
Guide to
Requirements SL-07

Template with Examples v2

Soren Lauesen 2011

Buy the guide as a handy booklet on
www.amazon.com

Soren Lauesen
Guide to Requirements SL-07 v2 - Template with Examples
Version 2, 2011

© Soren Lauesen, 2011

Layout and cover: The author

Cover picture: Rob Gonsalves: "The Sun Sets Sail"
Kindly made available by Saper Galleries, East Lansing, Michigan, USA

The picture symbolizes the transition from
requirements (the bridge) to the product (the ship)

ISBN: 978-87-992344-1-7
Lauesen Publishing

Contents
1. The purpose of the template.......................5

1.1. Beware of template blindness5
1.2. The major requirements dangers6
1.3. The right requirement level.....................6
1.4. Precise (verifiable) requirements............7
1.5. Cover the important demands7
1.6. Early mitigation of major risks8

2. Gathering the requirements........................8
2.1. Centralize the work.................................8
2.2. Involve the stakeholders and maybe

the suppliers...9
2.3. Early change control...............................9

3. Contract issues..10
3.1. When solution doesn't meet demand ...10
3.2. Rights to terminate the contract and

try another supplier...............................11
3.3. Exceeding expectations11
3.4. Alternative solutions11

4. Assessing proposals.................................12
5. Testing the system13
6. Guide to the template sections.................14
A. Background and supplier guide16

A1. Background and vision..........................16
A2. Supplier guide.......................................18

B. High-level demands22
B1. Business goals......................................22
B2. Early proof of concept24
B3. and B4. Selection criteria24

C. Tasks to support34
Work areas..34
C1. Admit patient before arrival - a simple

task...36
C2. Admit immediately38
C10. Perform clinical session - a complex

task...38
C11. Prescribe medicine - a long subtask ...40
C18. Perform clinical session - in another

environment ...40
Avoid use-case-like tasks............................40
Don't describe data as subtasks..................42
Tasks have no preconditions.......................42
Flows and BPMN - overview, not

requirements ..43

D. Data to record ... 44
D1. Diagnosis ... 46
D2. Diagnosis type 48
D3. Service... 48

E. Other functional requirements 52
E1. System generated events 52
E2. Reports .. 52
E3. Business rules and complex

calculations.. 54
E4. Expansion of the system 56

F. Integration with external systems 58
SOA or data replication? 58
F0. Common integration requirements 60
F1. NHC ... 62
F2. Labsys.. 64
F10. Integration with new external systems 66

G. Technical IT architecture 68
G1. Existing hardware and software........... 68
G2. New hardware and software 68
G3. The supplier operates the system........ 68

H. Security ... 70
H1. Login and access rights for users 70
H2. Security management 72
H3. Protection against data loss................. 73
H4. Protection against unintended user

actions ... 73
H5. Protection against threats 74

I. Usability and design 76
I1. Ease-of-learning and task efficiency...... 76
I2. Accessibility and Look-and-Feel 78

J. Other requirements and deliverables...... 80
J1. Other standards to obey 80
J2. User training ... 80
J3. Documentation 82
J4. Data conversion.................................... 82
J5. Installation .. 82

K. The customer's deliverables 84
L. Operation, support, and maintenance 86

L1. Response times.................................... 86
L2. Availability .. 90
L3. Data storage... 90
L4. Support... 92
L5. Maintenance... 94

7. Literature and other templates 96

4

Background

IT developers and consultants often ask for an exemplary requirements specification
as a starting point for their specific project. This document is the guide to such a
specification, Requirements Template SL-07. The specification itself is a template
filled out with a complex example: requirements for an Electronic Health Record
system (EHR). A few points, for instance web access, had to be illustrated with
examples from other areas.

You can download the requirements template from

http://www.itu.dk/people/slauesen/SorenReqs.html#SL-07

Requirements SL-07 uses a formulation based on experience with public IT tenders,
in particular when the system is COTS based (Commercial Off-The-Shelf) so that
large parts of it may exist already. Later, the approach proved advantageous for
other kinds of acquisition too, and even for product development and agile in-house
projects.

I wrote large parts of the template and the guide on request from the Danish Min-
istry of Research, Technology and Development, as part of their standard contract
for software acquisition (K02). I am grateful to Bo Gad Køhlert, Anders Lisdorf and
Garry Hopwood for careful reviews of the documents.

Earlier versions of the template have been used with success in 60 very different
projects, tender processes as well as in-house projects, agile as well as waterfall,
for instance: the new CMS of the Danish Defense, a pharmaceutical company's
innovative document management system, a system for managing 1500 windmills.

Experiences from these 60 projects helped me write this version of the booklet -
version 2. Among other things it includes a novel approach to integration require-
ments and systematic criteria for selecting a supplier.

I have learned that the approach is very powerful, but most practitioners get it all
wrong the first time, particularly the tasks in Chapter C. After a bit of help they get
it right. Half of them become great - and even improve the SL-07 approach.

Any comments - positive as well as negative - are most welcome and will help me
improve future versions.

Soren Lauesen
The IT University of Copenhagen, May 22, 2011
slauesen@itu.dk

 http://www.itu.dk/people/slauesen

5

1. The purpose of the template
IT requirements may be formulated in many ways. The main principle in Require-
ments template SL-07 is to strike a constructive balance between customer and
supplier. They should for instance share the risk in a fair way. The customer should
not write very detailed requirements, yet make sure that his real demands are met.
And the supplier should have a chance to be innovative and build on what he has
already.

The template achieves this by means of two columns for the requirements: Column
1 shows the customer's demands. Column 2 shows the corresponding solution
imagined by the customer or proposed by the supplier (see examples on page 20).
Depending on the kind of project, the parties can cooperate to improve the solution
and/or modify the demands, or the customer can choose one of several suppliers
according to the suitability of their solutions.

The experience is that column 1 (demands) is rather stable, while column 2 (solu-
tions) changes as the parties learn about the possibilities. This also makes the
approach suitable for agile development.

When customer and supplier are two different companies, there will usually be a
contract in addition to the requirements. The requirements will be an appendix to
the contract. There are no fixed rules for what to put in the contract and what to
put in appendices.

Requirements template SL-07 uses an Electronic Health Record system (EHR) as
the main example. The example is slightly simplified to make it easier to under-
stand for readers outside the hospital area. The EHR area is very complex, so the
example illustrates how to deal with difficult requirements. Only a few kinds of
requirements had to be illustrated with examples outside EHR.

You can reuse large parts of the example in other projects. However, don't blindly
reuse parts in [blue]. They are very EHR specific, or they are advice to the cus-
tomer that isn't intended for the supplier.

1.1. Beware of template blindness
Using a template easily causes template blindness: Your worldview narrows down to
what the template deals with.

It doesn't cover everything
The template doesn't cover all kinds of requirements for all projects, although it
shows typical requirements within each requirement area. For your specific project,
you must add the requirements needed in your case. Listen carefully to the cus-
tomer and users and make sure their concerns are adequately covered by the
requirements in one way or another.

It comprises too much
At the same time the template may comprise more than needed for your specific
project. You easily include the unnecessary parts. The result may be that you pay
far too much for the system, or that no supplier sends a proposal. As an example,
the template contains requirements that will allow the customer to expand the
system on his own. This may be costly and it is rarely necessary.

6

Look at each requirement and ask: What would happen if this was omitted? If in
doubt, find out.

It includes very demanding requirements
A requirement may be relevant, but too demanding. As an example, the template
requires response times around a second for systems that are used intensely on a
daily basis. However, if the system is a website that users rarely access, response
times may be longer without much harm.

1.2. The major requirements dangers
Experiences from tender processes show that some major problems occur over and
over again. This guide can help you avoid the following dangers:

a. The requirements are on the wrong demand level. They may be so solution-
focused that only a single supplier can meet them. Or they may be so business-
focused that the supplier cannot take responsibility for them.

b. The requirements are too imprecise to verify. You cannot test whether they are
met. Or they may be so open-ended that you cannot compare the supplier's
proposals.

c. The requirements don't cover the important demands. Even if the requirements
are met, the user needs and business goals are not met.

d. The major risks appear too late. Often much of the functionality is delivered
early and the customer deploys part of the system. The hard parts are post-
poned. Eventually it turns out that the supplier cannot deliver the hard parts,
but due to time pressure, the customer ends up accepting the unsatisfactory
system anyway.

We elaborate on these issues below.

1.3. The right requirement level
The requirements may describe the system in too much detail. The result may be
that at most one supplier can meet them. On the other hand, requirements may be
so high-level that the supplier cannot take responsibility for them. There has to be a
balance. We distinguish between four requirement levels:

Requirement 1 (goal-level: too business oriented). The system must ensure that
the number of medication errors is reduced from the present 10% to 2%.

Comment: This requirement is on a too high level. It comprises business issues that
are the customer's area of responsibility. The supplier cannot meet this requirement
on his own. The customer is needed too, for instance to train staff and to record the
necessary data.

Requirement 2 (domain-level: adequate balance). The system must support user
tasks C1 to C7.

Comment: The description of a user task explains what the two parties, user and
computer, must do together. Task descriptions resemble "use cases" but don't
specify what each party does. In a task you can also specify that something is a
problem that should be eliminated. You don't have to specify how. This kind of

7

requirement allows the supplier to take responsibility for it, yet it can be met in
several ways. The template uses this approach as far as possible.

Requirement 3 (product-level: a required function with hidden purpose). The
system must show an overview of the patient's diagnoses.

Comment: We cannot see the purpose of this overview. Is it to find a treatment,
explain a new symptom, or write a patient report? As a result we cannot judge
whether the supplier's solution is adequate. This is the traditional way of writing
requirements and a major reason why customers don't get what they expect -
although they get what they ask for.

Requirement 4 (design-level: too solution oriented). The system must show the
patient's diagnoses as a hierarchical structure. Clicking on plus and minus must
show the subordinate and superior diagnoses.

Comment: This requirement describes a solution. It is inspired by a system the
customer has seen. It specifies a particular solution, and suppliers with a different,
but better solution must be discarded because it doesn't meet the requirement.

1.4. Precise (verifiable) requirements
The requirements must be so precise that they can be verified, i.e. we can decide
whether the requirements are met. Precision has nothing to do with the demand
level. As an example, requirements 3 and 4 above can be verified when the system
is delivered. Requirement 1 can be verified when the system has been used for
some time.

Requirement 2 can also be verified, but on a scale of degrees. Some systems may
support the tasks well, others less well, but still adequately. The customer's staff
can assess how well by walking through the tasks with each supplier, looking at the
screens or screen outlines and noting down how well the tasks are supported (see
Chapter 4). This assessment is essential for choosing the best supplier.

Here is a requirement that cannot be verified. It is not clear how to measure "easy
to use" and decide when it is good enough:

Requirement 5 (not verifiable). The system must be easy to use.

A requirement may be verifiable, yet express a demand so vaguely that we cannot
compare the solutions. Here is an example:

Requirement 6 (demand too open-ended: hard to compare the proposals). The
supplier is asked to describe his software integration strategy.

Comment: This requirement can be verified already at proposal time. All you have
to do is to check that the supplier has described a strategy. However it is hard to
compare the strategies because they are "novels" in free style.

1.5. Cover the important demands
In practice we see many requirements that are precise, but formulated in such a
way that we cannot judge how good the solution is. Requirement 3 above is an
example. It asks for an overview of the patient's diagnoses, but we cannot see
whether it supports the tasks where an overview is needed.

8

Requirement 2 is better because it specifies the tasks to be supported, and we can
judge whether a given solution supports the tasks adequately.

The purpose of requirement 2 is to support some tasks. Another kind of purpose is
to meet some business goals. For an EHR system, it might be to reduce the number
of medication errors and reduce the length of hospital stays. In order to meet such
goals, it is not sufficient just to acquire a new IT system. We may also have to
change the business processes or carry out some existing tasks in a different way.
Tasks may be supported better through IT, computerized entirely, or handled by
someone else, for instance by the citizens or the suppliers.

Many projects have fine business goals, but nobody cared how to achieve these
goals and how the new system should contribute. The result is usually that the
expected results do not materialize. Section B1 of the template provides a simple
way to trace business goals to requirements. Used properly it can help you rethink
business goals, and come up with innovative solutions.

1.6. Early mitigation of major risks
The major technical risks in a project are usually response time with the full number
of users, ease-of-use, and integration with existing systems. Deficiencies in these
areas are virtually impossible to correct late in the project.

Section B2 of the template asks for an early proof of concept in order to mitigate
the risks. Such a proof is expensive, however, so it isn't reasonable to ask the
supplier to do it without a signed contract. However, he has to do it soon after. If he
cannot provide an early proof, the customer may terminate the contract.

2. Gathering the requirements
The work of gathering and writing the requirements may seem overwhelming,
particularly in a large organization. It is tempting to delegate the work to individual
departments and let a central team edit the whole thing. Don't do that!

a. Each department will look at their own needs. They find it hard to look at it from
a global company perspective. The result is that the requirements reflect the
existing business processes without innovation and cross-departmental im-
provements.

b. The departments usually lack requirements expertise, and as a result the quality
of the requirements becomes poor.

c. The central team doesn't obtain the necessary insight to understand the depart-
ment, so they cannot improve the result - apart from language editing. One
team expressed it in this way:

We didn't understand what they wanted. So we just edited it into one big docu-
ment and sent it to the potential suppliers. They should understand. We didn't
realize until much later that the suppliers didn't understand it either. They just
pretended so and told themselves: "we have to find out later".

2.1. Centralize the work
Let a small team carry out most of the work:

9

1. Gather demands, visions and wishes from the various stakeholders (including the
departments, expert users, managers and clients).

2. Transform it into requirements according to this guide and the template.
3. Validate the requirements with the stakeholders and revise as needed.
4. Send the requirements to the potential suppliers, usually in cooperation with

legal expertise.
5. Assess the received proposals in cooperation with the stakeholders.

The team should consist of 3-5 members with expertise from as many work areas
as possible, including the IT function. At least one of the team members must have
requirements expertise.

This approach can reduce the total work to one fifth of the decentralized approach.
At the same time, the quality of the requirements increases dramatically.

2.2. Involve the stakeholders and maybe the suppliers
Although the team has broad expertise, it cannot know everything. Stakeholders
must be involved too. Here are some ways to do it:

1. Interview users - expert users as well as ordinary users. Ask about present work,
problems in the way things are done today, wishes and visions for the future.

2. Make the users show how they carry out their tasks today, in particular the rare,
but difficult tasks.

3. Collect relevant documents, for example reports and forms used today, screen
dumps, documentation of the existing database and the technical interfaces to
the systems, statistics and operational reports.

4. Run workshops where stakeholders together with team members map the exist-
ing cross-departmental workflow and the ideal workflow.

5. Run brainstorm sessions or focus groups where participants inspire each other to
new ways of doing things.

6. When new work processes are introduced, design them in some detail. As an
example, when clients have to use electronic access rather than personal con-
tact, customer staff has to work in a different way. This is often badly planned,
but little is known about how to do it better. We suggest that you write task de-
scriptions for these future processes and carry them out as role plays to check
that the tasks are adequately described.

7. Visit potential suppliers. They often know how other customers utilize their prod-
ucts, and they can provide contact to them. They can also tell the customer
about possibilities he didn't think of, or new ways to do things.

Some teams just list this very mixed information as requirements. Don't do that! It
easily becomes a long wish list of requirements on a too solution-oriented level. Ask
instead: Why is this wish interesting? When is it needed? What is the purpose?
Which tasks would benefit? The result becomes broader demands that can be
transformed into requirements.

2.3. Early change control
During the requirement process, you gather a lot of ideas, wishes, problems and
potential requirements. Participants can spend oceans of time trying to agree on
what to include, and this blocks progress. Instead park these issues in a safe place
so that the team can progress. The "safe place" is a list of issues to deal with later -
also called a list of requests for change.

10

Review the issues regularly and decide whether to transform them into require-
ments, into possible solutions, reject them, or keep them parked. You will often see
that an issue that seemed impossible to deal with early in the project finds an easy
answer later.

Continue the change control after signing the contract. You should observe that
column 1 (the demands) are rather stable, while column 2 (the solutions) change as
you learn about the possibilities.

3. Contract issues
When the system is developed in-house, there will rarely be a formal contract. The
requirements specify what is to be delivered. Changes in requirements are dis-
cussed during development, and there are no financial penalties between the
parties.

However, when customer and supplier are two different companies, there will
usually be a contract and a requirements specification. The requirements specify
what the supplier must deliver, and the contract specifies what to do when things
don't proceed as expected. What to do when the supplier doesn't deliver on time or
delivers a faulty product; or if the customer has forgotten an important require-
ment?

Lawyers specializing in IT contracts cleverly deal with all kinds of things that may
happen during the project, in much the same way as programmers cleverly deal
with all kinds of events that may happen in the system at run time.

Usually the requirements are one or more appendices to the contract. Other
appendices may contain the supplier's description of the solution, prices for the
deliverables, the implementation schedule, project management, testing, etc.

Requirements SL-07 uses a couple of principles that should be closely coordinated
with the contract:

3.1. When solution doesn't meet demand
All requirements are written in tables. Column 1 specifies the customer's demands,
for instance a particular task to be supported. Column 2 outlines example solutions,
and later - in the contract - the supplier's solution (see example on page 20). The
supplier will usually provide a more comprehensive description of his solution in a
separate appendix.

Now what happens if at delivery time, it turns out that the supplier's solution
doesn't meet the customer's demands? Who must pay for improving the solution?
In many countries the default is that it is the customer's problem - he accepted the
solution by signing the contract. In other countries, the rule is to protect the weak
part - the party with the least understanding of the technicalities, in this case the
customer.

Standard Danish contracts avoid the ambiguity by specifying that the customer's
demands have priority. The supplier is responsible for meeting the customer's
demands. He is responsible for the solution being adequate.

11

3.2. Rights to terminate the contract and try another supplier
Most requirements are low risk. If they have been "forgotten", they are easy to deal
with late in the project. Others are high risk. They are so deeply rooted in the
system architecture that they cannot be dealt with later.

To reduce the risk, Requirements SL-07 uses an early proof of concept (section B2).
The customer - and maybe the supplier - has the right to terminate the contract in
case the early proof of concept isn't satisfactory. This must be stated explicitly in
the contract.

Customers are often reluctant to use this right and terminate the contract, even if
the proof of concept shows that expectations are not met. The customer has
already invested time and effort, and furthermore he would have to repeat the
entire tender process. Make the pain less by stating in the tender announcement
that proposals have to be valid for a period after the winner has been selected.
Explain that this allows the customer to select the next best proposal in case the
best doesn't meet the early proof of concept.

3.3. Exceeding expectations
Some requirements can be met to various degrees. Response times, for instance,
can be longer than the customer's expectations, but still be acceptable. Require-
ments SL-07 suggests that the customer states his expectations and the supplier
states what he offers.

If it is a tender process where the customer compares several suppliers, differences
between expectation and proposal influence the supplier's scores. If the supplier
proposes a longer response time, he will score lower on this point. What if he offers
a shorter response time? Will he get an advantage? This has to be stated explicitly
somewhere. The template states it in section A2.2: If the requirements say "or
better", it is an advantage to exceed expectations.

3.4. Alternative solutions
A supplier may send a proposal with alternative solutions. This is useful if he can
deliver an expensive solution that fully meets the customer's requirements, and
alternatively a much cheaper solution that formally doesn't meet all the require-
ments, yet might be okay. He may offer alternatives for several requirements or
requirement areas.

This puts a burden on the customer who has to assess all of this, maybe in different
combinations. For this reason, some tender processes don't allow the supplier to
specify alternatives. On the other hand it is risky. Page 20 (A2.3 - L2 in the tem-
plate) shows a real-life example where the customer inadvertently would lose $3
million a year.

If the customer uses a selection approach with a modest number of sub-criteria
(like section B3 and B4), it is rather easy to assess the marginal difference of two
alternatives and the marginal effect on the final score. We suggest using the
following approach:

1. For a set of alternative solutions, use the first one as the base. Assess the
marginal effect on the final score for the alternative(s).

2. If there is a difference, choose the best alternative. If not, don't make a choice
yet. It can be made after signing the contract.

12

3. Use the same approach for the other sets of alternatives. The result is one
single score for the proposal.

In the A2.3 example, the result would be that the customer chooses the cheapest
alternative, unless there was a significant business advantage of the expensive one.

In order for the approach to give reasonable results, the sets of alternatives must
be independent of each other. The supplier should ensure this.

4. Assessing proposals
In public EU tenders the customer must assess the proposals on a numeric scale
and choose the winner with the highest number. In many other cases it is also a
good idea to assess on a numeric scale, even if it is not formally required.

The basic approach is that the customer looks at each requirement and assesses
how well the solution meets it. The best is to get evidence for it, rather than
opinions. Let the appropriate stakeholders participate in assessment of the various
requirement areas.

As an example let us look at a requirement to support a specific task. Together with
staff familiar with this task, carry out the task with the supplier's proposed system.
Record how well the task is supported. You may try it on your own or - better -
have the supplier show how the task would be carried out. If this is not possible
because the necessary system parts don't exist yet, you must base the assessment
on the supplier's screen outlines or other explanations of his solution. In this case,
you might also note the risk of this not working in practice.

Based on the notes, you can give a single score for support of this task. Sections B3
and B4 of the template suggest scores on a scale of -2 (not supported or very badly
supported) to 2 (very efficient).

For other types of requirements a similar approach should be used. For integration
requirements, the supplier might show how existing integrations work, or explain
how they will work. For documentation requirements, the customer can look at the
supplier's existing documentation. For usability requirements, the customer can run
usability tests or talk to existing users of a similar system that the supplier has
delivered.

Sections B3 and B4 of the template suggest ways to combine the many scores into
requirement areas, weigh them, include business goals and costs, and end up with
a single score for the entire proposal. The sections also show how to guard against
seemingly unimportant requirement areas being supported so badly, that the entire
system may become a disaster.

13

5. Testing the system
Before the customer accepts the new system, he must test it - or have someone
else test it. Otherwise, when defects are found later, he may lose his rights to
terminate the contract or to request the supplier to repair the defects. In many
countries the rule is that in order to win a court case, the customer must prove that
reasonable tests wouldn't have found the defect at the time of delivery.

As a minimum the customer should verify all requirements (i.e. check that they are
met). However, many errors don't relate to specific requirements but to the broad
expectation that the system doesn't crash when users do strange things, or when
the communication lines fail, etc. In order to test for this, we have to look at details
beyond requirements. Here is a brief list of things to test for (see more in Patton,
2006).

1. Test that each requirement is met.
2. For each screen, test each button in various cases and test with boundary

values and unacceptable values in each data field.
3. Test for exceptional events in the surroundings, for example loss of data

communication and crash of external systems.
4. Verify that each branch in the program has been taken.

In medium-sized systems, thousands of test cases are needed and testing may take
weeks. It is common to find hundreds of errors during testing. When the system is
COTS-based (Commercial-Off-The-Shelf) large parts of it exist already. It is usually
unnecessary to make detailed tests of these parts (i.e. points 2, 3 and 4 above).

Testing is often organized in stages:

Installation test: System delivery often starts with installation of the new hard-
ware, software, etc. The purpose of the installation test is to ensure that the
components work together and have basic functionality.

System test: The purpose of the system test is to check that requirements are
met, screens work, etc. according to points 1-4 above. Special test data and
database contents are used to allow testing all the cases.

Deployment test: The purpose of the deployment test is to check that the product
can work satisfactorily in daily operation with production data.

Acceptance test: An acceptance test is a system test plus a deployment test.
These two tests may be performed at different times or in combination.

Operational test: The purpose of the operational test is to check those require-
ments that can be verified only after a period of daily operation. It might be the
response time under real load, breakdown frequency, task time for experienced
users, qualifications of the supplier's hotline, etc.

14

6. Guide to the template sections
The rest of the guide comments the template, section by section. The gray text
boxes are pieces of the template. Page 15, for instance, shows the front page of the
template. Notice that the section numbers A, B . . . in the guide match the chapter
numbers A, B . . . in the template.

You may freely download and use the template for a document as long as you
clearly state the source and copyright notice, for instance as in the footer of the
front page of the template.

Template chapters are numbered A, B, C rather than 1, 2, 3 . . . This is to avoid
confusion with appendix numbers in the contract, which usually are 1, 2, 3. Appen-
dix 2 might for instance be the requirements with the chapters A, B, C . . .

Be cautious about changing the chapter headings. Many people are familiar with the
SL-07 structure and know by heart that Chapter C is tasks and Chapter H security.

The template starts with an introductory page to be deleted in your document. The
next page is the front page of the final requirements (shown on page 15). It states
the name of the system to be delivered. It is convenient to also define a short
system name since several parts of the template refer to the system by name.

The front page also states the name of the customer, the name of the supplier, and
a short description of what the delivery comprises. This helps the reader understand
up front whether the delivery also comprises hardware, operation, etc. If the
requirements specification is an appendix to a contract, the system name, customer
name, etc. will be stated in the contract and are not needed on the requirements.

Some parts are blue and in brackets. These parts must be replaced with something
else in the final requirements - or deleted. Other parts may often be reused.

The front page heading shows when the document was last changed and who
changed it. These are document fields that MS-Word automatically updates when
the document is printed or saved. The heading also shows the version number.
Change the heading as needed to match your company standard.

The page after the front page is the change log. It shows what was changed when
and by whom. Change it as needed to match your company standard.

Chapter A is background information about the project and a guide to the supplier
on how to interpret the text and write a proposal. Chapter B explains the business
goals for the project, what to prove early and how the customer selects the winner.

Chapters C to J specify what the supplier must provide on the day of delivery (i.e.
at the end of acceptance testing). Chapter K specifies what the customer must
provide. Chapter L specifies the supplier's responsibilities after the day of delivery.

Chapters K and L are often separate contract appendices and not requirements
chapters. This is not important as long as they are somewhere.

15

 Version 4.0 02-06-2011, 20:53
 Last changed by: slauesen

Requirements specification for
[Electronic Health Record system

(below called the EHR system)]

Customer
[The … Hospital]

Supplier
…

The delivery comprises
[Software, operation and maintenance for an EHR system]

Contents
A. Background and supplier guide4

A1. Background and vision ..4
A2. Supplier guide..5

B. High-level demands ...8
B1. Business goals ..8
B2. Early proof of concept..9
B3. Selection criteria [Alternative 1: Highest benefit in

dollars]...10
B4. Selection criteria [Alternative 2: Most bang for the

buck]..12
C. Tasks to support ..13
Work area 1: [Patient management]..........................13

C1. [Admit patient before arrival]..............................13
C2. [Admit immediately] ...13

Work area 2: [Patient treatment]................................14
C10. [Perform clinical session].................................14
C11. [Prescribe medicine for the patient (long

subtask)]..15
C18. [Perform clinical session, mobile]15

D. Data to record...16
D1. [Diagnosis]...17
D2. [Diagnosis Type]..18
D3. [Service] ..18

E. Other functional requirements..............................21
E1. System generated events..................................21
E2. Reports..21
E3. Business rules and complex calculations22
E4. Expansion of the system23

F. Integration with external systems.........................24
F0. Common integration requirements.....................25
F1. [NHC]...26
F2. [Labsys] ...27

F10. Integration with new external systems.............28
G. Technical IT architecture29

G1. Existing hardware and software [Alternative 1:
Use what we have]..29

G2. New hardware and software [Alternative 2:
Supplier suggests]...29

G3. The supplier operates the system [Alternative 3:
His problem] ..29

H. Security...30
H1. Login and access rights for users......................30
H2. Security management31
H3. Protection against data loss31
H4. Protection against unintended user actions.......32
H5. Protection against threats..................................32

I. Usability and design..33
I1. Ease-of-learning and task efficiency33
I2. Accessibility and Look-and-Feel34

J. Other requirements and deliverables35
J1. Other standards to obey35
J2. User training...35
J3. Documentation...36
J4. Data conversion ...36
J5. Installation..36

K. The customer's deliverables.................................37
L. Operation, support, and maintenance..................38

L1. Response times ...38
L2. Availability..39
L3. Data storage ..39
L4. Support ..40
L5. Maintenance ..41

This document is based on Requirements Template SL-07. The template (© Soren Lauesen, 2011) may be freely
used in a document on the condition that this copyright clause is stated in the document.

16

A. Background and supplier guide
A1. Background and vision
This section gives the reader a quick overview of the system and its purpose.
Explain the main business goals (why the customer wants to spend money on the
system), but don't go into detail (section B1 elaborates the business goals). Briefly
explain the customer's present situation and his visions about the future.

Context diagrams for the present and future situations are good illustrations. The
arrows show the flow of data. In surprisingly many requirements specifications, it is
unclear what is to be delivered and who will do the integration with other systems.
Make sure to show the system to be delivered as a single box with double-line
borders. Show the integrations that the supplier must perform as double-line
arrows.

In the example, the supplier must deliver his own system including or integrated
with some medication system. He has to integrate with the existing NHC system
and Labsys. The diagram shows that he is not required to integrate with new
external systems. (As specified in section F10, a third party must be able to make
these integrations.)

We often see customers writing a long story about their IT strategy, the historical
development, etc. This is okay if it is limited to a few pages and helps the supplier
understand the situation. However the story is often the customer's internal consid-
erations or political statements that are not relevant to the supplier.

There may be a need for the customer - or his consultant - to explain the internal
considerations in length, for instance the meetings held, the choices made, and the
sources of the requirements, but do it in a separate paper. Not in the requirements.

Also make sure that the background and vision section doesn't contain require-
ments. Requirements have to be in boxes, as explained in the next section.

17

A. Background and supplier guide
A1. Background and vision
[Presently the customer has several old EHR systems that he wants to replace with one system to obtain:

1. more efficient support for the clinical work,
2. better possibilities for integration with future systems,
3. lower cost of operation.]

The customer expects that the supplier has a COTS system (Commercial-Off-The-Shelf system) that can
meet many of the requirements. In return, the customer is willing to change his work processes to a
reasonable extent, as long as the business goals are met (see section B1).

The present and future situations are illustrated with these context diagrams. The box with double-line
border shows the system to be delivered. Double-line arrows show integrations that the supplier is
expected to deliver. [There is presently insufficient integration between the old EHR system and the
medication system. The customer wants an EHR system that includes a medication system.]

Figure 1: Existing system

Old EHR
Labsys

NHC

Medication

Clinician

Patient
management

NHC

Batch transfer
of data

requests,
results

co
de

s

codes

Figure 2: Vision for the new system

Labsys

NHC

New external
systems

Clinician

Patient
management

EHR system

New medica-
tion system requests,

results

codes

Double-line border:
The delivery

Double line:
The supplier integrates

18

A2. Supplier guide
This section explains how the requirements are formulated and how the supplier's
proposal is to be structured. Emphasize is on how to use the tables (the boxes),
what are requirements and what are not.

The intent is that the supplier doesn't need other explanations than this section in
the template. For instance he doesn't need to read this guide. For this reason there
is a fictitious example of a general nature (a hotline application). In most projects
you may use the example exactly as it is. Don't waste time constructing an example
from your own project.

The example shows how the customer has specified variants and present problems
to get rid of, and how he has described solution examples. The chapter also shows
how the supplier specifies his solution.

A2. Supplier guide
This chapter explains the requirements format and how the supplier describes his solution.

All requirements are written in tables:
• Column 1 is the requirement (the customer's demand - what he wants the system to support).
• Column 2 may be a solution example or a proposed solution.
• Column 3 [may be the customer's rating, a reference to a sub-delivery, or something else.]

The requirements are organized in chapters according to their kind, e.g. Chapter C about user tasks to be
supported, Chapter H about security. Within each chapter, the requirements are written in tables, e.g. a
table with requirements relating to a specific task.

A2.1. Functional requirements - fictitious example
Functional requirements may be tasks to support, data to store, systems to integrate, etc. Here is a
fictitious example without relation to the present delivery. The functional requirement is that the system
must support a number of tasks, including C5, and preferably eliminate the current problems.

C5. Handle a request in hotline (fictitious example)
This task describes what a supporter does when he handles a request (a call).

Start: A user calls or sends an email; or the supporter has done something else and now

looks for the next request to handle.
End: The supporter cannot do more about the request right now.
Frequency: In total around 500 calls per day. Per user: A maximum of 100 per day.
Users: First-line supporters with limited technical knowledge.

Subtasks and variants: Example solutions: Code:
1. Receive the request through phone or

email. Or look at the pending requests.

2. Record the request, particularly the user's
phone, email and the cause of the request.

In case of an email request, the
system automatically transfers data
from the email.

2p. Problem: Cumbersome to record, particu-
larly when it is an on-the-spot solution.

2a. It may be an update of an existing request.
Find it.

The system shows possible
matches with the caller's name or
parts of it.

3. Maybe transfer the request to 2nd line.
…

19

Some requirements are quality requirements where the supplier has to offer a
response time, an availability percent, etc. In column 1 the customer explains what
he needs in broad terms, e.g. high availability. In column 2 the supplier must
specify the solution he proposes, for instance 98% availability.

The table lists the subtasks and problems of task C5. There is thus a requirement to support each of the
table lines to some extent. The data about Start, End and Frequency are not in the table, meaning that
they are not requirements (see more below).

The requirements are numbered. Variants of a requirement are marked with letters a, b, etc. In the
example, the supporter may record the request (subtask 2) or find the request if it has been recorded
already (variant 2a). Problems relating to a requirement are marked with the letters p, q, etc. A cross
reference to a subtask, a variant, or a problem will look like this:
 See C5-2 or See problem C5-2p.

Requirement. Column 1 of the table specifies the customer's demand, e.g. a subtask the system must
support, or a problem it should eliminate.

Solution. Column 2 specifies the system's support of the demand. The column may show the customer's
current imagination of a solution - if he has one. This is not a requirement or a wish, but only a possible
solution to help the supplier understand the demand. In many cases the field will be empty. In the reply,
the supplier will fill in the solution he proposes (see section A2.3).

Code. [Column 3 may be used in different ways depending on the nature of the project. The supplier may
fill in column 3 with a code that specifies the sub-delivery (see section A2.4). Or the customer may specify
priorities, or give a score for the supplier's solution.]

Text outside tables
In the example, Start, End, Frequency, and Users are outside the table. They are not requirements, but
assumptions the supplier can make. In general, text outside the tables can serve several purposes:
A. Assumptions behind the requirements, for instance that the task must be supported for this kind of

users, this frequency of use, etc.
B. Requirement notes that elaborate column 1 in the table. In principle they should be inside the table,

but they don't fit well. One example is a list of access rights to the system.
C. Solution notes that elaborate column 2 in the tables. They are not requirements but example

solutions. One example is various ways a user can look up a code in a table.
D. Examples and other information to help the reader understand the requirements.

A2.2. Quality requirements - fictitious example
Some requirements don't specify a function the system should carry out, but a quality such as an amount,
a time limit or the like. Here is a fictitious example:

L2. Availability (fictitious example)
The system is out of operation when it doesn't support some of the users as usual. The cause of the
breakdown may be: …

Availability requirements: Example solutions: Code:
1. In the period from 8:00 to 17:00 on

weekdays, the system must have high
availability.

In these periods the availability is
____%.
(The customer expects 99.5%).

2. In other periods … …

The customer still states his requirement in column 1, but now column 2 specifies how he wants to
measure or structure the reply. In addition, he may state what he expects, i.e. what is sufficient. The
customer may accept something less than expected, but will then give the solution a lower score on this
point. If the supplier offers more than 99.5% it will not give him an advantage. The customer may specify
that more is an advantage by writing 99.5% or better.

20

A2.3. The supplier's reply
In the reply, the supplier fills in column 2 to specify the solution he proposes. He may show alternative
solutions. Here is a possible reply to C5 above:

The supplier has changed the heading of column 2 from example solution to proposed solution. He has
crossed out the example solution that isn't relevant anymore (C5-2). He has shown two solutions to C5-2p,
the present one and the one in the next release. He has shown a solution to C5-2a that exceeds the
customer's example. For C5-3 he refers to a longer description of the solution.

Here is a possible reply to the quality requirement above:

The supplier has specified two solutions: Solution A exceeds the customer's expectation. Since the
customer didn't ask for 99.5% or better, the supplier doesn't get an advantage by exceeding the
expectations. Solution B has a slightly lower availability, but reduces the yearly operational cost
significantly.

C5. Handle a request (fictitious example)
…

Subtasks and variants: Proposed solutions: Code:
1. Receive the request through phone or

email. Or look at the pending requests.

2. Record the request, particularly the
user's phone, email and the cause of
the request.

In case of an email request, the
system automatically transfers data
from the email. (The system has a
semi-automatic capture of email. The
user must initiate the recording.)

2p. Problem: Cumbersome to record,
particularly when it is an on-the-spot
solution.

A. The present version records the
caller based on the email.

B. Release 18 will provide buttons for
easy recording of the most frequent
causes.

2a. It may be an update of an existing
request. Find it.

The system shows possible matches
with the caller's name or parts of it.
The system also provides phonetic
search. See screen 12 in App. x.

3. Maybe transfer the request to 2nd line. See screen 13 in App. x.
…

L2. Availability (fictitious example)
The system is out of operation when it doesn't support some of the users as usual. The cause of the
breakdown may be: …

Availability requirements: Example solutions: Code:
1. In the period from 8:00 to 17:00 on

weekdays, the system must have high
availability.

A: In these periods the availability is
99.8%.
(The customer expects 99.5%).

B: In these periods the availability is
99%. Will reduce yearly operational
cost by roughly $3 million (see …)

2. In other periods … …

21

However, it is hard for the supplier to specify a figure if he doesn't know what the
customer expects. Should he offer an expensive system with high availability or a
cheaper, but less available one? For this reason the customer should state what he
expects, for instance 99.5%.

If the supplier proposes a lower availability, he will not be excluded but he gets a
lower score. If the customer cannot live with a lower availability, he must write the
required percentage in column 1. If the supplier offers a better availability, he may
or may not get an advantage. This has to be explained somewhere. The template
states it in section A2.2: If the requirements say "or better", it is an advantage to
exceed expectations:

Expects 99.5%: Higher is not an advantage.
Expects 99.5% or better: Higher is an advantage.

When the customer writes his expectations, the supplier gets more freedom, but
the principle should not be abused. The customer's expectations should be realistic
and important. As an example it is unrealistic and unimportant to expect a response
time of 1 second for a complex report that is rarely used. A serious supplier may
take great effort to offer an expensive system to match the expectations, while a
cheaper one would suffice.

[In some tender processes the supplier is not allowed to specify alternatives. This is very risky. For the
availability requirement above, the customer may not be aware of the high cost of asking for the last 0.5%.
The result may be that suppliers don't propose the cheap solution, although it probably would suffice. See
more in the guide, section 3.4.]

A2.4. Codes
[Column 3 may be used in different ways depending on the nature of the project. The customer may
specify priorities, or give a score for the supplier's solution.

Another possibility is that the supplier fills in column 3 with a code that specifies the delivery:
1 Part of a COTS system.
2.x An extension of a COTS system, but the extension is covered by the ordinary maintenance agree-

ment. Will be available from delivery stage x.
3.x Custom-made software or an extension of a COTS system that is not covered by the ordinary

maintenance agreement. Will be available from delivery stage x.
4.y Part of a future release that will be supplied under the ordinary maintenance agreement. It will be

available from release y.
5 No support is offered for this requirement.
Alt.z Alternative solutions are offered. This solution is part of alternative z. Use alternatives sparingly.

See the guide, section 3.4.]

A2.5. Practicalities about formatting
The template is an MS-Word document. It uses heading styles on level 1, 2 and sometimes 3, plus a
special heading style, TOC without number. The headings automatically generate the table of contents. In
order to improve the overview, some headings have a forced page break. It may be changed through
Format ? Paragraph ? Line and Page Breaks.

Tables use the table style Requirement Table. It has borders of 3/4 point. It has top and bottom cell
margins of 0.5 mm. Column 1 uses Column1 style (Ctrl+1). It has a hanging indent of 0.75 cm. Within a
table cell, you tabulate with Ctrl+Tab, since Tab alone moves the cursor to the next cell.

22

B. High-level demands
B1. Business goals
This section of the template contains the business goals of the system, arranged in
a table to show how the goals are to be met. Column 1 is the goal; column 2 the
vision - the solution in broad terms; column 3 the requirements that make it possi-
ble. It is emphasized that the goals aren't requirements to the supplier, but back-
ground information. Column 4 allows the customer to state the deadline for meeting
the goal. When stated, it is the deadline for the joint effort of the supplier and
customer. The supplier should bear in mind that the customer also needs time for
the organizational implementation.

The business goals serve several purposes:
a. They tell the supplier what the customer wants to achieve.
b. They are important criteria for choosing a solution.
c. They help the customer check that the crucial requirements are included.

In the example, goal 1 (efficient support of all user tasks) is a very broad goal that
depends on a lot of requirements. It is stated in such a way that it allows the
customer to discard solutions that poorly support one or more tasks. As an exam-
ple, the surgeon needs a good overview of the patient's situation in order to make
the right decision. It must be possible to discard a system with a poor overview
screen although this is just one of 1000 details in the system. Sections B3 and B4
explain how this can become part of the selection criteria.

In the example, the customer had identified goal 3, continuous improvement of the
work processes. However, he hadn't realized that this required a new organizational
structure - an advisory board - that should develop, test, and deploy new standard
procedures for patient treatment. This required IT support, but the customer didn't
realize it until the goal table had to be filled in.

Don't specify a lot of goals. If there are more than 10, check that they are not just
requirements. We often see "goals" of this kind: It must be easy to print consump-
tion reports. Although this was important to one of the stakeholders, it is a simple
system requirement, not a business goal. A business goal is about the results of the
entire organization, not just something the computer can do.

If you cannot write something reasonable in column 2, it may be a sign that the
goal is not a true business goal, but a requirement. As an example, if the goal is: It
must be easy to print consumption reports, it will be hard to write a large scale
solution. If you cannot write a true business goal, simply leave column 2 blank.

Measuring the goals: A really good goal can be measured and compared against
the existing state of affairs. Goal 2 is clearly of this kind. Goal 1 can be measured
on a subjective scale of degrees (e.g. 1 to 5), or as the number of tasks performed
per person per day. Goal 4 could be measured as operational costs before and after
system deployment. Although the goals can be measured, the customer may not
want to reveal the measurements. They might tell the supplier which price the
customer is willing to pay. Section B4 gives an example of how to avoid it.

23

B. High-level demands
This chapter explains how the customer's business goals are met through the requirements and how to
mitigate high-risk requirements.

B1. Business goals
The customer's reason to acquire the system is to reach some business goals. The customer expects that
the system contributes to the goals as stated below. The supplier can rarely reach the goals alone.
Customer contribution is needed too. This means that the goals are not requirements to the supplier.
They are shown in a table only to provide overview.

All goals are important and the sooner they can be met, the better. Some goals are crucial to meet at a
specific date, for instance for business or legal reasons. Such deadlines are shown in the table.

Goals for the new
system

Solution vision Related requirements Deadline

1. Efficient support
of all user tasks.

[All relevant data are available
during the task without switch-
ing between systems. All par-
ties can see the health record.]

Support for all tasks in Chapter C.
System integration, particularly F2.
Adequate response times in L1.

2. [Reduce medica-
tion errors from
10% to 2%.]

[Avoid manual steps - record
the prescription immediately.

The system checks for validity,
drug interaction, etc.]

[Support for task C10 (clinical
session), in particular subtask 2
(assess the state of the patient).
Support for task C11 (prescrip-
tion), almost all the subtasks.]

3. [Continuous
improvement of
the work proc-
esses.]

[Easy to set up and modify
standard treatment plans.
Easy to integrate the system
with new lab systems, etc.]

[Support for task C30 (advisory
board).
Requirements in sections E4 and
F10 (system expansion and
integration with new systems).]

4. Lower opera-
tional costs.

Replace several expertise-
demanding systems with one.

Support for all tasks from the
previously separate work areas.

5. [Meet the new
EU rules on ...]

… … [1-1- 2012]

24

B2. Early proof of concept
This section lists certain high-risk aspects of the project - things that cannot be
amended late in the project. To reduce the risk, the supplier has to provide an early
proof that it is possible to deliver what is required.

Most of the functional requirements are low-risk. It is for instance straightforward to
add some fields and tables to the database, or some simple screens to the user
interface. Most high-risk areas concern the quality requirements. In general, quality
is not an add-on feature.

The template mentions that the contract allows both parties to terminate the
contract if the early proof fails. Make sure this is the case. See more in section 3.2.

Requirements B2-1 to B2-5 specify what is to be tested early. Column 2 provides an
example of how to test it. The supplier may change it to his own test proposal. He
also specifies when the proof will be ready. (Sometimes a supplier may even have a
proof before the contract is signed.)

In general these tests may be expensive, so it is not reasonable that the supplier
has to carry them out before signing the contract.

B3. and B4. Selection criteria
In a tender process, the customer chooses the supplier according to some selection
criteria. To ensure a fair process, the selection criteria must be objective and known
to the supplier in advance. Usually only the following major criteria are relevant:

1. The total business value of the solution.
2. The risk to the customer.
3. The delivery time.
4. The total cost to the customer.

How can these criteria be combined? A pragmatic approach that works well with a
small number of proposals is to look at them in light of the actual case, discard
proposals that are clearly inferior to the rest, and come up with arguments that can
point out the winner among the rest.

However, according to for instance the EU tender rules, this is not allowed because
the customer can fiddle with the criteria so that his favorite supplier becomes the
winner. You have to define the criteria and their weights up front so that you end up
with one single number for each proposal.

This causes problems that often force a customer to select the "wrong" supplier.

Problem A: The customer may be forced to select a supplier that is too weak in an
important business area X, because this area didn't show sufficiently in the criteria.
The supplier was very strong in most areas and even though he scored very low for
X, he came out a winner.

Problem B: The business value depends on only some of the requirements. The
non-business requirements are not expected to contribute to the value. The cus-
tomer is forced to select the proposal with the highest business value, but the
solution may be very inconvenient in a seemingly unimportant area.

25

B2. Early proof of concept
Some requirements are high-risk and the supplier may not be able to deliver what he promised in his
proposal. If this is detected late in the project, the customer may terminate the contract, but this is a
disaster to both parties. Usually the customer chooses to accept the inadequate system, possibly with
compensation from the supplier. To reduce the risk, the customer requires an early proof of concept for the
high-risk requirements.

[According to the contract, both parties can terminate the contract if the early proof fails.]

The following requirements are considered high-risk. In his reply, the supplier must state how he will carry
out the proof of concept and when. The date must be stated as the number of workdays after signing the
contract. The customer expects 40 workdays or less.

High-risk areas where an early proof
of concept is required:

Example of proof: Code:

1. [Efficient support of clinical sessions
(task C10)].

A prototype of the necessary computer screens
(maybe a paper mockup) is assessed by expert
users. Can be done within __ workdays.

2. Usability (all requirements in section
I1).

A prototype (maybe a paper mockup) is usability
tested with ordinary users. Can be done within __
workdays.

3. Response times with the required
number of users (all requirements in
section L1).

A test setup is used to simulate the required
number of users. The response times are meas-
ured. Can be done within __ workdays.

4. Possibility for third-party expansion of
the system (sections E4 and F10).

An independent software house studies
documentation of parts of the system and the
technical interfaces in order to assess whether it is
adequate for expanding the system. Can be done
within __ workdays.

5. Integration with other systems. A test setup which demonstrates the data
exchange. Can be done within __ workdays.

An example could be unacceptable security features. Although security is not a
business goal, the business value would be reduced dramatically.

The template shows two alternative solutions to all of these problems: selection
criteria B3 and B4. B3 expresses the business value in dollars; B4 expresses the
business value in score points. (Delete either B3 or B4 in your document.)

Traditionally, selection criteria are part of the tender material, but not of the
requirements. SL-07 includes them in the requirements in order to show how they
can be expressed and how they link to requirements.

26

Minimum criteria
B3 as well as B4 use minimum criteria to deal with problems A and B. In the
request for proposal, the customer has specified a minimum score for each re-
quirement area. Later the customer gives each proposal a score for each area.

The template uses these scores: -2 (not supported or very inconvenient), -1
(inconvenient), 0 (as today or just sufficient), 1 (efficient), 2 (very efficient).

Here are the reasons behind the minimum scores in the example:

Area Minimum scores
C1 Admit patient before arrival. Support is not really needed for this task. The

customer can just keep his existing admission system.
-2

C10 Perform clinical session. This will get a weight through business goal 2, but to
prevent problem A, we demand that the system supports clinical sessions at
least as well as the present one.

0

C11-C… Medication (considered one area). This too must be supported at least as well
as today to prevent problem A.

0

… … …
D Data to record. We don't assess this separately. It is done indirectly when we

assess how well the system supports the tasks.
N/A

… … …
F10 Integration with new external systems. We want this to be better than today. We

assess it when we select the winner and re-assess it during the early proof-of-
concept.

1

H1 Login and access rights for users. This must be at least as good as today to
protect against problem B.

0

H2-5 Other security (one area). We accept that it is a bit worse than today. -1
I Usability and design. This must be at least as good as today. We assess it

when we select the winner and re-assess it during the early proof-of-concept.
0

J2 User training. This must be at least as good as today. It also gets a weight
because it is part of the investment costs.

0

J4 Data conversion. This just has to be sufficient. It is a one-time issue. 0
L1. Response times. This must be at least as good as today. We assess it when we

select the winner and re-assess it during the early proof-of-concept.
0

… … …

The principle of giving a score for each requirement area rather than each require-
ment is important. A requirement specification may contain more than thousand
requirements and giving a score for each of them is overwhelming. Furthermore, it
is virtually impossible to assess a requirement in isolation. They interact.

Dividing into requirement areas as in the example brings us down to around 40
areas - a more manageable number. Furthermore it is more meaningful to assess
support of a task or another group of related requirements.

In general there may be several requirement areas where the customer can accept
a proposal that is worse than today. It would be foolish to reject an otherwise great
proposal because it is weak in a few areas. However, it shouldn't be weak in too
many areas. The example deals with this by means of another minimum criterion:
There may not be more than 3 weak areas.

27

B3. Selection criteria [Alternative 1: Highest benefit in dollars]
[This section is important for public tenders. The suppliers must know the selection criteria and their
weights before writing a proposal. In commercial acquisitions, the customer need not state any criteria.]

The customer discards proposals that don't meet certain minimum criteria. Among the rest, the customer
chooses the proposal with the highest net benefit measured in $.

Scores: The customer gives each proposal scores for the requirement areas shown in the table below. To
ease later comparison, all tables have space for several proposals (columns A, B and C). The scores are
measured on this scale: -2 (not supported or very inconvenient), -1 (inconvenient), 0 (as today or just
sufficient), 1 (efficient), 2 (very efficient).

Minimum score: It may happen that a proposal has a high net benefit, yet is too inconvenient in a
seemingly unimportant area. The minimum scores guard against this. In the table each requirement area
has a minimum score. A proposal that scores lower than the minimum in any of these areas will be
rejected.

To illustrate the approach the table shows fictitious scores for proposal A. Notice that it is acceptable that a
proposal scores -2 or -1 in some areas. The customer doesn't want to reject an otherwise good proposal
because it is weak in a few areas. However it shouldn't be weak in too many areas. For this reason there is
also a limit on the number of scores below zero (last line of the table).

Score Requirement area Minimum
 score A B C

[C1. Admit patient before arrival. -2 1
…
C10. Perform clinical session. 0 1
C11-C… Medication (considered one area).] 0 2
…
D. Data to record. Assessed through the task support. N/A N/A
…
F10. Integration with new external systems. Also assessed

during early proof of concept.
1 1

H1. Login and access rights for users. 0 0
H2-H5. Other security (one area). -1 -1
I. Usability and design. Also assessed during early proof. 0 1
J2. User training. Also included in investment costs. 0 0
J4. Data conversion. 0 1
L1. Response times. Also assessed during early proof. 0 0
…
Number of scores below 0. max 3 1

28

Method B3: Benefit in dollar
Method B3 computes the financial value for each business goal. The customer has
computed the potential value of the goal per year. As an example, efficient support
of the tasks might save each employee an hour a day. For 7000 employees, this
means saving around 1000 employees, or 40 million $ a year.

Fraction obtained: A proposal may have weaknesses that will reduce the actual
benefit to a fraction of the potential. For each proposal and each business goal, the
customer estimates this fraction. As an example, if the proposed system can save
only 0.5 hours a day, the fraction is 0.5. In principle the fraction may be higher
than 1. This happens if the proposal exceeds the customer's expectations.

Risk: A proposal may be risky, for instance because the solution hasn't been tried
somewhere else, or the solution is very sketchy, or the supplier needs a long early-
proof-of-concept to test it. For each proposal and each business goal, the customer
estimates the risk that the benefit will not materialize.

Based on the potential value and the proposal-specific fractions and risks, the total
yearly benefit is computed for each proposal.

Total cost: The cost in the example consists of the product cost as offered by the
supplier, the cost of hardware and other equipment that the customer has to buy,
the cost of training the staff, and the operating costs for a period of 5 years.

Notice that all of these may differ between proposals. Some proposals need more
customer hardware than others; some need more staff training than others, etc.

Net benefit: The net benefit - the bottom line - consists of the total benefit for 5
years minus the total cost for 5 years. However, the benefit will not materialize
during the period when the product is delivered and deployed. This "lost benefit" is
subtracted as a "cost".

Method B3 will now force the customer to reject proposals that don't meet the
minimum criteria, and among the rest select the proposal with the highest net
benefit.

29

Benefit
The benefit of the proposal is based on a financial value for each business goal. To illustrate the approach
the table shows fictitious figures for proposal A.

Potential: The customer estimates the potential benefit of the goal per year. Measured in million $.

Fraction: For each proposal the customer estimates the fraction of the potential benefit that this proposal
can reach if delivered as promised. It is stated as a number with one decimal, normally in the range from
0.0 to 1.0. Example: The potential cost saving of efficient task support is estimated to one hour per day per
employee. A proposal that might save only half an hour will have fraction = 0.5.

Risk: For each proposal the customer estimates the risk that the fraction will not be realized as promised.
The risk is estimated based on how detailed the solution is, whether the relevant part of the solution exists,
whether it has been tried elsewhere, the supplier's domain knowledge, and the time proposed for the proof
of concept. Example: The supplier has sketched a detailed solution but it doesn't exist yet. The risk is
estimated to 30%.

Value: Computed as Potential * Fraction * (1-Risk)

Fraction Risk Value Business goal Poten-
tial A B C A B C A B C

[1. Efficient support of clinical tasks 40 0.5 30% 14
2. Reduce medication errors 10 1.0 10% 9
3. Continuous improvement 10 1.0 40% 6
4. Lower operational costs (included in the

costs below)

Total benefit per year (million $)] 60 29

For each proposal the customer estimates the net benefit. First the total benefit is computed for a period of
5 years. Then the costs of deploying and operating the system are subtracted. The result is the net benefit
for 5 years. Notice that all the figures may vary between proposals.

Benefit for 5 years A B C
Total benefit for 5 years 145.0
Product cost 20.0
Customer hardware costs 10.0
Staff training 5.6
Operating costs for 5 years 20.0
Lost benefit during delivery 22.0
Total costs for 5 years 77.6
Net benefit for 5 years 67.4

30

Method B4: Benefit in score points
Method B4 uses the same minimum criteria as B3, but it doesn't calculate the
benefit in dollars but as a weighted sum of score points.

Total score: In the example, we have added a column to the list of requirement
areas: a weight for each area. We can now calculate the sum of weighted scores for
each proposal. This is the total score points.

Weights: How do we determine the weights? One possibility is to give each area a
priority, for instance between 1 and 5. The priority is now the weight. However, this
is hard to justify from a business point of view. Furthermore it can be extremely
hard to make stakeholders agree on one area being priority 1 and another priority
5.

We suggest that you try to find weights that reflect the impact of the area, for
instance the number of staff affected or the effect on quality. In the example we
have used the business value of the area, but disguised it as a weight. Notice that
many areas have weight zero. Better support of them has little impact - as long as
the minimum score is met.

Total cost: The cost in method B4 is computed exactly as for method B3.

Bottom line: In B3 we subtracted cost from benefit to get the net benefit. Then we
selected the winner according to the highest net benefit. We cannot do this in B4. It
doesn't make sense to subtract cost in dollars from benefits in score points.

However, it makes sense to divide the two. This gives us the number of score points
per million dollars. Method B4 will reject the proposals that don't meet the minimum
criteria, and among the rest select the one with highest score per million dollars.

Comparison: The main advantage of B4 is that we don't have to estimate the
business value in dollars. Even if we could, we might not want to reveal it to the
suppliers. It also allows us to put weight on quality aspects that cannot be esti-
mated in dollars. Finally, the whole procedure is somewhat simpler.

B4. Selection criteria [Alternative 2: Most bang for the buck]
[With this alternative the customer doesn't have to specify the benefit in $. And he doesn't have to reveal to
the supplier how much he expects to gain. Risks and delivery time are not included below.]

The customer discards proposals that don't meet certain minimum criteria. Among the rest, the customer
chooses the proposal with the highest score per $.

Scores: The customer gives each proposal scores for the requirement areas shown in the table below. To
ease later comparison, all tables have space for several proposals. The scores are measured on this
scale: -2 (not supported or very inconvenient), -1 (inconvenient), 0 (as today or just sufficient), 1 (efficient),
2 (very efficient).

31

Weight: Each requirement area has a weight that reflects the impact of the area, for instance the number
of staff affected or the impact on the customer's service quality.

Minimum score: It may happen that a proposal has a high net benefit, yet is too inconvenient in a
seemingly unimportant area. The minimum scores guard against this. In the table each requirement area
has a minimum score. A proposal that scores lower in any of these areas will be rejected.

To illustrate the approach the table shows fictitious scores for proposal A. Notice that it is acceptable that a
proposal scores -2 or -1 in some areas. The customer doesn't want to reject an otherwise good proposal
because it is weak in a few areas. However it shouldn't be weak in too many areas. For this reason there is
also a limit on the number of scores below zero (last line of the table).

Score Requirement area Weight Minimum
 score A B C

[C1. Admit patient before arrival. 5 -2 1
…
C10. Perform clinical session. 40 0 1
C11-C… Medication (considered one area).] 10 0 2
…
D. Data to record (assessed through task support). N/A N/A N/A
…
F10. Integration with new external systems. Also

assessed during early proof of concept.
10 1 1

H1. Login and access rights for users. 0 0 0
H2-H5. Other security (one area). 0 -1 -1
I. Usability and design. Also assessed during early

proof of concept.
5 0 1

J2. User training. Also included in investment costs. 0 0 0
J4. Data conversion. 0 0 1
L1. Response times. Also assessed during early

proof of concept.
5 0 0

…
Number of scores below zero max 3 1

For each proposal the customer computes the total weighted score and the costs of deploying and
operating the system for a period of 5 years. Finally the score per million $ is computed.

Score per million $ Total

A
Total

B
Total

C
Total score: weighted total of the scores 80
Product cost 20.0
Customer hardware costs 10.0
Staff training 5.6
Operating costs for 5 years 20.0
Total costs for 5 years 55.6
Score per million $ 1.4

32

Variations
There are many variations on the B3-B4 themes above. In B3 we could select the
winner according to the financial benefit per invested dollar. This corresponds to the
managerial situation where we have a limited amount of money to invest and
choose the projects that give the largest return on investment.

We could also be more precise and calculate the internal rate-of-return (IRR),
taking into account the varying benefits and costs over a period of years.

We might add maximum criteria on the cost, e.g. our budget doesn't allow us to
invest more than 10 million dollars. And add minimum criteria on the benefit, e.g.
we won't invest in something unless we get at least a 20% return on investment.

For B4 we could include the risk of not getting the full score points, and subtract
"missing" score points for the period where the system is delivered.

More importantly, we can vary the score scale, for instance from (-2, -1, 0, 1, 2) to
(1, 2, 3, 4, 5). This will make the B4-selection more sensitive to cost differences
and less to quality differences. In general it is a good idea to test the weights and
scales by imagining hypothetical proposals with different scores and costs, and
check that the selection criteria make sense.

Finally, you should remember that there is a high level of uncertainty and risk in
large IT projects. Fiddling with details in the calculations will have little impact
compared to these risks. Fortunately the selection of a winner is often robust: Even
if we vary the weights and estimates quite a lot, the same winner comes out.

33

(Intentionally left blank)

34

C. Tasks to support
This chapter describes the user tasks to be supported. A user task is something
user and computer do together from start to end without essential interruptions. A
good start point is something that happens in the user's world, for instance that a
client calls. A good end point is that nothing more can be done about the case right
now - the user deserves a "coffee break" (task closure).

The first task in the chapter is C1. It starts when the secretary receives a message
about a patient.

The task ends when the patient has been admitted, put on the waiting list, or the
call has been parked - waiting for additional information. The table lists the sub-
tasks involved. As far as possible, the user decides which subtasks to carry out and
in which sequence.

Subtask 1 records the patient. We don't specify whether user or computer does it.
Initially we don't know how much the computer is doing; it depends on the sup-
plier's solution. Good support is that the computer does most of it, for instance
copies the patient data automatically when the message is electronic.

Not use cases: Tasks resemble "use cases" but don't describe the interaction
between user and computer. The task only describes what they do together. In a
task you can also specify that something is a problem that should be eliminated.
You don't have to specify how. In the example it is a problem that some messages
don't use the standard MedCom format correctly.

We explain more on tasks versus use cases on the next pages.

What are the requirements? Right after the chapter heading, the template states
that the requirement is to support subtasks and eliminate the problems as far as
possible. This means that column 1 of the table contains the requirements. Column
2 is example solutions, but not requirements. Things outside the table are assump-
tions under which the requirements must be met, or information to help the reader
understand the rest.

Work areas
In order to assess how well a task is supported, we have to know what kind of users
we deal with, the environment where the task is carried out, etc. We might specify
this for each task, but often several tasks are carried out by the same kind of users
in the same environment. It is convenient to bundle the tasks accordingly. Such a
bundle is called a work area.

In the template we describe each work area as an introduction to the bundle of
tasks. We describe the user profiles (roles) and maybe the environment. The user
profiles explain the user's IT experience, domain experience, motivation, etc. Some
users may work in several work areas, possibly with different roles in different
areas.

35

 C. Tasks to support
The system must support all user tasks in this chapter, including all subtasks and variants, and mitigate
the problems. The subtasks are numbered for reference purposes. They don't have to be carried out in this
sequence, and many of them are optional. The user decides what to do and in which sequence. A subtask
may also be repeated during the same task.

Work area 1: [Patient management]
[This work area comprises calling in patients, monitoring waiting lists …]

User profile: [Doctor's secretaries. Most of them are experienced IT users with good domain

knowledge. They communicate well with medical staff.]
User profile: [Clerical staff …]
Environment: [Office …]

C1. [Admit patient before arrival]
[This task creates an admission record or continues the admission process if it has been parked. Most
admissions can be recorded in one task. The rest have to be parked, e.g. because some information is
missing. It is important that the system ensures that parked admissions are not forgotten (see task …)]

Start: [Message from medical practitioner, from another hospital … The message may also carry

missing data or be a reminder about a parked admission.]
End: [When the patient has been admitted or recorded on the waiting list, or when the

admission has been parked while the missing data is on its way.]
Frequency: [In total: Around 600 admissions per day. Per user: A maximum of 40 per day.]
Difficult: (never)
Users: [Initially a doctor's secretary, but the case may be transferred to someone else.]

Subtasks and variants: Example solutions: Code:
1. [Record the patient. (See data description D5).]
1a. [The patient is in the system. Update data.]
2. [Admit also a healthy companion.]
3. [Record the admission, including the initial

diagnosis. (See data description D1 and D6).]

3a. [Transfer data from medical practitioner, etc.] [The system uses the MedCom
protocol.]

3p. [Problem: The electronic messages use non-
standard codes and formats.]

[The system allows editing of the
transferred message.]

3q. [Problem: The patient may have several
admissions at the same time at different
hospitals and departments. It is hard to see who
is responsible for nursing and where the bed is.]

4. [Find a meeting time for the patient and send an
admission letter.]

[The system supports printed letters
as well as electronic, confidential
letters.]

4a. [Put the patient on the waiting list.]
4b. Essential data is missing. Park the case with

time monitoring.

4c. Transfer the case to someone else, possibly
with time monitoring.

4d. Maybe reject the case.
5. [Request an interpreter for the meeting time.]

C2. [Admit immediately]
[This task handles patients who arrive in an emergency without notice …]

36

C1. Admit patient before arrival - a simple task
In a task description we use imperative language (admit patient) in order to hide
who does what. The full task description consists of these parts:

ID and name: Tasks are numbered C1, C2, etc. To avoid too much renumbering
during requirements elicitation, we bundle the tasks and start each bundle
with a round number. In the example, C10 is the first task in the next bundle
(the work area patient treatment).

Introduction: A short introduction to what the task is about.

Start and end: A task should be something that is carried out from start to end
without essential interruptions. Notice that a task may start for more than one
reason and end in more than one way.

The start signal (the trigger) should be something that happens in the user's world
outside the computer. One example is that a patient takes his medicine. This
triggers a task where nurse and computer together record the event. Avoid com-
puter-focused triggers such as the user wants to record a medicine intake. This
doesn't help the supplier understand what caused this wish and whether the system
might support it better, for instance through barcode scans of the medicine package
and of a special bracelet attached to the patient.

Task C1 may be parked because some data are missing (subtask 4b). Although the
task isn't completed in a logical sense, it is completed task-wise for now. The user
starts doing something else. This pattern is very common and it is important that
the system supports it well, for instance through warnings about overdue, parked
tasks.

Frequency: The task frequency for the entire organization and for the user. The
frequency for the entire organization helps the supplier estimate the neces-
sary computer capacity. The frequency for the user indicates the importance
of an efficient user interface. However, since these figures are outside the
table, they are not requirements. The real requirements are response times
(L1) and usability (I1).

Difficult: Situations where the task is particularly difficult to carry out, for instance
because it is done under stress or requires high precision. Note that task C1
has no difficult situations while task C10 has one.

You cannot readily observe difficult situations but have to ask users about them.
Use difficult sparingly. It is outside the table and thus not a requirement. Early in
the requirement process you may write difficult, but try to remove it later. Often we
can describe it as a problem with one of the subtasks. Then it is easy to check
whether the supplier has a good solution. We can also describe a difficult situation
as a separate task. This helps us check that the supplier supports it well.

Users: The users who carry out the task, the environment, etc. Omit this informa-
tion if the work area specifies it.

Subtasks and variants: Column 1 is a list of subtasks, variants and problems. The
subtasks are numbered sequentially. This is for reference only. Subtasks are
basically optional (need not be carried out) and may be carried out in many
sequences. The user decides what to do and in which sequence.

37

C1. [Admit patient before arrival]
[This task creates an admission record or continues the admission process if it has been parked. Most
admissions can be recorded in one task. The rest have to be parked, e.g. because some information is
missing. It is important that the system ensures that parked admissions are not forgotten (see task …)]

Start: [Message from medical practitioner, from another hospital … The message may also carry

missing data or be a reminder about a parked admission.]
End: [When the patient has been admitted or recorded on the waiting list, or when the

admission has been parked while the missing data is on its way.]
Frequency: [In total: Around 600 admissions per day. Per user: A maximum of 40 per day.]
Difficult: (never)
Users: [Initially a doctor's secretary, but the case may be transferred to someone else.]

Subtasks and variants: Example solutions: Code:
1. [Record the patient. (See data description D5).]
1a. [The patient is in the system. Update data.]
2. [Admit also a healthy companion.]
3. [Record the admission, including the initial

diagnosis. (See data description D1 and D6).]

3a. [Transfer data from medical practitioner, etc.] [The system uses the MedCom
protocol.]

3p. [Problem: The electronic messages use non-
standard codes and formats.]

[The system allows editing of the
transferred message.]

3q. [Problem: The patient may have several
admissions at the same time at different
hospitals and departments. It is hard to see who
is responsible for nursing and where the bed is.]

4. [Find a meeting time for the patient and send an
admission letter.]

[The system supports printed letters
as well as electronic, confidential
letters.]

4a. [Put the patient on the waiting list.]
4b. Essential data is missing. Park the case with

time monitoring.

4c. Transfer the case to someone else, possibly
with time monitoring.

4d. Maybe reject the case.
5. [Request an interpreter for the meeting time.]

C2. [Admit immediately]
[This task handles patients who arrive in an emergency without notice …]

Notice that we use imperative language also for subtasks (record the patient). You
may write several lines to describe a subtask or a problem. C1-3q and C10-2 are
good examples. If you need more space, a requirement note below the table is
better.

Variants of a subtask are indicated by letters a, b, etc. A variant means that the
subtask may be carried out in more than one way. As an example, we may either
record the patient (subtask 1) or find the patient in the system (1a). Problems
relating to the subtask are indicated by letters p, q, etc.

Many subtasks consist of recording or using data, but some subtasks comprise
more, for instance advising other people (subtask 5), dispensing medicine, sending
a letter. It is important to include this even if it is done manually today. The sup-
plier may have a solution that the customer hasn't imagined.

38

Problem = current problem: Column 1 also lists problems. A problem must be
something that troubles the user in the present way of doing things. Problem
3q is a good example. The customer wants the supplier to eliminate the
problem. We often see analysts stating an imagined future problem, for in-
stance that it will be difficult to provide overview of the data. This is not the
intention with "problem". If you want to mention such issues, do it in column
2, which deals with the future.

Solutions: The customer may write example solutions in column 2. Later the
supplier writes his proposed solution here (see section A2.3 of the template).

As a customer, write sample solutions sparingly. Don't force yourself to write some-
thing "clever" here. Only write something if it is a non-trivial solution. Be explicit in
column 2 about who does what, e.g. The system shows or The user selects. Avoid
passive statements such as The results are recorded.

C2. Admit immediately
This task handles patients who arrive in an emergency without notice. Although the
task resembles C1 there are differences, and C2 may need different support.

Don't worry about the same subtasks appearing in several tasks. We need to check
the support of them in the different contexts. A programmer will try to reuse code -
great, but the analyst doesn't program. The analyst should ensure that all use
contexts are supported properly.

C10. Perform clinical session - a complex task
The most important activity in a hospital is examining and treating the patient. How
many tasks are involved? Is examination one task and treatment another task? If
we study what actually goes on, examination, treatment, and other activities are
often carried out within the same short period of time. It is important that the
computer supports this mix well.

So the task starts when the clinician starts dealing with the patient and it ends
when he cannot do more for the patient right now. The task contains many kinds of
subtasks. The clinician decides what to do and in which sequence.

39

Work area 2: [Patient treatment]
This work area comprises …

C10. [Perform clinical session]
[A clinical session may comprise diagnosis, planning of treatment, actual treatment, evaluation, etc.
Usually several of these are carried out, but it may also happen that only planning, for instance, is carried
out.]

Start: [Contact with the patient or a conference about the patient.]
End: [When nothing else is to be done about the patient right now.]
Frequency: [In total: Around 15,000 per day. Per user: A maximum of 20 per day.]
Difficult: [Disasters with many injured. (Better describe it as a separate task. See the guide.)]
Users: …

Subtasks and variants: Example solutions: Code:
1. [Identify the patient.] [The system can read an electronic

bracelet, e.g. for unconscious
patients.]

2. [Assess the state of the patient. See open
diagnoses and the related indications. See
notes. See results of services ordered earlier
and compare them with expectations. (The data
to overview comprises D1-D4).]

[The system shows an overview of
everything on one screen, e.g. with a
Gantt-like time dimension. It is
possible to drill down to details from
the overview].

3. [Provide services that can be given on the spot,
e.g. local services such as blood pressure and
SAT.]

[The system makes it easy to record
the results on the spot.]

4. [Follow up on planned services and results.
Check for violated deadlines.]

[The overview shows ordered
services and their state, e.g. deadline
violation.]

5. [Adjust diagnoses (modify, add, delete,
prioritize). Check against standard
recommendations. Write notes.]

[The system makes it easy to change
diagnoses and write notes on the
spot.]

5p. [Problem: Cumbersome to see standard
recommendations.]

[The system can show recommenda-
tions and checklists based on
selected diagnoses.]

6. [Plan and order new services. Check against
available time for all parties - including the
patient. (See the long subtasks C11 to C… for
prescription, booking, …).]

[The system makes it easy to request
services on the spot. For bookings,
the system shows available dates and
times for all parties.]

6p. [Problem: Parts of the request are forgotten.] [The system can use standard
packages of services.]

6q. [Problem: Errors when data is written on paper
and recorded later.]

[The system makes it easy to record
on the spot.]

7. [Maybe discharge the patient. (See task C6).]

40

C11. Prescribe medicine - a long subtask
Sometimes there are so many subtasks in a task that the description becomes hard
to overview.

One solution is to bundle the subtasks into logical groups with headings. We have
seen this work fine with 50 subtasks. The purpose of the bundling is only to help
the reader. The subtasks may still be carried out in almost any sequence.

Another solution is to make each bundle a long subtask with a separate C-
number. As an example, subtask C10-6, plan and order new services, refers to
several long subtasks: C11, prescribe medicine, C…, booking, etc.

C11 is shown in detail. Notice that a long subtask doesn't have its own start and
end description. It is simply a part of the main task. However, it makes sense to
specify the frequency because only some clinical sessions have prescriptions or
bookings.

Subtask 6, Calculate dose, shows how business rules can be embedded in a task.
We might split the rules into several subtasks, but as stated we leave this to the
supplier.

C18. Perform clinical session - in another environment
It may happen that a task is carried out in different environments with different
needs for IT support. One example is the clinical session (C10) when the medical
staff is moving around from patient to patient. The customer would like to support it
through PDA's or Smartphones. In theory all we need is to state in the task intro-
duction that it may also be a mobile environment.

However, where should the supplier specify his solution, which is probably different
from the normal PC support? And how will the customer assess the solution? The
suggestion is to define a task for each environment:

C10: Perform clinical session, stationary.
C18: Perform clinical session, mobile.

What about the long subtask C11, prescribe medicine? To make sure that it too is
supported well in both environments, we should repeat it.

As for C2, admit immediately, don't worry about the same subtasks appearing in
several tasks. We need to check the support of them in the different contexts.

Avoid use-case-like tasks
If you use the task concept correctly, there will be rather few tasks to describe.
Many large systems can be described with just 10-30 tasks. This is an advantage
because you get a better overview and have much less to write.

We often see requirement specifications where 10 tasks have been expanded to
around 100 use cases, each of which takes up one or more pages, although little
happens in each of them. The cause is usually that each subtask has been specified
as if it was a separate task with start and end, frequency, etc. In real life the use
cases are not separate but done in combination with other use cases until "coffee
break". When described in the use-case way, the supplier gets no feel for how the
use cases relate to each other, and as a consequence he cannot support them well.
Here is an example from the hospital world:

41

C11. [Prescribe medicine for the patient (long subtask)]
[This is not a separate task but a long subtask carried out during a clinical session. (For this reason "start",
"end", and "user" are unnecessary.]

Frequency: [In total: Around 30,000 times per day. Per user: A maximum of 20 times per day.]

Subtasks and variants: Example solutions: Code:
1. [Assess the entire medication pattern of the

patient, in this admission as well as other
admissions.]

[The system shows an overview of all
medications, CAVE, diagnoses, etc.]

1p. [Problem: Cumbersome to see standard
recommendations]

[The system can show recommenda-
tions and checklists based on
diagnoses and drug type.]

…
6. [Calculate dose. Check that it is reasonable.

Check for interaction with other drugs.]
[The system offers a calculation
based on the recorded body weight. It
checks for interactions.]

6p. [Problem: Translation between various units.
There may be a difference between the unit of
prescription (e.g. mg) and the unit of dose (e.g.
number of tablets).]

[The system shows the dose in
prescription units as well as dose
units.]

…

…
C18. [Perform clinical session, mobile]
[Clinical sessions may be performed when medical staff is moving around from patient to patient, e.g. with
a PDA, tablet or mobile phone. In principle we have the same subtasks as in C10, but they cannot be
supported in the same way. In order to allow the supplier to specify his solution for the mobile situation, we
repeat the clinical session task here.]

Start: When …
End: When …
Frequency:

A harmful specification from real life - 3 pages in total
Use case 2.1. Show diagnoses
The clinical user wants to obtain an overview of the patient's diagnoses and their relationships.

Start: The user wants to inform himself of the development in the patient's state of health.
End: …
Precondition: The user is logged in. The patient is recorded and selected.

Step: Example solution:
1. Show the hierarchy of diagnoses.
2. Select display mode. E.g. a hierarchy or a Gantt diagram.
3. Select the level of detail. E.g. expand or collapse with plus and

minus.
4. Show notes about a selected diagnosis.
5. Show date and author for the note.
6. Show possible external causes of the diagno-

sis.

. . .

42

This is not a true task because it isn't closed in the coffee-break sense. It will be
part of a larger task, for instance a clinical session. Furthermore it has so many
details that it almost prescribes a specific user dialog. Notice the computer-focused
trigger: The user wants to . . . It is an indication that it may not be a true task.

The reader cannot see the purpose of this use case. Why does the user want this
overview? To find a treatment of the patient, to explain a new symptom, or to write
a report about the patient? Although the user may get support for this use case, it
is not sure he gets support for the larger task. He might for instance have to write
down the diagnoses on paper in order to carry out the next step of the true task.

Don't describe data as subtasks
The use case above is 3 pages in total. One reason is that the analyst has tried to
describe data as steps. Notes, dates and external causes are handled as separate
steps. The real specification also had use cases Create diagnosis (4 pages) and
Change diagnosis (3 pages). They referred to almost the same data. It was hard to
ensure consistency, of course.

The solution is to describe data separately, as we do in Chapter D. From the sub-
tasks you may briefly refer to the data that are relevant in this subtask. The
template shows examples in C1-3 and C10-2.

Sometimes it is useful to list the necessary data more precisely, for instance in a
single subtask or as a requirement note below the task.

Tasks have no preconditions
The use case above has two preconditions: The user must be logged in, and the
patient recorded and selected. This enforces a flow between use cases. The user
must first carry out the login use case, next the select patient use case, then the
show diagnoses use case.

Tasks don't have preconditions, but the subtasks may have, although we rarely
need to write them. The clinician can start a clinical session at any time without any
precondition. It is part of the task to identify and select the patient (subtask 1). It is
an implicit precondition for the remaining subtasks that this has been done. Since
the context is clearly visible, there is little reason to write an explicit precondition
for all of these subtasks.

What about the login precondition? In a task perspective this is not a demand but a
solution to a problem: who is the user and what is he allowed to do? Login is only a
cumbersome way to do this. The template deals with these issues in section H,
security and doesn't mention them in the tasks.

43

Flows and BPMN - overview, not requirements
It is often useful to show the total course of events - the task flow, also called a
business process or a high-level task. It might be the course of events for treatment
of a patient. Or it might be the life cycle of a treatment type from the time it was
investigated by a health commission until it many years later is canceled by another
commission.

It may be a good idea to describe the task flows in the requirement specification,
for instance at the beginning of Chapter C, but it must be clear to the reader that
they are purely informative and not requirements.

Flows can be described graphically or as text. A widely used graphical notation is
BPMN (Business Process Modeling Notation) that shows each step as a node and
connects the nodes with arrows that show what comes next. This can provide a
great overview - unless you go into too much detail trying to specify also the flow
when something goes wrong.

Here is a flow described as text: the business process for a patient.

Flow 1: Patient treatment
Start: The patient is referred to the hospital from a practitioner or arrives in emergency.
End: The patient is cured.

Step: Solution:
1. Admit the patient. See C1 and C2.
2. Make a diagnosis. See C10.
3. Plan the treatment. See C10.
4. Carry out the treatment. See C10.
5. Assess the result. See C10.
6. Discharge the patient. See C… and C…
7. Follow-up treatment at home. ?

This is the logical, ideal course of events. When you describe a flow, you often
detect new demands for IT support. In this case we detected the need for coordina-
tion with home treatment (shown as a question mark in step 7).

Notice that the logical flow steps have a many-to-many relationship to the physical
tasks. Step 1 is handled by two tasks C1 and C2 (admit patient before arrival and
admit immediately). In contrast, steps 2 to 5 are handled by only one task, the
clinical session.

Are the true tasks really like this? Yes, in particular in slightly complicated cases.
Elderly patients, for instance, often have several diagnoses and staff try to treat all
of them during the same admission. This means that a single clinical session can
make a new diagnosis, treat an earlier one, and assess the result of another
treatment. Task C10, perform clinical session, expresses this in a compact way
which emphasizes overview of the entire situation and specifies that many activities
may be carried out at the same time.

44

D. Data to record
This chapter describes the data to be stored in the system. Data may be described
in several ways. The template shows five ways: (1) a short textual description of
the classes (tables), (2) an E/R diagram (Entity/Relationship model), (3) a data
dictionary with details of each field, (4) the contents of some existing tables, (5) the
contents of existing screens.

The E/R diagram shows data classes as boxes. The name of a class should be
singular, i.e. Person rather than Persons. Think of the box as a pile of file cards,
each holding data about a single person. What you see is the card for one single
person.

A crow's foot shows that one object (entity) relates to several objects in another
class. As an example, one person's file card is related to several admission cards
(strictly speaking to zero or more cards). Reading the crow's foot the other way,
one admission card is connected to only one person card. A crow's foot may be a
smooth curve.

When the data are in a relational database, a class corresponds to a table. How-
ever, E/R diagrams are also very useful when data are not in a database.

The diagram lists the fields (attributes) outside the box to save space and improve
overview. In many cases we show only some of the fields.

A UML class model is very similar, but fields are shown inside the boxes and con-
nectors are lines with cardinality shown as 0:1, 1:*, etc. When a line cannot be
straight, it is broken at right angles. These seemingly small differences make a
huge difference when you try to get an overview of a large diagram. Your vision
system can much easier overview an E/R diagram than a UML diagram. Further, a
UML diagram often needs five times as much space.

45

D. Data to record
The system must record the data described in this chapter. The user can create, view, and change the
data through the tasks described Chapter C. In many cases data has to be exchanged with external
systems as specified in Chapter F.

Figure 3 is an Entity/Relationship diagram (E/R) that gives an overview of the data. Each box holds all
entities (records) of a certain kind. [As an example, D1 holds all patient diagnoses.] A crow's foot shows
that an entity in one box is related to many entities in the other box. [As an example, each diagnosis is
related to one diagnosis type while each diagnosis type is related to many diagnoses.] Data need not be
structured in this way in the system, but it must be handled in some way.

The dotted boxes show data that are (partly) shared with an external system through system integration
(Chapter F). Here is a brief explanation of the boxes of the diagram.

D1. [Diagnosis: Holds a record for each patient disease, actual as well as suspected. They correspond to
the National Health Classification (NHC), but there is also a need for recording diseases that are not in
NHC or cannot be classified until later.]

D2. [Diagnosis type: A catalogue of all possible diagnoses - independent of the patient. The users will
select the patient diagnoses from this catalog. A diagnosis type specifies the name and NHC code (where
possible), recommendation, standard treatment packages (through the relationship to the catalogue of
service types), and more. The catalogue is updated by the customer based on medical experience and
through data transfer from the National Health Organization.]
…
D5. [Person: Holds a record for each patient, staff and other related persons with name, address, etc.]

D6. [Admission: Holds a record for each admission with admission date, department, etc.]
…
D18. [Municipality: A catalogue of all the municipalities.]

Figure 3. Data model for the system

D5. Person

D1. Diagnosis

D6.
Admission

D3. Service

D2. Diagnosis
Type

D4. Service
Type

date, state (. . .),
. . .

name, start time, registration time,
state (obs | valid | canceled | closed),
. . . recommendation

diagnosis code, name,
state (considered | . . .),
description, recommendation

Consists of

Hierarchy

person ID, name . . .

state, start,
end, name

Hierarchy
service code, name,
state (. . .), . . .

Plus 12
more boxes

Dotted box: Shared
with external system

46

D1. Diagnosis
This section is the data dictionary for the diagnosis class. It consists of these parts:

1. The number and name of the class. Classes are numbered D1, D2, etc. To avoid
too much renumbering during analysis, you may bundle the classes and start
each bundle with a round number.

2. Examples of what an object might be. Show typical as well as unusual exam-
ples.

3. The source of the data. Where does it come from? It might be entered during a
task, collected by the system, or imported from another system. In many cases
you can describe it for all fields at the same time; in other cases some fields
need a description of their own.

4. The use of the data. It may be used in tasks or exported to other systems.
Again there may be a common description for all the fields or separate descrip-
tions for some fields.

5. The data volume. This is a requirement in a table. The system must be able to
store this amount of data. The requirement also specifies that a history trail is
needed. Section L3 specifies for how long time the data must be kept and how
fast archived data must be retrieved.

In the example, the data volume is given as the number of new diagnoses per year.
This also gives us the number of create-transactions per day, and an indication of
the number of create-transactions in peak load periods. This is important for stating
response time requirements in L1.

6. A table with details for each field and each connector (relation) to another class.
Attributes are numbered sequentially. Problems associated with an attribute are
numbered p, q, etc. The list has three columns, similar to tasks.

The template example is written on a high level. In many cases details such as date
format and text lengths may be needed too, for instance in the solution column as
shown for D1-4. In some cases a specific format is necessary, and then it is a
requirement in column 1. Use it sparingly; it reduces the chance of finding a COTS
system that matches the requirement.

Notice that problems, requirement notes and solution notes may be used as for
tasks.

47

D1. [Diagnosis]
[A diagnosis is a disease or a symptom for a specific patient.]

Examples: [There is a fuzzy distinction between diseases and symptoms. As an example, cholera as

well as coughing are "diagnoses".]
Data source: [Diagnoses are recorded during clinical sessions (C10) and often during admission (C1).]
Data use: [Diagnoses are shown in patient overviews, for billing and for government reporting.]

Data volume: Example solutions: Code:
1. Around [800,000 diagnoses] are recorded a

year. All changes must be kept in a history trail.

Fields and relationships: Example solutions: Code:
2. [Diagnosis Code: Relation to Diagnosis Type.

The patient's primary diagnosis may change
during the admission. The primary diagnosis is
used for billing and government reporting.]

2p. [Problem: Very hard to select the right NHC
code from the 20,000 possible ones.]

[See solution notes below.]

3. [AdmissionID: Relation to the Admission, which
in turn refers to the patient (Person).]

[The system records it automatically
based on the currently selected
patient.]

4. [Name: Usually the name from Diagnosis Type,
but may be a name entered for this specific
patient.]

[Field length: 100 characters.]

5. [State: A diagnosis may be in these states: Obs,
valid, canceled, closed.]

6. [Start Time: The date and time from which the
diagnosis is in this state. Usually it is the same
as the Recording Time, but not always, e.g. if
you record that the patient started coughing
yesterday.]

[The system makes it easy to choose
the Recording Time as the Start
Time.]

7. [Recording Time: All changes to the diagnosis
are recorded and the earlier versions are kept in
the system. Usually, doctors are only interested
in the latest version.]

[The system records it automatically.]

…
17. [Recommendation: The recommendation valid

at the time of creating the diagnosis.]

Solution notes
[The user might for instance select a diagnosis code in these ways:
a. Browsing a conceptual hierarchy (corresponding to the NHC super and subclasses)
b. A reduced hierarchy so that the department as a default see only the diagnoses relevant for them.
c. "Live search" where the user enters part of the diagnosis name, and the system shows possible

matches keystroke by keystroke.]

48

D2. Diagnosis type
The diagnosis table D1 holds the actual diagnoses for the patients. In contrast, D2
is an example of a type table. It holds the catalogue of all possible diagnoses.

It is usually important to specify also the type tables, particularly when the system
must be able to add a type, change it, and maybe keep track of the history of each
type.

Notice how D2-6 deals with the length of the description field. It should be around
two lines, but the exact number is not important. For this reason the customer has
written a suggested length in the solution column. The supplier may adjust it to
what is convenient for him, for instance 255 characters.

D3. Service
There are many subclasses of service in an EHR system. It is hard for the customer
to specify all of them. In the example, the customer has specified the common
fields and relations that all services have.

Section D3.1 specifies the services that are clinical measurements. The special fields
are defined through a screen cut listing the fields in his current system. (The
customer should add the existing field lengths and formats.)

Section D3.2 specifies the services that are surgery.

Section D3.3 specifies the services that are patient medication. In this case, the
customer didn't have the table formats, but used screen cuts from his existing
medication system. This requirement gives the supplier some basis for judging what
the customer needs, but there is a risk of misunderstanding and later conflicts.

49

D2. [Diagnosis Type]
[The collection of diagnosis types makes up the diagnosis catalogue.]

Examples: [DA009: Cholera without specification; DR059: Coughing.]
Data source: [Imported from the NHC web site.]
Data use: [The user selects a diagnosis type when recording a patient diagnosis.]

Data volume: Example solutions: Code:
1. [There will be around 30,000 diagnosis types.

NHC has presently around 20,000 types.]

Fields and relationships: Example solutions: Code:
2. [Diagnosis code: NHC code (similar to ICD10)

or a temporary code.]

3. [Name: The full name of the diagnosis, e.g.
"Cholera without specification".]

4. [State: A diagnosis type can be in one of these
states: Considered, valid, outdated.]

5. [Parent: Relation to a more general diagnosis
type in a conceptual hierarchy. Example: A022A
Salmonella Arthritis belongs to A02 Salmonella.]

6. [Description: A longer text, but not more than
one or two lines. Even longer descriptions may
be found in the "Recommendation".]

[Field length: 160 characters.]

7. [Service types: Relation to service types that
may be used to treat this diagnosis.]

[The system may extract the informa-
tion from the Recommendations.]

…
10. [Recommendation: A long text describing

indications, medical practice, etc.]
[Might be a URL.]

D3. [Service]
[A service is something measured or given to the patient. There are many subclasses of service, e.g.
measurements, surgery and medication. At present they are stored in separate tables or even in separate
systems.]

Fields and relationships common for all services: Sample solutions: Code:
1. [Service code: Relation to Service Type.]
2. [AdmissionID: Relation to the Admission, which

in turn refers to the patient (person).]
[The system records it automatically
based on the currently selected
patient.]

3. [Date: The date the service was given.]
4. [State: In the normal flow a service may be in

these states: Ordered, confirmed (by the service
provider), started (e.g. sample taken), comple-
ted, assessed (by the clinician). Exceptionally,
the state may be: Canceled, changed.]

5. [Consists of: Relation to services that are part of
this service, e.g. surgery that consists of several
treatments.]

50

D3.1. Patient measurement

Examples: [Blood pressure; Body Weight; B-glucose; Gamma globulin; X-ray.]
Data source: [Some are recorded during a clinical session; others are imported from an external system,

e.g. lab results.]
Data use: [Used in patient overview and detail view to support diagnosing and treatment.]

Data volume: Example solutions: Code:
1. [Around 100,000 measurements are recorded a

day. Of these 5,000 are pictures. All changes
must be kept in a history trail.]

Fields: Example solutions: Code:
2. [A patient measurement should include the data

from the present table. See Figure 4, tblPatient-
Measurement. Notice that the present table
doesn't have the common fields: admissionID
and state.]

D3.2. Patient surgery

Examples: [Heart Bypass Operation; Photodynamic Therapy (PDT).]
Data source: [Recorded during and after surgery.]
Data use: [Used in patient overview and detail view to support diagnosing and treatment.]

Data volume: Example solutions: Code:
1. [Around 100 surgeries are recorded a day. All

changes must be kept in a history trail.]

Fields: Example solutions: Code:
2. [A patient surgery record should include the

data from the present table. See Figure 4,
tblPatientSurgery. Notice that the present table
doesn't have the common fields: admissionID
and state.]

[Figure 4. Present service tables]

51

D3.3. Patient medication

Examples: [Ibumetin, 400 mg*3; Furix, 40 mg*2.]
Data source: [Recorded as prescriptions during clinical sessions.]
Data use: [Used in patient overview and detail view to support diagnosing and treatment.]

Data volume: Example solutions: Code:
1. [Around 30,000 prescriptions are recorded a

day. All changes must be kept in a history trail.]

Fields: Example solutions: Code:
2. [A patient medication record should include the

data that the present system shows. See Figure
5, screen shot from the present medication
system.]

[Figure 5. Present medication data]
MedicineEnd Unit Daily dosis Path

Solid

Solid

Solid

Solid.Inf.

Solid.Inf.
Solid

Solid

Solid

Solid

Type Dosis InfoStart

52

E. Other functional requirements
Most of the system functionality is simple data creations, deletions, edits and
queries that are implicitly required to support the tasks and system integrations.
This chapter describes functionality that is more complex.

E1. System generated events
The system may do things on its own, for instance collect data from the environ-
ment or send reminders to users when time limits are exceeded.

Requirement E1-1 asks for a reminder when an admission has been "forgotten".
There must be a task that handles this reminder. In the example, task C1 Admit
patient deals with it as one of the possible triggers.

Requirement E1-2 asks for a reminder when a Labsys service has been lost. Here
too there must be a task that handles this reminder. This task is not mentioned in
the template. It is carried out by a department secretary or the chief nurse.

E2. Reports
Often the existing system can print heaps of reports, but for most of them the
customer doesn't know whether they are used and for what. The template shows
how to transform this lack of knowledge into requirements.

Report 1 has a well-defined purpose and we can describe the format precisely, for
instance through a sample print.

Report 2 has a well-defined purpose, but no specific format. It is useful to refer to
the task or tasks where this report is used to help the supplier understand what is
convenient.

Report requirement 3 gets round the lack of knowledge by asking the supplier to
offer a fixed price per report. In this way the customer can delay the decision on
which reports are needed. The fixed price prevents the supplier from abusing the
de-facto monopoly he has got after signing the contract. The price may depend on
the complexity of the report, for instance expressed as a price per Function Point or
the modern version, COSMIC point.

Requirement 4 gets round the problem in another way by asking for a report
generator. It will allow the customer to develop his own reports. The example asks
the supplier to specify how easy it is to develop the reports, for instance by stating
what kind of users can do it and how much training they need.

Requirement 5 states that all reports must be available on the screen as well as in
print.

53

E. Other functional requirements
Most system functions are simple creations, deletions, edits, and queries that need no further specification.
They are implicitly given by the task descriptions (Chapter C) and the data descriptions (Chapter D). In
addition, the system must be able to perform the functions specified in this chapter.

E1. System generated events

The system must generate these reminders: Example solutions: Code:
1. If an admission has been parked for x days the

central admission office must be reminded.
System administration must be able to define x.

X is typically 4 days, but may vary
between departments.

2. If a Labsys service has been ordered but not
completed within 24 hours, the clinicians must
be reminded.

E2. Reports
Some reports are needed in connection with the tasks described in Chapter C. The report formats are not
essential as long as the tasks are supported well. These reports are not described here. There is also a
need for reports with ad hoc purposes, cross-task purposes, and reports with a precise format. They are
specified here.

Report requirements: Example solutions: Code:
1. [Checks must be printed on preprinted forms

with the format shown in …]

2. [The system must be able to show an overview
and forecast of the bed occupation (used for
instance in task …).]

Figure … shows an example of such
a report.

3. The supplier must develop up to 100 new
reports at a fixed price as part of the
maintenance.

The price per report is ____. (The
price may depend on the complexity.)

4. The system must contain a report
generator that is easy to use.

How many of the staff will be able to develop
the reports in appendix X after a course of __
days:
 type 1 type 2
ordinary users __% __%
super users __% __%
the customer's IT staff __% __%

5. The system must be able to show all reports on
the screen as well as on print.

…

54

E3. Business rules and complex calculations
Rules and computations may be described in several ways. Some fit nicely into task
descriptions, for instance this subtask in C11, Prescribe medicine:
 Check that the medicine doesn't interact with other drugs the patient takes.

Other rules are part of the data requirements (e.g. possible states of a service) or
security rules (e.g. who has the right to do what?). This section specifies more
complex rules.

Function 1 in the example requires a computation that is described in a separate
appendix (waiting list calculation). The appendix may for instance contain an
algorithm described as a small program, a flow chart, or a table of the possibilities.

Function 2 refers to a public document where the rules are described (salary
agreements). In order to translate this into a solution, the supplier needs a lot of
expertise in the salary domain.

You may also indirectly specify a function through an accuracy requirement, for
instance that the system must be able to recognize human speech with a back-
ground noise of 30 dB. Or that the system must be able to calculate a duty roster
that is at most 3% more expensive than the optimal plan.

Function 3 shows a rule expressed as a state-transition diagram. A diagnosis for a
specific patient can be in one of these states: obs, valid, canceled, closed. Officially,
it can only change state as shown by the arrows. User actions cause all these state
transitions, except deletion of the diagnosis. Deletion is done automatically after 20
years. As requirement E3-3 explains, users should be able to make any state
change anyway (except for undoing the final deletion).

Function 4 shows a more complex rule as a state-transition diagram. It specifies
how the state of a Labsys request changes as a result of user actions as well as
messages sent by Labsys. During a state transition some actions may take place.
The diagram shows them as dotted lines branching off from the transition arrow. In
this example, the actions are to send messages to Labsys.

Diagrams such as these can be detailed further with activity diagrams (from UML)
or SDL (from the telecommunication industry). Sometimes this level of detail is
important, but in most cases it specifies a solution rather than a user demand. In
the example, the user doesn't really care about these Labsys details, but it is
important to him that he can see how far the Labsys request has come. This could
be stated as the requirement.

55

E3. Business rules and complex calculations
Some business rules are explicitly specified in the task steps, e.g. Check that … [(example in C11-6)].
Other business rules are explicitly specified in the data descriptions [(example in D3-4)], and some are
specified as access rights (section H1). Here are additional business rules and complex functions.

Function: Example solutions: Code:
1. [Waiting list priority must be calculated as

described in …]

2. [Salary calculations must at any time follow the
collective agreements (see also the
maintenance requirements in …).]

3. [Normally, a diagnosis may only change state
as described in Figure 6. In case of mistakes,
the user must be able to deviate from the rules
(see also H4-2).]

A user who tries to deviate from the
rules will be asked whether it is
intentional. If so, the change is made
and logged in …

4. [Inside the system, a service requested from
Labsys changes state as described in Figure 7.]

Requirement note: State-transition diagrams
[Figure 6 shows that a clinician creates the diagnosis. It is created in either state Obs or state Valid.
Clinicians can change the state further according to the diagram. The diagnosis disappears when the
system automatically cleans up the data after 20 years.]

[Figure 7 shows how the state of a Labsys service changes inside the system. A clinician creates a Labsys
service in state Ordered. During the creation, the system sends a LabRequest to Labsys. When Labsys
sends a LabConfirm message to the system, it changes the service state to Confirmed. A clinician takes a
sample from the patient, sends it to the lab and tells the system, which changes the service state to
Started. The service can change state in other ways as specified in the diagram.]

[Figure 6. Diagnosis states]

Obs

Valid

Canceled

Closed

Clinician

Clinician

Clinician

Clinician

Clinician

Automatic
(20 years)

any state

[Figure 7. Labsys service states and messages]

Ordered

Canceled

Confirmed Started
Clinician LabConfirm

Clinician

Completed

Assessed

changed

any state

LabRequest

Clinician

LabSample LabSys

Doctor

LabConfirm

LabRequest

Automatic
(20 years)

Clinician

any state
LabCancel
Clinician

56

E4. Expansion of the system
In some cases the customer needs to be able to expand the system himself in some
areas. He may for instance want to experiment with new screens to improve
usability, or he may fear that the supplier will charge an unreasonable price for
expansions.

This section asks for functionality that will make some kinds of expansion possible
without involving the supplier. Some years ago, suppliers were reluctant to allow
such things, because they feared for the correctness and stability of the system.
This has changed and even ERP systems such as SAP and Axapta provide better and
better possibilities for expanding the system.

In the EHR example there is a significant demand because there are more than
20,000 types of patient service, each with their own data fields; and the number
grows steadily. It is not acceptable that the supplier is needed for changing the
system whenever a new type of service is introduced. Similarly, many medical
specialties have their own needs for data visualization.

There is also a demand for future integration with external systems. This is handled
in section F0.

Notice that the template not only asks for expansion functionality, but also for the
rights to use it. This is based on bad experiences with suppliers who provide the
functionality but keep the rights for using it and for extracting the data stored in the
system.

57

E4. Expansion of the system
[The system shows and maintains data through the user screens. The customer expects that he or a third
party is able to modify the screens and add new ones in order to create overview for medical specialties,
new work procedures, etc.

The system handles many types of medical services, often with special combinations of data. The
customer expects that he or a third party can add new types of services. In this section, "customer" means
the customer's own IT staff or a third party authorized by him.]

Expansion requirements: Example solutions: Code:
1. [The customer can define new types of services

and corresponding screens within the limits
defined by the data descriptions in Chapter D.]

2. The customer can define screens that combine
data from the entire data model in Chapter D
(arbitrary views of data).

3. [A screen can activate functionality in the EHR
system and in external systems integrated with
the EHR system.]

[E.g. request of a service, notification
of medical staff, print of a report.]

4. A screen can be composed of many types of
components (controls) and their color can reflect
data values.

E.g. text boxes, tables, buttons,
graphs, pictures.

5. The customer can add new types of
components for use in the screens.

6. Screens can be defined for several kinds of
equipment.

E.g. PC, PDA, tablet, Smartphone.

Documentation and rights: Example solutions: Code:
7. The tools for composing screens, adding new

component types, etc. must be documented in
such a way that the customer can understand
them and use them for the intended purpose.

A course of ___ days is necessary to
use the tools.

8. The customer must have the right to use the
tools and extract the data stored in the system.

58

F. Integration with external systems
The trend is that new systems must be integrated with more and more other
systems - external systems. More than ten external systems are quite common.

In some cases we can avoid explicit integration requirements because full support
of the tasks requires integration. We did so in C1-3a (use of MedCom for data
transfer). Usually, however, integration is a complex affair, and it will be hard to
evaluate a supplier's integration solution by trying to carry out the tasks. It is
particularly difficult if we want to make an early proof of concept (B2). So usually
we need explicit integration requirements.

It is hard to specify integration requirements. The external systems exist and the
supplier has to know about their technical interfaces (API's or XML services) in order
to estimate his integration costs. Yet the customer rarely has this information.

SOA or data replication?
Some customers listen to the IT gurus and ask for a Service Oriented Architecture
(SOA) where systems connect with XML services and data are only stored in their
source system. Other systems retrieve it from there. In principle it is a great idea,
but the customer doesn't realize that this requires 10-50 times more computer time
than traditional approaches. It also makes it impossible for the supplier to ensure
fast response times and high operational availability, because his system depends
on other system's response times and availability.

When the supplier offers a COTS-based system, it may become a really expensive
solution for other reasons too. The COTS system retrieves data from its own
database, but now it must be retrieved through SOA. The supplier must change his
system in hundreds of places - even if it is nicely made with a multi-layer architec-
ture. A system that has been changed in so many places cannot be maintained as
part of maintaining the COTS system. So maintenance will also be very costly.

An alternative solution is to replicate data across systems and synchronize data
periodically or at demand. This is usually much easier to add to a COTS system.

Which system should initiate the synchronization? It depends on what is possible
with the existing systems. And the customer shouldn't care. He should only ensure
that his demands are met. So what are the real demands? A study of many system
integrations shows that several aspects are involved:

a. Data recency: How old is the data that the system shows? This is the key
concern in integration. With a SOA architecture, the data on the screen will be a
few seconds old. With a replicated solution it may be hours or weeks old, but
often this is sufficient (the template shows examples).

b. Task support: Can the user tasks be supported well with this integration?
c. Data to transfer: Which data - to or from the external system - or both ways?
d. Data protection: Avoid data loss, duplication, and security breaches.
e. Other functionality: Can the system order other functions in the external

system, for instance remind users or print data?
f. Documentation and rights: What to document? Who may use it for what?
g. Responsibility: Who will make and test the integration and how will the "other

end" help? In spite of what the gurus say, there is usually a need to make
changes at both ends.

59

F. Integration with external systems
The system must integrate more or less closely with the external systems shown in Figure 5 (context
diagram). Double-line arrows show integrations that the supplier is expected to deliver. The integration
comprises data sharing and the ability for the user to activate functionality in other systems (external
systems).

In this Chapter, "customer" means the customer's own IT staff or a third party authorized by him.

System data (S-data) are the integrated data stored locally in the system (S).
External data (E-data) are the integrated data stored in the external system (E).

Here is a short explanation of the external systems:
F1. [NHC: The National Health Classification system. The National Health Organization updates it

regularly.]
F2. [Labsys: The customer's present lab system for …]
F3. …
F10. A new external system that the customer will buy later.

[Figure 8. Context diagram]

F2. Labsys

F1. NHC

F10. New external
systems

Clinician

Patient
management

EHR system

New medica-
tion system requests,

results

codes

Double line:
The supplier integrates

The template has sections and examples for each of these aspects.

The template starts with a verbal overview of the external systems and a graphical
overview in form of a context diagram. It is similar to the context diagram in the
background section of the template, but it will usually contain more details, for
instance the system codes F1, F2 . . .

Show the system to be delivered as a box with double-line borders. Show the
integrations to be performed by the supplier as double-line arrows. Let the arrows
point in the direction data move. Label each arrow to indicate the data that flow.

In the example, the supplier has to integrate with the existing NHC system and
Labsys. Note that he is not required to integrate with new external systems.
Someone else may do it.

60

F0. Common integration requirements
This section covers requirements that apply for all the integrations unless some-
thing else is stated.

F0-1 requires that data may only be transferred to the user's PC if he is allowed to
see them. So the system may not depend on only special PC programs showing the
data. It would be too easy to install a program that peeks.

F0-2 to 4 require the system to protect against technical problems with lost or
duplicated data.

F0-5 specifies that the customer (or a third party) must be able to migrate the data
to another system. This is a key requirement for being able to switch supplier later.
Surprisingly many customers forget this and the supplier gets a monopoly.

F0-6 to 9 specify that the customer must be able to integrate the system with other
systems. He must have the means, documentation, and rights to do so, and the
supplier is obliged to support the work. If all the external systems had met similar
requirements, integration would be much simpler.

Notice how it is possible to verify the quality of the documentation by asking a
typical third party software house to try out the documentation. This should be
done early in order to make it likely that this kind of documentation will suffice for
third party expansion of the system (see section B2).

61

F0. Common integration requirements
The requirements in this chapter apply for all the integrations unless explicitly stated.

Access rights to data: Example solutions: Code:
1. The system may only transfer E-data to the

user's PC when the user has the right to see it
according to H1.

Protection of data: Example solutions: Code:
2. The system must protect against loss or

duplication of data transferred between the
systems, e.g. because one or both systems
have been off-line or closed down.

3. The system must protect against concurrency
problems, e.g. that user A sees and then
updates E-data, while user B does the same.
Neither A nor B will notice the conflict.

4. To help error tracing, the system must log all
transfer errors.

Migration rights to data: Example solutions: Code:
5. The customer must have the means and rights

to extract and use all data described in Chapter
D, e.g. for converting the data to another
system.

Integration rights and documentation: Example solutions: Code:
6. The customer must have the means and rights

to integrate the system with other systems.

7. It must be easy to add new interfaces, e.g. SOA
services, database queries, or API's.

The customer can add the interface.
Or: The supplier can do it at a fixed
price.

8. The technical interfaces to S must be
documented. The documentation must be
understandable to a typical software house and
found suited for integration and data retrieval.

A course of ___ days is necessary to
use the documentation and make the
integration. Documentation samples
must be delivered early, preferably as
part of the proposal (cf. B2-4).

9. The supplier must loyally support the customer
in the integration or migration effort with
qualified staff at a fair price.

62

F1. NHC
This section is an example of a very loose integration with an existing system, NHC,
the National Health Organization's classification codes. NHC has code files that
anyone may download.

The introduction outside the tables gives the assumptions for the requirements,
similar to the assumptions for tasks descriptions.

Tasks: Which tasks utilize the integration?
E-documentation: How to get the documentation of the external interface?
E-data updates: How frequently are NHC codes updated inside the NHC system?
Data volume: How much data is transferred?

F1-1 specifies that the supplier has to make the integration. It is assumed that he
doesn't need support from someone else to do it (a reasonable assumption in this
case).

There are no special requirements for task support. The introduction says that the
data are used in most tasks. It is sufficient in this case.

F1-2 specifies the data to be transferred from NHC.

F1-3 shows that the recency of data is not urgent. If the system has the data one
week after they have been released by NHC, everything is okay. The example
solution mentions that a periodic transfer is sufficient. The transfer might also be
started manually by IT support when the health authorities announce the changes.

F1-3p mentions an existing problem about conflicts between local codes and new
official codes, and suggests two solutions.

F1-4 mentions that more recent data are needed sometimes.

There are no requirements for a specific response time (how fast the transfer is).
The system is not required to use other functions in NHC or transfer data to NHC.

63

F1. [NHC]
External system: [The NHC tables comprise codes and corresponding names for diagnoses, services,

health departments, etc.]
Tasks: [The codes are used in most of the tasks. However, the department codes are

retrieved from another system.]
E-documentation: [The tables are publicly available from the web site of the National Health

Organization. They are zip text files with fixed field spacing. They are documented on
the same web site.]

E-data updates: [The department codes are updated on a monthly basis, the other codes every three
months.]

Data volume: [The NHC tables comprise around 100,000 records, each around 100 characters.]

Integration responsibility: Example solutions: Code:
1. [The supplier must integrate the system with the

NHC tables.]

Task support: No special requirements. Example solutions: Code:

Data to transfer from E: Example solutions: Code:
2. [All codes are needed except the department

codes.]

Data recency: Example solutions: Code:
3. [S-data should not be older than a week.] [The system transfers E-data every

__ days.
Or: IT support starts a transfer of new
E-data when the Health authorities
announce them.]

3p. [Sometimes new NHC codes conflict with local
codes or cause other problems.]

[IT support can roll S-data back to the
previous version.
Or: Local codes may have a tag so
that they don't conflict.]

4. In special cases, there may be demand for more
recent data.

IT support can start a data transfer.

Response time requirements: None. Example solutions: Code:

Other functions: No requirements. Example solutions: Code:

Data transfer to E: None. Example solutions: Code:

64

F2. Labsys
This section is an example of a close integration with an existing system. Data are
transferred both ways: Requests to Labsys and replies the other way. The introduc-
tion explains what Labsys can do from a user perspective. Only task C10 uses it.

E-documentation: The customer refers to a technical document.
E-data updates: Each update corresponds to Labsys generating a reply.
S-data updates: S-data are the requests. An update corresponds to generating a

request.
Data volume: A reply consists of 1000 characters on average.

F2-1 specifies that the supplier has to make the integration and may get support
from the MediData company.

F2-2 says that support of task C10 must be efficient. This requirement seems a bit
unnecessary since the introduction mentioned C10. However, stating it as an
explicit requirement makes it easier to assess the solution. It also allows the
customer to explain what he considers a good solution.

F2-3 specifies the data to transfer. The data correspond to service entities in the
data model (section D3).

F2-4 and 5 specify that Labsys results must be in the EHR system (S) within 3
hours, but sometimes better recency is needed. The customer mentions a couple of
solutions.

The response time requirements are already covered by L1.

F2-6 and 7 specify that the EHR system can notify its own users and Labsys about
missing replies.

F2-8 specifies that the user can send Labsys requests by means of S. This is
considered a kind of data transfer. It might also be called a function.

65

F2. [Labsys]
External system: [Labsys version yyy. Users can request lab tests from Labsys. The sample itself is

delivered by … and the reply comes electronically. One reply may contain several
results.]

Tasks: [Labsys is used in connection with task C10, perform clinical session.]
E-documentation: [The technical interfaces to Labsys are described in …]
E-data updates: [Labsys generates 8000 replies a day, mainly between 8:00 and 16:30.]
S-data updates: [The entire hospital generates around 8000 requests a day.]
Data volume: [Each reply consists of around 1000 characters that usually comprise several

results.]

Integration responsibility: Example solutions: Code:
1. [The supplier must integrate the system with

Labsys. MediData supports Labsys and can
provide consultancy.]

Task support: Example solutions: Code:
2. [The integration must support C10 in an efficient

manner.]
[Requests and replies are handled in
the same way as other services -
without retyping patient data.]

Data to transfer from E: Example solutions: Code:
3. [All E-data that can match the data in section

D3.]

Data recency: Example solutions: Code:
4. [S-data should not be older than 3 hours.] [The system transfers E-data every __

hours.
Or: Data is transferred at E request when
they are available.
Or: Data is always retrieved from E.]

5. [The user sometimes needs the latest
results for a specific patient.]

[The system retrieves data on the user's
request.
Or: Data is always retrieved from E.]

Response time requirements: See L1. Example solutions: Code:

Other functions: Example solutions: Code:
6. [S can notify the user about new or missing

Labsys replies.]

7. [S can notify E about missing replies.]

Data transfer to E: Example solutions: Code:
8. [The user can send Labsys requests through S.]

66

F10. Integration with new external systems
Once the customer has acquired the system, it can become very expensive to
integrate it with new external systems because the supplier usually has a monopoly
on carrying out such changes. Section F0 (requirements 5-9) avoids the monopoly
by requiring that third party is able to implement such integrations. Section F10
asks for specific features that can make it easier to do so.

The introduction explains that it is the customer's responsibility to get documenta-
tion for the external system and that he defines the update frequency, etc.

F10-1 says that the customer (or a third party) is responsible for the integration,
but the supplier of the EHR system must assist him.

F10-2 specifies that the EHR system should allow an integrated system to work off-
line for a period and reconnect gracefully later.

F10-3 to 6 specify features that the EHR system should provide for data synchroni-
zation when data are transferred from the external system: Being able to transfer
data periodically or on request; asking the external system whether new data are
available (the user can then decide whether to transfer it now); allow the external
system to initiate a transfer to the EHR system.

F10-7 asks for a specification of the response times (transfer times). This will help
the customer plan the integration solution.

F10-8 and 9 ask for a list of the functionalities the EHR system offers and a list of
those it can use in an external system.

F10-10 to 12 are similar to F10-3 to 6, but specify features for data transfer to the
external system.

67

F10. Integration with new external systems
As explained in F0 the customer expects that he can integrate new external systems with S. This section
specifies the details.

External system: In principle any system. [Examples: X-ray system, mobile applications, specialist

system for intensive care.]
Tasks: The customer's responsibility.
E-documentation: The customer's responsibility.
E-data updates: Depends on the external system.
Data volume: Depends on the external system.

Integration responsibility: Example solutions: Code:
1. The customer is responsible for the integration.

The supplier must assist as specified in F0-9.

Task support: Example solutions: Code:
2. E may in some periods be off-line, e.g. for

mobile applications. In these periods, E must be
able to support tasks without access to S.

S transfers new data both ways at
disconnect and reconnect.
Or: E is able to do it.

Data to transfer from E: To be specified for each of

the interfaces.
Example solutions: Code:

Data recency: Example solutions: Code:
3. S can periodically transfer data from E. Only new data are transferred.
4. S can ask E whether new data of a specific kind

is available [e.g. for a specific patient.].

5. [S can on the user's request transfer E-data for
a specific patient.]

6. E can transfer data to S. Data may be any data
specified in Chapter D.

Response time requirements: Example solutions: Code:
7. Response times for S's technical interfaces

must be specified.

Other functions: Example solutions: Code:
8. [S can use functionality in E, e.g. request

services or warn about missing or changed
requests.]

The supplier is asked to specify the
functionality S can use.

9. [E can use functionality in S, e.g. notifying the
user, or printing on printers managed by S.]

The supplier is asked to specify the
functionality S provides.

Data transfer to E: Example solutions: Code:
10. E can retrieve data from S. Data may be any

data specified in Chapter D.

11. S can reply to E about availability of new data.
12. S can periodically send data to E.

68

G. Technical IT architecture
The term IT architecture has over the years come to mean two different things. The
classical meaning is the configuration of hardware, software, data communication,
etc. This is the technical architecture. The new meaning is the technical architecture
in addition to data model, usability, operation, support, etc. The template deals with
this already.

Requirements to the technical architecture depend on the situation. Does the
customer already have equipment that he wants to use? Or will he buy it? Or does
he leave it to the supplier because the supplier is going to operate the system
anyway?

The template shows an example for each of these three situations. Choose the one
that fits your situation, modify it as needed, and delete the other two.

G1. Existing hardware and software
This section describes the customer's existing equipment. It also explains that other
applications may run on the equipment at the same time, but they leave a certain
amount of resources for the new system. Notice that free resources must be
available for any 1 second period. Without this limit, the supplier cannot guarantee
response times in the one-second range.

The supplier needs this information to estimate whether his system requires
additional resources.

G1-1 asks the supplier to specify how many users the proposed system can support
on the existing equipment. "Support" means meeting the response time, availability
and storage requirements of Chapter L.

G1-2 asks the supplier to specify any additional equipment needed to reach the full
number of users.

G2. New hardware and software
This section asks the supplier to specify which equipment the customer must
purchase, and how it scales up according to the number of users.

G2-3 states that only equipment from the customer's favorite list should be used.
This may be important if the customer has expertise in this equipment or has a
purchase agreement with specific suppliers.

G3. The supplier operates the system
This section simply states that since the supplier operates the system, he decides
which equipment to use.

However, there may be a need to limit the list of equipment like G2-3, because the
customer wants to use his expertise to enhance or migrate the system.

69

G. Technical IT architecture
G1. Existing hardware and software [Alternative 1: Use what we have]
At present, the customer has the following IT equipment, which is intended for operating the new system:
1. [2 servers of type …]
2. [300 PCs with Windows XP and at least 100 GB disks.]
3. [Optical fiber net …]
4. [Oracle database …]

The equipment is used by other applications at the same time, but within these limits:
5. Within any 1 second period, servers leave 50% of the speed capacity for the EHR system.
6. [No other applications run on a PC when it runs the EHR system.]
7. Within any 1 second period, the optical fiber net leaves 50% of the capacity for the EHR system.

Platform requirements: Example solutions: Code:
1. Initially the system must run on the existing

equipment and meet the requirements in L1, L2
and L3 for a limited number of users.

On these conditions the system can
serve ___ users.
[The customer expects 20 users.]

2. In order to reach the full peak load (see L1), the
system must be expanded to meet the
requirements in L1, L2 and L3.

The customer has to add this
equipment ____.

G2. New hardware and software [Alternative 2: Supplier suggests]
The customer intends to buy new equipment to operate the system.

Platform requirements: Example solutions: Code:
1. In order to meet the requirements in L1, L2 and

L3 the customer needs new IT equipment.
The customer needs this equipment
_____.

2. When the peak load grows by a factor of two,
the system must be expanded to meet the
requirements in L1, L2 and L3.

The customer has to add this
equipment ____.

3. As far as possible, only equipment from the list
in appendix X should be used.

G3. The supplier operates the system [Alternative 3: His problem]

Platform requirements: Example solutions: Code:
1. The supplier operates the system and uses the

necessary equipment to meet L1, L2 and L3.

70

H. Security
Security comprises many areas: checking the user's access rights, giving them the
necessary rights, protecting against data loss, protecting against other threats.

H1. Login and access rights for users
This section describes the situations where the user's access rights must be
checked. The requirements are expressed as subtasks to be supported and prob-
lems to be removed. The template shows two alternatives: (1) The new system
must do as our other systems. (2) The new system should provide better security.

Alternative 1: Login as today
Requirement 1 says that the user must be identified. The example solution is to use
the existing approach.

Requirement 2 says that access is only allowed to users with the proper rights. The
example solution mentions two ways to do it.

The list of access rights is shown below the requirements table. A crucial point is the
granularity of the rights. Does the user get the right to prescribe medicine in
general or only medicine in a specific department? In the example, the granularity
is a department.

Many customers neglect this list although it is important for the supplier's assess-
ment of the solution complexity. Assigning the proper rights to the users is not
technically difficult, but checking the rights with the proper granularity is often
complex and has to be handled deep down in the system.

Alternative 2: Better login wanted
Requirement 1 again says that the user must be identified, but the example solution
calls for an alternative identification.

Requirement 2 asks for support of the situation where user 1 has been away from
the system for some time and another user may access the system with user 1's
rights. The traditional solution is time out, but it causes problems that need sup-
port.

Requirement 3 says that the rights must be checked and mentions the existing
problem with a password for each system. One solution is mentioned: single sign-
on. (This is only part of a solution because the customer's other applications must
be changed to follow the same scheme. This is not the EHR supplier's responsibil-
ity.)

71

H. Security
H1. Login and access rights for users
Login is not a separate user task, but subtasks that occur in many tasks. The system must support the
following subtasks relating to the user's access rights.

[Alternative 1: Login as today]
 Subtasks for user access rights: Example solutions: Code:
1. Identify the user The system uses the existing user

identification, login method, and time-
out method, which is …

2. Check that only authorized users get access to
systems and data. (See the requirement note
below.)

The database system checks the
rights.
Or: The user screens show only the
authorized functions and data.

[Alternative 2: Better login wanted]
Subtasks for user access rights: Example solutions: Code:
1. Identify the user. A user identifies himself with a user

name and a password; preferably also
an alternative identification such as
voice or finger print recognition.

2. The user has been away from the system for
some time.

2p. Problem: Another user may access the system
with the rights of the first user.

The system times out after 10
minutes of non-use.

2q. Problem: If the system logs out automatically, it
is cumbersome to log on again.

The system requires password only.
The timeout period may depend on
the physical location, for instance a
long timeout in the operating room.

2r. Problem: If the system logs out automatically,
entered data may be lost.

3. Check that only authorized users get access to
system functions and data. (See the
requirement note below.)

The database system checks the
rights.
Or: The user screens show only the
authorized functions and data.

3p. Problem: Today the users have a password for
each system. It is cumbersome to switch system
and hard to change passwords regularly. As a
result, users tend to post passwords where
everyone can see them.

Each user has only one user name
and one password (single sign-on).

Requirement note: Granularity of access rights
1. [Right to prescribe drugs in department M.]
2. [Right to see patient data in department M.]
3. [Right to record clinical data (diagnoses and services) in department M.]
…
[A surgeon in department M might for instance have rights 1, 2, and 3, while a supervising surgeon for
department M has rights 2 and 3 only.]

72

H2. Security management
Security management assigns and removes user rights, defines new roles, etc. An
organization may have central security management or delegate it to departments.
The example specifies that it must be local.

The template describes security management as subtasks to be supported and
problems to be removed. One of the problems is to assign rights to many users
when they start working at the beginning of the month.

Some of the solutions are well-known techniques such as role-based rights and
time-limited rights.

H2. Security management
Security should be managed locally.
The work in security management includes the following subtasks.

Subtasks for security management: Example solutions: Code:
1. A central department will assign and remove

rights for all users. See 2q for an exception.

2. Assign or remove access rights for a user.
2a. Create the user.
2p. Problem: A lot of users need access rights when

they start the first day in the month.
The system transfers data from the
personnel system once a month.

2q. Problem: A temporary employee has been
appointed in a hurry, but is not yet in the
personnel system. Needs access rights anyway.

Possibility for temporary registration
in the department, bypassing the
central department.

2r. [Problem: Security management must keep
track of the relationship between 4000 users
and 300 rights.]

[Each user is assigned one or more
roles, e.g. surgeon in department M
and supervising in department N.
Each role has one or more rights, e.g.
prescription and clinical recording.]

2s. Problem: Security management forgets to
assign and remove rights on the right dates, e.g.
in connection with hiring and resigning.

Rights and roles can be defined
ahead of time and be valid for a
certain period, e.g. from the day the
person is employed.

3. Create new roles with new combinations of
rights.

4. Get an overview of who has which rights and
whether some rights have not been assigned to
anyone.

73

H3. Protection against data loss
The template mentions some typical risks of losing data, and the supplier is asked
to describe his solution. For disk crashes and fire, the template suggests the
traditional solutions.

With the help of a security expert, the customer may ask for protection against
many other sources of data loss.

H4. Protection against unintended user actions
This section mentions typical risks caused by users unintentionally doing something
unexpected.

Requirement 1 says that no user action may cause the system to close down. This
is a tacit requirement to all systems and if not written it might still hold in court.
Writing it, however, removes any doubt. The example solution mentions how the
customer could be convinced.

H3. Protection against data loss
Data may unintentionally be lost.

The system must protect against: Example solutions: Code:
1. Disk crash Periodic backup or RAID disks.
2. Fire Remote backup …
3. (See F0 for protection of data against loss or

replication during transfer between systems.)

H4. Protection against unintended user actions
An unintended user action means that the user happened to do something he didn't intend to do, e.g.
hitting the wrong key or using a command that does something he didn't expect.

Requirements: Example solutions: Code:
1. Unintended user actions may not cause the

system to close down, neither on the client nor
on the server.

The supplier's issue log and a
description of the supplier's test
methods might provide evidence.

2. All data entered must be checked for format,
consistency and validity. In case of doubt, the
user must be warned and asked what to do.

3. The user must be able to correct mistakes
easily.

The system provides extensive use of
undo.

4. The user must be able to interrupt long func-
tions, e.g. waiting for a remote data transfer.

74

H5. Protection against threats
This section deals with threats caused by viruses, hacking, etc. In order to identify
the most important ones, you carry out a security risk assessment.

You look at the potential threats one by one, estimate the frequency of their
occurrence and the consequence when they occur (preferably in money terms).
Then you calculate the "average" damage per year for each threat. Based on this,
you select the most serious threats.

Alternative 1: The customer knows the risks
The customer has made a security risk assessment and has listed the serious
threats. He then asks the supplier to suggest a protection. The template shows only
a few examples.

We often see security requirements that specify a solution more than a need. As an
example, we see requirements like this:
 The password must be at least 9 characters with at least one capital letter.

This is cumbersome to the user, so let us ask the security specialist why this is
necessary. Well, he says, an intruder might try all possible passwords with a special
program. If the system handles login attempts at full speed, it is just possible to
break eight-character passwords in a reasonable time.

Requirement 3 handles this as a threat. We can now see that there are other
solutions. The solution column mentions two that are far more convenient.

Requirement 5, preventing unauthorized persons from accessing personal data,
sounds easy, but it comprises a lot of independent threats, such as wire tapping
and IT staff looking at the data on the disk. The supplier's proposal can easily
become a long novel - and it is hard to compare two suppliers' novels. We suggest
omitting this requirement and ensuring that the risk assessment covers the threats
and includes the serious ones as requirements in H5.

Requirement 6 tries to solve the problem by referring to a law on the matter. This is
fine because laws must be followed. However, it often creates an interesting game
between customer and supplier. The customer hasn't read the law in question, but
imagines that it covers the threats (it only partly does so). He reasons that if he
requires the supplier to follow the law, then the supplier has the responsibility for
adequate protection.

Most likely, the supplier knows the law and knows that it doesn't cover adequately.
He also knows that the purpose of the customer's requirement is to renounce the
responsibility, and that the law will not be verified at delivery time. Why should he
point this out to the customer? The result is that the real protection demand isn't
covered.

We suggest that requirement 9 is considered an addition to the security risk as-
sessment and the specific threat requirements (1-4 in the example).

75

Alternative 2: No risk analysis has been made
There is only one requirement: The supplier is asked to list the important risks and
propose safeguards. Notice that we don't ask him to make a risk assessment but
only list typical threats for this kind of project. If we talk about simple applications
such as web shops, and the supplier has expertise in the area, this is sufficient.

However, in unusual projects the customer should ask the supplier to make a
specific assessment with customer data. This is costly to both parties, so it should
be made during the project, maybe during the early proof-of-concept.

H5. Protection against threats
[Alternative 1:] A risk assessment has shown that the following threats are the most serious. The system
must protect against them.

The system must protect against: Example solutions: Code:
1. Unauthorized persons obtaining manager rights

through the internet (hacking).
The rights can only be used on the
internal network.

2. Wire-tapping of passwords. Password encryption.
3. An intruder tries all possible passwords with a

special program.
Passwords must be at least 9
characters (cumbersome).
Or: 5 second delay between login
attempts.
Or: Access blocked after 3 attempts.

4. SQL injection (makes the system handle data
entry as a database command).

5. Unauthorized persons getting access to
personal data. [Too open-ended, see the guide
booklet.]

6. [The system must conform to Law on Handling
of Personal Data (Law 429, May 31, 2000).]
[Okay, but check for completeness. See the
guide booklet.]

[Alternative 2:] The customer has not made a security risk assessment.

Threat protection: Example solutions: Code:
1. The supplier lists the threats that are most

serious for this kind of project and specifies the
safeguards he proposes.

76

I. Usability and design
Usability means that the system is easy to learn, efficient for the frequent user,
easy to remember for occasional users, easy to understand - also in unusual situa-
tions, and pleasant to use. These usability factors are not equally important.
Importance depends on the kind of system we specify.

When talking about usability, we assume that the system from a technical viewpoint
works correctly and replies fast, and that it actually can support the tasks. Never-
theless the users have troubles using the system.

Many developers and designers believe they can see whether the system has
adequate usability. Or that it is good enough if an expert user says so. It has been
proven over and over that this is not possible. Usability has to be tested and
measured with real, potential users.

Usability can be measured in many ways. The most important is to observe users
carry out some realistic tasks by means of the system or a primitive prototype of it.
We log when the user gets stuck and needs help, when the user spends too much
time finding the solution, etc. This is called a usability test. The problems we log are
called usability problems.

We can rather objectively classify the problems as critical or less critical. The
template shows how as a requirement note. We may then express the usability
requirements as the allowed number of critical problems. Notice that a problem is
critical only when two or more users have experienced it. The reason is that a large
number of usability problems are only observed once (singular problems). Usually it
doesn't pay to try removing them.

We may ask the user to think aloud during his attempts. This gives us far better
possibilities for understanding why the user encountered the problems, and the
developers get a better chance of removing the problems.

Experience shows that usability problems must be detected and removed before
programming. Later on it is too expensive to remove the many problems that
require program changes. To achieve this, we draw mockups of the screens with
paper and pencil or simple computer tools. We use the mockups for think-aloud
usability tests. Most usability problems can actually be detected this way. Next we
modify the mockups to remove the problems, and test again. This approach is the
basis for the early proof of usability in B2-2.

I1. Ease-of-learning and task efficiency
This section of the template states the usability requirements in such a way that we
during the early proof-of-concept can estimate whether the system will get suffi-
cient usability. At the same time we design a detailed user interface. Experience
shows that development is faster when a detailed, proven user interface is known
early on.

Before the proof of concept it may be hard to specify the exact way of measuring
the usability, and the customer may easily state unrealistic usability requirements.
As an example, imagine that we deleted requirement 1 in the template and kept
requirements 2 to 6. We would thus require that users were able to carry out all

77

I. Usability and design
I1. Ease-of-learning and task efficiency
It is important that the system obtains adequate usability. This is best done through early usability tests.
After the early tests, customer and supplier jointly decide the detailed requirements to be verified at the
time of system delivery. This may be a modified version of the requirements below and a detailed
specification of the test tasks.

[If the parties cannot agree on the detailed requirements, they may cancel the contract (cf. section B2-2).]

Requirements for early proof of concept: Example solutions: Code:
1. The parties must test the user interface for

usability soon after signing the contract. The
critical usability problems must be corrected
until usability testing gives acceptable results
(see the requirement note below). In addition
the parties must agree on the detailed usability
requirements.

Usability testing (think-aloud testing)
is carried out for existing parts of the
system in a suitable setup. For parts
that don't exist yet, think-aloud testing
is done with paper mockups. Three
new users participate in each round of
testing.

Requirements to be agreed in detail during the early
proof of concept, and verified at the time of delivery:

2. After a short instruction by super users, the
ordinary users must be able to carry out all
tasks in Chapter C within their own work areas
with few critical usability problems.

Within each work area, thinking-aloud
testing is done with three randomly
selected users. A maximum of ___
critical usability problems may be
observed.

3. Error messages must be understandable and
helpful.

During the usability test, a selection of
error messages is shown to the user,
who tries to explain what the message
means and what to do about it.
__% of the explanations must be
acceptable.

4. It must be possible to operate the system with
keyboard only. Users must be able to learn it on
their own.

Late in the usability test, the user is
asked to use keyboard only. __% of
the users must be able to do so.

5. Super users must be able to learn the system
quickly so they can train other users (cf. J2-1).

Training of a super user takes ___
days. (The customer expects 3 days).

6. [A user who has used the system for a week,
must be able to quickly order a set of services
for a patient, e.g. lab test, scanning …]

[A typical user is able to order these
services in __ minutes.]

Requirement note: Serious and critical usability problem
A serious usability problem is a situation where the user:
a. is unable to complete the task on his own,
b. or believes it is completed when it is not,
c. or complains that it is really cumbersome,
d. or the test facilitator observes that the user doesn't use the system efficiently.

A critical usability problem is a serious usability problem that is observed for more than one user.

tasks with few critical usability problems, were able to understand error messages,
etc.

In his proposal, the supplier would have to specify the allowed number of usability
problems, misunderstandings, etc. This is close to impossible for system parts that
don't exist yet. One purpose of requirement 1 is to find some reasonable usability
requirements early in the project.

78

Requirements 2 to 6 are outlines of usability requirements that have to be finished
during the proof of concept. The number in column 2, for instance, has to be filled
in.

Requirement 2 checks that after the planned introduction, users can carry out their
tasks with minimal support from others.

Requirement 3 checks that error messages are usable. During usability tests, the
users will only encounter a few error messages. Requirement 3 makes it possible to
test more messages, also those that rarely occur.

Requirement 4 says that it must be possible to operate the system without a
mouse, and users must learn it on their own. For some systems this may not be
relevant, for instance for applications used occasionally.

Requirement 5 deals with large systems that typical users cannot learn on their
own. Traditionally, customers ask for courses that all users must take, but it is often
an expensive and inefficient approach. Instead we ask for ways the super-users can
learn the system and train other users. One way is to provide courses for them. In
J2-1 we ask the supplier to run such courses.

Requirement 6 deals with efficiency for the frequent user. During the early usability
tests, we may get a feeling for how fast users should be able to work, but we
cannot measure it until the system is operational.

Web systems
The template shows requirements suited for production systems that are used on a
daily basis. Requirements 2, 5 and 6, for instance, are not suited for websites used
occasionally. There are no super users around, and efficiency is unimportant.
However, requirement 4 may still be important if the site is intended for visually
impaired users. They have troubles hitting with the mouse.

I2. Accessibility and Look-and-Feel
Some usability aspects are hard to express through usability tests. Rules and
standards may be better.

Requirement 1 says that the user interface must follow the MS-Windows guidelines.
Notice that the reason is stated: most users are familiar with Windows, and the
guidelines will make the system easier to learn. If you don't have a good reason,
there is no need to follow a guideline. Many people believe that a guideline ensures
usability. It does not. At most it contributes a bit, and in some cases it may even be
harmful. Following a guideline is not free. It is amazingly difficult to check that the
guideline is followed - and correct the mistakes.

Requirement 2 says that the user interface must be suited for blind and visually
impaired users. One solution is to follow the HTML principles, which were developed
for this purpose. As an example, standard heading tags should be used rather than
self-defined, visually impressive styles. Heading tags allow screen reader programs
to use intonation for "highlighting" the headings. In the same way, fixed column
widths and font sizes should be avoided so that visually impaired users can enlarge
the text many times.

79

I2. Accessibility and Look-and-Feel
Requirements: Example solutions: Code:
1. The user interface must follow the MS-Windows

guidelines, which most users are familiar with.

2. Web pages must be suited for screen readers,
scaling to visually-impaired users, and utilizing
the full screen size on small as well as large
screens.

The pages follow the HTML
guidelines for Accessibility (WCAG10
from W3C).

3. [The user interface must be in Danish. The
pages with opening hours, phone numbers, and
addresses must be available in Danish, English,
Turkish, and Urdu.]

Some requirements specifications replace requirement 2 with a requirement that
the web pages must pass a W3C Markup validation test (http://validator.w3.org).
This test analyzes the web pages and finds errors. This is yet another example of
analysts prescribing a standard in the belief that it covers the demands. The test
only finds formal errors, for instance missing end tags or missing quotes. It doesn't
say anything about suitability for the blind. The guidelines in WCAG10, however,
have rules for supporting the blind.

Requirement 3 is an example where the language must be specified.

80

J. Other requirements and deliverables
This chapter collects requirements that don't fit into the other chapters. The tem-
plate shows only some of the areas that belong to this chapter.

J1. Other standards to obey
Most required standards belong to other chapters, for instance data and security.
The rest may be stated here.

In practice we see customers write a long list of standards, often without knowing
what they cover. Usually it is cumbersome to check whether a standard is met. As a
result a careful supplier must increase the price, while a less careful supplier
assumes that the customer doesn't check whether the standards are met. (See the
examples in H5 and I2.)

The template shows only a single example of a standard (of the soft kind). The
supplier is required to obtain the certification, i.e. an independent check that the
system meets the standard. This relieves the customer of the need to check for
himself.

J2. User training
User training is often forgotten - or an unrealistic amount of training is requested.
Often the training takes place at the wrong point in time, for instance so early that
users have forgotten all of it when the product finally arrives.

Requirement 1 is an example where the customer realizes that only super users
need training from the supplier. We ask the supplier to train 50 super users. The
training must enable them to train other users. This is in recognition of the fact that
most supplier courses are too far from the user's real tasks. The idea is to use super
users as mediators. It is specified what the super users must be able to do after the
training (see also I1-5).

Requirement 2 specifies similar requirements for training the customer's IT staff.

Requirement 3 specifies when the training must take place relative to system
delivery.

81

J. Other requirements and deliverables
J1. Other standards to obey

Requirements: Example solutions: Code:
1. [The system must follow good accounting

practice. The supplier must obtain the
necessary certification.]

2. …

J2. User training
The customer wants to deliver a large part of the training himself. The idea is to train super users first and
then let them train others.

Requirements: Example solutions: Code:
1. [The supplier must train 50 super users, making

them able to train other users. The training must
enable the super users to carry out all tasks in
Chapter C, including variants, within their own
work areas.]

Training of a super user takes __
days. (The customer expects 3 days).

2. [The supplier must train 10 IT staff, making
them able to handle the customer's part of
system operation and support.]

Training of IT staff takes ___ days.
(The customer expects 10 days).

3. The training must be carried out within the last
month before system delivery in order that users
and IT staff can use the system immediately
and haven't forgotten what they learned. If
necessary, the training must be repeated and
the delivery delayed.

4. …

82

J3. Documentation
User and system documentation are often forgotten too. The example points out
that full documentation isn't needed for everybody. This is in recognition of the fact
that few users read the documentation or on-line help, even if it is available and
reasonably useful. This recognition may save many expenses and frustrations for
both parties.

Requirements 1 and 5 specify that course material must be available to super users
when they train other users, i.e. before system delivery. It must be available in a
form that allows the super users to adapt it, for instance with examples from the
customer's world. Requirement 2 specifies that full documentation for super users
must be available shortly after system delivery.

Requirement 3 specifies in the same way the documentation for the customer's IT
staff.

Requirement 4 specifies documentation for specially developed software and
technical interfaces. The criterion is that the documentation must be sufficient for
third party to maintain these parts and to transfer data to another system. To
ensure that the supplier can actually deliver the necessary documentation quality,
you can ask for an early proof as in section B2.

J4. Data conversion
Data conversion from previous systems to the new system often makes up a
significant part of the supplier's price. This section specifies what to convert. It is
important that the customer documents the data formats since the supplier must
otherwise obtain the information from other sources in order to calculate the correct
cost. This may scare good suppliers from bidding.

Validation of the conversion is a large problem that some suppliers know much
more about than the customer. For this reason, requirement J4-3 asks the supplier
to explain how he will do the validation.

J5. Installation
This section specifies who installs what. If the customer wants to install the system
himself, he may ask for the necessary documentation and an estimate of the time it
will take.

83

J3. Documentation
The customer expects that only super users, IT support staff, and systems developers will read the
documentation. Thus there is no need for beginner's documentation, except for course material.

Requirements: Example solutions: Code:
1. Before system delivery, course material must be

available for super users to use when teaching
other users. (The customer contributes with
documentation of the future work processes,
see K-10.)

2. A month after system delivery, user-oriented
documentation of all system functions must be
available. The documentation must be suited for
super users.

3. Before system delivery, sufficient
documentation must be available for the
customer to handle his part of IT operation and
support.

4. For specially developed software and technical
interfaces, sufficient documentation for third-
party development must be available two
months after system delivery.

5. All documentation must be delivered in
electronic form. The customer may freely modify
it and copy it for his own use.

6. …

J4. Data conversion

The supplier must convert the following data from the
existing systems:

Example solutions: Code:

1. [Those data from the patient management
system that the EHR system will handle in the
future. The format is described in …]

2. [Those data from the XY system that the EHR
system will handle in the future. Data must be
transferred through IBM 3270 emulation. See
the screen format in …]

3. All converted data must be validated. The supplier is asked to describe
how.

4. …

J5. Installation

Requirements: Example solutions: Code:
1. The supplier must install all parts of the delivery,

hardware as well as software.

2. The supplier must install all converted data.
3. …

84

K. The customer's deliverables
Most of the requirements specify what the supplier must deliver. However, an IT
system isn't something that the supplier just rolls in and plugs into the power
outlet. The customer's employees have to contribute in various ways, and the
supplier's employees may need office space and other facilities during development
and deployment.

This chapter specifies what the customer has to provide. The supplier may in
column 2 specify what he expects, and in his proposal he may add new points to
the list.

In many contracts, this chapter is replaced by a separate contract appendix.

Like other sections of the template, the requirements in this chapter are only
examples and not an exhaustive list. So take care: In many countries legal practice
is that the contract must specify everything the customer has to deliver. After
signing the contract, the supplier cannot expect office facilities or expertise in some
customer area unless it is specified in the contract or its appendices.

85

K. The customer's deliverables
The following list of the customer's deliverables and services must be complete. The supplier cannot
expect more from the customer. If necessary, the supplier must add to the list in his proposal.

The customer delivers: Example solutions: Code:
1. [Hardware, software, and external systems that

the EHR system requires (see the details in
Chapter G). The equipment must be available
when the installation test starts.]

 N/A

2. [Office with three IT work places from one
month before the planned installation test to one
month after system delivery.]

 N/A

3. [Samples of production data for testing
purposes and the full data set for conversion,
except data from the XY system.]

 N/A

4. Test cases for deployment testing. N/A
5. Expertise in the application area corresponding

to a half-time employee during the entire
project.

 N/A

6. Test subjects for usability tests. N/A
7. A half-time project manager and a half-time

secretary.
 N/A

8. Super users/instructors who learn the system in
order to train ordinary users.

 N/A

9. Expertise for validation of converted data. N/A
10. Contribution to the course material on future

work processes (cf. J3-1).
 N/A

86

L. Operation, support, and maintenance
This chapter specifies the supplier's responsibilities after delivery of the system
itself. These requirements can only partly be verified (tested) at the deployment
test. We may for instance set up a simulation of 2000 users and measure response
times, or we may test that the support organization works, but we cannot test that
it also works well when 2000 real people work with the system.

The full verification takes place after delivery, for instance at the operational test or
through investigation of logs and statistics.

The template corresponds to the situation where the supplier is responsible for
operation, support, and maintenance. If the supplier for instance isn't responsible
for support, the corresponding section should be empty. In this case the customer
may need courses and documentation that allows him to support the system.
Requirements for this are stated in Chapter J.

If the supplier isn't responsible for operations, we cannot just delete sections L1
(response times) and L2 (availability). The supplier is still responsible for the
response time - assuming that the system runs on the configuration described in
Chapter G. Similarly the supplier is responsible for part of the availability. If the
system breaks down due to errors in his software, he is responsible for the corre-
sponding lack of availability. This is explicitly stated in section L2.

In many contracts, this chapter is moved to separate contract appendices.

L1. Response times
The introduction part describes the estimated load of the system in the busiest
periods (peak load). Without these figures, the supplier cannot estimate the re-
sponse times and the necessary hardware. It may be necessary to specify more on
the load, for instance if other response times are acceptable or needed in other
periods or for other user groups.

The template shows two different ways of expressing the load:

1. The number of users who carry out the various tasks. If the supplier has in-
depth knowledge of the work areas, he can translate the figures to the number
of IT transactions, which in turn allows him to estimate the response times.
Without this knowledge, it is very risky to promise response times.

2. The number of IT transactions. When the supplier is not expected to be familiar
with the work area, the customer should specify the number of IT transactions
rather than the number of users. Even if the customer doesn't know the num-
ber, the requirements should still be expressed as the expected number of
transactions since the customer ought to know more about it than the supplier.

The template mentions that the customer has estimated the number of transactions
from the task frequencies stated in Chapter C and the yearly data volumes in
Chapter D. In order to translate this to transactions in peak load, he also needs to
know the percentage of transactions made in peak periods and how many transac-
tions an average task will generate.

87

L. Operation, support, and maintenance
This chapter specifies the supplier's responsibilities after delivery of the system itself. These requirements
can only partly be verified (tested) at the deployment test. The full verification takes place later, at the
operational test. [Depending on the supplier's responsibility, only some of the requirements are relevant.]

L1. Response times
It is important that response is so fast that users are not delayed. Response time is particularly important
during the busiest hours, the peak load periods, which are [morning 9-11 and …]

Peak load [Alternative 1: Only suited when the supplier knows the domain intimately:
1. 2000 users work with clinical sessions (C10).
2. 1000 users work with patient management (C1 to C4).
3. 300 users browse the public web part.]

Peak load [Alternative 2: Suited when the supplier doesn't know the domain intimately:
The figures are estimated from task frequency (Chapter C) and data volumes (Chapter D).
1. Simple queries in clinical sessions (C10): 10 per second.
2. Updates in clinical sessions (C10): 2 per second.
3. Public web access: 5 page loads per second.]
4. …

Measuring response time
The response time is the period from the user sends his command to the result is visible and the user can
send a new command. A command means a key press or a mouse click. All measurements are made in
peak load periods with the actual number of users, assuming that the load is within the limits above.

Fractile: The times specified below must apply for 95% of the measurements.

Production work: Measurements are made with a setup according to Chapter G.

The public web part: Measurements are made on a PC connected to the Internet through a 56 KB
modem with low traffic on the route to the servers, but with peak load of the servers themselves.

The introduction part specifies how the response time is to be measured and under
which circumstances. In the example it is done differently for the production work
on the local-area network and for the public web part. Many users of the public web
part still have a slow connection, and the supplier should avoid too many pictures,
which would slow down the page presentation. The fractile of response times that
must be within the required limits is also stated (more on this below).

88

Requirement 1 simply says that there is a need to measure regularly - and in the
peak load periods. In column 2 the customer has given examples of how it might be
done. The supplier will specify his solution according to what is feasible for him.

Requirements 2-9 specify the required response times. They are based on ergo-
nomic measurements of how people work at computers (the keystroke-level model,
Card et al., 1980). A fast user types 5-10 characters per second, so 0.2 seconds to
move from one field to the next on the screen, will barely slow down the work.

A user spends around 1.3 seconds to change focus from one "mental chunk" to
another, for instance from entering client data to entering the client's request. If the
screens are structured accordingly, a 1.3 second screen switch will not slow down
the user. This applies to requirements 3, 4 and 5.

In practice there will be cases where the system needs more time to reply, and
where the user expects it. Here we meet an ergonomic constant of 20 seconds.
Even when the user knows that it takes time, he will unconsciously wait around 20
seconds and then start working on something else. Switching from one task to
another takes time - wasted time. For complex tasks the mental switch time might
be as long as 10-20 minutes. Requirements 6 and 7 are examples of occasionally
used functions where 20 seconds are acceptable.

Finally there may be functions where we for technical reasons expect response
times above the ideal. Requirements 8 and 9 (login) are examples of this. Ideally,
login should take place within 1.3 seconds.

The supplier may in column 2 specify functions that don't follow the common
response time rules, for instance an overview screen that may take 3 minutes to
display.

Web systems
The response times in the example are for production work through a local area
network. For websites used occasionally, these requirements are much too strong
and meeting them would be unnecessary and costly.

Fractile: valid in X% of the cases
Notice that the required response times must be valid for only 95% of the cases (or
some other fraction). Why not ask for 100% of the cases? Because it is unrealistic
in a multi-user system.

Let us look at an example: The system takes 0.2 seconds to handle a request.
When a request arrives while the system is idle, its response time will thus be 0.2
seconds. Assume that there on average are 2 requests per second. This means that
the system will be busy 40% of the time. If another request arrives while the
system is busy, it will be queued and its response time becomes larger than 0.2
seconds. This will happen to 40% of the requests.

The result is that 95% of the requests get an answer within 0.6 seconds, and 99%
get an answer within 0.8 seconds (for an M/D/1 queuing model).

89

(L1. Response time, continued)

Response time requirements: Example solutions: Code:
1. Response time measurements must be made

regularly in the peak load periods.
Measurements are made once a
week with a stop watch.
Or: The system measures all the time.

2. When moving from one field to the next, the
user's typing speed must not be slowed down.

Typing is possible within ___ s.
(The customer expects 0.2 s.)

3. When moving from one screen to the next, data
must be visible and typing possible within the
mental switching time.

Data is visible and typing possible
within ___ s.
(The customer expects 1.3 s.)

4. Lookup in drop-down lists must allow selection
from the list within the mental switching time.

Selection is possible within ___ s.
(The customer expects 1.3 s.)

5. Reports used frequently must be visible within
the mental switching time.

The report must be visible within ___
s. (The customer expects 1.3 s.)

6. Reports used occasionally must be visible
before the user loses patience.

The report must be visible within ___
s. (The customer expects 20 s.)

7. Data from external systems must be transferred
and displayed before the user loses patience.
For some time after this, the data must be
accessible as fast as other data.

Data is visible within ___ s.
(The customer expects 20 s.)
Data may for instance be cached
locally for some time.

8. Login must be completed before the user loses
patience.

The user can start working within ___
s in addition to the time he spends
typing his identification. (The
customer expects 10 s.)

9. Repeated login when the user temporarily has
left the system, must be completed before the
user loses patience.

The user can start working within ___
s in addition to the time he spends
typing his identification. (The
customer expects 4 s.)

This isn't scary, but what about worst case? There are on average 2 requests per
second, but by coincidence - or because we test this way - 2000 users may send a
request almost at the same time. The system processes 5 requests per second and
as a result the last user gets a reply after 400 seconds.

If we had asked for a maximum response time of 2 seconds - also in this extreme
case - we would need a system that could process 1000 requests per second. It
would be extremely expensive. So never ask for a maximum response time in a
system with many users.

90

L2. Availability
Availability is the fraction of time where the system must be operational from the
user's perspective. We have to define more precisely what it means that the system
is out of operation, and how we deal with cases where some users can access the
system but others cannot. If only one user cannot access the system, we would
hardly call it a system breakdown.

A breakdown can have many causes and the template mentions 5. Not all of them
are the supplier's responsibility. When the supplier isn't responsible for operation,
he will still be responsible for breakdowns with cause 3 (errors in software or
configuration). When the supplier is responsible for the operation, also power
failure, hardware breakdown, capacity problems, etc. are his responsibility.

In principle the customer can state all kinds of requirements for calculating the
availability, but in practice he must accept the possibilities the supplier can offer -
as long as they cover his real needs.

The introduction part suggests one way to calculate a breakdown period: A break-
down is always calculated as 20 minutes. An operational period must last at least
60 minutes. The reason is that users don't resume their interrupted tasks until
around 20 minutes after the breakdown, and they cannot produce much in an
operational period less than an hour.

The template also suggests a way to calculate the availability when only some of
the users are affected by the breakdown.

Notice requirement 1, which says that the availability must be calculated periodi-
cally. This means that excess availability cannot be transferred from one period to
the next. In column 2 the customer has suggested that availability is calculated as
described in the introduction part. The supplier may propose his own way of calcu-
lating the availability, for instance by referring to an appendix.

Requirements 2-3 state the required availability in two different operational periods.
Take care not to ask for too much. It may be very expensive. Section A2.3 of the
template (example L2) shows how the customer could lose a lot of money by being
too demanding. An availability of 99.5% means that the system may be out of
operation 8 hours a year in normal work hours. An availability of 99.9% means 1.6
hours a year, but for a large system the cost may be several million dollars more.

L3. Data storage
This section specifies the amount of data to be stored. The example distinguishes
between data with immediate access and archived data with slower access. Certain
kinds of pictures are stored for a shorter time.

The example refers to the detailed data volumes in Chapter D, where each table has
a total size and sometimes a yearly growth. We might also specify all table sizes
here in section L3 and remove them from Chapter D. Keeping them in both places
would be convenient, but easily creates inconsistencies.

91

L2. Availability
The system is out of operation when it doesn't support some of the users as usual. The cause of the
breakdown may be:
1. The customer's issues, e.g. errors in the customer's equipment.
2. External errors, e.g. power failure.
3. The supplier's issues, e.g. errors in software or configuration.
4. Planned maintenance.
5. Insufficient hardware capacity.

Solution note: Measuring availability
A breakdown is counted as at least 20 minutes, even if normal operation is resumed before. If the following
period of normal operation is less than 60 minutes, it is considered part of the breakdown period.

[When the supplier is not responsible for operations, only breakdowns with cause 3 are included in the
availability statements. When the supplier is responsible for operations too, he may also be responsible for
causes 2, 4, and 5.]

The operational time in a period is calculated as the total length of the period minus the total length of the
breakdowns for which the supplier is responsible. The availability is calculated as the operational time
divided by the total length of the period. When only some of the users experience a breakdown, the
availability may be adjusted. One way is to calculate the availability for each user and take the average for
all users.

Availability requirements: Example solutions: Code:
1. The availability must be calculated periodically.

The calculation should compensate for the
number of users experiencing breakdowns.

The availability is stated monthly and
calculated as described above.

2. [In the period from 8:00 to 18:00 on weekdays,
the system must have high availability.]

In these periods the total availability is
at least ___%.
(The customer expects 99.5%)

3. [In other periods the availability may be lower.] In these periods the total availability is
at least ___%.
(The customer expects 98%)

L3. Data storage
The data volume is specified in Chapter D. Data must be stored as follows:

Data storage requirements: Example solutions: Code:
1. [The system must give access to data for the

last 5 years with the response times specified in
L1. This includes the history trail.]

2. [X-ray pictures are only kept for … years.]
3. [The system must give access to archived data

for the last 20 years with response times as for
external systems (L1-7). History trails are not
needed.]

92

L4. Support
This section specifies the supplier's support services, for instance helping users
(hotline), changing the system configuration, and monitoring operations. (ITIL has
specific terms for this. Hotline is for instance called Service Desk. See Bon, 2004.)

The introduction states that super users are the first point of contact. If they cannot
remedy the problem, the super user or the ordinary user may contact hotline. We
might allow ordinary users to contact hotline directly, but in most organizations it
would be much more expensive, and less effective.

The introductory requirement note explains what it means to handle a request for
help (an incident in ITIL terminology). It is described as a list of subtasks. After
most of the subtasks, the user gets a first reply. A reply means that the user has
got help in solving or circumventing the problem, or that a technical problem has
been remedied, or that the problem has been transferred to another organization. It
is not a valid reply that the request has been received by the hotline or transferred
to another supporter. The user may often get a first reply and later additional
replies as supporters investigate the case.

Requirements 2 and 3 specify when users can contact the hotline by phone or in
person (direct contact), and that the supporter must try to resolve the problem on
the spot.

Requirement 4 specifies that for indirect contacts the user must get a first reply
within a few hours.

Requirements 2 and 4 specify the speed of the service. Similar to the response time
requirements, the service speed must be valid in 95% of the cases. Don't specify a
maximal time for a reply (valid for 100%). The worst case, where everybody asks
for help at the same time, will be excessively expensive to handle.

Requirement 3 asks for on-the-spot handling of direct contacts. Many SLA's (Service
Level Agreements) specify that a certain fraction of the requests must be resolved
on the spot. Experience shows that this makes the supplier interested in getting a
lot of trivial requests. He is not motivated to prevent them, for instance by broad-
casting how certain problems can be avoided.

For this reason requirement 3 only asks the supporter to spend a few minutes on
the spot. Whether the support quality is adequate in general is hard to measure.
Requirement 10 suggests that the parties discuss this at regular meetings.

The example asks for specific services such as remote diagnostics and sending a
support person to the customer's site. As for other requirements, the supplier may
respond that he doesn't provide this.

Like other sections of the template, the support requirements are only examples
and not an exhaustive list. The ITIL specifications may be used for creating a longer
list of support processes. As with other standards, don't just use them blindly. You
may end up paying for more than you need or asking for inconvenient processes,
such as always send the reply back to the user through the first point of contact.

93

L4. Support
Support comprises help to users, configuration changes, and monitoring of the operation. In this chapter,
"supplier" means the supplier's IT and support organization. A "supporter" means a qualified person from
the supplier. The specified response times must apply for [95% of the cases].

[Super users are the ordinary user's first point of contact. The supplier only has to help when the super
users cannot remedy the problem. The supplier may interact with the super user or directly with the user.]

Requirement note: Handle a request
Whenever a supporter receives a request, he can perform one or more of the following subtasks. All
subtasks except e (escalation) end with a reply to the user. The request is closed when nothing more can
be done about the request (subtask f).
a. Help user: Assist the user in solving the problem or circumventing it. If needed contact the user for

clarification. Assistance is considered a valid reply.
b. Change configuration: E.g. start servers, change settings, replace printer cartridges, install software.

Reply to the user when it has been done.
c. Order equipment or help from another organization: Reply to the user about the expected delay.
d. Defect: The support organization cannot solve the problem. Report it to the maintenance

organization. Reply to the user that it has been done.
e. Escalate request: The supporter cannot fully solve the problem himself. Pass the request on to

another supporter. This person may again perform one or more of the subtasks.
f. Close the request: Nothing more can be done about the request. This may happen at the first point of

contact. The request may also escalate several times, wait for external delivery or wait for a reply
from maintenance before it can be closed. Reply to the user that the request has been closed.

Support requirements: Example solutions: Code:
1. The supplier must handle user requests for

help. Help must cover all equipment and
software provided under this contract.

1p. Problem: Even super users cannot decide which
product a specific problem relates to. It is even
harder to mediate between several suppliers.

The supplier involves the necessary
other parties on his own initiative.

2. Direct contact: In the period [from 8:00 to 18:00
on weekdays], users can quickly contact a
supporter by phone or in person.

In this period, contact is available
within __ minutes. (The customer
expects 10 minutes.)

3. For a direct contact, the supporter handles the
request on the spot as far as possible.

[On the spot means what can be done
within 5 minutes.]

4. Indirect contact: Requests sent by email, sent
by web, or escalated from the direct contact get
a reply within a few hours.

[The supplier replies within __ work
hours (8:00 to 18:00 on weekdays).
(The customer expects 3 hours.)]

5. The supplier sends a supporter when this is
necessary to remedy the problem.

6. The supplier can perform remote diagnostics to
remedy the problem.

7. The supplier monitors request handling to see
that requests are closed and response times
met.

8. The supplier records data for computation of
support response time, and identification and
prevention of frequent problems.

The supplier keeps a log of all steps
in the request handling and the cause
of the problem.

9. The supplier monitors the operation in order to
foresee availability problems, and changes the
technical configuration so that availability is
maintained.

10. Customer and supplier meet regularly to review
response times and discuss prevention of
problems.

The parties meet every ____.
(The customer expects monthly
meetings.)

94

L5. Maintenance
This section shows examples of typical maintenance requirements, including defect
removal, system updates, and system expansion.

Who decides whether a reported defect is urgent (business critical)? Is it the user
who reported it or the supplier? The answer depends on the kind of system and
customer we deal with. Usually it is not the user because users tend to consider
everything urgent. On the other hand, the supplier prefers to deny that it is urgent.

Requirement 2 suggests some alternatives. The basic one is that the supplier
decides, and that his decisions are reviewed regularly (requirement 4). The alterna-
tives are that the local super user or the customer's IT department decides.

When a system is to be expanded, the supplier has a de-facto monopoly and can
charge the customer accordingly. Requirement 6 shows a way around it: The size of
the change is estimated as the number of Function Points, and the supplier has
specified a fixed price per Function Point. COSMIC points are a modern version of
Function Points. They are much easier to use.

Both methods are a technology-independent way of measuring development tasks.
Depending on the supplier's skills, technology and system documentation, he can
quote a higher or lower price per point.

Expertise is needed to estimate Function Points, and disagreements are likely. Many
countries have a special interest group for Function Points, and requirement 7
specifies that it must be used to resolve conflicts.

95

Literature and other templates must be used to resolve conflicts.

L5. Maintenance
Maintenance includes defect removal, system updates and system changes. The specified times must
apply for [95% of the cases].

Requirements for defect removal: Example solutions: Code:
1. The supplier keeps a log of reported defects as

well as change requests.

2. For all reported defects, the supplier quickly
decides whether the defect is business critical,
possible to circumvent temporarily, or possible
to circumvent permanently (i.e. reject).

[Alternative 1:] The local super user decides.
[Alternative 2:] The customer's IT department

decides.

[In the period from 8:00 to 18:00 on
weekdays, the supplier completes the
assessment within __ hours. (The
customer expects 3 hours.)]

3. Business-critical defects are removed quickly. [Business-critical defects are removed
within __hours. (The customer
expects 24 hours.)]

4. Customer and supplier meet regularly to check
the defect assessments, and to decide what to
repair or change, and what it will cost.

[The parties meet every ____.
(The customer expects monthly
meetings.)]

Requirements for system improvement: Example solutions: Code:
5. The supplier installs new versions and releases

of the delivered software within a few weeks.
[Installation takes place within ___
days after release of the new version
or release.
(The customer expects 30 days.)]

6. Within a period of 3 years, the supplier must
offer changes at a fixed price per [Function
Point / COSMIC point.]

The price per [Function Point /
COSMIC point] is ____.

7. Disagreement on the [Function Point / COSMIC
point] calculation must be resolved by …

L5. Maintenance
Maintenance includes defect removal, system updates and system changes. The specified times must
apply for [95% of the cases].

Requirements for defect removal: Example solutions: Code:
1. The supplier keeps a log of reported defects as

well as change requests.

2. For all reported defects, the supplier quickly
decides whether the defect is business critical,
possible to circumvent temporarily, or possible
to circumvent permanently (i.e. reject).

[Alternative 1:] The local super user decides.
[Alternative 2:] The customer's IT department

decides.

[In the period from 8:00 to 18:00 on
weekdays, the supplier completes the
assessment within __ hours. (The
customer expects 3 hours.)]

3. Business-critical defects are removed quickly. [Business-critical defects are removed
within __hours. (The customer
expects 24 hours.)]

4. Customer and supplier meet regularly to check
the defect assessments, and to decide what to
repair or change, and what it will cost.

[The parties meet every ____.
(The customer expects monthly
meetings.)]

Requirements for system improvement: Example solutions: Code:
5. The supplier installs new versions and releases

of the delivered software within a few weeks.
[Installation takes place within ___
days after release of the new version
or release.
(The customer expects 30 days.)]

6. Within a period of 3 years, the supplier must
offer changes at a fixed price per [Function
Point / COSMIC point.]

The price per [Function Point /
COSMIC point] is ____.

7. Disagreement on the [Function Point / COSMIC
point] calculation must be resolved by …

96

7. Literature and other templates
Alexander, Ian & Beus-Dukic, Ljerka: Discovering Requirements - How to Specify

Products and Services. Wiley, 2009, ISBN 978-0-470-71240-5. Provides good
advice and examples of many methods and notations. Contains cases from
several domains.

Bon, Jan v., et al. (eds. 2004): IT Service Management - an Introduction based on
ITIL. Van Haren Publishing, ISBN 90-77212-28-0. Describes in a comprehen-
sive way the processes associated with operating and supporting a system (240
pages).

Card, Stuart K. et al. (1980): The keystroke-level model for user performance time
with interactive systems. Communications of the ACM, 23 (7), pp. 396-410.
Breaks down the user part of the task into basic elements and measures the
time for each type of element.

Constantine, Larry & Lockwood, Lucy A.D. (1999) Software for Use: A Practical
Guide to the Models and Methods of Usage-Centered Design, Addison-Wesley.
Describes a systematic design method for user interfaces, starting with elicita-
tion of essential use cases and ending up with prototypes and usability testing.

COSMIC, Common Software Measurement International Consortium. A modern
method for functional size measurement. It is applicable to business, real-time
and infrastructure software. The method is entirely 'open'; all method docu-
mentation is available in the public domain for free download.

 http://www.cosmicon.com/

Lauesen, Soren (2002): Software Requirements - Styles and Techniques. Addison-
Wesley, ISBN 0-201-74570-4. A textbook on how to formulate requirements,
elicit them, assess solutions and test them. Contains large sections of real-life
specifications formulated in different ways. See:

 http://www.itu.dk/people/slauesen/SorenReqs.html

Lauesen, Soren (2005): User Interface Design - A Software Engineering Perspec-
tive. Addison-Wesley, 0-321-18143-3. Shows how the designer gets from task
descriptions and data model to a user interface that meets the usability re-
quirements. Answers the difficult question: How many screens are needed and
what should they contain? See:

 http://www.itu.dk/people/slauesen/SorenUID.html

Patton, Ron (2006): Software testing. Sams Publishing, Indiana. ISBN 0-672-
32798-8. Covers many kinds of test such as white box test, black box test,
compatibility test, foreign-language test, and security test.

Robertson, Suzanne & Robertson, James (1999): Mastering the Requirements
Process. Addison-Wesley, ISBN 0-201-36046-2. Explains the author's Volere
approach by means of a specific example, a system for managing roads in
winter time. It mainly covers systems to be developed from scratch. The
Robertsons' templates are available on

 http://systemsguild.com/GuildSite/Robs/Template.html

97

Technology Group International: Software Selection Requirements Template
(accessed May 2011). A template for comparing business systems (ERP sys-
tems) according to around 1250 functional requirements on "product level".
You have to register, but then the template is free.

 http://www.tgiltd.com/erp-software-selection/erp-requirements-template.html

Wiegers, Karl E. (2003): Software Requirements, 2nd Edition. Microsoft Press, ISBN
0-7356-1879-8. Covers many aspects of requirements from rights and obliga-
tions to tools, notations and processes. Illustrated with good and bad require-
ments, and dialogues from the elicitation process.

Withall, Stephen (2007): Software Requirement Patterns. Microsoft Press, ISBN-0-
7356-2398-8. A comprehensive set of things to consider and examples of re-
quirements in many areas. All requirements are on product level, i.e. solutions
rather than true demands. Usability, for instance is absent.

	1. The purpose of the template
	1.1. Beware of template blindness
	1.2. The major requirements dangers
	1.3. The right requirement level
	1.4. Precise (verifiable) requirements
	1.5. Cover the important demands
	1.6. Early mitigation of major risks

	2. Gathering the requirements
	2.1. Centralize the work
	2.2. Involve the stakeholders and maybe the suppliers
	2.3. Early change control

	3. Contract issues
	3.1. When solution doesn't meet demand
	3.2. Rights to terminate the contract and try another supplier
	3.3. Exceeding expectations
	3.4. Alternative solutions

	4. Assessing proposals
	5. Testing the system
	6. Guide to the template sections
	A. Background and supplier guide
	A1. Background and vision
	A2. Supplier guide

	B. High-level demands
	B1. Business goals
	B2. Early proof of concept
	B3. and B4. Selection criteria

	C. Tasks to support
	C1. Admit patient before arrival - a simple task
	C2. Admit immediately
	C10. Perform clinical session - a complex task
	C11. Prescribe medicine - a long subtask
	C18. Perform clinical session - in another environment

	D. Data to record
	D1. Diagnosis
	D2. Diagnosis type
	D3. Service

	E. Other functional requirements
	E1. System generated events
	E2. Reports
	E3. Business rules and complex calculations
	E4. Expansion of the system

	F. Integration with external systems
	F0. Common integration requirements
	F1. NHC
	F2. Labsys
	F10. Integration with new external systems

	G. Technical IT architecture
	G1. Existing hardware and software
	G2. New hardware and software
	G3. The supplier operates the system

	H. Security
	H1. Login and access rights for users
	H2. Security management
	H3. Protection against data loss
	H4. Protection against unintended user actions
	H5. Protection against threats

	I. Usability and design
	I1. Ease-of-learning and task efficiency
	I2. Accessibility and Look-and-Feel

	J. Other requirements and deliverables
	J1. Other standards to obey
	J2. User training
	J3. Documentation
	J4. Data conversion
	J5. Installation

	K. The customer's deliverables
	L. Operation, support, and maintenance
	L1. Response times
	L2. Availability
	L3. Data storage
	L4. Support
	L5. Maintenance

	7. Literature and other templates

