
1

IT Project Failures, Causes and Cures
Graphical Abstract

Accident
Damage: 1 house smashed

 1 person killed
Cause 1: Crane overloaded
Cause 2: Faulty tilt sensor

Cure: Always test sensor before work

New health record system
Damage: Fewer patients per hour

 8,000 frustrated clinicians . . .
Cause 1: Didn’t plan the new work processes
Cause 2: Wanted everything at once . . .
Cures: Problem-oriented requirements

 Deploy part-by-part . . .

Received February 23, 2020, accepted March 30, 2020, date of publication April 8, 2020, date of current version April 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2986545

IT Project Failures, Causes and Cures
SOREN LAUESEN
Computer Science Department, IT University of Copenhagen, 2300 Copenhagen, Denmark

e-mail: slauesen@itu.dk

ABSTRACT We have known for decades that IT projects often fail. The usual explanation is that the cause
is poor project management, poor cost estimation, poor requirements, etc. But how can we prevent these
causes? To answer this question, it is not sufficient to know that there was poor project management, etc.
Would it suffice to educate better project managers? And what would we have to teach them that they don’t
learn today?We have to knowwhat actually took place in the projects, identify the root causes, and find ways
to prevent them (cures). This is similar to accident investigations in aviation. This paper reports the results
of five accident investigations of large government IT projects in Denmark. We identified 37 root causes
and 22 potential cures. Surprisingly, only one of the causes is programming-related. Each project suffered
from around 15 of the causes. Twenty-seven of the causes are not reported in the research literature on IT
project failures (e.g. surprises with system integration and wrong estimate of human performance). Half of
the cures are familiar to developers, but were ignored in the specific project (example: usability test). The
rest are unfamiliar (e.g. problem-oriented requirements and monitoring remaining work).

INDEX TERMS Project management, project failure, accident prevention, software development.

I. INTRODUCTION
We have known for decades that IT projects often fail. The
usual explanation is that it is caused by poor project man-
agement, poor cost estimation, poor requirements, etc. [2],
[13], [22] But how can we prevent these causes? To answer
this question, it is not sufficient to know that there was poor
project management, etc. Would it suffice to educate better
project managers? And what would we have to teach them
that they don’t learn today? We have to know what actually
took place in the projects, identify the root causes and find
ways to prevent them (cures).

Let us compare with the situation in aviation. Flight acci-
dents are by definition events that cause significant damage
to persons and/or aircraft. How do the investigation boards
prevent accidents? They are not satisfied with knowing that
it was a pilot error and that 80% of accidents are caused by
pilot errors. They find out what actually happened during the
flight (the time line) and what caused the accident.
Example: A plane crashes into a forest. What happened?

Shortly after takeoff, one of the AI’s (Attitude Indicators or
artificial horizons) fails. The pilot turns a switch that makes
both pilots see the same AI. However, he turns the switch in
the wrong direction so that both pilots see the failing AI. This

The associate editor coordinating the review of this manuscript and

approving it for publication was Resul Das .

is the primary cause of the accident. Why did he do it? He
had been trained with a switch version that worked as the
pilot expected (this is a root cause).
The board may have to ask ‘‘why’’ again - maybe sev-

eral times - to find more root causes, e.g. about certifica-
tion. There are other causes too, e.g. that it was a dark and
misty night. When the board knows the causes, they can
come up with ways to prevent similar accidents in future
flights.

Finding out what happened and why, is usually difficult.
It may require technical investigations, interviews, flight
recorder data, medical records of the pilot, weather data. The
board uses whatever is necessary in the specific case. The
investigation report is published.

In the IT world, we will define an accident as a project with
significant damage, e.g. large cost or schedule overrun, fail-
ing business goals, low usability, etc. Accident investigations
in IT projects are rarely published, and as a result, we know
little about the root causes [2].

This paper reports the results of five accident investiga-
tions of large government IT projects in Denmark. Like most
government projects, they were outsourced with fixed-price
contracts. The author and project-specific co-investigators
identified 37 different causes, each of which caused damage
to one or more projects (see table 2). As discussed below,
27 of these causes are apparently not reported in the research

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 72059

https://orcid.org/0000-0003-2300-6934
https://orcid.org/0000-0002-6113-4649

S. Lauesen: IT Project Failures, Causes and Cures

literature on IT project failures (e.g. surprises with system
integration and wrong estimate of human performance). Fur-
ther, we came up with 22 cures that in combination could
have prevented most of the damages (see table 3). Half of
the cures are familiar to developers, but were ignored in the
specific project (example: usability test). The rest are unfa-
miliar (e.g. problem-oriented requirements and monitoring
remaining work).
IT developers in industry say that they see the same causes,

but industry practices a few more cures.

II. BACKGROUND
There is a lot of research on IT project failures. I have selected
the following papers to illustrate the various methods for
finding failure causes and cures over time:

Jones, 1995 [4] discusses cost overruns caused by pro-
gramming troubles. He reports 10 causes, e.g. failure to use
code inspection, requirements creep. He suggests 11 cures,
e.g. overtime pay, redevelop modules, complexity analysis,
and terminate project. There is no overlap with the causes
and cures that we found. In general, we found few causes in
the programming area.

Montealegre and Keil, 2000 [14] look at the Denver Inter-
national Airport baggage system (1994). The systemwas cru-
cial for fast transfer of passengers and their baggage from one
flight to another. The system never performed and delayed
opening the airport for years. The authors report the damages
(huge cost and schedule overrun; the system never worked
and even crashed the bags). However, the authors don’t report
any root cause. External consultants tested an isolated loop of
the total conveyor system. This too didn’t work, indicating a
simple technical root cause. However, nobody reacted. Also,
the authors of the paper didn’t notice. Nobody made a true
accident investigation.

Wallace and Keil, 2004 [22] look for correlations between
risk factors and project outcome. They identified 53 risk fac-
tors. Theymade a surveywith 507 software project managers,
asking them about the importance of these factors and the
project outcome in their most recent project. They cover only
7 of our causes, e.g. lack of project goals, lack of management
support.
Jones, 2006 [5] reports why cost estimation is often wrong,

e.g. cost estimates are demanded before requirements are
fully defined, conservative estimates are overruled by man-
agement. It is likely that some of these factors have been at
play in the five projects we have studied, but we cannot see
that they caused damage.

Kappelman et al., 2006 [6] identify 53 project risk factors,
based on literature and interviews with experienced project
managers. The factors can be assessed early in the project,
thus giving early warnings. The factors cover 6 of our causes,
e.g. undocumented requirements, no business case.
Cerpa and Verner, 2009 [2] report that there are few post-

mortem investigations and as a result little is learned. How-
ever, based on questionnaires to 90 software practitioners
in 70 failed projects, they come up with 18 failure causes

such as project underestimated and staff had an unpleasant
experience. They cover 3 (maybe 5) of our causes.

Flyvbjerg and Budzier, 2011 [3] report that some projects
have cost, schedule and benefits much worse than average.
They claim they are able to predict such failures, but don’t
give details. As a cure, they suggest to break large projects
into several smaller projects. This roughly matches one of
our cures. They seem uninterested in finding other cures that
could prevent the failures.

McLeod and MacDonell, 2011 [13] provide an extensive
review of literature and summarize the findings as 18 factors
that can influence success. They break the factors down to
56 sub-factors, e.g. size, complexity, technology, active and
meaningful user participation. However, we cannot see that
these factors relate to the causes we observed.

The papers are based on questionnaires, literature and
sometimes expert knowledge, rather than accident investiga-
tions. This may be the reason they don’t cover more than 9 of
the 37 damage causes we found. Further, little is written about
potential cures, e.g., what we can do to prevent poor project
management or high complexity.

We apparently missed most of the 50+ factors reported by
others. Why? We have looked at these factors, but couldn’t
see that they occurred in our cases. And if they did, they
had no significant effect on the damages. Some factors have
disappeared over time because IT specialists have learned
the lessons. As an example, lack of user involvement was
common earlier. We don’t see this in Denmark anymore.
However, we see cases with excessive user involvement.

III. THE FIVE PROJECTS AND THEIR DAMAGES
In four of the five investigated projects, the author was for-
tunate to work as a consultant to the National Auditors of
Denmark. They act on behalf of the parliament and can get
access to documents and conduct interviews that otherwise
would be extremely hard to get.

The first investigation started late 2009. The National
Auditors looked at the recently deployed Electronic Land
Registry. They contracted with the author to help them with
the IT aspects. They had selected the Land Registry because
the press had focused on it, and because it caused large prob-
lems to citizens and the financial sector. There is a detailed
account of the Land Registry investigation in Lauesen [9].

The other four projects were selected in the same way as
something that caught national attention. The author investi-
gated three of them in cooperationwith theNational Auditors,
and later continued the investigation on his own. The last
project (the health record system) started with an exception-
ally good report written by two thesis students [16]. Laue-
sen continued the investigation, interviewed project staff,
observed surgeons at work, found additional reports, etc.

An investigation of this kind takes around 9 months. You
don’t just make dozens of such investigations. You have to
catch the opportunity when it occurs. As in aviation, it is
important to investigate every accident in order to prevent
similar accidents in the future.

72060 VOLUME 8, 2020

S. Lauesen: IT Project Failures, Causes and Cures

TABLE 1. Damages in the projects. We show the estimated and actual value like this: 3.5 became 7.5. We show that they are almost the same in this way:
Around 85.

The basic facts about the first four projects below, are
extracted from the National Auditor’s reports. Here is a sum-
mary:

1. Electronic land registry [17]: Replace the many paper-
based registration offices with a central electronic reg-
istration of ownership, mortgages, etc. for the entire
nation. It was planned that 30% of the registrations had
to be donewith human intervention, either because they
were complex or because they were selected randomly
for security check. The system had to integrate with
banks, the civil registration system and several other
systems.

2. Electronic travel card [18]: Replace the many ticket
systems with an electronic card for travels by bus, train
and ferry in the entire nation. The contract included also
cabling and scanners in busses, railroad stations, etc.

3. Police case management [19]: Replace the cur-
rent, partly paper-based system for keeping track
of offences, detection, etc., with an electronic one.
The system had to integrate with many existing
systems.

4. Debt collection [20]: Replace the many bailiff offices
in municipalities, electricity corporations, etc. with a
centralized system that automatically finds the best
way to collect debts. The system had to integrate with
around 20 other systems.

5. Health record system [16]: Replace the many clinical
systems in 17 large hospitals with one. The system
had to integrate with 20 other systems and numerous
medico-technical systems.

The projects suffered various kinds of damage, such as cost
overrun, insufficient business results, or low user satisfaction.
Table 1 gives an overview. Four of the projects had large
schedule overruns. Two had large cost overruns. All of them
had insufficient business results. In two of them the supplier
lost a lot of money. For two of them, it was dubious whether
they could ever succeed (feasibility doubts). Two (maybe
three) became a success although they had damages. Only
one of them was never deployed (Police case management).

A general observation was that everybody had tried to
do their best under the given circumstances, yet the project
suffered significant damage.

Were all the projects failures? It depends on how we define
failure. In general it is hard to define what a project failure
is [13, page 8]. Inspired by accident definition in aviation,
we avoid the problem by talking about significant damage.
In some cases, the project has so severe damage that it is
cancelled. We would call this a failure. But it may also be
cancelled for other reasons, such as a better and cheaper
solution appearing on the market. We would not call this a
failure.

Since most projects don’t die, but operate in spite of dam-
ages, we talk about accident investigations, not post-mortem
investigations.

IV. IDENTIFYING WHAT HAPPENED – THE TIME LINE
How canwefind out what happened in an IT project, i.e. make
a timeline? Ideally we would study all documents produced
on the way, interview developers and stakeholders, and study
the system in actual use. In practice it is not that easy for
several reasons:

1. There are so many documents that you don’t know
where to start, e.g. a contract consisting of 2,600 docu-
ments.

2. You cannot get access to the documents.
3. Informants don’t want to be interviewed, are not

allowed to, or cannot set off the time.
4. Managers often consider the system a success, although

developers and stakeholders find it unsuccessful. As a
result, the manager opposes any investigation.

Four of the five projects were investigated by the National
Auditors of Denmark. Normally, the auditors don’t investi-
gate the IT supplier’s role, only the customer’s (the govern-
ment organization). However, the author persuaded them to
involve the suppliers too in these projects. It gave a very
different picture of what happened. This experience made us
involve other stakeholders too. In the Land Registry project
we involved real-estate agents, lawyers, the financial sector
andmunicipalities.We learned that informants often said they

VOLUME 8, 2020 72061

S. Lauesen: IT Project Failures, Causes and Cures

did X (e.g. made a usability test), but when we looked at the
details, it was something else they did (e.g. discussed the user
interface with a few users). It was obvious that we would not
have identified important project events if we had used only
questionnaires and management interviews.

The National Auditors look primarily at the economic and
managerial aspects. So in order to identify the IT-related
aspects, the author gathered additional information in these
ways:

a. Contacted key IT staff and asked for an interview and
discussion. Explained what the purpose was: To iden-
tify damage causes in order that others can learn from
them. The purpose was not to find someone guilty.
This convincedmany participants to tell what happened
from their point of view.

b. Promised to anonymize all sources and allow the infor-
mant to review the report.

c. Gave seminars for experienced developers and project
managers, where the author explained the findings.
Many participants had been involved in one of the five
projects, and they told the author points he had missed,
agreed to meet him later, or told him whom to contact
for further information.

V. IDENTIFYING THE CAUSES
How can we identify the accident causes in the projects?
The author studied each project in cooperation with peo-
ple who were or had been closely involved in the project.
So when I say ‘‘we’’ below, it is different we’s for each
project.

We studied the timeline of the project and identified items
that had amajor effect on the damages. Theywere the primary
causes. Sometimes we had to ask ‘‘why’’ a couple of times
to get the root cause. Next, we generalized the causes to
causes that might appear in other projects too. As an example,
we observed that the new health record system had this dam-
age:Waiting lists grew and the hospitals had to pay overtime
salaries. The cause was that doctors spent longer time on each
patient visit than before. This is a specific cause that won’t
occur in non-medical systems. Can we define a broader cause
that covers other projects?

The Land Registry system was damaged in a similar way,
because the registry staff couldn’t perform as fast as expected.
The registrations piled up and often took weeks instead of
days. As a result, citizens lost money because they couldn’t
get a loan as planned. These two observations became cause
F3: Wrong estimate of human performance.
In total we identified 36 root causes. Table 2 shows all

of them, the projects in which they occurred, and how they
could be prevented (the cures). A full description is available
in [12]. The causes are ordered according to the kind of
development activity where they tend to occur:

A: Analysis, causes A1-A10.
B: Acquisition, causes B1-B3.
C: Design, causes C1-C5.
D: Programming, causes D1-D2

E: Testing, cause E1.
F: Deployment, causes F1-F3.
G: Management, causes G1-G13.
These activities occur in waterfall development as well as

agile. In waterfall, the activities are long, in agile there are
many short ones.

The green causes in table 2 match common IT project fail-
ure literature. Examples: Requirements don’t cover customer
needs (A2); wrong cost estimates (B3). The yellow causes are
mentioned in a Danish investigation (Bonnerup, 2001 [1]).
Examples: Makes heavy demands and believes it is for free
(A4); excessive user involvement (G10). The red causes are
not mentioned as causes in common project failure literature.
Examples: The customer doesn’t assess the proposals (B2);
designs user screens too late (C2).

Some of the red causes arementioned indirectly inmaturity
models or systems development literature. As an example,
maturity models say that the customer must assess the pro-
posal. The assumption is that if he doesn’t do so, it may cause
damage. We provide evidence for this. Similarly, systems
development literature advocate early prototypes.We provide
evidence that not doing so can cause damage.

Some judgement is needed in order to decide whether a
cause in literature matches one of ours. We have been quite
liberal in this judgement. Here is an example:

Kappelman et al. [6] writes as cause 2: Functional
. . . requirements are not documented.

We consider this roughly the same as cause A2: Require-
ments don’t cover customer needs.

Each project was hit by 13 or more causes, which together
caused the observed damages (multiple causes are also
reported by Cerpa and Verner [2]). Most of the causes
occurred in two or more projects. You can read a detailed
account of each project inDamages and damage causes [12].
It also gives details of the causes, how the causes generated
damage, and the potential cures.

In some cases, we have observed a cause that caused
damage in other projects, but not in this one. In table 2 it
is marked with (x). An example is A2: Requirements don’t
cover customer needs. This was the case in all five projects,
but it caused damage in only the first four. In project five,
the health record system, the customer selected one of three
widely used COTS solutions. The selected system could do
everything needed in a hospital, so the requirements were
unnecessary. Fifteen other causes generated the observed
damage.

We are confident that the causes we report actually
occurred. But the opposite may not be true. A project may
suffer from a cause we haven’t reported, because we haven’t
observed it or heard about it. After the first release of the
damage report [12], the author got reports of several causes
he didn’t know.

A. BAD PROGRAMMING?
Only one of the damage causes relate to programming and
test (D1: Surprises with system integration). The rest relate

72062 VOLUME 8, 2020

S. Lauesen: IT Project Failures, Causes and Cures

TABLE 2. Green causes: Covered by common project-failure literature. Yellow: Covered by a Danish investigation, 2001 [1]. Red: Not mentioned in
project-failure literature. Guidelines may mention the cure, but not the cause.

to the early activities, to deployment and to management.
This is a surprise since the belief in the general public
is that IT disasters are about bad programming. Actually,
the suppliers may have had many programming troubles, but

if they have, they don’t tell about them and they are not visible
as damage.

Another possible explanation is that the projects had
few programming troubles because programming is rather

VOLUME 8, 2020 72063

S. Lauesen: IT Project Failures, Causes and Cures

straightforward in all of them. Development tools and pro-
grammer education help doing things right. Further, program-
ming was mostly done in an agile way with close interaction
between developer and customer.

B. TOO MUCH CAN BE HARMFUL
Two well-known damage causes are lack of management
involvement and lack of user involvement. We and Bonnerup
[1] observed these too, but also the opposite: G8: Excessive
management or expert involvement, and G10: Excessive user
involvement.
As an example, the Land Registry project was managed

by an ambitious registry judge, who was a driving force
throughout the entire project. However, he also designed the
user screens in cooperation with a graphical designer. They
didn’t check usability with real users, because the assumption
was that since the expert had designed it, it was good. This
was excessive management involvement as well as excessive
expert involvement. The result was a very cumbersome sys-
tem that even lawyers and real-estate agents found difficult
to use.

C. DO DEVELOPERS KNOW THE CAUSES?
The author has presented the list of causes at many seminars
with seasoned developers and project managers. They always
said that they recognized the causes when they saw them,
yet many of the causes were a surprise. Developers hadn’t
thought of them before.

VI. CURES - PREVENTING THE CAUSES
When we had identified a substantial number of causes,
the author reviewed the list with experts from several areas,
e.g. programming, requirements, UX, function points, and
project management. For each cause, we identified potential
cures. In a few cases we couldn’t point to an existing cure
and tried to invent one. Next, during many of the seminars,
participants reviewed the causes and cures, and provided
their own experiences. Quite often, participants suggested
that agile would cure most of the causes. However, when we
went into detail with "how", it became clear that the term agile
was too broad to make sense as a cure.

Further, if agile was based on user stories as requirements,
they would cover what corresponds to use cases (or tasks,
see below). These are usually around 30% of the full require-
ments. They don’t cover data needs, system integration, busi-
ness goals, exit strategy, etc. If agile meant programming
small parts in close interaction with the user, we couldn’t see
it would cure any of the observed damage causes.

In summary, the list of cures is based on expert experience
and opinion. The "grounded theory" is that the cures can
reduce the causes and consequently the damages. We found
22 cures that together could prevent most of the causes.
Table 3 has a column for each cure with indications of the
causes it would prevent or reduce. The cures are ordered
according to how many causes they could cure. Full descrip-

tions of the cures are available in [12]. We distinguish
between two types of cures: familiar cures, known by most
developers, and unfamiliar cures.
Table 3 shows the unfamiliar cures in red. Examples:

Problem-oriented requirements (CA1), monitor remaining
work (CC2). The other cures are familiar, but were ignored
in one or more projects. Examples: Early prototypes (CC1),
pilot test (CE1). Half of the cures are familiar.

In table 2, the cures and cure types are mentioned for
each damage cause. The table also mentions cure type mis-
informed. It means that the project used a method recom-
mended by government or consultants that actually made
things worse. Examples: Service-oriented architecture (A5);
multi-vendor strategy (A6).

Table 2 and 3 also indicate cure unknown. It means that
we at present don’t have a suggestion, or that we have a
suggestion that only partly cures the problem. Example: How
can we prevent excessive management or excessive expert
involvement (G8)?

According to table 3, the cure with the highest potential
hit-rate is problem-oriented requirements, also called SL-07
requirements. Traditional IEEE 830 requirements describe
what the system shall do. Problem-oriented requirements
describe what the systemwill be used for and which problems
it should remedy. These requirements leave it to the supplier
to suggest a solution, be innovative and use what he has
already.
User stories also try to avoid specifying what the system

shall do, but often they are solutions in disguise. A typical
user story is: As a doctor, I want to see a list of the patient’s
diagnoses. There is little difference from a traditional require-
ment: The system shall be able to show a list of the
patient’s diagnoses. In both cases, we cannot see the context
of use.

Problem-oriented requirements are estimated to cure or
reduce 9 of the 37 damage causes. As an example, they
improve cost estimation because you can compute function
points based on them.

An example of a familiar cure that often is ignored,
is early prototypes of the user interface, combined with
thinking-aloud tests and iterative improvement of the proto-
type (CC1) [15]. This can be done in a systematic way once
you have problem-oriented requirements [8]. It should be
done before any programming is made. Otherwise it is too
expensive to make larger changes to the user interface. Refer-
ence [21] shows that the technique reduced the programming
effort in an industrial project and made the product vastly
more successful. The technique is estimated to cure 5 of the
damage causes.

The technique is well known in UX communities, but
UX people complain that they rarely get a chance to use it.
Usually they are called in at the end of the project to make
the user screens look nice and colorful.

Other cures are obvious once you have identified the cause.
One example is F3: Wrong estimate of human performance
(i.e. how fast the users can work). Once you see the risk,

72064 VOLUME 8, 2020

S. Lauesen: IT Project Failures, Causes and Cures

TABLE 3. Red cures: Unfamiliar techniques. A cause may need more than one cure.

the cure is to measure the human performance early in the
project (POC) and as part of a pilot test.

We have observed several cases where developers claimed
they used a certain cure, but it didn’t help. As a result, they

rejected the cure. Closer examination revealed that they didn’t
understand the cure, but did something else.

In a few cases, we don’t know any cure, e.g. how to avoid
excessive management involvement.

VOLUME 8, 2020 72065

S. Lauesen: IT Project Failures, Causes and Cures

VII. PROBLEM-ORIENTED REQUIREMENTS AND SL-07
Since Problem-oriented requirements can prevent many
problems, but are not widely known, we will explain
a bit.

SL-07 is an exemplary requirements specification for a
health record system. The author wrote it in 2007 on request
from the Danish Government as part of their new standard
contract, K-02. SL-07 has gradually been improved since
then, and now shows realistic examples of all kinds of
requirements, including user-task support, data needs, sys-
tem integration, security, response time, usability, business
goals, early-proof-of-concept, exit strategy, development pro-
cess, etc. All the requirements are problem-oriented: the
customer doesn’t write what the system shall do, but what
he wants to use the system for and the problems he
wants to eliminate. The supplier writes the solution he
proposes.

The free guide booklet [11] shows the requirements and
explains why they are written as they are. The method uses
task descriptions rather than use cases or user stories. Here
is an abbreviated example of requirements written as a task
description. The supplier’s proposed solution is in red.

Task C10. Perform clinical session
Users: Doctors and nurses.
Start: Contact with the patient or start of a patient

conference.
End: When nothing more can be done about the patient

right now.

At first sight, this looks like a use case, but there are
profound differences. A task covers an observable period of
time where one user carries out the task without essential
interruptions. This is the period to support efficiently. Neither
use cases nor user stories use this principle. The left-hand side
describes what the user wants to achieve. A good solution
takes a large share of this.

It is possible to write problems that the customer has today,
without knowing whether a solution exists. Experience shows
that suppliers often have a solution the customer couldn’t
imagine – or they come up with one. See Kuhail & Lauesen
for a systematic comparison of use cases and tasks [7].

In this case, the left-hand side is much the same today
as it will be with the new system. We are just supporting
the present task in a better way. In other cases, the new
tasks will be radically different from today. This was for
instance the case in the land registry project and the travel
card project. In order tomake adequate requirements, we have
to invent (design) the new user tasks. This would help us cure
A8: Doesn’t plan the new work processes and F1: Deploys
the system with insufficient support/training.

Traditional requirements are long lists of tiny use cases,
user stories or functions the system must provide. However,
we cannot see the context in which this functionality will
be used. Nor can we see which problems users and other
stakeholders have today and expect the system to remedy.
As a result, the customer can get a system that meets all
requirements, yet doesn’t cover his needs. The system is
cumbersome to use, doesn’t remedy the present problems,
and doesn’t meet the business goals. With problem-oriented
requirements, we can assess how good the solution is.

Problem-oriented requirements are around five times faster
to write than traditional requirements and five times shorter,
because you don’t have to imagine what the system shall do.
In particular, you don’t have to imagine solutions to your
problems.

SL-07 has been used successfully in more than 100
projects. Requirements for the Y-Foundation [10] is an exam-
ple. It is a complex system comprising applicant website,
casemanagement, paymentmanagement and integrationwith
bank and government sites. The paper shows how it worked in
practice, how disputes about bug versus change-request were
resolved, test cases, time spent, and why we were 9 months
late.

At its presentation at REFSQ 2018 it was recognized as
the first and only publication and discussion of a complex,
real-life requirements specification.

VIII. THE SILVER BULLET OR AN EVER-GROWING LIST
OF CAUSES?
The 37 causes and 22 cures are of course no magic numbers.
They are just what we found in these five projects. As we
analyze more projects, more causes will be found, and clever
experts will come up with more cures.

When the author started this project, he had a list of ten
causes – a nice number. When we had analyzed the first
three projects, the author hesitantly accepted that there were
33 causes. Next, the author was lucky to get information from
many sources about project four, the debt collection system.
It turned out to have two new causes. Project 5, the health
record system, revealed just one more cause. Studying [14],
the Denver airport case, revealed a cause that was observed
in the Police case too, but not recorded: Doesn’t find the root
cause. Now it is cause G13.

So maybe the number won’t grow that fast. However,
the large number of causes and their varied nature explain
why no silver bullet can kill them all.

72066 VOLUME 8, 2020

S. Lauesen: IT Project Failures, Causes and Cures

This study has looked only at large government projects.
Will we find different causes and cures in industry? At the
seminars the author has given, many industry developers have
been present. They too recognize the damage causes and
cures, but they explain that industry has two cures that are not
practiced in government projects: (1) When serious problems
turn up, the project is re-planned. (2) It is no shame to close
a project when it businesswise is a healthy idea.

Do small projects have similar damage causes? Probably
yes. The Y-project above is an example. It was a 200,000$
non-government project and the only damage was a 9-month
delay. The root-causes were: Surprises with system
integration (D2), oversells technology (A5), financial incen-
tives disappear (G5).

Each large project had around 15 damage causes, while
the Y-Foundation had only 3. We don’t know whether it was
because it was small or because it used problem-oriented
requirements.

IX. CONCLUSION
Accident investigations in 5 damaged (‘‘failing’’) IT projects
have identified 37 damage causes and 22 potential cures.
Each project suffered from around 15 of the causes. The
same damage causes and cures apply across projects. As new
projects are investigated, the lists of causes and cures will
probably grow, but slowly.

Some of the cures are well-proven, others are expert sug-
gestions yet to be tried. Even well-proven cures such as
risk management, early prototypes with usability tests and
problem-oriented requirements often fail because developers
misunderstand them or don’t perform them correctly.

A project can use the findings in this way:
1. Apply the cures throughout the project to prevent the

damage causes – and thus the damage.
2. During and after the project, identify any new damage

causes to prevent in the future and any new cure tried
or suggested. Record the results of using the cures.

REFERENCES
[1] Bonnerup/The Technology Advisory Board: Experiences From Govern-

ment IT Projects—How to do it Better, (in Danish), Teknologirådet,
Hvidovre, Denmark, Mar. 2001.

[2] N. Cerpa and J. M. Verner, ‘‘Why did your project fail?’’ Commun. ACM,
vol. 52, no. 12, pp. 130–134, Dec. 2009.

[3] B. Flyvbjerg and A. Budzier, ‘‘Why your IT project may be riskier than
you think,’’ Harvard Business Review, Sep. 2011.

[4] C. Jones, ‘‘Patterns of large software systems: Failure and success,’’ Com-
puter, vol. 28, no. 3, pp. 86–87, Mar. 1995.

[5] C. Jones, ‘‘Social and technical reasons for software project failures,’’
Crosstalk, pp. 4–9, Jun. 2006.

[6] L. Kappelman, R. McKeeman, and L. Zhang, ‘‘Early project warning signs
of IT project failure: The dominant dozen,’’ Inf. Syst. Manage., vol. 23,
pp. 31–36, Fall 2006.

[7] S. Lauesen and M. A. Kuhail, ‘‘Task descriptions versus use
cases,’’ Requirements Eng., vol. 17, no. 1, pp. 3–18, Mar. 2012, doi:
10.1007/s00766-011-0140-1.

[8] S. Lauesen, User Interface Design—A Software Engineering Perspective.
Reading, MA, USA: Addison-Wesley, 2005.

[9] S. Lauesen, ‘‘Why the electronic land registry failed,’’ in Proc. REFSQ.
New York, NY, USA: Springer-Verlag, 2012.

[10] S. Lauesen, Problem-Oriented Requirements in Practice—A Case Study
(Lecture Notes in Computer Science), vol. 10753, E. Kamsties, Ed. Cham,
Switzerland: Springer, 2018, pp. 3–19, doi: 10.1007/978-3-319-77243-
1_1.

[11] S. Lauesen. (2019). Problem-Oriented Requirements SL-
07—Guide and Contract—Version 7. [Online]. Available:
http://www.itu.dk/people/slauesen/SorenReqs.html

[12] S. Lauesen. (2020). Damages and Damage Causes in Large
Government IT Projects, Version 11. pp. 1–59. [Online]. Available:
http://www.itu.dk/people/slauesen/SorenDamages.html

[13] L. McLeod and S. G. MacDonell, ‘‘Factors that affect software systems
development project outcomes: A survey of research,’’ ACM Comput.
Surv., vol. 43, no. 4, pp. 1–56, Oct. 2011.

[14] R. Montealegre and M. Keil, ‘‘De-escalating information technology
projects: Lessons from the Denver international airport,’’ MIS Quart.,
vol. 24, no. 3, pp. 417–447, Sep. 2000.

[15] J. Nielsen, ‘‘The usability engineering life cycle,’’Computer, vol. 25, no. 3,
pp. 12–22, Mar. 1992.

[16] O. Metcalf-Rinaldo, S. M. Jensen. (Jul. 2017). Learnings from
the implementation of Epic, pp. 1–77. [Online]. Available:
http://www.itu.dk/people/slauesen/SorenDamages.html

[17] Beretning Til Statsrevisorerne om Det Digitale Tinglysningsprojekt,
(in Danish), Rigsrevisionen, Copenhagen, Denmark, Aug. 2010, pp. 1–74.

[18] Beretning Til Statsrevisorerne om Rejsekortprojektet, (in Danish), Report
to the State Auditors on the Travel Card project, Rigsrevisionen,
Copenhagen, Denmark, Jun. 2011, pp. 1–47.

[19] Beretning Til Statsrevisorerne om Politiets It-System POLSAG (Report
to the State Auditors on the police IT system POLSAG), (in Danish),
Rigsrevisionen, Copenhagen, Denmark, Mar. 2013, pp. 1–56.

[20] Beretning til Statsrevisorerne om SKATs Systemmodernisering (Report
to the State Auditors on Tax’s System Renovation), (in Danish),
Rigsrevisionen, Copenhagen, Denmark, Jan. 2015, pp. 1–34.

[21] O. Vinter and S. Lauesen, ‘‘Preventing requirement defects: An experiment
in process improvement,’’ Requirements Eng. J., vol. 6, pp. 37–50, 2001.

[22] L. Wallace and M. Keil, ‘‘Software project risks and their effect on out-
comes,’’ Commun. ACM, vol. 47, no. 4, pp. 68–73, Apr. 2004.

SOREN LAUESEN received the M.Sc. degree
in mathematics & physics from the Univer-
sity of Copenhagen, Denmark, in 1965, and the
B.Com. degree from the Copenhagen Business
School, Denmark, in 1979. From 1962–1973,
he worked as a developer/department manager
at Regnecentralen, Denmark (Danish computer
manufacturer). From 1969–1972, he was a part-
time associate professor at the University of
Copenhagen, and co-founder of the first computer

science education in Denmark. From 1973–1976, he was co-founder of
the software development department at Brown Boveri, Copenhagen (now
ABB). From 1976–1979, he was a visiting professor at the University
of Copenhagen, and department manager for the last two years. From
1979–1985, he was co-founder of the software development center at NCR,
Copenhagen. From 1985–1999, he was a professor at Copenhagen Busi-
ness School, and co-founder of the combination education in business and
computer science. During this time, he also served as Head of Department
from 1992 to 1996. In 1999, he became a professor at the IT University of
Copenhagen, where he served for twenty years. Since September of 2019,
he has been Professor Emeritus at the IT University of Copenhagen.

VOLUME 8, 2020 72067

http://dx.doi.org/10.1007/s00766-011-0140-1
http://dx.doi.org/10.1007/978-3-319-77243-1_1
http://dx.doi.org/10.1007/978-3-319-77243-1_1

	DamageIEEE_Access_GA
	DamagesIEEE_Access
	INTRODUCTION
	BACKGROUND
	THE FIVE PROJECTS AND THEIR DAMAGES
	IDENTIFYING WHAT HAPPENED – THE TIME LINE
	IDENTIFYING THE CAUSES
	BAD PROGRAMMING?
	TOO MUCH CAN BE HARMFUL
	DO DEVELOPERS KNOW THE CAUSES?

	CURES - PREVENTING THE CAUSES
	PROBLEM-ORIENTED REQUIREMENTS AND SL-07
	THE SILVER BULLET OR AN EVER-GROWING LISTOF CAUSES?
	CONCLUSION
	REFERENCES
	Biographies
	SOREN LAUESEN

