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Plan for today 
•  Higher-order functions in F# 
•  A higher-order functional language 
•  F# mutable references 
•  Polymorphic types 

–  Informal procedure 
– Type rules 
– Unification 
– The union-find data structure 
– Type inference algorithm 

•  Variant generic types in Java and C# 
–  Java use-side variance 
– C# 4.0 declaration-side variance 
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Higher-order functions  
and anonymous functions in F# 

•  A higher-order function takes another 
function as argument 
let rec map f xs =  
    match xs with  
      | []    -> [] 
      | x::xr -> f x :: map f xr 

(’a->’b) -> (’a list -> ’b list) 

let mul2 x = 2.0 * x;; 
map mul2 [4.0; 5.0; 89.0];; [8.0; 10.0; 178.0] 

•  Anonymous functions 
map (fun x -> 2.0 * x) [4.0; 5.0; 89.0] 

map (fun x -> x > 10.0) [4.0; 5.0; 89.0] 

[8.0; 10.0; 178.0] 

[false; false; true] 
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delegate R Func<R>() 
delegate R Func<A1,R>(A1 x1) 
delegate R Func<A1,A2,R>(A1 x1, A2 x2) 

Higher-order functions in C# 
•  Delegate types 

delegate void Action<A1>(A1 x1) 
delegate void Action<A1,A2>(A1 x1, A2 x2) 

A1 -> R 

A1 -> unit 

A1 * A2 -> R 

delegate(int x) { return x>10; }  

delegate(int x) { return x*x; } 

•  Anonymous method expressions 
Func<int,bool> 

Func<int,int> 

(int x) => x>10 
x => x>10 
x => x*x 

unit -> R 

A1*A2 -> unit 

C# 3.0 

fun (x:int) -> x>10 
fun x -> x>10 
fun x -> x*x 

F# 



Uniform iteration over a list 

•  Generalizing 0/1 to e, and +/* to f: 

let rec sum xs =  
    match xs with  
      | []    -> 0 
      | x::xr -> x + sum xr 

let rec prod xs =  
    match xs with  
      | []    -> 1 
      | x::xr -> x * prod xr 

let rec foldr f xs e =  
    match xs with 
      | []    -> e 
      | x::xr -> f x (foldr f xr e) 

The foldr function replaces :: by f, and [] by e: 
 foldr ◊ (x1::x2::…::xn::[]) e = x1 ◊ (x2 ◊ (... ◊ (xn ◊ e) …)) 

('a -> 'b -> 'b) -> 
 'a list -> 'b -> 'b 

int list -> int 

List.foldBack in F# 
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Many functions definable using foldr 
len xs   = foldr (fun _ res -> 1+res) xs 0 

sum xs   = foldr (fun x res -> x+res) xs 0 

prod xs  = foldr (fun x res -> x*res) xs 1 

map g xs = foldr (fun x res -> g x :: res) xs [] 

listconcat xss = foldr (fun xs res -> xs @ res) xss [] 

strconcat ss = foldr (fun s res -> s ^ res) ss "“ 

filter p xs = list of those x in xs for which p x is true 

forall p xs = p x is true for all x in xs 

exists p xs = p x is true for some x in xs 
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Joint exercises 
•  Define these F# functions in terms of foldr 

–  filter p xs 
–  forall p xs 
– exists p xs 
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Composing functions, “pipe” 
•  Given list xs, throw away small numbers, square the 

remaining numbers, and compute their sum: 
sum (map (fun x -> x*x) (filter (fun x -> x>10) xs)) 

x |> f = f x 

•  Somewhat difficult to read: inside-out 
•  Idea: Define infix higher-order function |>  

•  Now the list operations combine naturally: 

xs |> filter (fun x -> x>10) |> map (fun x -> x*x) |> sum 
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F# mutable references 
•  A reference is a cell that can be updated 

let r = ref 177 
!r 
(r := !r+1; !r) 
!r 

•  Useful for generation of new names etc: 
let nextlab = ref -1;; 
let newLabel () = (nextlab := 1 + !nextlab;  
                   "L" + string (!nextlab));; 
newLabel();; 
newLabel();; 
newLabel();; 

Create int reference 

Assign to reference 

Dereference 
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Higher-order micro-ML/micro-F# 
•  Higher-order functional language 

– A function may be given as argument: 

– A function may be returned as result 

•  Closures needed: 
– The function returned must enclose the value of 

f’s parameter x – has nothing to do with later x 

let twice g x = g(g x) 

let add x = let f y = x+y in f 
let addtwo = add 2  
let x = 77 
addtwo 5 

•  Same micro-ML syntax: Fun/Absyn.fs 

add has two 
arguments! 
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Interpretation of a higher-order language 

•  The closure machinery is already in place 
•  Just redefine function application: 
let rec eval (e : expr) (env : value env) : value = 
    match e with 
    | ... 
    | Call(eFun, eArg) ->  
      let fClosure = eval eFun env 
      in match fClosure with 
         | Closure (f, x, fBody, fDeclEnv) -> 
           let xVal = eval eArg env 
           let fBodyEnv =  
               (x, xVal) :: (f, fClosure) :: fDeclEnv 
           in eval fBody fBodyEnv 
         | _ -> failwith "eval Call: not a function" 
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ML/F#-style  
parametric polymorphism 

let f x = 1  
in f 2 + f true  

•  Each expression has a statically known type 
•  The type may be polymorphic (‘many forms’) 

and have multiple type instances 

Type for f is 
’a -> int 

int -> int bool -> int 
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Type generalization and specialization 

•  If f has type (α → int) and α appears 
nowhere else, the type gets generalized to a 
type scheme  ∀α.(α → int): 

let f x = 1 

•  If f has type scheme ∀α.(α → int) then α may 
be instantiated by/specialized to any type: 

f 42 
f false 
f [22] 
f (3,4) 

 ∀α.(α → int) 

f : int → int 

f : int list → int 
f : bool → int 

f : int*int → int 



Polymorphic type inference 
•  F# and ML have polymorphic type inference 
•  Static types, but not explicit types on functions 

let mul2 y = 2 * y 

let twice g y = g (g y) 

twice mul2 11 

α β 
α =  β→δ 

α =  δ→ε 

β=δ=ε 
so  

α = β→β 

β=δ and δ=ε 
so  

α = β→β 
(β→β) → (β→β) 

•  We generalize β, so twice gets the polymorphic type  
∀β. (β→β) → (β→β), hence “β may be any type” 

mul: int -> int 

twice : (int->int)->(int->int) 
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Basic elements of type inference 
•  “Guess” types using type variables α, β, … 
•  Build and solve “type equations” α =  β→δ … 
•  Generalize types of let-bound variables/funs. 

to obtain type schemes  ∀β. (β→β) → (β→β) 
•  Specialize type schemes at variable use 

•  This is called 
– ML-polymorphism 
–  let-polymorphism 
– Hindley-Milner polymorphism (1969 & 1978) 
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Restrictions on ML polymorphism, 1 
•  Only let-bound variables and functions can 

have a polymorphic type 
•  A parameter’s type is never polymorphic: 

let f g = g 7 + g false 

Ill-typed: 
parameter g never 

polymorphic 

•  A function is not polymorphic in its own body: 
let rec h x =  
    if true then 22 
    else h 7 + h false 

Ill-typed: h not 
polymorphic in its 

own body 
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Restrictions on ML polymorphism, 2 
•  Types must be finite and non-circular 

let rec f x = f f 

f not polymorphic 
in its own body 

•  Guess x has type α 
•  Then f must have type α→β for some β 
•  But because we apply f to itself in (f f), we 

must have α = α→β 
•  But then α = (α→β)→β = ((α→β) →β)→β = … 

is not a finite type 
•  So the example is ill-typed 
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let f x =  
    let g y = if x=y then 11 else 22 
    in g false 
in f 42 

Restrictions on ML polymorphism, 3 
•  A type parameter that is used in an enclosing 

scope cannot be generalized 

Ill-typed: function g 
not polymorphic 

α bound in outer 
scope, cannot 
generalize β 

α 
β 

α =  β 

•  Reason: If this were well-typed, we would 
compare x (42) with y (false), not good… 

g : β→int 
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Joint exercises 
•  Which of these are well-typed, and why/not? 

let f x = 1  
in f f 

let f g = g g 

let f x =  
    let g y = y 
    in g false 
in f 42 

let f x =  
    let g y = if true then y else x 
    in g false 
in f 42 
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Type rules for ML-polymorphism 

Specialize from 
typescheme 

Generalize to 
typescheme 
Generalize to 
typescheme 
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Joint exercises 
•  Draw the type trees for some of these 

let f x = 1  
in f f 

let f x = 1  
in f 2 + f false 

let x = 1  
in x < 2 



www.itu.dk 

Programming type inference 
•  Algorithm W (Damas & Milner 1982) with 

many later improvements 
•  Symbolic type equation solving by 

– Unification 
– The union-find data structure 

•  “Not free in ρ” formalized by binding levels: 

let f x =  
    let g y = if x=y then 11 else 22 
    in g false 
in f 42 

α:0 
β:1 

α =  β 

β:0 0 
1 

•  Since β-level < g-level, do not generalize β 
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Unification of two types, unify(t1,t2) 
Type t1 Type t2 Action 

int int No action 

bool bool No action 

t1x → t1r t2x → t2r unify(t1x,t2x) and unify(t1r,t2r) 

α α No action 

α β Make α=β 

α t2 Make α=t2 unless t2 contains α 

t1 β Make β=t1 unless t1 contains β 

All other cases Failure, type error! 
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The union-find data structure 
•  A graph of nodes (type variables) divided 

into disjoint classes 
•  Each class has a representative node 
•  Operations: 

– New: create new node (type variable) 
– Find(n): find representative of node n’s class 
– Union(n1,n2): join the classes of n1 and n2 
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Type inference for micro-ML, 1 

let rec typ (lvl : int) (env : tenv) (e : expr) : typ = 
    match e with 
    | CstI i -> TypI 
    | CstB b -> TypB 
    | Var x  -> specialize lvl (lookup env x) 
    | ... 

typ ρ e = t 

if and only if 



Type inference for micro-ML, 2 
let rec typ (lvl : int) (env : tenv) (e : expr) : typ = 
    match e with 
    | Prim(ope, e1, e2) ->  
      let t1 = typ lvl env e1 
      let t2 = typ lvl env e2 
      match ope with 
       | "*" -> (unify TypI t1; unify TypI t2; TypI) 
       | "+" -> (unify TypI t1; unify TypI t2; TypI) 
       | "=" -> (unify t1 t2; TypB) 
       | "<" -> (unify TypI t1; unify TypI t2; TypB) 
       | "&" -> (unify TypB t1; unify TypB t2; TypB) 
       | _   -> failwith ("unknown primitive " ^ ope)  
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Type inference for micro-ML, 3 
let rec typ (lvl : int) (env : tenv) (e : expr) : typ = 
    match e with 
    | If(e1, e2, e3) -> 
      let t2 = typ lvl env e2 
      let t3 = typ lvl env e3 
      unify TypB (typ lvl env e1); 
      unify t2 t3; 
      t2 
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Type inference for micro-ML, 4 
let rec typ (lvl : int) (env : tenv) (e : expr) : typ = 
    match e with 
    | ... 
    | Let(x, eRhs, letBody) ->  
      let lvl1 = lvl + 1 
      let resTy = typ lvl1 env eRhs 
      let letEnv = (x, generalize lvl resTy) :: env 
      typ lvl letEnv letBody 
    | ... 
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Properties of ML-style polymorphism 
•  The type found by the inference algorithm is 

the most general one: the principal type 
•  Consequence: Type checking can be modular 
•  Types can be large and type inference slow: 

•  In practice types are small and inference fast 

let id x = x 
let pair x y p = p x y 
let p1 p = pair id id p 
let p2 p = pair p1 p1 p 
let p3 p = pair p2 p2 p 
let p4 p = pair p3 p3 p;; 
let p5 p = pair p4 p4 p;; 

Exponentially 
many type 
variables! 
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Type inference in C# 3.0 

•  No polymorphic generalization 
•  Can infer parameter type of anonymous 

function from context:  xs.Where(x=>x*x>5) 
•  Cannot infer type of anonymous function  
•  Parameter types in methods  

– must be declared 
–  cannot be inferred, because C# allows method 

overloading … 

var x = “hello”;     // Inferred type: String 
… x.Length … 
x = 17;              // Type error 
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Polymorphism (generics) in Java and C# 

•  Polymorphic types 
interface IEnumerable<T> { ... } 
class List<T> : IEnumerable<T> { ... } 
struct Pair<T,U> { T fst; U snd; ... } 
delegate R Func<A,R>(A x); 

•  Polymorphic methods 
void Process<T>(Action<T> act, T[] xs) 

void <T> Process(Action<T> act, T[] arr) 

•  Type parameter constraints 

void <T extends Comparable<T>> Sort(T[] arr) 

void Sort<T>(T[] arr) where T : IComparable<T> 

Java 

C# 

Java 

C# 
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Variance in type parameters 
•  Assume Student subtype of Person 

void PrintPeople(IEnumerable<Person> ps) { ... } 

IEnumerable<Student> students = ...; 
PrintPeople(students); 

Java and C# 3 say 
NO: Ill-typed! 

•  C# 3 and Java: 
–  A generic type is invariant in its parameter 
–  I<Student> is not subtype of I<Person> 

•  Co-variance (co=with): 
–  I<Student> is subtype of I<Person> 

•  Contra-variance (contra=against): 
–  I<Person> is subtype of I<Student> 
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Co-/contra-variance is unsafe in general 

•  Co-variance is unsafe in general 
List<Student> ss = new List<Student>(); 
List<Person> ps = ss; 
ps.Add(new Person(...)); 
Student s0 = ss[0]; 

•  Contra-variance is unsafe in general 
List<Person> ps = ...; 
List<Student> ss = ps; 
Student s0 = ss[0]; 

Wrong! 

Because would allow 
writing Person to 

Student list 

•  But: 
–  co-variance OK if we only read (output) from list 
–  contra-variance OK if we only write (input) to list 

Wrong! 

Because would allow 
reading Student from 

Person list 
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Java 5 wildcards 
•  Use-side co-variance 

void PrintPeople(ArrayList<? extends Person> ps) { 
  for (Person p : ps) { … } 
} 
... 
PrintPeople(new ArrayList<Student>()); 

void AddStudentToList(ArrayList<? super Student> ss) { 
  ss.add(new Student()); 
} 
... 
AddStudentToList(new ArrayList<Person>()); 

OK! 

•  Use-side contra-variance 

OK! 
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Co-variance in interfaces (C# 4) 
•  When an I<T> only produces/outputs T’s,  

it is safe to use an I<Student>  
where a I<Person> is expected 

•  This is co-variance 
•  Co-variance is declared with the out modifier 

interface IEnumerable<out T> {  
  IEnumerator<T> GetEnumerator();  
} 
interface IEnumerator<out T> {  
  T Current { get; }  
} 

•  Type T can be used only in output position; 
e.g. not as method argument (input) 
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Contra-variance in interfaces (C# 4) 
•  When an I<T> only consumes/inputs T’s,  

it is safe to use an I<Person>  
where an I<Student> is expected 

•  This is contra-variance  
•  Contra-variance is declared with in modifier 

interface IComparer<in T> {  
  int Compare(T x, T y);  
} 

•  Type T can be used only in input position; 
e.g. not as method return type (output) 
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Variance in function types (C# 4) 
•  A C# delegate type is  

–  co-variant in return type (output) 
–  contra-variant in parameters types (input) 

•  Return type co-variance: 
Func<int,Student> nthStudent = ... 
Func<int,Person> nthPerson = nthStudent; 

Func<Person,int> personAge = ... 
Func<Student,int> studentAge = personAge; 

•  Argument type contra-variance: 

•  F# does not support co-variance or contra-
variance (yet?) 
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Reading and homework 
•  This week’s lecture: 

– PLC sections A.11-A.12 and 5.1-5.5 and 6.1-6.7 
– Exercises 6.1, 6.2, 6.3, 6.4, 6.5 

•  Next week’s lecture: 
– PLCSD chapter 7 
– Strachey: Fundamental Concepts in … 
– Kernighan & Richie: The C programming 

language, chapter 5.1-5.5 


