual definitions in the residual

program.

Where memoization points have been inserted can be inspected by the user (see Sec-

tion 6); the user can also explicitly control insertion of memoization points (see Section 7.2.3).
The built-in strategy inserts specialized points at dynamic conditionals (conditionals with

dynamic test) and at dynamic lambda-expressions (lambda-expressions which do not get
beta-reduced); this strategy is described in [BD91, Bon90b].

5.2.4 Evaluation-order dependency analysis

The evaluation-order dependency analysis finds expressions that may possibly be evaluation-

order dependent. Such expressions arise from opaque primitive operations and are always

dynamic (cf. Section 3.4: opaque operations are always kept residual). The analysis is used to
prevent unfolding let-expressions when the actual parameter is potentially evaluation-order

dependent. The analysis is described in [BJ93a].

5.3 Postprocessing residual code 47

5.2.5 Abstract occurrence-counting analysis

This phase is used to prevent unfolding let-expressions when this could lead to duplicating
or discarding residual code. The analysis is described in [BD91, Bon90b].

5.2.6 Redundant let-elimination analysis

This is a tidy-up phase that removes some let-expressions which have been inserted auto-
matically by the front-end.

5.3 Postprocessing residual code

The residual code generated by the specializer can often be improved substantially by some

simple last-minute optimizations; this is done by the postprocessor. Postprocessing is an
integrated part of the specializer from a system point of view (this is why no separate

postprocessing phase was shown in Figure 22), but it operates on residual code, not on
(annotated) source code. Among other reductions, postprocessing for example post-unfolds

some residual procedure calls and it post-unfolds some residual let-expressions.

6 Inspecting preprocessed/annotated programs

In Similix, partial evaluation is done by specializing a preprocessed program (see Figure 22).
The specializer follows the annotations in the preprocessed program, so if partial evaluation

does not give expected results, it is the annotated program which should be inspected. An-
notated programs are internally represented in a (for humans) unreadable abstract syntax

form, so a facility is provided to display annotated programs in a readable way. A sys-
tematic description of the facilities (called showp, showpall, show, and showall) is given in

Section 8.3.3.

The information displayed can summarized as follows:

• At the definition point of any variable V, the binding time of V is displayed: V:bt-value
where bt-value is ⊥ (dead code or infinite loop), S (first-order static value), Ps (par-

tially static data structure), Cl (higher-order static value), or D (value not known
at specialization time, i.e. residual code). The definition points of variables are let-

expressions, procedure definitions, and lambda-expressions.

• The binding times of return values of procedure definitions and lambda-expressions
are shown as -> bt-value.

• Every expression form is annotated as either “reducible” or “not reducible”. A form is
non-reducible if an underscore _ has been added. For instance, (_if) denotes

a non-reducible conditional whereas (if) denotes a reducible one.

48 6 INSPECTING PREPROCESSED/ANNOTATED PROGRAMS

• The new form lift identifies where constants are dumped in the residual code. If
very large constants are accidentally dumped in some residual code when specializing

a program p, you should look for occurrences of lift in the annotated version of p to
locate where the constants origin.

• The form (memo-name . . .) identifies specialization/memoization points (cf. Sec-
tion 5.2.3). The name identifies the particular memoization point in the program;

this may used in connection to tracing infinite loops, see under verbose-spec in Sec-
tion 8.3.1. Also, the names of the procedures in the residual program are generated by

extending the name-forms.

Since programs have been expanded into the Similix core language before preprocessing, the

annotated programs are also in the (annotated) core language. For example, cond-forms will

have been expanded into if-forms. However, two non-core forms are displayed to help the
user: named (recursive) let-forms and letrec-forms. As these forms are expanded in non-local

way (by lambda-lifting which moves code to a completely different place in the program), it
would be quite hard to read annotated programs otherwise.

The session in Figure 24 illustrates the use of showpall: we inspect the annotated version
of the MP-interpreter from Figure 9.

> (load "../system/sim-scm.scm")
;loading "../system/sim-scm.scm"

Welcome to Similix 5.0
Copyright (C) 1993 Anders Bondorf
Contributions by Olivier Danvy and Jesper Joergensen

util langext abssyn miscspec runtime front
#<unspecified>
> (preprocess! ’run ’(s d) "MP-int.sim")
front-end flow bt sp eod oc rl
done
> (showpall)
((define (_sim-goal p:s value*:d -> d)

(run p value*))

(define (run p:s value*:d -> d)
(let ((v2*:s (p->v2* p)))
(let ((env:s (init-environment (p->v1* p) v2*)))

(_begin
(_init-store! value* (lift (length v2*)))
(evalblock (p->b p) env)))))

(define (evalblock b:s env:s -> d)
(if (emptyblock? b)

(lift "Finished block")

49

(evalcommands (headblock b) (tailblock b) env)))

(define (evalcommands c:s b:s env:s -> d)
(if (emptyblock? b)

(evalcommand c env)
(_begin
(evalcommand c env)
(evalcommands (headblock b) (tailblock b) env))))

(define (evalcommand c:s env:s -> d)
(if (isassignment? c)

(_update-store!
(lift (lookup-env (c-assignment->v c) env))
(evalexpression (c-assignment->e c) env))
(if (isconditional? c)

(memo-evalcommand-1
(_if (_is-true?

(evalexpression (c-conditional->e c) env))
(evalblock (c-conditional->b1 c) env)
(evalblock (c-conditional->b2 c) env)))

(if (iswhile? c)
(memo-evalcommand-0
(_if (_is-true? (evalexpression (c-while->e c) env))

(_begin
(evalblock (c-while->b c) env)
(evalcommand c env))

(lift "Finished loop")))
(_err (lift ’evalcommand)

(lift "Unknown command: ~s")
(lift c))))))

(define (evalexpression e:s env:s -> d)
(if (isquote? e)

(lift (e->e1 e))
(if (isvariable? e)

(_lookup-store (lift (lookup-env e env)))
(if (isprim? e)

(let ((op:s (e->operator e)))
(if (is-cons? op)

(_cons (evalexpression (e->e1 e) env)
(evalexpression (e->e2 e) env))

(if (is-equal? op)
(_eval-equal
(evalexpression (e->e1 e) env)
(evalexpression (e->e2 e) env))
(if (is-car? op)

(_car (evalexpression (e->e1 e) env))
(if (is-cdr? op)

50 7 HOW TO OBTAIN GOOD RESULTS WHEN USING SIMILIX

(_cdr (evalexpression (e->e1 e) env))

(if (is-atom? op)

(_eval-atom (evalexpression

(e->e1 e) env))

(_err (lift ’evalexpression)

(lift "Unknown operator: ~s")

(lift op))))))))

(_err (lift ’evalexpression)

(lift "Unknown expression: ~s")

(lift e))))))

)

Figure 24: Session inspecting annotated MP-interpreter

How the result of the call (showpall) is actually pretty-printed is Scheme-system dependent;

you may have to call the pretty-printer explicitly, i.e. (pp (showpall)).

You may want to compare Figure 24 with Figure 12 which contained an example of
a residual program obtained by specializing the MP-interpreter. Notice that the forms in

Figure 12 are instances of the non-reducible forms in Figure 24.

7 How to Obtain Good Results when Using Similix

In an ideal world, we would write a source program (for instance an interpreter), partially

evaluate it with respect to some static input, and then get a “good” residual program. In
practice, life is more complex. Partial evaluation is no panacea: some programs specialize

well, but others do not. Program generators in general take some specification as input;
in the case of partial evaluation, the specification is a program. The quality of a program

generated by any program generator depends on the quality of the specification. For partial
evaluation, the quality of the residual program depends on the quality of the source program

supplied to the partial evaluator.

The “quality” of a source program does not necessarily mean its clarity or efficiency. It
often happens that less efficient and/or less clear programs lead to better (more efficient,

more clear) residual programs.

Programs have to be expressed carefully in order not to lose static information. A simple
example: suppose x and y are static and z dynamic. Then (+ (+ x y) z) specializes better

than (+ x (+ y z)): in the former case, the inner + is reduced, but in the latter no reduction
takes place.

In practice, many binding-time improvements [HH90] are needed to get good results. For

example, one may convert (+ x (+ y z)) into (+ (+ x y) z) when z is dynamic and x and y

static. This section summarizes a number of well-known binding-time improvements. Some

of them are of particular interest to Similix, others are more general.

7.1 Monovariancy of binding-time analysis 51

7.1 Monovariancy of binding-time analysis

Binding-time analysis is monovariant : only one annotated version of each procedure is

generated. Thus, if the same procedure is used with different binding times for the arguments,

the “most dynamic” annotated version will be used in all cases. For example, one might
have a program

(define (foo x y) (+ (bar x) (bar y)))

(define (bar z) . . .)

with x being static and y dynamic. The binding-time analysis will then classify z as dynamic,
and thus some possible reductions in the call (bar x) will be lost.

The problem can be solved by defining two versions (copies) of bar:

(define (foo x y) (+ (bar-1 x) (bar-2 y)))

(define (bar-1 z) . . .)

(define (bar-2 z) . . .)

Now z in bar-1 will be static.

7.2 Some “classical” binding-time improvements

7.2.1 Static copies of dynamic data

Consider an expression

(if (equal? x E1)
(f x)
. . .)

with x dynamic and E1 static. Since x is dynamic, f will be given a dynamic parameter.
However, expression E1 is static and we know that x and E1 are equal at the point where f

is applied. Therefore we can improve the binding times by rewriting into

(let ((y E1))
(if (equal? x y)

(f y)
. . .))

Now f is applied to the static y rather than the dynamic x.

Negative knowledge may also be exploited. For instance, one knows that the dynamic

x definitely does not have the value of E1 in the false branch of the conditional above.
Improvements of these kinds were of great importance in [CD89]. Some systems automate

such improvements [Tur86, FN88].

52 7 HOW TO OBTAIN GOOD RESULTS WHEN USING SIMILIX

7.2.2 Dynamic choice of static values

Consider an expression

(car (if E1 E2 E3))

where E1 is dynamic, but E2 and E3 static. The dynamic test will make the result of
the conditional expression dynamic and hence no reduction of the car operation will take

place. This is the classical problem of a conditional with dynamic test and static branches
(mentioned in for instance [Mog89]).

If the program piece is rewritten into

(if E1 (car E2) (car E3))

the car operations will be reduced. Notice, however, that car has been duplicated. Had the
operation been a complex expression E rather than a simple operation such as car, such a

duplication may not be desirable. This can be solved by using a let-expression:

(let ((f E)) (if E1 (f E2) (f E3)))

Here f must be a fresh variable not occurring free in any of E1, E2, E3. Another kind of

dynamic conditional with static branches is the following one with E1 being dynamic:

((if E1 E2 E3) E)

If E2 and E3 evaluate to static function values at specialization time, no reduction of the
applications will take place. Again, the problem is fixed by a simple rewriting:

(let ((x E)) (if E1 (E2 x) (E3 x)))

Now the applications (E2 x) and (E3 x) can be beta-reduced.

A more complex well-known example is the problem of dynamic indexing in a set of static

values (described in for instance [Dyb85, GJ91]; the binding-time improvement is sometimes
referred to as “the trick”). This problem can be illustrated by the following expression E:

(f (my-list-ref values index))

Here index is assumed to be dynamic and values is assumed to be static.

Suppose my-list-ref had been defined as a procedure:

(define (my-list-ref values index)
(let loop ((values values) (index index))

(cond
((null? values)
(_sim-error ’my-list-ref "Whoops"))

7.2 Some “classical” binding-time improvements 53

((= index 0)
(car values))

(else
(loop (cdr values) (- index 1))))))

Procedure my-list-ref acts just like the standard Scheme primitive list-ref, but we need

an explicit definition to illustrate the rewriting to be performed. Since the test (= index 0)

is dynamic, the result of the call (my-list-ref values index) will also be dynamic. Thus

f is given a dynamic argument even though there is a static set of possible values f can be
applied to (namely the elements in values).

We can make f’s argument static by rewriting E into

(my-list-ref-f values index)

where my-list-ref-f is defined by

(define (my-list-ref-f values index)
(let loop ((values values) (index index))
(cond

((null? values)
(_sim-error ’my-list-ref-f "Whoops"))

((= index 0)
(f (car values)))

(else
(loop (cdr values) (- index 1))))))

More generally, we may pass a function like f as a third parameter to my-list-ref. The

function can then be viewed as a continuation c. Expression E would now take form

(my-list-ref-c index values f)

and my-list-ref-c would be defined by

(define (my-list-ref-c values index c)
(let loop ((values values) (index index))
(cond

((null? values)
(_sim-error ’my-list-ref-c "Whoops"))

((= index 0)
(c (car values)))

(else
(loop (cdr values) (- index 1))))))

Rewriting program fragments into continuation passing style is a general way to allow static

information to “escape” out of a dynamic conditional expression. Introducing continuation

54 7 HOW TO OBTAIN GOOD RESULTS WHEN USING SIMILIX

passing style for improving binding times is discussed in [Dan91] and [HG91], and the idea
is put into a more general framework in [CD91]. See also [Bon92].

7.2.3 Specialization points and dynamic choice of static values

There are two user-controlled features regarding specialization/memoization points in Similix

(controlling memoization manually is quite subtle, so it cannot be recommended to the
inexperienced user). There are two advantages of controlling memoization manually:

1. To obtain code sharing (less in-lining), it may be useful to manually add a specialization

point somewhere where the automatic strategy does not insert one.

2. To speed up specialization and to obtain more in-lined residual code, it may be useful
to avoid the automatically inserted specialization points.

1. Inserting specialization points manually is done by the primitive operator _sim-memoize

(cf. Figure 5). For example, specializing

(define (f x)

(define (g y) (+ 1 (_sim-memoize (* y y))))

(+ (g x) (g x)))

with x being dynamic yields

(define (f-0 x_0)

(define (g-0-1 y_0) (* y_0 y_0))

(+ (+ 1 (g-0-1 x_0)) (+ 1 (g-0-1 x_0))))

Primitive operator _sim-memoize acts like the operator generalize from Section 3.4 in that

it makes its argument dynamic. In addition to this, operator _sim-memoize forces insertion of
a specialization point. Notice that _sim-memoize does not appear in the specialized program

(an operator like generalize would appear in residual code): the specializer specifically does
not generate residual _sim-memoize operations.

We could have specialized the above program without _sim-memoize:

(define (f x)

(define (g y) (+ 1 (* y y)))

(+ (g x) (g x)))

Specialization then gives:

(define (f-0 x_0)
(+ (+ 1 (* x_0 x_0)) (+ 1 (* x_0 x_0))))

7.2 Some “classical” binding-time improvements 55

Notice that the *-operation occurs twice now. Thus, less code sharing is obtained as more
in-lining has been performed. Sometimes code sharing is preferable, some times in-lining

is preferable. It is an open research problem to design an automatic strategy that decides
where to insert specialization points on the basis of an analysis of code sharing in the residual

program.

2. Similix only contains a very simple mechanism for avoiding automatically inserted spe-
cialization points: automatic specialization points insertion can be switched off completely

(by standard-memoization-off, cf. Section 8.3.2). When this is done, the only specializa-
tion points inserted are those specified by _sim-memoize! That is, there is full user-control

of specialization point insertion.

The automatic strategy inserts specialization points in case of dynamic conditionals or dy-
namic lambdas. When the automatic strategy is switched off, dynamic choice of static values

is enabled: source program rewriting is no longer necessary to obtain this. For example, no
rewriting of my-list-ref in Section 7.2.2 is necessary to make f’s argument static when the

automatic specialization point insertion strategy is switched off: specializing the my-list-ref
example then gives an equally good result as specializing the my-list-ref-f/my-list-ref-c

examples.

7.2.4 Eta-expansion

Consider an expression

(let ((f (lambda (x) . . .)))
(+ (f . . .) (g f)))

where g is dynamic and hence the application (g f) is dynamic. The occurrence of f in the
application (g f) is known as a residual code context in [Bon91a]: it causes the lambda-

expression to become dynamic whereby no beta-reduction of the application (f . . .) will
take place either.

The problem can be solved by eta-expansion:

(let ((f (lambda (x) . . .)))
(+ (f . . .) (g (lambda (w) (f w)))))

Now f no longer occurs in a residual code context due to the application (f w) which

definitely can be beta-reduced during specialization. The new lambda-expression becomes
dynamic, but that does not influence the application (f . . .) which therefore can be reduced

during specialization.

Eta-expansion can also be used in situations like those described in Section 7.1. Let us
look at the program from there again:

(define (foo x y) (+ (bar x) (bar y)))

56 7 HOW TO OBTAIN GOOD RESULTS WHEN USING SIMILIX

(define (bar z) . . .)

Now suppose x and y are function parameters with x being static (binding-time value Cl,
cf. Section 5.2.2) and y dynamic. The program can be rewritten into

(define (foo x y) (+ (bar x) (bar (lambda (w) (y w)))))

(define (bar z) . . .)

Now both calls to bar have static (Cl) actual parameter, and thus z becomes static (Cl).

Notice that no copying of the bar definition is necessary in this case.

In programs written in continuation passing style, the continuations will typically become
static (Cl). However, the continuations will be built under dynamic control. The depth of

the (partial evaluation time closures representing the) continuations will therefore not have

a static bound, and thus this is a typical example of “construction of static values under
dynamic control” [Jon88]. The consequence is, in case of recursion, infinite specialization.

A solution is to use the generalization primitive generalize (cf. Section 3.4): continu-
ations must be forced to become dynamic. However, one is still interested in performing

continuation reductions during specialization, so “most of the time” continuations should

still be static. The following example illustrates how this done.

Suppose f is a recursive procedure defined by

(define (f ... c) ...)

where c is the (static) continuation. A way to generalize while keeping c static is to rewrite
the definition into

(define (f ... c)
(let ((c (collapse c))) ...))

where collapse is defined as follows:

(define (collapse c)
(eta-expand-s (generalize (eta-expand-d c))))

(define (eta-expand-d c) (lambda (x) (c x)))

(define (eta-expand-s c) (lambda (x) (c x)))

The somewhat strange rewriting (generalize, eta-expand-d, and eta-expand-s all act like
identity operators) ensures that the partial evaluation time closures bound to c during spe-

cialization never grow infinitely. Reduction of f’s formal parameter c is forced by collapse.

Calling eta-expand-d prevents c from occurring in the residual code context caused by
generalize: the argument position to generalize is a residual code context. This eta-

expansion is thus of the first kind of those described above. Calling eta-expand-s makes the

7.3 Some general advice on how to write source programs 57

new c static (Cl). This eta-expansion is of the second kind of those described above.

Eta-expansion has been used for binding-time improvements in a number of papers

[Bon91a, BP93, Mos93]. The kind of reasoning in this section is central in the derivation of
exact, one-pass continuation passing style transformers [DF89, DF91].

7.3 Some general advice on how to write source programs

7.3.1 Mixing arities

Higher-order values of different arities should not be mixed as this makes them dynamic

(cf. Section 5.2.2 and Section 8.3.2). Notice that such mixings would create type errors in
strongly typed languages. If you need to express that an expression evaluates to a functional

value of either one arity or another arity, use user-defined constructors to wrap up the
functional values. For example, when specializing the program

(define (f)
((if #f (lambda () 3) (lambda (x) x)) 8))

the two lambda-expressions and the application to argument 8 become non-reducible (that

specialization nevertheless reduces the application is by coincidence due to postprocessing,
cf. Section 5.3).

However, when specializing

(define (f)
((caseconstr (if #f (arity0 (lambda () 3)) (arity1 (lambda (x) x)))

((arity1 g) g))
8))

where the constructors are defined by

(defconstr (arity0 *) (arity1 *))

the two lambda-expressions and the application to argument 8 become reducible.

7.3.2 Else-branches

When using the cond-form for conditionals, it is advisable always to write an explicit else-

branch. The reason is that the default else-branch returns #f which may result in overly
conservative binding times. For example, the program

(define (f)
((cond

(#t (lambda (x) x)))
4))

58 7 HOW TO OBTAIN GOOD RESULTS WHEN USING SIMILIX

expands into the same code as the program

(define (f)
((cond

(#t (lambda (x) x))
(else #f))

4))

When specializing this program, the lambda-expression and the application become non-
reducible (that specialization nevertheless reduces the application is by coincidence due to

postprocessing, cf. Section 5.3).

However, when specializing

(define (f)
((cond

(#t (lambda (x) x))
(else (_sim-error ’f "Blah blah blah")))

4))

the lambda-expression and the application become reducible as _sim-error (as any other

aborting primitive, cf. Section 3.4) is “binding-time neutral”.
It is advisable also to write explicit else-branches for casematch and caseconstr-

forms if the error message in the else-branch can be given by a primitive defined by
defprim-abort-eoi (cf. Section 3.4). Here the reason is that if no else-branch is sup-

plied, the default else-branches use _sim-error which is defined by the more conservative
defprim-abort. This is why explicit else-branches were used in for instance the Mixwell-

interpreter (Section 4.2.1, Figure 13).

7.3.3 Separation of compound tests

Consider the following expression E where E1 is a static expression and E2 a dynamic ex-

pression:

(if (and E1 E2) E3 E4)

If E1 evaluates to #f, the test can be determined statically (at specialization time) since E2

need not be evaluated. The entire test (and E1 E2) will, however, be classified as dynamic,

and thus the conditional will always be considered dynamic. The problem can be solved by
rewriting E into E′

(if E1 (if E2 E3 E4) E4)

But now E4 has been duplicated. This can be avoided by abstracting out E4:

(let ((g (lambda () E4))) (if E1 (if E2 E3 (g)) (g)))

7.4 Termination and generalization 59

Expression E4 is wrapped inside a lambda to keep strictness properties unchanged. Here g

must be a fresh variable not occurring free in E′

Tests with or can be rewritten in a similar way. The expression

(if (or E1 E2) E3 E4)

is thus equivalent to

(if E1 E3 (if E2 E3 E4))

Again, duplication (this time of E3) can be avoided by abstracting out the duplicated ex-
pression:

(let ((g (lambda () E3))) (if E1 (g) (if E2 (g) E4)))

7.3.4 Introducing primitives

If a procedure returns a static result, and if all its parameters are first-order (this can be

checked by using e.g. showpall, cf. Section 6: check if the binding times of parameters
and the return value are all static, i.e. displayed with :s/-> s), it is beneficial to redefine

the procedure to become a user-defined primitive operator. This gives faster specialization:
when executing static primitive operations, compiled versions of the primitive operators are

simply applied [Con88]. In contrast to this, procedures are interpreted. This is why (user-
defined) primitive operators, not (user-defined) procedures, were used for syntax dispatch in

the MP-interpreter (Section 4.1.1).

Also, if all operations in a procedure definition turn out to become dynamic, no reductions

will take place during specialization. Such procedures may also be redefined to become user-
defined primitive operators. The benefit is again faster specialization.

Binding-time improvements of these kinds are performed automatically in the partial
evaluator Schism [CD90].

7.4 Termination and generalization

Specialization is not guaranteed to terminate. In fact, termination of specialization is very
likely the most difficult problem one runs into sooner or later when using Similix. This

section contains some hints on how to trace non-termination and how to solve the problem.

Suppose we want to specialize the program

(loadt "test.adt")

(define (f x)
(let loop ((x x) (y 0))
(if (= x 0)

y

60 7 HOW TO OBTAIN GOOD RESULTS WHEN USING SIMILIX

(loop (- x 1) (my+ y 1)))))

where primitive operator my+ is defined in file test.adt by

(defprim my+ +)

Operator my+ is identical to the standard primitive +, except that operator + is defined

by defprim-tin rather than defprim (cf. Section 3.4): this difference makes specialization
terminate when using +. However, specialization does not terminate when using my+ as

above. We shall now illustrate non-termination, so we use operator my+.

If we specialize the above program with x being dynamic, specialization loops. To get an

idea of why specialization loops, we can switch on tracing:

> (verbose-spec 1)
#<unspecified>
> (similix ’f ’(***) "test.sim")
front-end flow bt sp eod oc rl
specializing
sp:_sim-goal sp:loop-0 sp:loop-0 sp:loop-0 sp:loop-0
user interrupt
> (showpall)
((define (_sim-goal x:d -> d) (f x))
(define (f x:d -> d)

(let loop ((x:d x) (y:s 0))
(memo-loop-0
(_if (_= x (lift 0))

(lift y)
(loop (_- x (lift 1)) (my+ y 1)))))))

>

We notice that specialization point loop-0 is encountered repeatedly. By inspecting the

annotated program, we notice that there are two free variables in memo-loop-0’s argument
expression, the dynamic x and the static y. Hence the problem may be that y assumes

infinitely many static values during specialization. We can trace the values of y by inserting
a trace operator soutnl in the source program:

(loadt "test.adt")

(define (f x)
(let loop ((x x) (y 0))

(if (= x 0)
y
(loop (- x 1) (my+ (soutnl y) 1)))))

Here soutnl is added to file test.adt:

7.4 Termination and generalization 61

(defprim (soutnl v) (display v) (newline) v)

Now we specialize again:

> (verbose-spec 0)
#<unspecified>
> (loadt! "test.adt")
()
> (similix ’f ’(***) "test.sim")
front-end flow bt sp eod oc rl
specializing
0
1
2
3
4
...
user interrupt
>

We called loadt! to activate the change in file test.adt (the addition of the soutnl-

definition). The definition of soutnl is not very clean as the primitive performs a side-effect,
yet we did not define it opaque (cf. Section 3.4). But the point is exactly to get the printing

done statically (at specialization time) — and opaque operations are always dynamic.

The trace confirms that y assumes infinitely many values. Now we use operator
generalize (cf. Section 3.4) to force y to become dynamic:

(loadt "test.adt")

(define (f x)
(let loop ((x x) (y 0))
(if (= x 0)

y
(loop (- x 1) (my+ (generalize y) 1)))))

(operator generalize can also be defined in file test.adt; recall to redo the loadt! opera-

tion). Specialization now terminates:

> (similix ’f ’(***) "test.sim")
front-end flow bt sp eod oc rl
specializing
((loadt "test.adt")
(define (f-0 x_0)

(define (loop-0-1 x_0 y_1)
(if (= x_0 0)

y_1

62 8 SYSTEM GUIDE

(loop-0-1 (- x_0 1) (my+ (generalize y_1) 1))))
(loop-0-1 x_0 0)))

>

We may not want generalize to appear in the residual code. This can be avoided by instead

specializing

(loadt "test.adt")

(define (f x)
(let loop ((x x) (y 0))

(if (= x 0)
y
(loop (- x 1) (my+ (generalize1 y) 1)))))

(define (generalize1 z) (if #t z (generalize z))) ; hack!

Specialization now gives:

> (similix ’f ’(***) "test.sim")
front-end flow bt sp eod oc rl
specializing
((loadt "test.adt")
(loadt "gen.adt")
(define (f-0 x_0)

(define (loop-0-1 x_0 y_1)
(if (= x_0 0)

y_1
(loop-0-1 (- x_0 1) (my+ y_1 1))))

(loop-0-1 x_0 0)))
>

Infinite specialization as described here can also occur if a partially static (Ps) or higher-
order (Cl) value grows infinitely. This is more difficult to trace as operation soutnl cannot

be used to print these values out at specialization time (partially static values can of course
be printed, but applying soutnl to such a value changes its binding time from Ps to D).

8 System Guide

8.1 Avoiding name clashes

When Similix is loaded, a number of internal Similix system names are defined at the Scheme

top-level. These names are of one of the following two forms:

• Prefixed with _sim-.

• Prefixed with **Similix- and postfixed with **.

8.2 File naming conventions 63

Do not define any names of these forms.
The only other Scheme symbols that are defined at the top-level when loading Similix

are the ones described in Section 8.3.
Also, do not redefine standard Scheme procedures (such as car, +, etc.).

8.2 File naming conventions

Files containing programs written in the Similix Scheme subset (see Figure 3 and Figure 4)

are named file-name.sim. In all of Section 8, we use . . . sim-file to denote file names of
form file-name.sim. The system automatically completes . . . sim-file names: for . . . sim-file

names, the user may thus omit writing the .sim suffix explicitly.
Files with definitions of primitive operators and user-defined constructors are usually

named file-name.adt. No automatic name completion is performed for .adt suffixes.

8.3 Similix facilities

This section describes all facilities (names, symbols) that are user-available (defined at the

Scheme top-level) after loading the Similix system. How to load the Similix system is de-
scribed in Section 2.

Three internal global Similix variables are updated and referenced by a number of the
forms described in this section:

• At any time, the variable **Similix-preprocessed-program** contains the latest an-

notated program generated during the current session.

• The variable **Similix-residual-program** contains the latest residual program gen-

erated during the current session.

• The variable **Similix-current-compiler** contains the latest compiler-generator

generated program generated or loaded during the current session.

These three variables need never be referenced directly by the user, but in subtle cases it is

important to know when they are updated (specified in the following sections).
In the following, we use brackets [. . .] to denote optional arguments.

8.3.1 Specializing

(similix) procedure

Displays information about input formats to similix.

Returns: unspecified.

(similix goal arg-pat source-sim-file [n] [resid-goal] [resid-sim-file [’pp]]) procedure

Partially evaluates the program in file source-sim-file with goal procedure goal with

respect to the input specified by arg-pat . The arg-pat is a list of pe-values, a pe-value

64 8 SYSTEM GUIDE

being either the symbol *** denoting a dynamic value or some static value (the symbol
denoting dynamic input may be redefined by (set-dynamic-input-symbol . . .)). The

length of arg-pat must be equal to the arity of goal .

If n is supplied, the specialization is run n times and timing information is output.

The timing figures include specialization time only, not time for preprocessing.

If resid-goal is supplied, the goal procedure of the residual program gets the name
resid-goal . Otherwise, it gets the default name goal-0.

The residual program is written onto the file resid-sim-file if this argument is supplied.
The program is pretty-printed if ’pp is supplied.

Updates: **Similix-preprocessed-program** and **Similix-residual-program**.

Returns: () if resid-sim-file is supplied, otherwise the residual program represented as a
list.

(similix arg-pat [n] [resid-goal] [resid-sim-file [’pp]]) procedure

(similix arg-pat prep-pgm [n] [resid-goal] [resid-sim-file [’pp]]) procedure

These two forms specialize an already annotated program with respect to the input

specified by arg-pat . The forms are useful for avoiding preprocessing if the program to be
partially evaluated has already been preprocessed with respect to the same binding-time

pattern (no change in which parameters are static and which are dynamic).

The first of the two forms specializes the annotated program stored in

Similix-preprocessed-program. The second of the two forms specializes
the annotated program prep-pgm; here prep-pgm must have been generated by

(preprocessed-program).

For example, instead of running

(similix ’append1 (list ’(1 2 3) ’***) "append.sim")

(similix ’append1 (list ’(7 6 5) ’***) "append.sim")

we may use the first of the two forms to perform the second specialization:

(similix ’append1 (list ’(1 2 3) ’***) "append.sim")

(similix (list ’(7 6 5) ’***))

Here the append program is not preprocessed when the second specialization is per-

formed. Also, instead of running

(similix ’append1 (list ’(1 2 3) ’***) "append.sim")
...

(similix ’append1 (list ’(7 6 5) ’***) "append.sim")

we may use the second of the two forms to perform the second specialization:

(similix ’append1 (list ’(1 2 3) ’***) "append.sim")

(define p (preprocessed-program))

8.3 Similix facilities 65

...

(similix (list ’(7 6 5) ’***) p)

Again, the append program is not preprocessed when the second specialization is per-

formed.

[Note: if several specializations are to be performed, it is beneficial to generate a

generating extension first by using cogen. Running (similix (list ’(7 6 5) ’***)) is
slower than running (comp (list ’(7 6 5) ’***)).]

If n is supplied, the specialization is run n times and timing information is output.

The timing figures include specialization time only, not time for preprocessing.

If resid-goal is supplied, the goal procedure of the residual program gets the name
resid-goal . Otherwise, it gets the default name goal-0.

The residual program is written onto the file resid-sim-file if this argument is supplied.
The program is pretty-printed if ’pp is supplied.

Uses: **Similix-preprocessed-program** (only the first of the two forms uses this vari-
able).

Updates: **Similix-residual-program**.

Returns: () if resid-sim-file is supplied, otherwise the residual program represented as a
list.

(residual-program) procedure

Returns: the value of **Similix-residual-program**.

(load-residual-program) procedure

Loads **Similix-residual-program** at the top-level.

Returns: unspecified.

(set-dynamic-input-symbol symbol) procedure

Sets the symbol that is interpreted as “dynamic input” to symbol . The initial value is

***.

Returns: unspecified.

(verbose-spec n) procedure

Argument n must 0, 1, or 2. The value of n controls trace information generated during
specialization. This information is particularly useful if specialization does not terminate

as it may help to locate what causes the loop.

If n = 0, no trace information is printed; this is the initial value.

If n = 1, information is printed each time the specializer encounters a specializa-
tion/memoization point. The information printed is sp:name where name is the name

of the specialization point in the source program. To locate the specialization point in

66 8 SYSTEM GUIDE

the source program, use one of the facilities described in Section 6 and Section 8.3.3.

If n = 2, the information printed if n = 1 is also printed. Additionally, each time a
call to a user-defined procedure P is unfolded, the name P is printed. The two forms are

distinguishable as specialization point names are preceded by sp:.

Returns: unspecified.

(postunfold-on) procedure

Sets the post-unfold flag. Initially, the flag is set. When this flag is set, residual procedure
calls are post-unfolded by the phase described in Section 5.3. When the flag is not set,

residual procedure calls are never post-unfolded.

Returns: unspecified.

(postunfold-off) procedure

Clears the post-unfold flag. Initially, the flag is set.

Returns: unspecified.

8.3.2 Preprocessing

(front-end) procedure

Displays information about input formats to front-end.

Returns: unspecified.

(front-end goal source-sim-file) procedure

Macro expands and converts the program in file source-sim-file with goal procedure goal

into internal abstract syntax.

Procedure front-end is typically not called directly by the user, but it may for instance

be useful for debugging.

Returns: the program text represented in abstract syntax (warning: this abstract syntax

may be very large, so it may be advantageous to wrap top-level calls to front-end into
e.g. a define: (define ... (front-end))).

(preprocess!) procedure

Displays information about input formats to preprocess!.

Returns: unspecified.

(preprocess! goal bt-pat source-sim-file) procedure

Front-ends and preprocesses the program in file source-sim-file with goal procedure

goal w.r.t. binding-time pattern bt-pat as described in Section 5.2. Argument bt-
pat is a list of binding-time values; a binding-time value must be one of either s,

static, d, dynamic, or the symbol denoting dynamic input (initially ***, redefinable

8.3 Similix facilities 67

by (set-dynamic-input-symbol . . .)); the forms s and static are equivalent: they spec-
ify static first-order input; the forms d, dynamic, and the symbol denoting dynamic input

are also equivalent: they specify dynamic input. The length of bt-pat must be equal to
the number of parameters to procedure goal .

Procedure preprocess! is typically not called directly by the user, but it may be

useful for binding-time debugging when inspecting annotated (preprocessed) programs:

the preprocessed source program can be displayed by showp/showpall.

Updates: **Similix-preprocessed-program**.

Returns: the symbol done.

(preprocessed-program) procedure

Used to save preprocessed programs for later use (see description of (similix arg-
pat prep-pgm . . .)).

Returns: a list containing (1) the name of the goal procedure used when generating

Similix-preprocessed-program, and (2) **Similix-preprocessed-program**.

(standard-memoization-on) procedure

Sets the standard memoization flag. Initially, the flag is set. When the flag is set,
standard memoization points are inserted when programs are preprocessed. Standard

memoization points are generated from dynamic conditionals (conditionals that are not
reduced at specialization time due to a dynamic test) and dynamic lambda-expressions

(lambdas that are not beta-reduced at specialization time). See Section 7.2.3 for details.

Returns: unspecified.

(standard-memoization-off) procedure

Clears the standard memoization flag. Initially, the flag is set. When the flag is not set,

memoization points are only inserted when user-specified by _sim-memoize. This is useful
as it gives the user full control of memoization point insertion; dynamic choice of static

values is enabled when the flag is cleared. See Section 7.2.3 for details.

Returns: unspecified.

(verbose-prep-on) procedure

Sets the verbose preprocessing flag. Initially, the flag is set. When the flag is set, the

preprocessor gives warnings when different procedure (function) arities are mixed and

when constructors from different constructor families are mixed. Such mixings make
more expressions dynamic (cf. Section 3.6, Section 5.2.2, and Section 7.3.1).

Returns: unspecified.

(verbose-prep-off) procedure

Clears the verbose preprocessing flag. Initially, the flag is set.

68 8 SYSTEM GUIDE

Returns: unspecified.

8.3.3 Inspecting annotated programs

(show) procedure

Displays information about input formats to showp, showpall, show, and showall.

Returns: unspecified.

(showp [definitions [kind]]) procedure

Used to display the latest generated preprocessed (annotated) program as described in
Section 6.

Argument definitions must be either a list of procedure names of top-most procedures
to be displayed or ’all; if ’all is used, all procedures are displayed.

Argument kind must be either ’head or ’all: use ’head for displaying only informa-

tion about the formal parameters and return value of the specified definitions; use ’all

for displaying the full definitions.

The arguments definitions and kind may be omitted in which case default values are
chosen: ’all for definitions , ’head for kind . In practice, you will often need just (showp)

and (showpall) (the latter form is described below).

Uses: **Similix-preprocessed-program**.

Returns: **Similix-preprocessed-program** pretty-printed as described in Section 6.

(showpall) procedure

Equivalent to (showp ’all ’all).

Uses: **Similix-preprocessed-program**.

Returns: **Similix-preprocessed-program** pretty-printed as described in Section 6.

(show prep-pgm [definitions [kind]]) procedure

Like showp, but displays an arbitrary preprocessed program prep-pgm where prep-pgm
must have been generated by (preprocessed-program).

Returns: prep-pgm pretty-printed as described in Section 6.

(showall prep-pgm) procedure

Equivalent to (show prep-pgm ’all ’all).

Returns: prep-pgm pretty-printed as described in Section 6.

(show-variable-index-on) procedure

Sets the show-variable-index flag. Initially, the flag is cleared. As mentioned in Sec-
tion 3.10, Similix handles letrec-forms by lambda-lifting which may add additional pa-

rameters to the letrec-defined procedures. This may give name clashes which, however,

8.3 Similix facilities 69

are resolved internally by name indices. These indices may be useful to see for the user
as we shall now illustrate. Let the file test.sim contain the following program:

(define (f x)

(letrec ((g (lambda (x) (h x)))
(h (lambda (y) (+ x y))))

(g 4)))

Lambda lifting adds an additional parameter x to h and hence to g:

> (preprocess! ’f ’(s) "test.sim")

front-end flow bt sp eod oc rl
done

> (showpall)
((define (_sim-goal x:s -> d) (lift (f x)))

(define (f x:s -> s)
(letrec ((g (lambda (x:s x:s -> s) (h x x)))

(h (lambda (y:s x:s -> s) (+ x y))))
(g 4 x))))

> (show-variable-index-on)
#<unspecified>

> (showpall)
((define (_sim-goal x0:s -> d) (lift (f x0)))

(define (f x0:s -> s)

(letrec ((g (lambda (x1:s x0:s -> s) (h x1 x0)))
(h (lambda (y2:s x0:s -> s) (+ x0 y2))))

(g 4 x0))))
>

Returns: unspecified.

(show-variable-index-off) procedure

Clears the show-variable-index flag. Initially, the flag is cleared.

Returns: unspecified.

8.3.4 Compiler generator

(cogen) procedure

Displays information about input formats to cogen.

Returns: unspecified.

(cogen goal bt-pat source-sim-file [n] [cmp-goal] [cmp-sim-file [’pp]]) procedure

Generates a generating extension of the program in file source-sim-file with goal procedure
goal . Argument bt-pat is a binding-time pattern, i.e. a list of binding-time values; a

binding-time value must be one of either s, static, d, dynamic, or the symbol denoting

70 8 SYSTEM GUIDE

dynamic input (initially ***, redefinable by (set-dynamic-input-symbol . . .)); the forms
s and static are equivalent: they specify static first-order input; the forms d, dynamic,

and the symbol denoting dynamic input are also equivalent: they specify dynamic input.
The length of bt-pat must be equal to the number of parameters to procedure goal .

Static parameters become the “early” parameters in the generating extension, dy-

namic parameters become the “late” ones. The generating extension is run by using

procedure comp.

The generation of a generating extension is done in two steps: first, the source pro-
gram is preprocessed with respect to the given bt-pat (see the description of procedure

preprocess!), then the Similix-generated compiler generator is applied to the prepro-
cessed source program.

A typical application of cogen is to generate a compiler from an interpreter. The
interpreter’s program parameter is classified as static, the data parameter is classified

as dynamic.

If n is supplied, the compiler generator is applied n times to the preprocessed program

and timing information is output. The timing figures do not include the time used for
preprocessing the source program.

If cmp-goal is supplied, the goal procedure of the generated generating extension gets

the name cmp-goal . Otherwise, it gets the default name _sim-specialize-0.

The generating extension is written onto the file cmp-sim-file if this argument is

supplied. The program is pretty-printed if ’pp is supplied.

Updates: **Similix-preprocessed-program** and **Similix-current-compiler**.

Returns: ().

(cogen [n] [cmp-goal] [cmp-sim-file [’pp]]) procedure

(cogen prep-pgm [n] [cmp-goal] [cmp-sim-file [’pp]]) procedure

These two forms curry an already annotated program. The forms are useful for avoiding
preprocessing if the program to be curried has already been preprocessed.

The first of the two forms curries the annotated program stored in
Similix-preprocessed-program. The second of the two forms curries the annotated

program prep-pgm; here prep-pgm must have been generated by (preprocessed-program).

If n is supplied, the compiler generator is applied n times to the preprocessed program
and timing information is output. The timing figures do not include the time used for

preprocessing the source program.

If cmp-goal is supplied, the goal procedure of the generated generating extension gets

the name cmp-goal . Otherwise, it gets the default name _sim-specialize-0.

The generating extension is written onto the file cmp-sim-file if this argument is

supplied. The program is pretty-printed if ’pp is supplied.

Uses: **Similix-preprocessed-program** (only the first of the two forms uses this vari-

able).

Updates: **Similix-current-compiler**.

8.3 Similix facilities 71

Returns: ().

(comp) procedure

Displays information about input formats to comp.

Returns: unspecified.

(comp [cmp-goal] [cmp-file] arg-pat [n] [resid-goal] [resid-sim-file [’pp]]) procedure

Applies a generating extension generated by cogen to arg-pat . The length of arg-pat

must be equal to the length of the bt-pat that was supplied to cogen when generating the
generating extension. For those arguments that were specified as static in bt-pat when

running cogen, supply a value in arg-pat . For those arguments that were specified as
dynamic in bt-pat when running cogen, supply the symbol ***.

A typical application of comp is to run a compiler generated by applying cogen to an
interpreter.

If cmp-goal is supplied, the goal procedure of the generating extension is assumed

to have this name (this name must be equal to the cmp-goal specified when generating

the generating extension by cogen). Otherwise, the default name _sim-specialize-0 is
chosen.

If cmp-file is supplied, the generating extension is read from this file. Otherwise, the

program in **Similix-current-compiler** is used.

If n is supplied, the generating extension is applied n times and timing information

is output.

If resid-goal is supplied, the goal procedure of the residual program gets the name
resid-goal . Otherwise, it gets the default name goal-0 where goal is the goal name of the

source program that was specified when generating the generating extension.

The residual program is written onto the file resid-sim-file if this argument is supplied.

The program is pretty-printed if ’pp is supplied.

Uses: **Similix-current-compiler** unless cmp-file is supplied.

Updates: **Similix-current-compiler** and **Similix-residual-program**.

Returns: () if resid-sim-file is supplied, otherwise the residual program represented as a
list.

(current-compiler) procedure

Returns: the value of **Similix-current-compiler**.

8.3.5 Utilities for Similix source files

(compile-sim-file sim-file) procedure

Compiles sim-file.

Returns: ().

72 8 SYSTEM GUIDE

(compile-and-load-sim-file sim-file) procedure

Compiles and loads sim-file.

Returns: ().

(loads sim-file) procedure

Loads sim-file. This form should be used at the top-level instead of load if sim-file
contains casematch- or caseconstr-forms (load does not know these forms).

Returns: unspecified.

(loadt file) procedure

Loads a file of definitions of primitive operators and constructors following the syntax of

Figure 7. The form is typically only used in Similix Scheme programs (cf. Figure 3), but it
may be used at the top-level. The form loadt side-effects a global system variable which

contains compiled versions of the primitive operators and constructors. This prevents
recompilation if the same file is loadt’ed more than once in a session. See also loadt!.

Returns: ().

(loadt! file) procedure

Equivalent to

(begin (unloadt file) (loadt file))

That is, recompilation and reloading of the primitive operators and constructors is en-

forced. If, during a session, a file file with primitive operator and constructor definitions
is modified, always follow the modifications by executing

(loadt! file)

Otherwise, the modifications will not come into effect during the session. You must redo
the loadt! for all possible full file names (with paths) that are used to refer to file (this

may be relevant if you are specializing programs from different directories that all use
file).

Returns: ().

(unloadt file) procedure

Removes the compiled versions of the primitive operators defined in file from the global

variable updated by loadt. Typically only used indirectly through loadt!.

Returns: unloadt-ed.

(sim2scheme sim-file) procedure

Converts Similix Scheme programs into stand-alone Scheme programs which can be run

without loading Similix first. All definitions in files loaded and loadt’ed by sim-file are

8.3 Similix facilities 73

in-lined and primitive operator and constructor definitions are converted to ordinary
Scheme definitions. The output is written on the file file-name.postfix where file-name

is equal to sim-file without possible .sim suffix and postfix is the standard postfix used
for source files in the Scheme system used.

Returns: unspecified.

8.3.6 Resetting Similix

(reset-similix) procedure

Resets flags and other global variables used by Similix. Useful for resetting flags and for

freeing heap space.

Returns: ().

8.3.7 Help-facility

(help) procedure

Prints brief overview of procedures available in Similix.

Returns: unspecified.

8.3.8 General Scheme utilities

(file->item file) procedure

Returns: the first object in file.

(file->list file) procedure

Returns: a list of the objects in file.

(ntimes suspension n) procedure

Applies suspension (“thunk”) n times and prints timing information. For example,
(ntimes (lambda () (+ 1 3)) 100) computes (+ 1 3) 100 times and prints timing in-

formation.

Returns: the value of (suspension).

(out e) procedure

Identity procedure that displays the value of its argument. Useful for debugging.

Returns: the value of argument e.

(outnl e) procedure

Similar to out, but also displays a “newline”.

Returns: the value of argument e.

74 8 SYSTEM GUIDE

(outpp e) procedure

Similar to out, but pretty-prints the value.

Returns: the value of argument e.

(pp e) procedure

Invokes the pretty-printer.

Returns: unspecified.

(size e) procedure

Returns: the size of the argument measured as its number of “cons” cells plus its number

of vector elements (recursively).

(writef e file) procedure

Writes the value of expression e onto file.

Returns: unspecified.

(writefpp e file) procedure

Similar to writef, but pretty-prints the value.

Returns: unspecified.

(writel l file) procedure

Expression l must evaluate to a list. The form writel writes the elements of the value

of l onto file, stripping off the outer parentheses of the value of l .

Returns: unspecified.

(writelpp l file) procedure

Similar to writel, but pretty-prints each element.

Returns: unspecified.

REFERENCES 75

References

[BD91] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recursive equa-

tions with global variables and abstract data types. Science of Computer Pro-
gramming, 16:151–195, 1991.

[BEJ88] Dines Bjørner, Andrei P. Ershov, and Neil D. Jones, editors. Partial Evaluation
and Mixed Computation, IFIP TC2, North-Holland, 1988. Workshop proceedings,

October 1987, Gl. Avernæs, Denmark.

[BJ93a] Anders Bondorf and Jesper Jørgensen. Efficient analyses for realistic off-line par-

tial evaluation: extended version. Technical Report 93/4, DIKU, University of

Copenhagen, Denmark, 1993.

[BJ93b] Anders Bondorf and Jesper Jørgensen. Efficient analyses for realistic off-line par-

tial evaluation. Journal of Functional Programming, special issue on partial eval-
uation, 1993.

[Bon90a] Anders Bondorf. Self-Applicable Partial Evaluation. PhD thesis, DIKU, University
of Copenhagen, Denmark, March 1990.

[Bon90b] Anders Bondorf. Self-Applicable Partial Evaluation (Revised Version). PhD thesis,
DIKU, University of Copenhagen, Denmark, December 1990. DIKU report 90/17.

[Bon91a] Anders Bondorf. Automatic autoprojection of higher order recursive equations.
Science of Computer Programming,, 17(1-3):3–34, December 1991. Revision of

paper in ESOP’90, LNCS 432, May 1990.

[Bon91b] Anders Bondorf. Compiling laziness by partial evaluation. In Simon L. Peyton
Jones, Graham Hutton, and Carsten Kehler Holst, editors, Functional Program-

ming, Glasgow 1990. Workshops in Computing, pages 9–22, Springer-Verlag, Au-
gust 1991.

[Bon91c] Anders Bondorf. Similix Manual, system version 4.0. DIKU, University of Copen-
hagen, Denmark, September 1991. Included in Similix distribution.

[Bon92] Anders Bondorf. Improving binding times without explicit cps-conversion. In 1992
ACM Conference on Lisp and Functional Programming. San Francisco, California.

LISP Pointers V, 1, pages 1–10, June 1992.

[BP93] Anders Bondorf and Jens Palsberg. Compiling actions by partial evaluation. In

Conference on Functional Programming and Computer Architecture, Copenhagen,

Denmark, June 1993.

[CD89] Charles Consel and Olivier Danvy. Partial evaluation of pattern matching in

strings. Information Processing Letters, 30(2):79–86, 1989.

76 REFERENCES

[CD90] Charles Consel and Olivier Danvy. From interpreting to compiling binding times.
In Neil D. Jones, editor, ESOP’90, 3rd European Symposium on Programming,

Copenhagen, Denmark. Lecture Notes in Computer Science 432, pages 88–105,
Springer-Verlag, May 1990.

[CD91] Charles Consel and Olivier Danvy. For a better support of static data flow. In
John Hughes, editor, Conference on Functional Programming and Computer Ar-

chitecture, Cambridge, Massachusetts. Lecture Notes in Computer Science 523,

pages 495–519, Springer-Verlag, August 1991.

[Con88] Charles Consel. New insights into partial evaluation: the SCHISM experiment. In

Harald Ganzinger, editor, ESOP’88, 2nd European Symposium on Programming,
Nancy, France. Lecture Notes in Computer Science 300, pages 236–247, Springer-

Verlag, March 1988.

[CR91] William Clinger and Jonathan Rees. Revised4 report on the algorithmic language
Scheme. November 1991.

[Dan91] Olivier Danvy. Semantics-directed compilation of nonlinear patterns. Information

Processing Letters, 37(6):315–322, 1991.

[DF89] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts.

Technical Report 89/12, DIKU, University of Copenhagen, Denmark, 1989.

[DF91] Olivier Danvy and Andrzej Filinski. Representing control. Technical Report CS-
91-2, Kansas State University, 1991.

[Dyb85] Hans Dybkjær. Parsers and partial evaluation: an experiment. Student Report 85-
7-15, DIKU, University of Copenhagen, Denmark, July 1985.

[Ers78] Andrei P. Ershov. On the essence of compilation. In E.J. Neuhold, editor, Formal

Description of Programming Concepts, pages 391–420, North-Holland, 1978.

[Ers82] Andrei P. Ershov. Mixed computation: potential applications and problems for
study. Theoretical Computer Science, 18:41–67, 1982.

[FN88] Yoshihiko Futamura and Kenroku Nogi. Generalized partial computation. In
Dines Bjørner, Andrei P. Ershov, and Neil D. Jones, editors, Partial Evaluation

and Mixed Computation, pages 133–151, North-Holland, 1988.

[GJ91] Carsten K. Gomard and Neil D. Jones. Compiler generation by partial evaluation:
a case study. Structured Programming, 12:123–144, 1991.

[HG91] Carsten Kehler Holst and Carsten K. Gomard. Partial evaluation is fuller laziness.

In Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
PEPM’91, Yale University, New Haven, Connecticut. SIGPLAN Notices, volume

26, 9, pages 223–233, ACM Press, June 1991.

REFERENCES 77

[HH90] Carsten Kehler Holst and John Hughes. Towards binding-time improvement for
free. In Simon L. Peyton Jones, Graham Hutton, and Carsten Kehler Holst, edi-

tors, Functional Programming, Glasgow 1990. Workshops in Computing, pages 83–
100, Springer-Verlag, August 1990.

[IEE90] IEEE standard for the Scheme programming language. May 1990. IEEE Std
1178-1990.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall, 1993.

[Joh85] Thomas Johnsson. Lambda lifting: transforming programs to recursive equa-
tions. In Jean-Pierre Jouannaud, editor, Conference on Functional Languages and

Computer Architecture, Nancy, France. Lecture Notes in Computer Science 201,
pages 190–203, Springer-Verlag, September 1985.

[Jon88] Neil D. Jones. Automatic program specialization: a re-examination from basic

principles. In Dines Bjørner, Andrei P. Ershov, and Neil D. Jones, editors, Partial
Evaluation and Mixed Computation, pages 225–282, North-Holland, 1988.

[JSS85] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. An experiment in partial
evaluation: the generation of a compiler generator. In Jean-Pierre Jouannaud,

editor, Rewriting Techniques and Applications, Dijon, France. Lecture Notes in
Computer Science 202, pages 124–140, Springer-Verlag, 1985.

[JSS89] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. MIX: a self-applicable par-
tial evaluator for experiments in compiler generation. LISP and Symbolic Compu-

tation, 2(1):9–50, 1989.

[Mog89] Torben Æ. Mogensen. Binding Time Aspects of Partial Evaluation. PhD thesis,

DIKU, University of Copenhagen, Denmark, March 1989.

[Mos93] Christian Mossin. Partial evaluation of general parsers (extended abstract). In
David Schmidt, editor, Symposium on Partial Evaluation and Semantics-Based

Program Manipulation, PEPM’93, Copenhagen, Denmark, June 1993.

[Ses85] Peter Sestoft. The structure of a self-applicable partial evaluator. Technical Re-

port 85/11, DIKU, University of Copenhagen, Denmark, November 1985.

[Tur86] Valentin F. Turchin. The concept of a supercompiler. Transactions on Program-

ming Languages and Systems, 8(3):292–325, 1986.

Index
⊥ (bottom), 46, 47

*** (dynamic input symbol), 66, 70

() (empty list), 15, 26

* (in constructor definition), 18, 24, 26, 38

[. . .] (optional argument), 63

‘(. . .) (quasiquote), 13

’(...) (quote), 15

,(. . .) (unquote), 13

,@(. . .) (unquote-splicing), 13

#(...) (vector), 15

_ (wildcard pattern), 26

aborting primitive operator, 17, 18, 21

abstract occurrence-counting analysis, 47

.adt (files), 18, 63

and, 14, 28, 58

annotated program, 9, 11, 44

inspecting, 11, 47, 68

append program, 10, 64

application, 14

apply, 17, 22

arguments, optional, 63

arities, mixing, 57

assignment

to local variable, 27

to top-level variable, 26

association list, 25

assq, 17, 22

assv, 17, 22

autoprojection, 7

begin, 13, 14, 29

binding-time analysis, 44

monovariant, 51

binding-time domain, 45

binding-time improvement, 9, 50

binding-time pattern, 12, 44, 66, 69

body, 14

box, 24, 27

boxed values, 24, 27

bt-analysis, 44

call-by-need evaluation, 41

call-by-value evaluation, 41

call-with-current-continuation, 17

case, 13

caseconstr, 14, 24, 25, 38, 57, 58, 72

casematch, 14, 25, 37, 58, 72

Cl (closure), 46, 47, 62

code sharing, 54

cogen, 8

cogen, 10, 12, 65, 69–71

collapse, 56

comp, 10, 12, 70, 71

compile-and-load-sim-file, 72

compile-sim-file, 71

compiler, 8, 12, 70, 71

compiler generator, 8, 12, 69

compound tests, separation of, 58

cond, 14, 28, 57

conditional, 14

dynamic, 46, 52, 53, 55

one-armed, 14, 28

cons, 25

constant, 14

constructor, 14, 24, 29

family, 24, 45

pattern, 26

test-predicate, 14, 24, 29

user-defined, 15, 18, 24, 25, 37, 45, 57,

63, 72, 73

continuation passing style, 53, 56

controlling memoization manually, 54

core language, 13, 27, 43, 48

current-compiler, 71

curried program, 7, 12

D (dynamic), 46, 47

d (dynamic), 66, 69

data type, 24

78

INDEX 79

defconstr, 18, 24, 26, 57
define, 13, 14

definition, internal, 27

defprim, 18, 20, 60
defprim-abort, 18, 21, 58

defprim-abort-eoi, 18, 21, 58

defprim-dynamic, 18, 20, 22, 23

defprim-opaque, 18, 20, 22–24, 26, 33
defprim-tin, 18, 20, 60

defprim-transparent, 18, 20

delay, 41, 43

disjoint sum type, 24
dynamic, 66, 69

dynamic choice of static values, 52, 55, 67

dynamic conditional, 46, 52, 53, 55
dynamic input, 7, 15, 64, 67, 70

dynamic lambda, 55

dynamic primitive operator, 18, 20

eager evaluation, 41
else, 14, 15, 26, 57

environment, 25, 33, 41

eod-analysis, 46

eq?, 17, 22
eqv?, 17, 22

essential procedure, 17

eta-expansion, 29, 55

evaluation-order dependency, 21
evaluation-order dependency analysis, 46

file names, 63

file, writing onto, 74

file->item, 73
file->list, 73

first-order values, 15, 45, 59

fixed-arity primitive operator, 14, 16, 17,
20, 29

flow analysis, 44

force, 41, 43
for-each, 17, 22

front-end, 11, 13, 17, 27, 43

front-end, 66

Futamura projections, 8

generalization, 20

generalize, 20, 54, 56, 61

generating extension, 7, 12, 65, 69–71

getting started, 9

goal procedure, 11, 12, 15, 63–66, 69, 71

help, 73

higher-order values, 21, 46, 57, 62

if, 14, 28

in-lining, 54, 73

infinite specialization, 20, 56, 62

input

dynamic, 7, 15, 64, 67, 70

partially static, 25

static, 7, 15, 64, 67, 70

inspecting annotated programs, 11, 47, 68

internal definition, 27

interpreter, 8, 12, 70, 71

lambda, 14

lambda-expression, 14

dynamic, 55

variable arity, 13

lambda-lifting, 29, 48, 68

lazy evaluation, 39, 41
LA
ZY-interpreter, 39

let, 14

let-expression

named (recursive), 14, 29

parallel, 14, 29

recursive, 14, 29

sequential, 14, 29

letrec, 13, 14, 29, 68

let*, 14

lift, 12, 48

list, 25

load, 14, 17, 27, 72

load-residual-program, 10, 65

loading Similix, 11

loads, 14, 26, 27, 72

loadt, 14, 18, 72

loadt!, 61, 72

80 INDEX

local variable, assignment to, 27

make-vector, 24

map, 17, 22
memo-. . . , 48

memoization
controlling manually, 54

flag, 67
point, 46, 48, 54, 60

standard, 67
memq, 17, 22

memv, 17, 22
mix, 7

Mix system, 8

mixing arities, 57
Mixwell-interpreter, 35

monovariant binding-time analysis, 51
MP-interpreter, 29, 48

name clash, 24, 25, 68
named (recursive) let, 14, 29

non-essential procedure, 17
non-reducible operations, 8, 12, 47, 57, 58

non-termination, tracing, 59, 60, 65
ntimes, 73

oc-analysis, 47

occurrence-counting analysis, 47
one-armed conditional, 14, 28

opaque primitive operator, 18, 20, 46, 61
optional arguments, 63

or, 14, 28, 59
out, 73

outnl, 73
outpp, 74

parallel let, 14, 29
partial evaluation, 7

partially static data structure, 24, 25, 37,
45, 62

partially static input, 25

pattern
constructor, 26

wildcard, 26

pattern matching, 25, 29

pointer-equality, 22

postprocessing, 47

postunfold-off, 66

postunfold-on, 66

pp, 10, 74

predicate, constructor test, 14, 24, 29

preprocess!, 66

preprocessed-program, 64, 67

preprocessing, 9, 11, 43, 44, 66

pretty-printer, 11, 74

primitive operator, 15

aborting, 17, 18, 21

dynamic, 18, 20

fixed arity, 14, 16, 17, 20, 29

opaque, 18, 20, 46, 61

restrictions, 21

transparent, 18, 20

user-defined, 17, 18, 59, 63, 72, 73

variable arity, 14, 17, 20

procedure, 15

name, 14, 29

user-defined, 15

program specialization, 7

Ps (partially static), 45–47, 62

quasiquote, 13

quote, 15

recursive let, 14, 29

reducible operations, 8, 12, 47, 57, 58

redundant let-elimination analysis, 47

reset-similix, 73

resetting Similix, 73

residual code context, 55, 56

residual program, 7, 11

residual-program, 10, 65

restrictions on input, 15

restrictions on primitives, 21

rl-analysis, 47

S (static), 45, 47

s (static), 66, 69

INDEX 81

Scheme subset, 13–15, 43

scheme.adt, 19–21

Schism, 59

selector, 14, 24, 29

self-application, 7

separation of compound tests, 58

sequence, 14, 29

sequential let, 14, 29

set!, 13, 26

set-dynamic-input-symbol, 65

set-box!, 24, 27

set-car!, 17, 23

set-cdr!, 17, 23

show, 68

show-variable-index-off, 69

show-variable-index-on, 68

showall, 68

showp, 68

showpall, 10, 48, 68

side-effects, 20, 21, 23, 61

.sim, 63

_sim-, 62

sim2scheme, 72

_sim-error, 17, 21, 58

_sim-goal, 11

**Similix-. . . **, 62

similix, 10, 12, 63, 64

Similix-current-compiler, 63

Similix-preprocessed-program, 63

Similix-residual-program, 63

_sim-memoize, 16, 54, 55, 67

_sim-specialize-0, 70, 71

sim2scheme, 13

size, 74

source language, 13–15, 43

source program, 7

soutnl, 60

sp-analysis, 46

sp:. . . , 65

specialization, 9, 11, 43, 63

specialization point, 46, 48, 54, 60

standard, 67

specialization, infinite, 20, 56, 62

specialization-point analysis, 46

stand-alone Scheme programs, 13, 72

standard-memoization-off, 55, 67

standard-memoization-on, 67

static, 66, 69

static copies of dynamic data, 51

static input, 7, 15, 64, 67, 70

store, 33

strict evaluation, 41

string-fill!, 17

string-set!, 17, 23

sum type, 24

target program, 8

termination, 20, 59

“the trick”, 52

timing, 73

top-level form, 13

top-level variable, 13, 18, 19, 23

assignment to, 26

tracing non-termination, 59, 60, 65

transparent primitive operator, 18, 20

“trick, the”, 52

unbox, 24, 27

unloadt, 72

unquote, 13

unquote-splicing, 13

unspecified value, 15

user-defined

constructor, 15, 18, 24, 25, 37, 45, 57,
63, 72, 73

primitive operator, 17, 18, 59, 63, 72,

73

procedure, 15

utilities

general, 73

source files, 71

variable, 14

variable-arity

lambda-expression, 13

82 INDEX

primitive operator, 14, 17, 20
vector-fill!, 17

vector-length, 24
vector-ref, 24

vector-set!, 17, 23, 24
verbose-prep-off, 67

verbose-prep-on, 67
verbose-spec, 48, 60, 61, 65

wildcard pattern, 26
writef, 74

writefpp, 74
writel, 74

writelpp, 74

writing onto file, 74

