
www.itu.dk 1

Programs as data
Higher-order functions,

polymorphic types,
and type inference

Peter Sestoft
Monday 2012-09-24

www.itu.dk 2

Plan for today
•  Higher-order functions in F#
•  A higher-order functional language
•  F# mutable references
•  Polymorphic types

–  Informal procedure
– Type rules
– Unification
– The union-find data structure
– Type inference algorithm

•  Variant generic types in Java and C#
–  Java use-side variance
– C# 4.0 declaration-side variance

www.itu.dk 3

Higher-order functions
and anonymous functions in F#

•  A higher-order function takes another
function as argument
let rec map f xs =
 match xs with
 | [] -> []
 | x::xr -> f x :: map f xr

(’a->’b) -> (’a list -> ’b list)

let mul2 x = 2.0 * x;;
map mul2 [4.0; 5.0; 89.0];; [8.0; 10.0; 178.0]

•  Anonymous functions
map (fun x -> 2.0 * x) [4.0; 5.0; 89.0]

map (fun x -> x > 10.0) [4.0; 5.0; 89.0]

[8.0; 10.0; 178.0]

[false; false; true]

4

delegate R Func<R>()
delegate R Func<A1,R>(A1 x1)
delegate R Func<A1,A2,R>(A1 x1, A2 x2)

Higher-order functions in C#
•  Delegate types

delegate void Action<A1>(A1 x1)
delegate void Action<A1,A2>(A1 x1, A2 x2)

A1 -> R

A1 -> unit

A1 * A2 -> R

delegate(int x) { return x>10; }

delegate(int x) { return x*x; }

•  Anonymous method expressions
Func<int,bool>

Func<int,int>

(int x) => x>10
x => x>10
x => x*x

unit -> R

A1*A2 -> unit

C# 3.0

fun (x:int) -> x>10
fun x -> x>10
fun x -> x*x

F#

Uniform iteration over a list

•  Generalizing 0/1 to e, and +/* to f:

let rec sum xs =
 match xs with
 | [] -> 0
 | x::xr -> x + sum xr

let rec prod xs =
 match xs with
 | [] -> 1
 | x::xr -> x * prod xr

let rec foldr f xs e =
 match xs with
 | [] -> e
 | x::xr -> f x (foldr f xr e)

The foldr function replaces :: by f, and [] by e:
 foldr ◊ (x1::x2::…::xn::[]) e = x1 ◊ (x2 ◊ (... ◊ (xn ◊ e) …))

('a -> 'b -> 'b) ->
 'a list -> 'b -> 'b

int list -> int

List.foldBack in F#

www.itu.dk 6

Many functions definable using foldr
len xs = foldr (fun _ res -> 1+res) xs 0

sum xs = foldr (fun x res -> x+res) xs 0

prod xs = foldr (fun x res -> x*res) xs 1

map g xs = foldr (fun x res -> g x :: res) xs []

listconcat xss = foldr (fun xs res -> xs @ res) xss []

strconcat ss = foldr (fun s res -> s ^ res) ss "“

filter p xs = list of those x in xs for which p x is true

forall p xs = p x is true for all x in xs

exists p xs = p x is true for some x in xs

www.itu.dk 7

Joint exercises
•  Define these F# functions in terms of foldr

–  filter p xs
–  forall p xs
– exists p xs

www.itu.dk 8

Composing functions, “pipe”
•  Given list xs, throw away small numbers, square the

remaining numbers, and compute their sum:
sum (map (fun x -> x*x) (filter (fun x -> x>10) xs))

x |> f = f x

•  Somewhat difficult to read: inside-out
•  Idea: Define infix higher-order function |>

•  Now the list operations combine naturally:

xs |> filter (fun x -> x>10) |> map (fun x -> x*x) |> sum

www.itu.dk

F# mutable references
•  A reference is a cell that can be updated

let r = ref 177
!r
(r := !r+1; !r)
!r

•  Useful for generation of new names etc:
let nextlab = ref -1;;
let newLabel () = (nextlab := 1 + !nextlab;
 "L" + string (!nextlab));;
newLabel();;
newLabel();;
newLabel();;

Create int reference

Assign to reference

Dereference

www.itu.dk 10

Higher-order micro-ML/micro-F#
•  Higher-order functional language

– A function may be given as argument:

– A function may be returned as result

•  Closures needed:
– The function returned must enclose the value of

f’s parameter x – has nothing to do with later x

let twice g x = g(g x)

let add x = let f y = x+y in f
let addtwo = add 2
let x = 77
addtwo 5

•  Same micro-ML syntax: Fun/Absyn.fs

add has two
arguments!

www.itu.dk 11

Interpretation of a higher-order language

•  The closure machinery is already in place
•  Just redefine function application:
let rec eval (e : expr) (env : value env) : value =
 match e with
 | ...
 | Call(eFun, eArg) ->
 let fClosure = eval eFun env
 in match fClosure with
 | Closure (f, x, fBody, fDeclEnv) ->
 let xVal = eval eArg env
 let fBodyEnv =
 (x, xVal) :: (f, fClosure) :: fDeclEnv
 in eval fBody fBodyEnv
 | _ -> failwith "eval Call: not a function"

www.itu.dk 12

ML/F#-style
parametric polymorphism

let f x = 1
in f 2 + f true

•  Each expression has a statically known type
•  The type may be polymorphic (‘many forms’)

and have multiple type instances

Type for f is
’a -> int

int -> int bool -> int

www.itu.dk 13

Type generalization and specialization

•  If f has type (α → int) and α appears
nowhere else, the type gets generalized to a
type scheme ∀α.(α → int):

let f x = 1

•  If f has type scheme ∀α.(α → int) then α may
be instantiated by/specialized to any type:

f 42
f false
f [22]
f (3,4)

 ∀α.(α → int)

f : int → int

f : int list → int
f : bool → int

f : int*int → int

Polymorphic type inference
•  F# and ML have polymorphic type inference
•  Static types, but not explicit types on functions

let mul2 y = 2 * y

let twice g y = g (g y)

twice mul2 11

α β
α = β→δ

α = δ→ε

β=δ=ε
so

α = β→β

β=δ and δ=ε
so

α = β→β
(β→β) → (β→β)

•  We generalize β, so twice gets the polymorphic type
∀β. (β→β) → (β→β), hence “β may be any type”

mul: int -> int

twice : (int->int)->(int->int)

www.itu.dk 15

Basic elements of type inference
•  “Guess” types using type variables α, β, …
•  Build and solve “type equations” α = β→δ …
•  Generalize types of let-bound variables/funs.

to obtain type schemes ∀β. (β→β) → (β→β)
•  Specialize type schemes at variable use

•  This is called
– ML-polymorphism
–  let-polymorphism
– Hindley-Milner polymorphism (1969 & 1978)

www.itu.dk 16

Restrictions on ML polymorphism, 1
•  Only let-bound variables and functions can

have a polymorphic type
•  A parameter’s type is never polymorphic:

let f g = g 7 + g false

Ill-typed:
parameter g never

polymorphic

•  A function is not polymorphic in its own body:
let rec h x =
 if true then 22
 else h 7 + h false

Ill-typed: h not
polymorphic in its

own body

www.itu.dk 17

Restrictions on ML polymorphism, 2
•  Types must be finite and non-circular

let rec f x = f f

f not polymorphic
in its own body

•  Guess x has type α
•  Then f must have type α→β for some β
•  But because we apply f to itself in (f f), we

must have α = α→β
•  But then α = (α→β)→β = ((α→β) →β)→β = …

is not a finite type
•  So the example is ill-typed

www.itu.dk 18

let f x =
 let g y = if x=y then 11 else 22
 in g false
in f 42

Restrictions on ML polymorphism, 3
•  A type parameter that is used in an enclosing

scope cannot be generalized

Ill-typed: function g
not polymorphic

α bound in outer
scope, cannot
generalize β

α
β

α = β

•  Reason: If this were well-typed, we would
compare x (42) with y (false), not good…

g : β→int

www.itu.dk

Joint exercises
•  Which of these are well-typed, and why/not?

let f x = 1
in f f

let f g = g g

let f x =
 let g y = y
 in g false
in f 42

let f x =
 let g y = if true then y else x
 in g false
in f 42

www.itu.dk

Type rules for ML-polymorphism

Specialize from
typescheme

Generalize to
typescheme
Generalize to
typescheme

www.itu.dk 21

Joint exercises
•  Draw the type trees for some of these

let f x = 1
in f f

let f x = 1
in f 2 + f false

let x = 1
in x < 2

www.itu.dk

Programming type inference
•  Algorithm W (Damas & Milner 1982) with

many later improvements
•  Symbolic type equation solving by

– Unification
– The union-find data structure

•  “Not free in ρ” formalized by binding levels:

let f x =
 let g y = if x=y then 11 else 22
 in g false
in f 42

α:0
β:1

α = β

β:0 0
1

•  Since β-level < g-level, do not generalize β

www.itu.dk

Unification of two types, unify(t1,t2)
Type t1 Type t2 Action

int int No action

bool bool No action

t1x → t1r t2x → t2r unify(t1x,t2x) and unify(t1r,t2r)

α α No action

α β Make α=β

α t2 Make α=t2 unless t2 contains α

t1 β Make β=t1 unless t1 contains β

All other cases Failure, type error!

www.itu.dk 24

The union-find data structure
•  A graph of nodes (type variables) divided

into disjoint classes
•  Each class has a representative node
•  Operations:

– New: create new node (type variable)
– Find(n): find representative of node n’s class
– Union(n1,n2): join the classes of n1 and n2

www.itu.dk 25

Type inference for micro-ML, 1

let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
 match e with
 | CstI i -> TypI
 | CstB b -> TypB
 | Var x -> specialize lvl (lookup env x)
 | ...

typ ρ e = t

if and only if

Type inference for micro-ML, 2
let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
 match e with
 | Prim(ope, e1, e2) ->
 let t1 = typ lvl env e1
 let t2 = typ lvl env e2
 match ope with
 | "*" -> (unify TypI t1; unify TypI t2; TypI)
 | "+" -> (unify TypI t1; unify TypI t2; TypI)
 | "=" -> (unify t1 t2; TypB)
 | "<" -> (unify TypI t1; unify TypI t2; TypB)
 | "&" -> (unify TypB t1; unify TypB t2; TypB)
 | _ -> failwith ("unknown primitive " ^ ope)

www.itu.dk 27

Type inference for micro-ML, 3
let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
 match e with
 | If(e1, e2, e3) ->
 let t2 = typ lvl env e2
 let t3 = typ lvl env e3
 unify TypB (typ lvl env e1);
 unify t2 t3;
 t2

www.itu.dk 28

Type inference for micro-ML, 4
let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
 match e with
 | ...
 | Let(x, eRhs, letBody) ->
 let lvl1 = lvl + 1
 let resTy = typ lvl1 env eRhs
 let letEnv = (x, generalize lvl resTy) :: env
 typ lvl letEnv letBody
 | ...

www.itu.dk

Properties of ML-style polymorphism
•  The type found by the inference algorithm is

the most general one: the principal type
•  Consequence: Type checking can be modular
•  Types can be large and type inference slow:

•  In practice types are small and inference fast

let id x = x
let pair x y p = p x y
let p1 p = pair id id p
let p2 p = pair p1 p1 p
let p3 p = pair p2 p2 p
let p4 p = pair p3 p3 p;;
let p5 p = pair p4 p4 p;;

Exponentially
many type
variables!

www.itu.dk 30

Type inference in C# 3.0

•  No polymorphic generalization
•  Can infer parameter type of anonymous

function from context: xs.Where(x=>x*x>5)
•  Cannot infer type of anonymous function
•  Parameter types in methods

– must be declared
–  cannot be inferred, because C# allows method

overloading …

var x = “hello”; // Inferred type: String
… x.Length …
x = 17; // Type error

www.itu.dk 31

Polymorphism (generics) in Java and C#

•  Polymorphic types
interface IEnumerable<T> { ... }
class List<T> : IEnumerable<T> { ... }
struct Pair<T,U> { T fst; U snd; ... }
delegate R Func<A,R>(A x);

•  Polymorphic methods
void Process<T>(Action<T> act, T[] xs)

void <T> Process(Action<T> act, T[] arr)

•  Type parameter constraints

void <T extends Comparable<T>> Sort(T[] arr)

void Sort<T>(T[] arr) where T : IComparable<T>

Java

C#

Java

C#

www.itu.dk 32

Variance in type parameters
•  Assume Student subtype of Person

void PrintPeople(IEnumerable<Person> ps) { ... }

IEnumerable<Student> students = ...;
PrintPeople(students);

Java and C# 3 say
NO: Ill-typed!

•  C# 3 and Java:
–  A generic type is invariant in its parameter
–  I<Student> is not subtype of I<Person>

•  Co-variance (co=with):
–  I<Student> is subtype of I<Person>

•  Contra-variance (contra=against):
–  I<Person> is subtype of I<Student>

www.itu.dk 33

Co-/contra-variance is unsafe in general

•  Co-variance is unsafe in general
List<Student> ss = new List<Student>();
List<Person> ps = ss;
ps.Add(new Person(...));
Student s0 = ss[0];

•  Contra-variance is unsafe in general
List<Person> ps = ...;
List<Student> ss = ps;
Student s0 = ss[0];

Wrong!

Because would allow
writing Person to

Student list

•  But:
–  co-variance OK if we only read (output) from list
–  contra-variance OK if we only write (input) to list

Wrong!

Because would allow
reading Student from

Person list

www.itu.dk 34

Java 5 wildcards
•  Use-side co-variance

void PrintPeople(ArrayList<? extends Person> ps) {
 for (Person p : ps) { … }
}
...
PrintPeople(new ArrayList<Student>());

void AddStudentToList(ArrayList<? super Student> ss) {
 ss.add(new Student());
}
...
AddStudentToList(new ArrayList<Person>());

OK!

•  Use-side contra-variance

OK!

www.itu.dk 35

Co-variance in interfaces (C# 4)
•  When an I<T> only produces/outputs T’s,

it is safe to use an I<Student>
where a I<Person> is expected

•  This is co-variance
•  Co-variance is declared with the out modifier

interface IEnumerable<out T> {
 IEnumerator<T> GetEnumerator();
}
interface IEnumerator<out T> {
 T Current { get; }
}

•  Type T can be used only in output position;
e.g. not as method argument (input)

www.itu.dk 36

Contra-variance in interfaces (C# 4)
•  When an I<T> only consumes/inputs T’s,

it is safe to use an I<Person>
where an I<Student> is expected

•  This is contra-variance
•  Contra-variance is declared with in modifier

interface IComparer<in T> {
 int Compare(T x, T y);
}

•  Type T can be used only in input position;
e.g. not as method return type (output)

www.itu.dk 37

Variance in function types (C# 4)
•  A C# delegate type is

–  co-variant in return type (output)
–  contra-variant in parameters types (input)

•  Return type co-variance:
Func<int,Student> nthStudent = ...
Func<int,Person> nthPerson = nthStudent;

Func<Person,int> personAge = ...
Func<Student,int> studentAge = personAge;

•  Argument type contra-variance:

•  F# does not support co-variance or contra-
variance (yet?)

www.itu.dk 38

Reading and homework
•  This week’s lecture:

– PLC sections A.11-A.12 and 5.1-5.5 and 6.1-6.7
– Exercises 6.1, 6.2, 6.3, 6.4, 6.5

•  Next week’s lecture:
– PLCSD chapter 7
– Strachey: Fundamental Concepts in …
– Kernighan & Richie: The C programming

language, chapter 5.1-5.5

