Programs as data
Higher-order functions,
polymorphic types,
and type inference

Peter Sestoft
Monday 2012-09-24

Eé IT University of Copenhagen www.itu.dk

Plan for today

e Higher-order functions in F#
e A higher-order functional language
e F# mutable references
e Polymorphic types
- Informal procedure
— Type rules
- Unification
— The union-find data structure
— Type inference algorithm
e Variant generic types in Java and C#

— Java use-side variance
— C# 4.0 declaration-side variance

J 1T University of Copenhagen www.itu.dk

Higher-order functions
and anonymous functions in F#

e A higher-order function takes another
function as argument
match xs with

| [-> [1

| x::xr -> £ x :: map £ xr

let mul2 x = 2.0 * x;;
map mul2 [4.0; 5.0; 89.0];;

e Anonymous functions
map (fun x -> 2.0 * x) [4.0; 5.0; 89.0]

map (fun x -> x > 10.0) [4.0; 5.0; 89.0]

Eé} IT University of Copenhagen www.itu.dk 3

Higher-order functions in C#

e Delegate types

delegate R Func<R>()
delegate R Func<Al,R> (Al x1)
delegate R Func<Al,A2,R>(Al x1, A2 x

i

delegate void Action<Al> (Al x1)
delegate void Action<Al,A2> (Al x1, A2 x2

e Anonymous method expressions

delegate (int x) { return x>10; }

delegate (int x) { return x*x; }

(int x) => x>10 fun (x:int) -> x>10
x => x>10 fun x -> x>10
X => xX*x fun x -> x*x

HAN

Uniform iteration over a list

match xs with
| [] -> 0 _
| xX::xr -> x + sum Xxr

let rec prod xs =
match xs with
| [1] -> 1
| x::xr -> x * prod xr

e Generalizing 0/1 to e, and +/* to f:

The foldr function replaces :: by f, and [] by e:
foldr & (Xy:i:ixsii.iix,ii[]) e =%; ¢ (X3, ¢ (... © (X, ¢ e) ...))

let rec foldr £ xs e =
match xs with
| [1] -> e
| x::xr -> £ x (foldr £ xr e)

Many functions definable using foldr

len xs = foldr (fun _ res
sum Xxs = foldr (fun x res
prod xs = foldr (fun x res
map g xs = foldr (fun x res
listconcat xss = foldr (fun
strconcat ss = foldr (fun s

filter p xs

-> l+4+res) xs 0

-> xX+res) xs 0

-> x*res) xs 1

-> g x :: res) xs []

XS res -> Xs (@ res) xss []

res -> s ® res) ss "“

list of those x in xs for which p x is true

forall p xs = p X is true for all x in xs

exists p xs

p X is true for some x in Xs

&2 IT University of Copenhagen

www.itu.dk 6

Joint exercises

e Define these F# functions in terms of foldr
— filter p xs
— forall p xs
— exists p xs

&> IT University of Copenhagen www.itu.dk

Composing functions, “pipe”

e Given list xs, throw away small numbers, square the
remaining numbers, and compute their sum:

sum (map (fun x -> x*x) (filter (fun x -> x>10) xs))

e Somewhat difficult to read: inside-out
e Idea: Define infix higher-order function |>

x |> £ =£f x

e Now the list operations combine naturally:

xs |> filter (fun x -> x>10) |> map (fun x -> x*x) |> sum

&> IT University of Copenhagen www.itu.dk 8

F# mutable references

e A reference is a cell that can be updated

(r := 'r+1l; !'r)

o Useful for generation of new names etc:

let nextlab = ref -1;;
let newLabel () = (nextlab := 1 + !'nextlab;

"L" + string ('nextlab));;
newLabel () ; ;

newLabel () ; ;
newLabel () ;;

':é IT University of Copenhagen www.itu.dk

Higher-order micro-ML/micro-F#

e Higher-order functional language
— A function may be given as argument:
let twice g x = g(g x)
— A function may be returned as result
addtwo 5

B -
e Closures needed:

- Th eturned must enclose the value of
f's parameter x — has nothing to do with later x

e Same micro-ML syntax: Fun/Absyn.fs

let add x
let addtwo
let x = 77

&> IT University of Copenhagen www.itu.dk 10

Interpretation of a higher-order language

e The closure machinery is already in place
e Just redefine function application:

let rec eval (e : expr) (env : value env) : value =
match e with
| ...
| Call (eFun, eArg) ->
let fClosure = eval eFun env
in match f£fClosure with
| Closure (£, x, fBody, fDeclEnv) ->
let xVal = eval eArg env
let fBodyEnv =
(x, xVal) :: (£, fClosure) :: fDeclEnv
in eval fBody fBodyEnv
| -> failwith "eval Call: not a function"

&> IT University of Copenhagen www.itu.dk 11

ML/F#-style
parametric polymorphism

2 +@true

e Fach expression has a statically known type

e The type may be polymorphic (‘\many forms’)
and have multiple type instances

Eé IT University of Copenhagen www.itu.dk 12

Type generalization and specialization

o If f has type (o — int) and a appears
nowhere else, the type gets generalized to a
type scheme Vo.(oa — int):

o If f has type scheme Va.(o — int) then a may
be instantiated by/specialized to any type:

Fa2 frint—int
f false (i f e DOOI==RERTE

3@ IT University of Copenhagen www.itu.dk 13

Polymorphic type inference

e F# and ML have polymorphic type inference
e Static types, but not explicit types on functions
let twice g y =

5 (g v
(= ()

e We generalize B, so twice gets the polymorphic type
VB. (B—B) — (B—B), hence "B may be any type”

let mul2 y = 2 * y ~{muliint=>"int "
twice mul2 11

a

Basic elements of type inference

e "Guess” types using type variables o, f, ...
e Build and solve “type equations” a = p$—9 ...

e Generalize types of let-bound variables/funs.
to obtain type schemes Vp. (—p) — (B—B)

e Specialize type schemes at variable use

e This is called
— ML-polymorphism
— let-polymorphism
— Hindley-Milner polymorphism (1969 & 1978)

&> IT University of Copenhagen www.itu.dk 15

Restrictions on ML polymorphism, 1

e Only let-bound variables and functions can
have a polymorphic type

e A parameter’s type is never polymorphic:

let £f g =g 7 + g false

e A function is not polymorphic in its own body:

let rec h x =
if true then 22
else h 7 + h false

Eé} IT University of Copenhagen www.itu.dk 16

Restrictions on ML polymorphism, 2

e Types must be finite and non-circular

f £ “JIIIIIIIIIIIIIIII

e Guess X has type a
e Then £ must have type a—f for some

e But because we apply £ to itself in (£ £), we
must have a = oa—p

e But then a = (a—f)—p = ((a—p) =P)—P = ...
IS not a finite type

e So the example is ill-typed

let rec £ x

N
:C;? IT University of Copenhagen www.itu.dk 17

Restrictions on ML polymorphism, 3

e A type parameter that is used in an enclosing
scope cannot be generalized

1etfx—R ! /

let g y 1f x—y then 11 else 22

in false
) f42gliiIIIIIIIIIIIIII ‘II'IIIIIIIIIIIIII'

e Reason: If this were well-typed, we would
compare X (42) with y (false), not good...

ﬁé IT University of Copenhagen www.itu.dk 18

Joint exercises

e Which of these are well-typed, and why/not?

let £ x =1
in £ £

let £ g g g

let £ x

let gy =y
in g false
in £ 42

let £ x =
let g y = 1f true then y else x
in g false

in £ 42

&> IT University of Copenhagen www.itu.dk

Type rules for ML-polymorphism

pHi:int
p=b:bool

p(x) =Vou,..., 0.1
e SRR

pFer:int pFex:int

pHe; +e;:int
pHer:int pFex:int

pFe; <er:bool

pke.:t, plx—VYo,...,0.0]Fep:t o,...,0, not free

p-letx=e, inep end : ¢
pHe;:bool pkey:t pHes:t

pHif e; thene; elsee;:f

px—te,f—H—t|Fe 1t plf— You,...,0ntx = t]Fep:t oi,...,0, not free in p

pHlet fx=e,ine, end : ¢
pre:ty—1, pHe:ty

pkey et

v . ' -

Joint exercises

e Draw the type trees for some of these

let x =1
in x < 2

let £ x =1
in £ 2 + £ false

let £ x =1
in £ £

&> IT University of Copenhagen www.itu.dk

21

Programming type inference

e Algorithm W (Damas & Milner 1982) with
many later improvements

e Symbolic type equation solving by
— Unification
— The union-find data structure

e "Not free in p” formalized by binding levels:

o:0

F

Ollet £ x =
1[1let gﬁ§m= ifix=y>then 11 else 22

in g false
in £ 42

e Since B-level < g-level, do not generalize B

&> IT University of Copenhagen www.itu.dk

Unification of two types, unify(t,,t,)

Type t; Type t, Action
int int No action
bool bool No action

u nifY(t1x1t2x) and u nifY(tlrltZr)

o o No action
o § Make a=f
o t, Make a=t, unless t, contains o
t, B Make B=t; unless t, contains p

All other cases

Fai

ure, type error!

&> IT University of Copenhagen

www.itu.dk

The union-find data structure

e A graph of nodes (type variables) divided
into disjoint classes

e Fach class has a representative node

e Operations:
- New: create new node (type variable)
- Find(n): find representative of node n’s class
- Union(n1,n2): join the classes of n1 and n2

&> IT University of Copenhagen www.itu.dk

24

Type inference for micro-ML, 1

let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
match e with
| CstI 1 -> Typl
| CstB b -> TypB
| Var x -> specialize 1lvl (lookup env x)

pHi:int typpe=t
sy pr— if and only if
pe:t

p(x) =Vou,..., 0.t

&> IT University of Copenhagen www.itu.dk 25

Type inference for micro-ML, 2

let rec typ (lvl : int) (env : tenv) (e : expr) : typ =
match e with
| Prim(ope, el, e2) ->
let t1 = typ 1lvl env el
let t2 = typ 1lvl env e2
match ope with
| "*" -> (unify TypI tl; unify TypI t2; TypI)
| "+" -> (unify TypI tl; unify TypI t2; TypI)
| "=" -> (unify t1 t2; TypB)
| "<" =-> (unify TypI tl; unify TypI t2; TypB)
| "&" -> (unify TypB tl; unify TypB t2; TypB)
| -> failwith ("unknown primitive " * ope)

pFep:int pFHey:int

pHe; +e:int

pFep:int pFHer:int

pHe; < e:bool

Type inference for micro-ML, 3

let rec typ (lvl : int) (env : tenv) (e : expr) : typ
match e with
| If(el, e2, e3) ->
let t2 = typ 1lvl env e2
let t3 = typ 1lvl env e3
unify TypB (typ 1lvl env el);
unify t2 t3;
t2

p~e; :bool pHey:t pHes:t

PpHif e; thene; else ez :f

&> IT University of Copenhagen www.itu.dk

27

Type inference for micro-ML, 4

let rec typ (lvl : int) (env : tenv) (e : expr) : typ
match e with
| ...
| Let(x, eRhs, letBody) ->
let 1lvll = 1vl + 1
let resTy = typ lvll env eRhs
let letEnv = (x, generalize 1lvl resTy) :: env
typ lvl letEnv letBody

pHe :t, plx — You,...,0.0] Fep:t oq,...,0, not free in p

pHletx=e¢,1inep end : ¢

&> IT University of Copenhagen www.itu.dk

28

Properties of ML-style polymorphism

e The type found by the inference algorithm is
the most general one: the principal type

e Consequence: Type checking can be modular
e Types can be large and type inference slow:

let 1d x = x

let pair x y p=p x VY
let pl p = pair id id p
let p2 p = pair pl pl p
let p3 p = pair p2 p2 p
let p4 p = pair p3 p3 p;;
let PS5 p = pair p4 p4 p;;

e In practice types are small and inference fast

&> IT University of Copenhagen www.itu.dk

Type inference in C# 3.0

var x = “hello”; // Inferred type: String
.. Xx.Length ..
x = 17; // Type error

e No polymorphic generalization

e Can infer parameter type of anonymous
function from context: xs.Where (x=>x*x>5)

e Cannot infer type of anonymous function

e Parameter types in methods
— must be declared

— cannot be inferred, because C# allows method
overloading ...

J 1T University of Copenhagen www.itu.dk 30

Polymorphism (generics) in Java and C#

e Polymorphic types

interface IEnumerable<T> { ... }
class List<T> : IEnumerable<T> { ... }
struct Pair<T,U> { T f£st; U snd; ... }

delegate R Func<A,R>(A x);

e Polymorphic methods
void Process<T> (Action<T> act, T[] xs) ’
void <T> Process (Action<T> act, T[] arr) ’

e Type parameter constraints
void Sort<T> (T[] arr) where T : IComparable<T> -

void <T extends Comparable<T>> Sort (T[] arr) ‘
31

= IT University of Copenhagen www.itu.dk

Variance in type parameters

e Assume Student subtype of Person

void PrintPeople (IEnumerable<Person> ps) { ... }

IEnumerable<Student> students = ... ;
e C# 3 and Java:

— A generic type is invariant in its parameter
— I<Student> is not subtype of I<Person>

e Co-variance (co=with):
- I<Student> is subtype of I<Person>

e Contra-variance (contra=against):
— I<Person> is subtype of I<Student>

&> IT University of Copenhagen www.itu.dk 32

Co-/contra-variance is unsafe in general

e Co-variance is unsafe in general

List<Student> ss = new List<Stude :

List<Person> ps = ss;
ps.Add (new Person(...));
Student s0 = ss[0];

e Contra-variance is unsafe in general

List<Person> ps = ...; d
List<Student> ss = ps;
Student s0 = ss[0];

e But:

— co-variance OK if we only read (output) from list
— contra-variance OK if we only write (input) to list

ﬁé IT University of Copenhagen www.itu.dk 33

Java 5 wildcards

e Use-side co-variance

void PrintPeople (ArrayList<? extends Person> ps) {
for (Person p : ps) { .. }

}
PrintPeople (new ArrayList<Student>()) ; ‘

e Use-side contra-variance

void AddStudentTolList (ArrayList<? super Student> ss) {
ss.add (new Student()) ;

}

AddStudentTolist (new ArrayList<Person>()) ;

&> IT University of Copenhagen www.itu.dk 34

Co-variance in interfaces (C# 4)

e When an I<T> only produces/outputs T's,
it is safe to use an I<Student>
where a I<Person> is expected

e This is co-variance
e Co-variance is declared with the out modifier

interface IEnumerable<out T> {
IEnumerator<T> GetEnumerator () ;

}

interface IEnumerator<out T> {
T Current { get; }

}

e Type T can be used only in output position;
e.g. not as method argument (input)

> IT University of Copenhagen www.itu.dk 35

Contra-variance in interfaces (C# 4)

e When an I<T> only consumes/inputs T's,
it is safe to use an I<Person>
where an I<Student> is expected

e This is contra-variance
e Contra-variance is declared with in modifier

interface IComparer<in T> {
int Compare(T x, T y)
}

e Type T can be used only in input position;
e.g. not as method return type (output)

&> IT University of Copenhagen www.itu.dk 36

Variance in function types (C# 4)

o A C# delegate type is

— co-variant in return type (output)
— contra-variant in parameters types (input)

e Return type co-variance:

Func<int, Student> nthStudent = ...
Func<int, Person> nthPerson = nthStudent;

e Argument type contra-variance:

Func<Person,int> personAge = ...
Func<Student, int> studentAge = personAge;

e F# does not support co-variance or contra-
variance (yet?)

& 1T University of Copenhagen www.itu.dk

37

Reading and homework

e This week’s lecture:
— PLC sections A.11-A.12 and 5.1-5.5 and 6.1-6.7
- Exercises 6.1, 6.2, 6.3, 6.4, 6.5

e Next week's lecture:
— PLCSD chapter 7
— Strachey: Fundamental Concepts in ...

— Kernighan & Richie: The C programming
language, chapter 5.1-5.5

&> IT University of Copenhagen www.itu.dk

38

