
Guide to
Requirements SL-07

Template with Examples v4

Soren Lauesen 2016

Buy the guide as a handy booklet on
www.amazon

ISBN: 978-1523320240

Soren Lauesen
Guide to Requirements SL-07 - Template with Examples v4

Version 4, 2016
© Soren Lauesen, 2016

Layout and cover: The author

Cover picture: Rob Gonsalves: "The Sun Sets Sail"
Kindly made available by Saper Galleries, East Lansing, Michigan, USA

The picture symbolizes the transition from
requirements (the bridge) to the product (the ship)

Contents
1. The purpose of the template5

1.1. Beware of template blindness5
1.2. The major requirements dangers6
1.3. The right requirement level6
1.4. Precise (verifiable) requirements7
1.5. Cover the customer's needs7
1.6. Early mitigation of major risks8

2. Gathering the requirements8
2.1. Centralize the work.................................8
2.2. Involve the stakeholders and maybe

the suppliers ...9
2.3. Early change control...............................9

3. Contract issues .. 10
3.1. When solution doesn't meet demand ... 10
3.2. Rights to terminate the contract and

try another supplier............................... 10
3.3. Exceeding expectations 11

4. Assessing proposals 11
4.1. Alternative solutions 12
4.2. Options ... 12

5. Testing the system 13
6. Guide to the template sections 14
A. Background and supplier guide 16

A1. Background and vision 16
A2. Supplier guide 18

B. High-level demands 20
B1. Flows .. 20
B2. Business goals 22
B3. Early proof of concept 24
B4. Minimum requirements and selection

criteria .. 24
B5. Benefit in dollar 28
B6. Benefit in score points 30

C. Tasks to support 34
Work areas .. 34
C1. Task rules (Admit patient before

arrival) .. 36
C2. Similar tasks (Admit immediately) 38
C10. A complex task (Perform clinical

session) .. 38
C11. A long subtask (Prescribe medicine) .. 40
C20. Another environment (Perform

clinical session, mobile) 40
Tasks, user stories and use cases 40

D. Data to record .. 44
Data model (E/R) .. 44
D0. Common fields 46

D1. Data dictionary (Diagnosis) 46
D2. A type class (Diagnosis type) 48
D3. Using existing tables and screens

(Service) .. 50
E. Other functional requirements 54

E1. System generated events 54
E2. Reports .. 54
E3. Business rules and complex

calculations .. 56
E4. Expansion of the system 58

F. Integration with external systems 60
SOA or data replication? 62
F0. Common integration requirements 62
F1. Simple one-way integration (SKS)........ 64
F2. Two-way integration (LabSys) 66
F10. Integration with new external systems 68

G. Technical IT architecture 70
G1. Existing hardware and software 70
G2. New hardware and software 70
G3. The supplier operates the system 71

H. Security ... 72
H1. Login and access rights for users 72
H2. Security management 74
H3. Protection against data loss 76
H4. Protection against unintended user

actions ... 76
H5. Protection against threats 78

I. Usability and design 80
I1. Ease-of-learning and task efficiency 80
I2. Accessibility and Look-and-Feel 84

J. Other requirements and deliverables 86
J1. Other standards to obey 86
J2. User training ... 86
J3. Documentation...................................... 88
J4. Data conversion 88
J5. Installation .. 88
J6. Testing the system 90
J7. Phasing out ... 90

K. The customer's deliverables 92
L. Operation, support, and maintenance 94

L1. Response times 94
L2. Availability .. 98
L3. Data storage ... 98
L4. Support ... 100
L5. Maintenance 102

7. Literature and other templates 104

4

Background

IT developers and consultants often ask for an exemplary requirements specification
as a starting point for their specific project. SL-07 is such a specification. It is a
template filled out with a complex example: requirements for an Electronic Health
Record system (EHR).

This booklet explains why the requirements are written the way they are, what to
be careful about, how the requirements relate to the contract, etc.

You can download the requirements template here:

http://www.itu.dk/people/slauesen/SorenReqs.html#SL-07

Requirements SL-07 is based on experience with public IT tenders according to the
EU rules, in particular when the system is COTS based (Commercial Off-The-Shelf)
so that large parts of it may exist already. Later, SL-07 proved advantageous for
other kinds of acquisition too, and also for product development and agile in-house
projects.

I wrote large parts of the template and the guide on request from the Danish Min-
istry of Research, Technology and Development, as part of their standard contract
for software acquisition (K02). I am grateful to Vibeke Søderhamn, Bo Gad Køhlert
and Anders Lisdorf for careful reviews of the documents.

Earlier versions of the template have been used with success in more than 100 very
different projects, tender processes as well as in-house projects, agile as well as
waterfall, for instance: management of home care in a municipality, including route
optimization; a pharmaceutical company's innovative document management
system; electronic health records; stock management for movie production; claims
management for car insurance with GIS as documentation.

Experiences from these 100+ projects helped me write this version of the booklet -
version 4. Many things have been improved, for instance integration requirements
and supplier selection.

I have experienced that SL-07 works extremely well in practice - once you have
learnt how to use it. Although it looks easy, most people get it all wrong the first
time, particularly the tasks in Chapter C. With a bit of help they get it right. Half of
them become great - and even improve the SL-07 approach.

Any comments - positive as well as negative - are most welcome and will help me
improve future versions.

Soren Lauesen
The IT University of Copenhagen, January 2016
slauesen@itu.dk

 http://www.itu.dk/people/slauesen

5

1. The purpose of the template
IT requirements may be formulated in many ways. The main principle in Require-
ments template SL-07 is to strike a constructive balance between customer and
supplier. They should for instance share the risk in a fair way. The customer should
not write in detail what the system shall do, yet make sure that his real demands
are met. And the supplier should have a chance to be innovative and build on what
he has already.

The template achieves this by means of two columns for the requirements: Column
1 shows the customer's demands. Column 2 becomes the supplier's proposed
solution. Initially column 2 is empty or shows a solution example imagined by the
customer. Depending on the kind of project, the parties can cooperate to improve
the solution and/or modify the demands, or the customer can choose one of several
suppliers according to the suitability of their solutions.

The experience is that column 1 (demands) is rather stable, while column 2 (solu-
tions) changes as the parties learn about the possibilities. This also makes the
approach suitable for agile development.

When customer and supplier are two different companies, there will usually be a
contract in addition to the requirements. The requirements will be an appendix to
the contract. There are no fixed rules for what to put in the contract and what to
put in appendices.

Requirements template SL-07 uses an Electronic Health Record system (EHR) as
the main example. The example is slightly simplified to make it easier to under-
stand for readers outside the hospital area. The EHR area is very complex, so the
example illustrates how to deal with difficult requirements. Only a few kinds of
requirements had to be illustrated with examples outside EHR.

You can reuse large parts of the example in other projects. However, don't blindly
reuse parts in blue. They are very EHR specific. Parts in red are advice to the cus-
tomer that isn't intended for the supplier. Delete them.

1.1. Beware of template blindness
Using a template easily causes template blindness: Your worldview narrows down to
what the template deals with.

It doesn't cover everything
The template doesn't cover all kinds of requirements for all projects, although it
shows typical requirements within each requirement area. For your specific project,
you must add the requirements needed in your case. Listen carefully to the cus-
tomer and users and make sure their concerns are covered by the requirements in
one way or another. Often they ask for a specific solution. Write it in column 2 and
make sure it doesn't become a requirement in column 1.

It comprises too much
At the same time the template may comprise more than needed for your specific
project. You easily include the unnecessary parts. The result may be that you pay
far too much for the system, or that no supplier sends a proposal. As an example,
the template contains requirements that will allow the customer to expand the

6

system on his own. This is costly, but important in an EHR system. In most other
projects it is not necessary.

Look at each requirement and ask: What would happen if we got a system that
didn't meet this requirement? If it doesn't make a difference, the requirement is
superfluous.

It includes very demanding requirements
A requirement may be relevant, but too demanding. As an example, the template
requires response times around a second for systems that are used intensely on a
daily basis. However, if the system is a website that users rarely access, response
times may be longer without much harm.

1.2. The major requirements dangers
Experiences from tender processes show that some major problems occur over and
over again. This guide can help you avoid the following dangers:

a. The requirements are on the wrong demand level. They may be so solution-
focused that only a single supplier can meet them. Or they may be so business-
focused that the supplier cannot take responsibility for them.

b. The requirements are too imprecise to verify. You cannot test whether they are
met. Or they may be so open-ended that you cannot compare the supplier's
proposals.

c. The requirements don't cover the important demands. Even if the requirements
are met, the user needs and business goals are not met.

d. The major risks appear too late. Often much of the functionality is delivered
early and the customer deploys part of the system. The hard parts are post-
poned. Eventually it turns out that the supplier cannot deliver the hard parts,
but due to time pressure, the customer ends up accepting the unsatisfactory
system anyway.

We elaborate on these issues below.

1.3. The right requirement level
The requirements may describe the system in too much detail. The result may be
that at most one supplier can meet them. On the other hand, requirements may be
so high-level that the supplier cannot take responsibility for them. There has to be a
balance. We distinguish between four requirement levels:

Requirement 1 (goal-level: too business oriented). The system must ensure that
the number of medication errors is reduced from the present 10% to 2%.

Comment: This requirement is on a too high level. It comprises business issues that
are the customer's area of responsibility. The supplier cannot meet this requirement
on his own. The customer is needed too, for instance to train staff and to record the
necessary data.

Requirement 2 (domain-level: adequate balance). The system must support user
tasks C1 to C7.

Comment: The description of a user task explains what the two parties, user and
computer, must do together to carry out a piece of work. Task descriptions

7

resemble "use cases" but don't specify who does what. In a task you can also
specify that something is a problem that should be eliminated. You don't have to
specify how. This kind of requirement allows the supplier to take responsibility for
it, yet it can be met in several ways. The template uses this approach.

Requirement 3 (product-level: a required function with hidden purpose). The
system must show an overview of the patient's diagnoses.

Comment: We cannot see the purpose of this overview. Is it to find a treatment,
explain a new symptom, or write a discharge letter? As a result we cannot judge
whether the supplier's solution is adequate. This is the traditional way of writing
requirements and a major reason why customers don't get what they expect -
although they get what they ask for.

Requirement 4 (design-level: too solution oriented). The system must show the
patient's diagnoses as a hierarchical structure. Clicking on plus and minus must
show the subordinate and superior diagnoses.

Comment: This requirement describes a solution. It is inspired by a system the
customer has seen. A proposal with a different, but better solution must be
discarded because it doesn't meet the requirement.

1.4. Precise (verifiable) requirements
The requirements must be so precise that they can be verified, i.e. we can decide
whether the requirements are met. Precision has nothing to do with the demand
level. As an example, requirements 3 and 4 above can be verified when the system
is delivered. Requirement 1 can be verified when the system has been used for
some time.

Requirement 2 can also be verified, but on a scale of degrees. Some systems may
support the tasks well, others less well, but still adequately. The customer's staff
can assess how well by walking through the tasks with the supplier, looking at the
screens or screen outlines and noting down how well the tasks are supported (see
Chapter 4). This assessment is essential for choosing the best supplier.

Here is a requirement that cannot be verified. It is not clear how to measure "easy
to use" and decide when it is good enough:

Requirement 5 (not verifiable). The system must be easy to use.

A requirement may be verifiable, yet express a demand so vaguely that we cannot
compare the solutions. Here is an example:

Requirement 6 (demand too open-ended: hard to compare the proposals). The
supplier is asked to describe his software integration strategy.

Comment: This requirement can be verified already at proposal time. All you have
to do is to check that the supplier has described a strategy. However it is hard to
compare the strategies because they are "novels" in free style.

1.5. Cover the customer's needs
In practice we see many systems that meet all requirements, yet are unsuccessful.
The user needs are not covered, nor are the business goals.

8

We can ensure that the user needs are covered by describing the user tasks to be
supported by the system, and check that they actually are supported. If we wrote
the requirements on product level or design level, we might get a system that did
what we asked for, but didn't support the tasks efficiently.

It is harder to cover the business goals. Many projects have fine business goals, but
nobody cared how to achieve these goals and how the new system should
contribute. The result is usually that the expected results do not materialize.
Section B2 of the template provides a simple way to trace business goals to
requirements. Used properly it can help you identify business goals and come up
with innovative solutions.

1.6. Early mitigation of major risks
The major technical risks in a project are usually response time with the full number
of users, ease-of-use, and integration with existing systems. Deficiencies in these
areas are virtually impossible to correct late in the project.

Section B3 of the template asks for an early proof of concept in order to mitigate
these risks. Such a proof is expensive, however, so it isn't reasonable to ask the
supplier to do it without a signed contract. However, he has to do it soon after. If he
cannot provide an early proof, the customer may terminate the contract.

2. Gathering the requirements
The work of gathering and writing the requirements may seem overwhelming,
particularly in a large organization. It is tempting to delegate the work to individual
departments and let a central team edit the whole thing. Don't do that!

a. Each department will look at their own needs. They find it hard to look at it from
a global company perspective. The result is that the requirements reflect the
existing business processes without innovation and cross-departmental im-
provements.

b. The departments usually lack requirements expertise, and as a result the quality
of the requirements becomes poor.

c. The central team doesn't obtain the necessary insight to understand the depart-
ment, so they cannot improve the result - apart from language editing. One
team expressed it in this way:

We didn't understand what they wanted. So we just edited it into one big docu-
ment and sent it to the potential suppliers. They should understand. We didn't
realize until much later that the suppliers didn't understand it either. They just
pretended so and told themselves: "we have to find out later".

2.1. Centralize the work
Let a small team carry out most of the work:

1. Gather demands, visions and wishes from the various stakeholders (including the
departments, expert users, managers and clients).

2. Transform it into requirements according to this guide and the template.
3. Validate the requirements with the stakeholders and revise as needed.
4. Send the requirements to the potential suppliers, usually in cooperation with

legal expertise.

9

5. Assess the received proposals in cooperation with the stakeholders.

The team should consist of 3-5 members with expertise from as many work areas
as possible, including the IT function. At least one of the team members must have
requirements expertise.

This approach can reduce the total work to one fifth of the decentralized approach.
At the same time, the quality of the requirements increases dramatically.

2.2. Involve the stakeholders and maybe the suppliers
Although the team has broad expertise, it cannot know everything. Stakeholders
must be involved too. Here are some ways to do it:

1. Interview users - expert users as well as ordinary users. Ask about present work,
problems in the way things are done today, wishes and visions for the future.

2. Make the users show how they carry out their tasks today, in particular the rare,
but difficult tasks.

3. Collect relevant documents, for example reports and forms used today, screen
dumps, documentation of the existing database and the technical interfaces to
the systems, statistics and operational reports.

4. Run workshops where stakeholders together with team members map the exist-
ing cross-departmental workflow and the ideal workflow.

5. Run brainstorm sessions or focus groups where participants inspire each other to
new ways of doing things.

6. When new work processes are introduced, design them in some detail. As an
example, when clients have to use electronic access rather than personal con-
tact, customer staff has to work in a different way. This is often badly planned,
but little is known about how to do it better. We suggest that you design task de-
scriptions (Chapter C) for these future processes and carry them out as role
plays to check that the tasks "work" correctly.

7. Visit potential suppliers. They often know how other customers utilize their prod-
ucts, and they can provide contact to them. They can also tell the customer
about possibilities he didn't think of, or new ways to do things.

Some teams just list this very mixed information as requirements. Don't do that! It
easily becomes a long wish list of requirements on a too solution-oriented level. Ask
instead: Why is this wish interesting? When is it needed? What is the purpose?
Which tasks would benefit? The result becomes broader demands that can be
transformed into requirements.

2.3. Early change control
During the requirement process, you gather a lot of ideas, wishes, problems and
potential requirements. Participants can spend oceans of time trying to agree on
what to include, and this blocks progress. Instead record the issues in a list so that
the team can progress. Requests for change is another name for issues.

Review the issues regularly and decide whether to transform them into require-
ments, into possible solutions, reject them, or keep them in the list. You will often
see that an issue that seemed impossible to deal with early in the project finds an
easy answer later.

10

Continue the change control after signing the contract. You should observe that
column 1 (the demands) are rather stable, while column 2 (the solutions) change as
you learn about the possibilities.

3. Contract issues
When the system is developed in-house, there will rarely be a formal contract. The
requirements specify what is to be delivered. Changes in requirements are dis-
cussed during development, and there are no financial penalties between the par-
ties.

However, when customer and supplier are two different companies, there will usu-
ally be a contract and a requirements specification. The requirements specify what
the supplier must deliver, and the contract specifies what to do when things don't
proceed as expected. For instance what to do if the supplier doesn't deliver on time
or delivers a faulty product; or if the customer has forgotten an important require-
ment.

Lawyers specializing in IT contracts cleverly deal with all kinds of things that may
happen during the project, in much the same way as programmers cleverly deal
with all kinds of events that may happen in the system at run time.

Usually the requirements are one or more appendices to the contract. Other appen-
dices may contain the supplier's description of the solution, prices for the deliver-
ables, the implementation schedule, project management, testing, etc.

Requirements SL-07 uses a couple of principles that should be closely coordinated
with the contract:

3.1. When solution doesn't meet demand
All requirements are written in tables. Column 1 specifies the customer's demands,
for instance a particular task to be supported. Column 2 outlines example solutions,
and later - in the contract - the supplier's solution (see the example in section A2).
The supplier will usually provide a more comprehensive description of his solution in
a separate appendix.

Now what happens if at delivery time, it turns out that the supplier's solution
doesn't meet the customer's demands? Who must pay for improving the solution?
In many countries the default is that it is the customer's problem - he accepted the
solution by signing the contract. In other countries, the rule is to protect the weak
part - the party with the least understanding of the technicalities, in this case the
customer.

Standard Danish contracts avoid the ambiguity by specifying that the customer's
demands have priority. The supplier is responsible for meeting the customer's
demands. He is responsible for the solution being adequate.

3.2. Rights to terminate the contract and try another supplier
Most requirements are low risk. If they have been "forgotten", they are easy to deal
with late in the project, for instance some forgotten fields in the database. Others
are high risk. They are so deeply rooted in the system architecture that they cannot
be dealt with later.

11

To reduce the risk, Requirements SL-07 uses an early proof of concept (section B3).
The customer - and maybe the supplier - has the right to terminate the contract in
case the early proof of concept isn't satisfactory. This must be stated explicitly in
the contract.

Customers are often reluctant to use this right and terminate the contract, even if
the proof of concept shows that expectations are not met. The customer has al-
ready invested time and effort, and furthermore he would have to repeat the entire
tender process. Make the pain less by stating in the tender announcement that
proposals have to be valid for a period after the winner has been selected. Explain
that this allows the customer to select the next best proposal in case the best
doesn't meet the early proof of concept.

3.3. Exceeding expectations
Some requirements can be met to various degrees. Response times, for instance,
can be longer than the customer's expectations, but still be acceptable. Require-
ments SL-07 suggests that the customer states his expectations and the supplier
states what he offers.

When it is a tender process where the customer compares several suppliers, differ-
ences between expectation and proposal influence the supplier's scores. If the
supplier proposes a longer response time, he will score lower on this point. What if
he offers a shorter response time? Will he get an advantage? This has to be stated
explicitly somewhere. The template states it in section A2: If the requirements say
"or better", it is an advantage to exceed expectations.

4. Assessing proposals
In public EU tenders the customer must assess the proposals on a numeric scale
and choose the winner with the highest score. In many other cases it is also a good
idea to assess on a numeric scale, even if it is not formally required.

The basic approach is that the customer looks at each requirement and assesses
how well the solution meets it. The best is to get evidence for it, rather than opin-
ions. Let the appropriate stakeholders participate in assessment of the various
requirement areas.

As an example let us look at a requirement to support a specific task. Together with
staff familiar with this work area, carry out the task with the supplier's proposed
system. Take notes of how well the task is supported. You may try it on your own
or - better - have the supplier show how the task would be carried out. If this is not
possible because the necessary system parts don't exist yet, you must base the
assessment on the supplier's screen outlines or other explanations of his solution.
In this case, you might also note the risk of this not working in practice.

Based on the notes, you can give a single score for support of this task. Sections B4
and B6 of the template suggest scores on a scale of -2 (not supported or very badly
supported) to 2 (very efficient).

For other types of requirements a similar approach should be used. For integration
requirements, the supplier might show how existing integrations work, or explain
how they will work. For documentation requirements, the customer can look at the
supplier's existing documentation. For usability requirements, the customer can run

12

usability tests or talk to existing users of a similar system that the supplier has
delivered.

Sections B5 and B6 of the template show ways to combine the many scores into a
score for each requirement area, weigh them, include business goals and costs, and
end up with a single score for the entire proposal. The sections also show how to
guard against seemingly unimportant requirement areas being supported so badly,
that the entire system may become a disaster.

4.1. Alternative solutions
A supplier may send a proposal with alternative solutions. This is useful if he can
deliver an expensive solution that fully meets the customer's requirements, and
alternatively a much cheaper solution that formally doesn't meet all the require-
ments, yet might be okay. He may offer alternatives for several requirements or
requirement areas.

This puts a burden on the customer who has to assess all of this, maybe in different
combinations. For this reason, many tender processes don't allow the supplier to
specify alternatives.

On the other hand it is risky to forbid alternatives. The requirement in section A2
shows a real-life example where the customer had required a system availability of
99.5%. The supplier had two operations options (99.0% at 0.5 m$ a year and
99.8% at 2.5 m$ a year), but were not allowed to offer alternatives. So he offered
99.8%, which the customer accepted. The customer could easily have done with
99% and thus lost $2 million a year because he didn't allow alternatives.

If the customer uses a selection approach with a modest number of sub-criteria
(like section B5 and B6), it is rather easy to assess the marginal difference of two
alternatives and the marginal effect on the final score. We suggest using the fol-
lowing approach:

1. For a set of alternative solutions, use the first one as the base. For the other
alternatives, assess the marginal effect on the final score (including costs).

2. If there is a clear difference, choose the best alternative. If not, don't make a
choice yet. It can be made after signing the contract.

3. Use the same approach for the other sets of alternatives. The result is one
single score for the entire proposal.

In the A2 example, the result would be that the customer chooses the cheapest
alternative, unless there was a significant business advantage of the expensive one.

In order for the approach to give reasonable results, the sets of alternatives must
be independent of each other. The supplier must ensure this.

4.2. Options
Above, the supplier defined the alternatives. The customer may also define some;
they are called options. As an example, the customer may want a data warehouse
as part of the delivery and asks for a separate price for it. Should he say yes or no
to the data warehouse? Should it have an effect on whom he chooses?

He can make this difficult decision in the same way as for the alternatives: Calculate
the marginal effect on the final score and say yes to the option if it has the highest
score.

13

5. Testing the system
Before the customer accepts the new system, he must test it - or have someone
else test it. Otherwise, when defects are found later, he may lose his rights to
terminate the contract or to request the supplier to repair the defects. In many
countries the rule is that in order to win a court case, the customer must prove that
reasonable tests wouldn't have found the defect at the time of delivery.

As a minimum the customer should verify all requirements (i.e. check that they are
met). However, many errors don't relate to specific requirements but to the broad
expectation that the system doesn't crash when users do strange things, or when
the communication lines fail, etc. In order to test for this, we have to look at details
beyond requirements. Here is a brief list of things to test for (see more in Patton,
2006).

1. Test that each requirement is met.
2. For each screen, test each button in various cases and test with boundary val-

ues and unacceptable values in each data field.
3. Test for exceptional events in the surroundings, for example loss of data

communication and crash of external systems.
4. Verify that each branch in the program has been taken.

In medium-sized systems, thousands of test cases are needed and testing may take
weeks. It is common to find hundreds of errors during testing. When the system is
COTS-based (Commercial-Off-The-Shelf) large parts of it exist already. It is usually
unnecessary to make detailed tests of these parts (i.e. points 2, 3 and 4 above).

Testing is often organized in stages:

Installation test: System delivery often starts with installation of the new hard-
ware, software, etc. The purpose of the installation test is to ensure that the com-
ponents work together and have basic functionality.

System test: The purpose of the system test is to check that requirements are
met, screens work, etc. according to points 1-4 above. Special test data and data-
base contents are used to allow testing all the cases.

Deployment test: The purpose of the deployment test is to check that the product
can work satisfactorily in daily operation with production data and real users.

Acceptance test: An acceptance test is a system test plus a deployment test.
These two tests may be performed at different times or in combination.

Operational test: The purpose of the operational test is to check those require-
ments that can be verified only after a period of daily operation. It might be the
response time under real load, breakdown frequency, task time for experienced
users, qualifications of the supplier's hotline, etc.

14

6. Guide to the template sections
The rest of the guide comments the template, section by section. The gray text
boxes are pieces of the template. Page 14, for instance, shows the front page of the
template. Notice that the section numbers A, B . . . in the guide match the chapter
numbers A, B . . . in the template.

You may freely download and use the template for your own requirements as long
as you clearly state the source and copyright notice, for instance as in the footer of
the front page of the template.

Template chapters are numbered A, B, C rather than 1, 2, 3 . . . This is to avoid
confusion with appendix numbers in the contract, which usually are 1, 2, 3. Appen-
dix 2 might for instance be the requirements with the chapters A, B, C . . .

Be cautious about changing the chapter headings. Many people are familiar with the
SL-07 structure and know by heart that Chapter C is tasks and Chapter H security.

The template starts with an introductory page to be deleted in your document. The
next page is the front page of the final requirements (shown on page 14). It states
the name of the system to be delivered. It is convenient to also define a short
system name since several parts of the template refer to the system by name.

The front page also states the name of the customer, the name of the supplier, and
a short description of what the delivery comprises. This helps the reader understand
up front whether the delivery also comprises hardware, operation, etc. If the re-
quirements specification is an appendix to a contract, the system name, customer
name, etc. will be stated in the contract and are not needed on the requirements.

Some parts are blue. These parts must be replaced with something else in the final
requirements - or deleted. Parts in red are warnings or alternatives. Delete them.
Other parts can often be reused.

The front page heading shows when the document was last changed and who
changed it. These are document fields that MS-Word automatically updates when
the document is printed or saved. The heading also shows the version number.
Change the heading as needed to match your company standard.

The page after the front page is the change log. It shows what was changed when
and by whom. Change it as needed to match your company standard.

Chapter A is background information about the project and a guide to the supplier
on how to interpret the text and write a proposal. Chapter B explains the business
goals for the project, what to prove early and how the customer selects the winner.

Chapters C to J specify what the supplier must provide on the day of delivery (i.e.
at the end of acceptance testing). Chapter K specifies what the customer must
provide. Chapter L specifies the supplier's responsibilities after the day of delivery.

Chapters K and L are often separate contract appendices and not requirements
chapters. This is not important as long as they are somewhere.

15

 Version 5.4 01-01-2016, 21:59
 Last changed by: slauesen

Requirements specification for
Electronic Health Record System

(below called the EHR system)

Customer
Midland Hospital

Supplier

…

The delivery comprises
Software, operation and maintenance for an EHR system

Contents
A. Background and supplier guide.................... 3

A1. Background and vision............................... 3
A2. Supplier guide .. 4

B. High-level demands 5
B1. Flows ... 5
B2. Business goals... 6
B3. Early proof of concept 7
B4. Minimum requirements 8
B5. Selection criteria: Highest net benefit......... 9
B6. Selection criteria: Most score points per

dollar.. 10
C. Tasks to support .. 11
Work area 1: Patient management 11

C1. Admit patient before arrival 11
C2. Admit immediately 11

Work area 2: Patient treatment 12
C10. Perform clinical session 12
C11. Prescribe medicine for the patient (long

subtask) ... 13
C20. Mobile clinical session 13

D. Data to record ... 14
D0. Common fields... 15
D1. Diagnosis ... 15
D2. Diagnosis Type .. 16
D3. Service... 16

E. Other functional requirements 19
E1. System generated events 19
E2. Reports .. 19
E3. Business rules and complex calculations. 20
E4. Expansion of the system.......................... 21

F. Integration with external systems 22
F0. Common integration requirements 23
F1. SKS.. 24
F2. LabSys ... 25

F10. Integration with new external systems.... 26

G. Technical IT architecture 27
G1. Existing hardware and software Alternative

1: Use what we have................................ 27
G2. New hardware and software Alternative 2:

Supplier suggests 27
G3. The supplier operates the system

Alternative 3: Supplier's problem.............. 27
H. Security ... 28

H1. Login and access rights for users 28
H2. Security management 29
H3. Protection against data loss 30
H4. Protection against unintended user actions

... 30
H5. Protection against threats 31

I. Usability and design 32
I1. Ease-of-learning and task efficiency.......... 32
I2. Accessibility and Look-and-Feel 33

J. Other requirements and deliverables 34
J1. Other standards to obey 34
J2. User training ... 34
J3. Documentation.. 35
J4. Data conversion.. 35
J5. Installation... 35
J6. Testing the system.................................... 36
J7. Phasing out... 36

K. The customer's deliverables........................ 37
L. Operation, support, and maintenance......... 38

L1. Response times.. 38
L2. Availability... 39
L3. Data storage ... 39
L4. Support ... 40
L5. Maintenance ... 41

This document is based on Requirements Template SL-07. The template (© Soren Lauesen, 2012) may be
freely used in a document on the condition that this copyright clause is stated in the document.

16

A. Background and supplier guide
A1. Background and vision
This section gives the reader a quick overview of the system and its purpose. Ex-
plain the main business goals (why the customer wants to spend money on the
system), but don't go into detail (section B2 elaborates the business goals). Briefly
explain the customer's present situation and his visions about the future.

The suppliers like some figures about the customer in order to get an idea about the
"size" of the project. How many users, how much data, etc. Write a few key figures.

Context diagrams for the present and future situations are good illustrations. The
arrows show the flow of data. In surprisingly many requirements specifications, it is
unclear what is to be delivered and who will do the integration with other systems.
Make sure to show the system to be delivered as a single box with double-line
borders. Show the integrations that the supplier must perform as double-line ar-
rows.

In the example, the supplier must deliver an EHR system including a medication
system. This is indicated with the double-border box (the delivery) that contains the
medication system. Maybe his own EHR system already contains a medication
system, or he choses one (maybe the customer's present one) and integrates with
it.

He also has to integrate with the existing SKS tables and LabSys. The diagram
shows that he is not required to integrate with new external systems. (As specified
in section F10, a third party must be able to make these integrations.)

We often see customers writing a long story about their IT strategy, the historical
development, etc. This is okay if it is limited to a few pages and helps the supplier
understand the situation. However the story is often the customer's internal consid-
erations or political statements that are not relevant to the supplier.

There may be a need for the customer - or his consultant - to explain the internal
considerations in length, for instance the meetings held, the choices made, and the
sources of the requirements, but do it in a separate paper. Not in the requirements.

Also make sure that the background and vision section doesn't contain require-
ments. Requirements have to be in boxes, as explained in the next section.

17

A. Background and supplier guide
A1. Background and vision
Presently the customer has several old EHR systems that he wants to replace with one system to obtain:

1. more efficient support for the clinical work,
2. better possibilities for integration with future systems,
3. lower cost of operation.

Midland Hospital has around 5,000 employees, 800 of which are doctors. The hospital has around 50,000
in-patients a year and around 200,000 out-patients.

The customer expects that the supplier has a COTS system (Commercial-Off-The-Shelf system) that can
meet many of the requirements. In return, the customer is willing to change his work processes to a
reasonable extent, as long as the business goals are met (see section B2).

The present and future situations are illustrated with these context diagrams. The supplier's responsibilities
are indicated: The box with double-line border shows the system to be delivered. Double-line arrows show
integrations to be delivered. There is presently insufficient integration between the EHR system and the
medication system. The customer wants an EHR system that includes a medication system.

Figure 1: Existing system

Old EHR
LabSys

SKS

Medication

Clinician

Patient
management

SKS

Batch transfer
of data

requests,
results

codes

Figure 2: Vision for the new system

LabSys

SKS

New external
systems

Clinician

Patient
management

EHR system

New medica-
tion system requests,

results

codes

Double line:
The supplier integrates

Double-line border:
The delivery

18

A2. Supplier guide
This section explains how the requirements are formulated and how the supplier's
proposal is to be structured. Emphasize is on how to use the tables (the boxes),
what are requirements, what are solutions and what are assumptions the supplier
can make.

The intent is that the supplier doesn't need other explanations than this section in
the template. For instance he doesn't need to read this guide.

We recommend that the supplier's proposal is in red. After several experiments
with various indications such as italic or a color per author, it was obvious that red
for the proposal was the most distinct and legible. It is also far easier to read than
traditional tables with a column for each party or - worse - one appendix for the
requirements and another for the proposal.

We have seen column 3 (code) being used in many ways, for instance:

1. Requirements priorities.
2. The supplier's indication of whether the proposal is part of a COTS system, an

extension, a later delivery, etc.
3. The customer's score for the proposal.
4. Later in the project a reference to a test case that tests the solution to this

requirement. In this way you ensure that all requirements are tested
somewhere.

You may change the supplier guide to show what the code column is to be used for
in this project.

Examples in the supplier guide
The concepts of alternatives and open target are illustrated with a requirement on
system availability. There may be a need for more examples.

In earlier versions of the requirements template, the concepts were illustrated with
an imagined example (a system for support of a hotline). The intent was to reuse it
in you own project without change. In practice this caused a lot of confusion.

Recommendation: Extend the supplier guide with a few requirements from you own
project, and show how the supplier in principle could reply to them.

19

A2. Supplier guide
This section explains the requirements format.

All requirements are written in tables:
• Column 1 is the requirement (the customer's demand - what he wants the system to support).
• Column 2 may contain the customer's solution example. In the supplier's reply, column 2 is a

short description of the proposed solution. It must be in red.
• Column 3 may be the customer's rating of the proposed solution, test references, etc.

The requirements are organized in chapters according to their kind, e.g. Chapter C about user tasks to be
supported, Chapter H about security. Within each chapter, the requirements are written in tables, e.g. a
table with requirements relating to a specific task.

The customer's solution examples are only for inspiration. The supplier is welcome to suggest completely
different solutions. They become legal requirements when both parties have accepted them. However, in
case the accepted solution doesn't meet the demands stated in column 1 in a reasonable manner, column
1 has priority.

Text outside tables
Text outside the tables can serve several purposes:
A. Assumptions behind the requirements, for instance that the task must be supported for this kind of

users, this frequency of use, etc.
B. Requirement notes that elaborate column 1 in the table. In principle they should be inside the table,

but they don't fit well. One example is a list of access rights to the system.
C. Solution notes that elaborate column 2 in the tables. They are not requirements but example

solutions. One example is various ways a user can look up a code in a table.
D. Examples and other information to help the reader understand the requirements.

Alternatives
Customers often write requirements that turn out to be very expensive to meet. In such cases, the supplier
is welcome to offer alternative solutions: an expensive one that fully meets the customer's requirements
and a cheaper one that only partially meets them. The requirement in the table below is an example.

When the proposal has alternatives in several areas, it is important that the customer can assess them
independently.

Open target
Chapter L has many "open target" requirements. As an example, the customer may ask for high system
availability, but isn't sure what it will cost. So he states what he expects and leaves it to the supplier to
suggest something. In the proposal it may look like this:

Availability requirements: Example solution Proposed solution: Code:
1. In the period from 8:00 to

17:00 on weekdays, the
system must have high
availability.

In these periods the availability is at least %.
(The customer expects 99.5% or better).
Alternative A: 99.0%, around 0.5 m$/year, see app. . . .
Alternative B: 99.8%, around 2.5 m$/year, see app. . . .

Notice that the customer has written "99.5 or better". It means that the supplier earns additional points for
alternative B. In case the supplier had omitted "or better", alternative B wouldn't give more points than
99.5% would, only additional expenses.

The template format
The template is an MS-Word document. It uses Heading 1, Heading 2 and sometimes Heading 3, plus a
special heading style, Heading no number. They automatically generate the table of contents. In order to
improve the overview, some headings have a forced page break. It may be changed through

Home → Paragraph → Line and Page Breaks → Page break before

Tables use the table style Requirement Table. It has borders of ½ point. It has top and bottom cell margins
of 0.5 mm. Column 1 uses Column1 style (Ctrl+1). It has a hanging indent of 0.75 cm. Within a table cell,
you tabulate with Ctrl+Tab, since Tab alone moves the cursor to the next cell.

20

B. High-level demands
This chapter doesn't contain real requirements, but provides connections between
requirements, the customer's business goals and the acquisition process.

B1. Flows
When you observe users, you often see small pieces of work (tasks) that are part of
a larger flow that produces the results we care about.

The EHR example has only one flow: Treatment of a patient from admission to cure.
On the way you examine the patient, make diagnoses (what are the diseases), plan
and perform treatments, check results and discharge the patient. The entire process
can take days or months.

A flow is also called a process, a business process, a life cycle or a high-level task or
a high-level use case.

In the health sector there are other flows than patient treatments, for instance the
life cycle of a treatment from it once upon a time was recommended by a
commission until it years later is abandoned by another commission. The EHR
system is not supposed to support this flow, but it might deliver data to it.

Flow as a table: In section B1 you describe the flows to be supported. We
recommend that it is done as a table, but it could also be graphical. In the example
a treatment flow consists of 12 steps, but it isn't sure that all of them are done for a
specific patient. Some steps may be repeated several times, for instance check-ups.

Column 2 of the table shows the tasks and subtasks that perform the step. As an
example, two different tasks can perform step 1: Admission before arrival (C1, e.g.
through the GP) and acute admission (C2, e.g. a traffic accident). As another
example, steps 3 to 4 and 6 to 9 are performed by one task, the clinical session
(C10).

As you see, there is a many-to-many relation between the steps of the flow and the
physical, observable tasks. It is not a hierarchy.

When you describe a flow, you often find new demands for IT support. In this case
we detected a need for arranging check-ups (step 8) and for coordination with
home care (step 10). These defects are shown as red question marks in the table.

Flow as graph: A widely used graphical notation is BPMN (Business Process
Modeling Notation). It shows each step as a box and connects the boxes with
arrows to indicate the sequence, and with diamonds to show choices to be made
about the sequence. It can give a nice overview - unless you go into too much
detail and try to specify also what to do in exceptional cases.

In practice we see a lot of effort being spent on flow diagrams and they occupy a lot
of pages. Often it is hard to see whether the flow is about the logical steps or the
physical tasks, and even harder to check them against each other, as we have done
in column 2 of the table.

21

B. High-level demands
This chapter explains how the customer's business goals are met through the requirements, how to
mitigate high-risk requirements, and how to compare proposals.

B1. Flows
The system shall only support one kind of flow: treatment of a patient. The table below is the general,
logical flow of a treatment. Many of the steps can be omitted (e.g. step 2 and 8) or repeated several times
during the treatment (e.g. step 3 to 9).

The logical flow is carried out in physical tasks, where an employee for a short period of time works with
the patient without essential interruptions. Column 2 shows the related tasks and subtasks for each step in
the flow. Chapter C shows the details.

Steps in patient treatment Tasks and subtasks
1. Admit the patient either through GP (General Practitioner), the patient in

person or acutely (e.g. traffic accident with unconscious patient).
C1, C2

2. Call the patient to make an appointment. C1-4

3. The patient arrives to the ward. Examine the patient to make a diagnosis,
including making tests on the spot or through a lab.

C10-1, 2, 3
C12

4. Plan the treatment, including ordering medicine, booking time, order
implants, etc.

C10-6, C11, C13

5. Maybe transfer the patient to another ward, for instance in case of several
diagnoses.

C3

6. Treat the patient. C10-3, C14

7. Evaluate the result. Maybe perform further tests and treatments. C10

8. Make appointments for check-ups. C10-6 ?

9. The patient arrives for check-up. Perform various tests and maybe
supplementary treatments.

C10

10. Arrange home care. ?

11. Discharge the patient and inform relevant parties, e.g. own GP or social
services. The patient may also have died.

C6, C7

12. Settle accounts C8

In the general flow above, we haven't mentioned time monitoring at the various steps. It is described in
tasks and subtasks.

The flow description is a cross check between the logical flow and the tasks. In the case above it revealed
some flaws in the tasks, marked by question marks above.

22

B2. Business goals
This section of the template contains the business goals of the system, arranged in
a table to show how the goals are to be met. Column 1 is the goal; column 2 the
vision - the solution in broad terms; column 3 the requirements that make the
vision possible. It is emphasized that the goals aren't requirements to the supplier,
but background information. Column 4 allows the customer to state the deadline for
meeting the goal. When stated, it is the deadline for the joint effort of the supplier
and customer. The supplier should bear in mind that the customer also needs time
for the organizational implementation.

The business goals serve several purposes:
a. They tell the supplier what the customer wants to achieve.
b. They are important criteria for choosing a solution.
c. They help the customer check that the crucial requirements are included.

In the example, goal 1 (efficient support of all user tasks) is a very broad goal that
depends on a lot of requirements. The customer may discard solutions that poorly
support one or more tasks. As an example, the surgeon needs a good overview of
the patient's situation in order to make the right decision. It must be possible to
discard a system with a poor overview screen although this is just one of 1000
details in the system. Section B4 explains how this can become part of the selection
criteria.

In the example, the customer had identified goal 3, continuous improvement of the
work processes. However, he hadn't realized that this required that you easily could
make new treatment plans and new user screens. When they had to fill in the goal
table, they realized the demand and came up with the requirements in E4.

Don't specify a lot of goals. If there are more than 10, check that they are not just
requirements. We often see "goals" of this kind: It must be easy to print consump-
tion reports. Although this was important to one of the stakeholders, it is a simple
system requirement, not a business goal. A business goal is about the results of the
entire organization, not just something the computer can do.

If you cannot write something reasonable in column 2, it may be a sign that the
goal is not a true business goal, but a requirement. As an example, if the goal is: It
must be easy to print consumption reports, it will be hard to write a large scale
solution. If you insist on a goal that isn't a true business goal, simply leave column
2 blank.

Measuring the goals: A really good goal can be measured and compared against
the existing state of affairs. Goal 2 is clearly of this kind. Goal 1 can be measured
on a subjective scale of degrees (e.g. 1 to 5), but this is hard to relate to a business
value. It could also be measured as the number of tasks performed per person per
day, or as the time spent at the computer per patient. These are hard data and they
relate well to a business value. Goal 4 could be measured as operational costs
before and after system deployment.

It is important to have these figures in order to select the most advantageous
proposal as described in section B5.

23

Although the goals can be measured, the customer may not want to reveal the
measurements. They might tell the supplier which price the customer is willing to
pay. Section B6 gives an example of how to avoid it.

B2. Business goals
The customer's reason to acquire the system is to reach some business goals. The customer expects that
the system contributes to the goals as stated below. The supplier can rarely reach the goals alone.
Customer contribution is needed too. This means that the goals are not requirements to the supplier.
They are shown in a table only to provide overview.

All goals are important and the sooner they can be met, the better. Some goals are crucial to meet at a
specific date, for instance for business or legal reasons. Such deadlines are shown in the table.

Goals for the new
system

Solution vision Related requirements Deadline

1. Efficient support
of all user tasks.

All relevant data are available
during the task without switch-
ing between several systems.
All parties can see the health
record.

Support for all tasks in Chapter C.
System integration, particularly F2.
Adequate response times in L1.

2. Reduce medica-
tion errors from
10% to 2%.

Avoid manual steps - record
the prescription immediately.

The system checks for validity,
drug interaction, etc.

Support for task C10 (clinical
session), in particular problem 2p
(assess the state of the patient)
and 6q (errors at hand-over).
Support for task C11 (prescrip-
tion), almost all the subtasks.

3. Continuous
improvement of
the work proc-
esses.

Easy to set up and modify
standard treatment plans.
Easy to integrate the system
with new lab systems, etc.

Requirements in sections E4 and
F10 (system expansion and
integration with new systems).

4. Lower opera-
tional costs.

Acquire a new, hopefully
cheaper, system.

All the requirements and the
selection criteria in B5.

5. Meet the new
EU rules on ...

… … 1-1- 2017

24

B3. Early proof of concept
This section lists certain high-risk aspects of the project - things that cannot be
amended late in the project. To reduce the risk, the supplier has to provide an early
proof that it is possible to deliver what is required.

Most of the functional requirements are low-risk. It is for instance straightforward to
add some fields and tables to the database, or some simple screens to the user
interface. Most high-risk areas concern the quality requirements. In general, quality
is not an add-on feature.

The template mentions that the contract allows both parties to terminate the con-
tract if the early proof fails. Make sure this is the case. See more in section 3.2.

Requirements B3-1 to B3-5 specify what is to be tested early. Column 2 provides an
example of how to test it. The supplier may change it to his own test proposal. He
also specifies when the proof will be ready. (Sometimes a supplier may even have a
proof before the contract is signed.)

In general these tests may be expensive, so it is not reasonable that the supplier
has to carry them out before signing the contract. He can include the cost of the
proof in his quotation, and will thus be paid when he delivers as promised.

B4. Minimum requirements and selection criteria
How do we select the best proposal? Traditionally, selection criteria are part of the
tender material, but not of the requirements. The SL-07 template includes them in
order to show how they can be expressed in a way that links to business goals and
requirements. Move them to other parts of the tender material as needed.

In a tender process, the customer chooses the supplier according to some selection
criteria. To ensure a fair process, the selection criteria must be objective and known
to the supplier in advance. Usually only the following major criteria are relevant:

1. The total business value of the solution.
2. The risk to the customer.
3. The delivery time.
4. The total cost to the customer.

How can these criteria be combined? A pragmatic approach that works well with a
small number of proposals is to look at them in light of the actual case, discard
proposals that are clearly inferior to the rest, and come up with arguments that can
point out the winner among the rest.

However, in government acquisitions, this is usually not allowed. The customer
might fiddle with the criteria so that his favorite supplier becomes the winner. As an
example, the EU regulations state that you must define two sets of criteria and tell
the suppliers about them in advance:

A. Minimum requirements. Proposals that don't meet all of these are discarded.
B. Selection criteria. Each criterion has a predefined weight. Each proposal gets a

score for each selection criterion. The proposal with the highest weighted sum of
the scores gets the contract.

This is hard in practice and may force a customer to select the "wrong" supplier.

25

Problem A: There may be more than thousand requirements. Which of them are
mandatory (minimum)? If all of them are mandatory, you may discard good suppli-
ers that fail on some unimportant requirement. If only some of them are man-
datory, the customer may be forced to select a supplier that fails on the rest.

The template deals with the problem by defining minima for requirements areas
rather than individual requirements (see example below). There may be around 40
areas, and it makes sense to check whether each area is adequately supported. The
area may be adequately supported although some detailed requirements are not
supported. Typically, some suppliers fail on certain requirements in the area, others
on other requirements. They can still be considered as long as they support the
area as such adequately.

Problem B: How do we define scores and weights in practice? Some analysts use
weights that add up to 100%, but how can these be justified? Usually the figures
have no relation to the business value, and as a result the customer doesn't select
the proposal with the highest business value.

SL-07 shows two solutions: One where the selection criterion is the net business
value (B5), and one where it is the number of score points per dollar (B6).

B3. Early proof of concept
Some requirements are high-risk and the supplier may not be able to deliver what he promised in his
proposal. If this is detected late in the project, the customer may terminate the contract, but this is a
disaster to both parties. Usually the customer chooses to accept the inadequate system, possibly with
compensation from the supplier. To reduce the risk, the customer requires an early proof of concept for the
high-risk requirements.

According to the contract, both parties can terminate the contract if the early proof fails.

The following requirements are considered high-risk. Deficiencies here can hardly be repaired late in the
project. In his reply, the supplier must state how he will carry out the proof of concept and when. The date
must be stated as the number of workdays after signing the contract. The customer expects 40 workdays
or less.

Areas where an early proof of concept
is required:

Example of proof: Code:

1. Efficient support of clinical sessions
(task C10).

A prototype of the necessary computer screens
(maybe a paper mockup) is assessed by expert
users. Can be done within workdays.
(See also area 5 below.)

2. Usability (all requirements in section
I1).

A prototype (maybe a paper mockup) is usability
tested with ordinary users.
Can be done within workdays.

3. Response times with the required
number of users (all requirements in
section L1).

A test setup is used to simulate the required
number of users. The response times are meas-
ured. Can be done within workdays.

4. Possibility for third-party expansion of
the system (sections E4 and F10).

An independent software house studies
documentation of parts of the system and the
technical interfaces in order to assess whether it is
adequate for expanding the system.
Can be done within workdays.

5. Integration with other systems. A test setup which demonstrates the data
exchange. Can be done within workdays.

26

Minimum requirements and minimum scores
In the request for proposal, the customer has divided the requirements into areas
and specified a minimum score for each area. In this way we cover all the require-
ments. There are around 20 areas in the EHR example.

The template uses these scores: -2 (not supported or very inconvenient), -1 (incon-
venient), 0 (as today or just sufficient), 1 (efficient), 2 (very efficient).

Here are the reasons behind the minimum scores in the EHR example:

Area Minimum scores
C1-C4 Admit patient. Support is not really needed for this task. The customer can just

keep his existing admission system.
-2

C10 Perform clinical session. To avoid selecting a supplier who scores high else-
where, but handles clinical sessions badly, we demand that the system sup-
ports clinical sessions at least as well as the present system.

0

C11-C… Medication (considered one area). This too must be supported at least as well
as today.

0

… … …
D Data to record. We don't assess this separately. It is done indirectly when we

assess how well the system supports the tasks.
N/A

… … …
F10 Integration with new external systems. We want this to be better than today - it

is one of the business goals.
1

H1 Login and access rights for users. This must be at least as good as today. 0
H2-5 Other security (one area). We accept that it is a bit worse than today. -1
I Usability and design. This must be at least as good as today. 0
J2 User training. This must be at least as good as today. It indirectly gets a finan-

cial score too because it is part of the investment costs.
0

J4 Data conversion. This just has to be sufficient. It is a one-time issue. 0
L1. Response times. This must be at least as good as today. 0
… … …

When the suppliers have submitted their proposals, the customer must assess each
proposal. Chapter 4 explains how to give a score for each task, each integration,
etc. and take notes about it. Give a final score for each requirement area based
on the scores and notes. A single bad score for one of the tasks may give a bad
score for the entire area. Make a note of why the area is not supported adequately.

Minimum requirements: All requirement areas must meet the minimum score.

The notes are useful for internal customer discussions. They are also useful in case
a supplier finds the assessment unfair and goes to court. The notes can prove that
the customer actually made a fair assessment.

The principle of giving a final score for each requirement area rather than for each
requirement is important. It is virtually impossible to assess a requirement in isola-
tion. Requirements interact and together they give a more or less good support of
each requirement area. Good support of requirement A plus bad support of re-
quirement B may have the same business value as bad support of requirement A
plus good support of B. So they should get the same score.

27

Don't let the supplier write the scores. Amazingly many customers have a table
of all the requirements and ask the suppliers to fill in to which degree they meet
each requirement, e.g. met/not met. We don't have the time, says the customer,
let the supplier do it. Imagine what suppliers do in this case? They let their sales
department fill in the scores. Not surprisingly, all suppliers get top scores for every-
thing. As a result the customer has to choose based on the cost only, and often
ends up choosing a bad system.

The consequence may be that the customer saves some work hours now, but
wastes thousands of hours later because his staff has to work with a bad system.

In the EHR example, some of the areas are assessed twice: When selecting the
winner and during the early proof of concept. This is okay. In this way the customer
gradually reduces the risk that the supplier cannot deliver as promised. If the
solution fails during the early proof, it is a good reason for terminating the contract
(see section 3.2).

 B4. Minimum requirements
Sections B4 to B6 are important for public tenders. The suppliers must know the selection criteria and their
weights before writing a proposal. In commercial acquisitions, the customer need not state any criteria.

Scores: The customer gives each proposal scores for the requirement areas shown in the table below. To
provide better overview, the tables have space for several proposals (columns A, B and C). The scores
use this scale: -2 (not supported or very inconvenient), -1 (inconvenient), 0 (as today or just sufficient), 1
(efficient), 2 (very efficient).

Minimum score: For each requirement area, the customer has stated the minimum scores below. A
system that that doesn't meet the minimum scores, will be useless in practice.

Minimum requirements: The system must meet the minimum scores below on all requirements areas.

Notice that a minimum score may be -2 or -1. This means that a proposal may be acceptable even if it is
worse than the present system in this area. As an example, area C1-C7 has a minimum score of -2
because the customer can use his existing admission system. The table shows a fictitious example where
proposal A scores -1 (worse than today) for area H2-H5, but this is acceptable because the minimum
score is -1.

Requirement area Minimum

score
Score

A B C
C1-C7. Admit and discharge patients (considered one area). -2 1
…
C10. Perform clinical session. 0 1
C11-C… Medication (considered one area). 0 2
…
D. Data. Assessed through the task support. N/A N/A
…
F10. Integration with new systems. 1 1
H1. Login and access rights for users. 0 0
H2-H5. Other security (one area). -1 -1
I. Usability and design. 0 1
J2. User training. 0 0
J4. Data conversion. 0 1
L1. Response times. 0 0
…

28

B5. Benefit in dollar
The minimum requirements discarded the proposals that were unacceptable. Among
the rest we have to select the winner.

Method B5 computes the net benefit in dollars for each proposal. The customer
selects the proposal with the highest net benefit.

First the customer computes the potential value of each business goal. In the ex-
ample, the customer has computed the potential value for a period of 5 years. As
an example, efficient support of the tasks might save each employee an hour a day.
This estimate is based on observations of clinicians at work. As an example, clini-
cians today have to log into several systems for each patient and take paper notes
to get an overview. It might be avoided with proper system integration and over-
view screens. For 4000 clinicians, it means saving 200 million $ in 5 years.

Fraction obtained: A proposal may have weaknesses that will reduce the actual
benefit to a fraction of the potential. For each proposal and each business goal, the
customer estimates this fraction. As an example, if the proposed system can save
only 0.5 hours a day, the fraction is 0.5. In principle the fraction may be higher
than 1. This happens if the proposal exceeds the customer's expectations.

Risk: A proposal may be risky, for instance because the solution hasn't been tried
somewhere else, or the solution is very sketchy, or the supplier needs a long early-
proof-of-concept to test it. For each proposal and each business goal, the customer
estimates the risk that the benefit will not materialize.

Based on the potential value and the proposal-specific fractions and risks, we com-
pute the five-year value for each proposal.

Total cost: The cost in the example consists of the product cost as offered by the
supplier, the cost of hardware and other equipment that the customer has to buy,
the cost of training the staff, and the operating costs for a period of 5 years.

Notice that all of these may differ between proposals. Some proposals need more
customer hardware than others; some need more staff training than others, etc.

Net benefit: The net benefit - the bottom line - consists of the total benefit for 5
years minus the total cost for 5 years.

Method B5 will now force the customer to reject proposals that don't meet the
minimum criteria, and among the rest select the proposal with the highest net
benefit.

29

B5. Selection criteria: Highest net benefit
Use either section B5 or B6 as selection criteria.

The total benefit of the proposal is based on a financial value for each business goal. The table shows an
example with fictitious figures for proposal A.

Potential: The customer's estimate of the potential benefit for a 5-year period. Measured in million $.

Fraction: For each proposal the customer estimates the fraction of the potential benefit that this proposal
can reach if the supplier delivers as promised. It is stated as a number with one decimal, normally in the
range from 0.0 to 1.0. Example: The potential cost saving of efficient task support is estimated to one hour
per day per employee. Proposal A seems to save only half an hour and gets the fraction 0.5.

Risk: For each proposal the customer estimates the risk that the fraction will not be met. The risk is
estimated based on how detailed the solution is, whether the relevant part of the solution exists, whether it
is used elsewhere, the supplier's domain knowledge, and the time proposed for the proof of concept.
Example: Supplier A has sketched a detailed solution but it doesn't exist yet. However, he has good
domain knowledge. The risk is estimated to 30%.

5-year value: Computed as Potential * Fraction * (1-Risk)

Business goal 5-year

poten-
tial

Fraction Risk 5-year value
A B C A B C A B C

1. Efficient support of clinical tasks 200 0.5 30% 70
2. Reduce medication errors 50 1.0 10% 45
3. Continuous improvement 50 1.0 40% 30
4. Lower operational costs (included below)
Total benefit for 5 years (million $) 300 145

The customer estimates the net benefit for each proposal. The total benefit for a period of 5 years is
computed above. The costs of deploying and operating the system are subtracted. The result is the net
benefit for 5 years. Notice that all the figures may differ between proposals.

The customer selects the proposal with the highest net benefit for 5 years.

Benefit for 5 years, million $ A B C
Total benefit for 5 years 145.0
Product cost 20.0
Customer hardware costs 10.0
Staff training 5.6
Operating costs for 5 years 20.0
Total costs for 5 years 55.6
Net benefit for 5 years 89.4

30

B6. Benefit in score points
Method B6 also discards the proposals that were unacceptable according to the
minimum requirements. However, it doesn't calculate the benefit in dollars, but as a
weighted sum of score points.

Total weighted score points: We start with a copy of the table for minimum
requirements and replace the minimum scores with a weight for each area. We
keep the actual scores for each proposal. We add columns where we calculate the
weighted score for each requirement area and each proposal. The total weighted
score for a proposal is an indication of the value of the proposal.

Weights: How do we determine the weights? One possibility is to give each area a
priority, for instance between 1 and 5. The priority is now the weight. However, this
is hard to justify from a business point of view. Furthermore it can be extremely
hard to make stakeholders agree on one area being priority 1 and another priority
5.

Instead we could find weights that reflect the size of the area, for instance the
number of staff affected, the effect on quality, or the effect on cost. In the example
we started with the 5-year potential value computed as in B5. We split the potential
value into the requirements areas. As an example, continuous improvement
originated mainly from F10, integration with new external systems. Finally we
disguised the values as a weight by dividing by a factor that made the weights add
up to 100. This also matches the tradition of using weights that are percentages.

Some areas are not business goals. Yet they have got a small weight that reflects
some subjective value anyway. Notice that many areas have weight zero. Better
support of them has little impact - as long as the minimum score is met.

In the example, C10 has a very high weight because it accounts for almost half of
the business value. This makes the result very sensitive to the score being one or
two. For this reason the example gives scores with one decimal for C10. The deci-
mals can be computed based on scores for the individual tasks or requirements.

Total cost: The cost in method B5 is computed exactly as for method B5.

Bottom line: In B5 we subtracted cost from benefit to get the net benefit. Then we
selected the winner according to the highest net benefit. We cannot do this in B6. It
doesn't make sense to subtract cost in dollars from benefits in score points.
However, it makes sense to divide the two. This gives us the number of weighted
score points per million dollars.

Method B6 will reject the proposals that don't meet the minimum requirements, and
among the rest select the one with the highest weighted score per million dollars.

Comparison: The main advantage of B6 is that we don't have to reveal the busi-
ness value to the suppliers or to the government body that funds us. B6 also allows
us to put weights on quality aspects that cannot be estimated in dollars. Finally, the
whole procedure is somewhat simpler because we can reuse the scores from the
minimum requirements.

Although we don't select the supplier based on the business value in dollars, it is
still useful to estimate the business value and transform it to weights.

31

B6. Selection criteria: Most score points per dollar
With this alternative the customer doesn't have to specify the benefit in $, and he doesn't have to reveal to
the supplier how much he expects to gain. Risks are not included below, but it could be done.

Scores: The scores are those the customer assessed for the minimum criteria in B4. Since one of the
areas has a very high weight, the decision is very sensitive to this area getting score 1 or 2. For this
reason we give it a score with one decimal here.

Weight: Each requirement area has a weight that reflects the impact of the area. For instance the number
of staff affected, the impact on the customer's service quality, or the contribution to the business value.
The weights add up to 100.

Requirement area Weight Score Weighted score

A B C A B C
C1-C4. Admit patient (considered one area). 5 1 5
…
C10. Perform clinical session. 50 1.5 75
C11-C… Medication (considered one area). 15 2 30
…
D. Data. Assessed through the task support. N/A N/A
…
F10. Integration with new external systems. 15 1 15
H1. Login and access rights for users. 0 0
H2-H5. Other security (one area). 0 -1
I. Usability and design. 10 1 10
J2. User training (included in the costs

below).
0 0

J4. Data conversion. 0 1
L1. Response times. 5 0
…
Total weight and total weighted score

points
100 135

For each proposal the customer computes the total weighted score and the costs of deploying and
operating the system for a period of 5 years. Finally the score per million $ is computed.

The customer selects the proposal with most score points per million dollars.

Score per million $ Total

A
Total

B
Total

C
Total weighted score points 135
Product cost 20.0
Customer hardware costs 10.0
Staff training 5.6
Operating costs for 5 years 20.0
Total costs for 5 years 55.6
Score points per million $ 2.4

32

Variations
There are many variations on the selection themes above.

For the minimum criteria, there may be several requirement areas where the cus-
tomer can accept a proposal that is worse than today. It would be foolish to reject
an otherwise great proposal because it is worse than today in a few areas. How-
ever, it shouldn't be worse in too many areas. We might deal with this by means of
an additional criterion: It may not be weaker than today in more than 3 of the 30
areas. (It still has to be at least as good as the stated minima for all areas.)

We might add maximum criteria on the cost, e.g. our budget doesn't allow us to
invest more than 30 million dollars. And add minimum criteria on the benefit, e.g.
we won't invest in something unless we get at least a 20% return on investment.

In B5 we could change the 5-year period to for instance 10 years. This will make
the selection less sensitive to the development time and the initial costs.

In B5 we could select the winner according to the financial benefit per invested
dollar. This corresponds to the managerial situation where we have a limited
amount of money to invest and choose the projects that give the largest return on
investment.

We could also be more precise and calculate the internal rate-of-return (IRR), tak-
ing into account the varying benefits and costs over a period of years.

For B6 we could include the risk of not getting the full score points, and subtract
"missing" score points for the period where the system is delivered.

We can vary the score scale, for instance from (-2, -1, 0, 1, 2) to (1, 2, 3, 4, 5).
This will make the B6-selection more sensitive to cost differences and less to quality
differences as shown by the example below. The B5-selection doesn't have this
weakness. In general it is a good idea to test the weights and scales by imagining
hypothetical proposals with different scores and costs, and check that the selection
criteria make sense.

Finally, you should remember that there is a high level of uncertainty and risk in
large IT projects. Fiddling with details in the calculations will have little impact
compared to these risks. Fortunately the selection of a winner is often robust: Even
if we vary the weights and estimates quite a lot, the same winner comes out.

33

Effect of changing the scale: Assume that proposal A has 100 weighted score
points when we use a scale from -2 to 2. If we change the scale to 1 to 5, we must
add 3 to each score. Since the weights add up to 100, the total weighted score
points increase by 300, as shown in the table below.

Proposal B has 0 weighted score points on scale -2 to 2 and gets 300 when we use
the scale from 1 to 5. However, proposal B is also cheaper. As the table shows, A
will be the winner with scale -2 to 2. B will be the winner with scale 1 to 5.

Assuming that the score points reflect business values, then scale -2 to 2 better
reflects the total business value. Proposal A adds value, B doesn't. On scale 1 to 5 it
looks as if proposal B adds value. It doesn't.

Scale effect scale -2, -1, 0, 1, 2 scale 1, 2, 3, 4, 5
 A B A B
Total weighted score points 100 0 400 300
Cost, millions 200 100 200 100
Scores per million 0.5 0 2.0 3.0

34

C. Tasks to support
This chapter describes the user tasks to be supported. The requirement is that all
tasks must be supported to some degree.

A user task is something user and computer do together from start to end without
essential interruptions. A good starting point is something that happens in the
user's world, for instance that a client calls. A good end point is that nothing more
can be done for the client right now - the user deserves a "coffee break" (task
closure).

The first task in the template is C1. It starts when the secretary receives a message
about a patient. It ends when the patient has been admitted and got a meeting
time - or put on the waiting list - or the call has been parked because some
information is missing.

The table lists the sub-tasks involved. As far as possible, the user decides which
subtasks to carry out and in which sequence.

Subtask 1 records the patient. We don't specify whether user or computer does it.
Initially we don't know how much the computer is doing; it depends on the sup-
plier's solution. Good support is that the computer does most of it, for instance
copies the patient data automatically when the message is electronic.

Subtask 1a is a variant, i.e. another way to do subtask 1. Either 1 or 1a is done.

In a task you can specify that something is a problem to be eliminated. You don't
have to specify how. In the example it is a problem that some of the electronic
messages don't observe the MedCom format.

Strictly speaking, we must distinguish between task description and task
execution. The secretary executes C1 many times a day. The first time it is about
patient A, the next time it is about patient B who lacks information and is parked.
At the end of the day the secretary receives another message about patient B, this
time with the missing information. Now the secretary can do more for B than the
first time. Each time it is a new task execution but it follows the same task
description. Programmers would say that C1 is a class and execution of C1 is an
instance.

Work areas
In order to assess how well a task is supported, we have to know what kind of users
we deal with, the environment where the task is carried out, etc. We might specify
this for each task, but we often have to repeat the specification. So it is convenient
to bundle tasks according to user kind and environment. Such a bundle is called a
work area.

In the template we describe each work area as an introduction to the bundle of
tasks. We describe the user profiles (roles) and maybe the environment. The user
profiles explain the user's IT experience, domain experience, motivation, etc. Some
users may work in several work areas, possibly with different roles in different
areas.

User profiles are a short version of personas. Tasks are related to use cases and
user stories, but are less solution oriented. See more below.

35

C. Tasks to support
The system must support all user tasks in this chapter, including all subtasks and variants, and mitigate
the problems. Column 1 of the tables describe what user and system will do together. Who does what
depends on the chosen solution.

A task is carried out from start to end without essential interruptions. If necessary, the case must be
parked and resumed later. Although subtasks are numbered, they don't have to be carried out in this
sequence, and many of them are optional. The user decides what to do and in which sequence. A subtask
may also be repeated during the same task.

Some subtasks may be performed in alternative ways. It is shown with a, b, etc. Letters p, q, etc. indicate
something that today is a problem with this subtask.

Work area 1: Patient management
This work area comprises calling in patients, monitoring waiting lists …

User profile: Doctor's secretaries. Most of them are experienced IT users with good domain

knowledge. They communicate easily with medical staff.
User profile: Clerical staff …

C1. Admit patient before arrival
This task creates an admission or continues a parked admission. Most admissions can be handled as one
piece of work. The rest have to be parked, e.g. because some information is missing. It is important that
the system ensures that parked admissions are not forgotten (see E1-1)

Start: Message from medical practitioner, from another hospital … The message may also carry

missing data or be a reminder about a parked admission.
End: When the patient has been admitted or recorded on the waiting list, or when the admission

has been parked while the missing data is on its way.
Frequency: In total: Around 600 admissions per day. Per user: A maximum of 40 per day.
Difficult: (never)
Users: Initially a doctor's secretary, but the case may be transferred to someone else.

Subtasks and variants: Example solutions: Code:
1. Record the patient. (See data description D5).
1a. The patient is in the system. Update data.
2. Admit also a healthy companion.
3. Record the admission, including the initial

diagnosis. (See data description D1 and D6).

3a. Transfer data from medical practitioner, etc. The system uses the MedCom
formats.

3p. Problem: Some electronic messages don't
follow the MedCom format.

The system allows manual editing of
the transferred message.

3q. Problem: The patient may have several
admissions at the same time at different
hospitals and departments. It is hard to see who
is responsible for nursing and where the bed is.

4. Find a meeting time for the patient and send an
admission letter or a confidential email.

4a. Put the patient on the waiting list.
4b. Essential data is missing. Park the case with

time monitoring.

4c. Transfer the case to someone else, possibly
with time monitoring.

4d. Maybe reject the case.
5. Request an interpreter for the meeting time.

36

C1. Task rules (Admit patient before arrival)
The task description consists of these parts:

ID: Tasks are numbered C1, C2, etc. To avoid too much renumbering during
requirements elicitation, we group tasks according to work area and start each area
with a round figure. In the template, C10 is the first task in the next work area,
patient treatment.

Name: A task must have a name in imperative, e.g. Admit patient. Names like The
user admits the patient or patient admission don't start with a verb in imperative.
Imperative hides who does what - user or computer. During elicitation we don't yet
know who will do what.

Introduction: Help the reader understand what the task is about.

Start: A task should be something that is carried out from start (trigger) to end
(coffee break) without essential interruptions. Notice that a task may start for more
than one reason and end in more than one way.

The start signal (the trigger) should be something that happens in the user's
world. In the example it is that a secretary receives a message about a patient.
Avoid out-of-the-blue triggers such as the user wants to record an admission. This
reveals that we haven't understood when this happens and whether the system
could support it better, for instance through automatic receipt of MedCom
messages.

End: A task ends when the user deserves a "coffee break", either because the user
has done what is needed or because nothing more can be done right now. Task C1
may be parked because some data are missing (subtask 4b). Although the task isn't
completed in a logical sense yet, it is completed physically for now. The user starts
doing something else. This pattern is very common and it is important that the
system supports it well, for instance through warnings about overdue, parked tasks.

Why do we define tasks this way? Because it is the observable period of time where
the system must support the user - without essential interruptions. We must check
that the system provides efficient support for the entire period.

Frequency: The task frequency for the entire organization and for the user. The
frequency for the entire organization helps the supplier estimate the necessary
computer capacity. The frequency for the user indicates the importance of an
efficient user interface. These figures are outside the table, meaning that they are
not requirements, but assumptions the supplier can make. The corresponding
quality requirements are in other sections: response times (L1) and usability (I1).

Difficult: Situations where the task is particularly difficult to carry out, for instance
because it is done under stress or requires high precision. Note that task C1 has no
difficult situations while task C10 has one.

You cannot readily observe difficult situations but have to ask users about them.
Difficult is outside the table and thus not a requirement. Early in the requirement
process you may write difficult, but try to move it into other sections later. Often we
can describe it as a problem with one of the subtasks. Then it is easy to check
whether the supplier has a good solution. We can also describe a difficult situation
as a separate task. This helps us check that the supplier supports it well.

37

Users: The users who carry out the task, the environment, etc. Omit this informa-
tion if there is only one user profile in the work area.

Subtasks and variants: The requirements are in the table. Column 1 is a list of
subtasks, variants and problems. This is what the system must support. Subtasks
are numbered in a logical sequence, but this is for reference only. Subtasks are
basically optional (need not be carried out), some of them are repeatable and they
may be carried out in many sequences. The user decides as far as possible what to
do.

Notice that we use imperative language also for subtasks (record the patient). You
may write several lines to describe a subtask or a problem. C1-3q and C10-2 are
good examples. If you need more space, write a requirement note below the table.

Variants of a subtask are indicated by letters a, b, etc. A variant means that the
subtask may be carried out in more than one way. As an example, we may either

C1. Admit patient before arrival
This task creates an admission or continues a parked admission. Most admissions can be handled as one
piece of work. The rest have to be parked, e.g. because some information is missing. It is important that
the system ensures that parked admissions are not forgotten (see E1-1)

Start: Message from medical practitioner, from another hospital … The message may also carry

missing data or be a reminder about a parked admission.
End: When the patient has been admitted or recorded on the waiting list, or when the admission

has been parked while the missing data is on its way.
Frequency: In total: Around 600 admissions per day. Per user: A maximum of 40 per day.
Difficult: (never)
Users: Initially a doctor's secretary, but the case may be transferred to someone else.

Subtasks and variants: Example solutions: Code:
1. Record the patient. (See data description D5).
1a. The patient is in the system. Update data.
2. Admit also a healthy companion.
3. Record the admission, including the initial

diagnosis. (See data description D1 and D6).

3a. Transfer data from medical practitioner, etc. The system uses the MedCom
formats.

3p. Problem: Some electronic messages don't
follow the MedCom format.

The system allows manual editing of
the transferred message.

3q. Problem: The patient may have several
admissions at the same time at different
hospitals and departments. It is hard to see who
is responsible for nursing and where the bed is.

4. Find a meeting time for the patient and send an
admission letter or a confidential email.

4a. Put the patient on the waiting list.
4b. Essential data is missing. Park the case with

time monitoring.

4c. Transfer the case to someone else, possibly
with time monitoring.

4d. Maybe reject the case.
5. Request an interpreter for the meeting time.

38

record the patient (subtask 1) or find the patient in the system (1a). Problems
relating to the subtask are indicated by letters p, q, etc.

Many subtasks consist of recording or using data, but some subtasks comprise
more, for instance advising other people (subtask 5), dispensing medicine, paying
an amount. It is important to include this even if it is done manually today. The
supplier may have a solution that the customer hasn't imagined.

Problem = current problem: Column 1 also lists problems. A problem must be
something that troubles the user in the present way of doing things. Problem 3q is
a good example. The customer wants the supplier to eliminate the problem. We
often see analysts stating an imagined future problem, for instance that it will be
difficult to provide overview of the data. This is not the intention with "problem". If
you want to mention such issues, do it in column 2, which deals with the future.

Solutions: The customer may write example solutions in column 2. Later the sup-
plier writes his proposed solution here.

As a customer, write sample solutions sparingly. Don't force yourself to write some-
thing "clever" here. Only write something if it is a non-trivial solution. Solutions are
not in imperative. They should explicitly state who does what, e.g. The system
shows or The user selects.

What are the requirements? Right after heading C in the template, you see that
the requirements are to support all user tasks, including all subtasks and variants,
and mitigate the problems. This means that column 1 of the tables are the
requirements (the customer's demand). Column 2 may contain a solution example,
but the solution is not a requirement. Things outside the tables are assumptions the
supplier can make or help to the reader. Requirements or solution examples that
are too long to fit in the table, may be written outside the table, but must have the
heading requirement note or solution note.

C2. Similar tasks (Admit immediately)
Task C2 handles patients who arrive in an emergency without notice. Although the
task resembles C1 there are differences, and C2 may need different support.

Don't worry about the same subtasks appearing in C1 and C2.We need to check
that they are supported well in all contexts. A programmer will try to reuse code -
great, but the analyst doesn't program. The analyst should ensure that all use
contexts are supported properly.

C10. A complex task (Perform clinical session)
The most important activity in a hospital is examining and treating the patient. How
many tasks are involved? Is examination one task and treatment another task? If
we study what actually goes on, examination, treatment, and other activities are
often carried out within the same short period of time without essential interrup-
tions. It is important that the computer supports this mix well.

Many patients have several diagnoses (diseases) and during the clinical session the
clinicians may try to deal with all of them. They may for instance follow up on a
treatment of one disease and plan treatment of another one.

39

So the task starts when the clinician starts dealing with the patient and it ends
when he cannot do more for the patient right now. The task contains many kinds of
subtasks. The clinician decides what to do and in which sequence.

C2. Admit immediately
This task creates an admission for a patient who arrives in an emergency without prior notice …

Work area 2: Patient treatment
This work area comprises …

C10. Perform clinical session
A clinical session may comprise diagnosis, planning, treatment, evaluation, etc. Usually several of these
are carried out, but it may also happen that only planning, for instance, is carried out.

Start: Contact with the patient or a conference about the patient. End:
When nothing else is to be done about the patient right now. Frequency: In total:
Around 15,000 per day. Per user: A maximum of 20 per day.
Difficult: Disaster with many injured. (Better describe it as a separate task. See the guide booklet.)
Users: …

Subtasks and variants: Example solutions: Code:
1. Identify the patient. The system can read an electronic

bracelet, e.g. for unconscious
patients.

2. Assess the state of the patient. See open
diagnoses and related indications. See notes.
See results of services ordered earlier and
compare them with expectations. The data to
overview comprises D1 …

The system shows an overview of
everything on one screen, e.g. with a
Gantt-like time dimension. The user
can drill down to details from the
overview.

2p. Problem: Today clinicians have to log in an out
of several systems to see all relevant data.

3. Provide services that can be given on the spot,
e.g. blood pressure and SAT.

The system makes it easy to record
the results on the spot.

4. Follow up on planned services and results.
Check for violated deadlines.

The overview shows ordered services
and their state, e.g. deadline violation.

5. Adjust diagnoses (modify, add, delete,
prioritize). Check against standard
recommendations. Write notes.

5p. Problem: Cumbersome to see standard
recommendations.

The system can show recommenda-
tions and checklists based on a
selected diagnosis.

6. Plan and order new services. Check against
available time for all parties - including the
patient. (See the long subtasks C11, C12 … for
prescription, booking …).

For bookings, the system shows
available dates and times for all
parties.

6p. Problem: Parts of the request are forgotten. The system can book standard
packages of services.

6q. Problem: Errors when data are written on paper
and recorded later.

The system makes it easy to record
on the spot.

7. Maybe discharge the patient. (See task C6).

40

C11. A long subtask (Prescribe medicine)
Sometimes there are so many subtasks in a task that the description becomes hard
to overview.

One solution is to bundle the subtasks into logical groups with headings. We have
seen this work fine with 50 subtasks divided into 10 groups. The purpose of the
bundling is only to help the reader. The subtasks may still be carried out in almost
any sequence.

Another solution is to make each bundle a long subtask with a separate C-num-
ber. As an example, subtask C10-6, plan and order new services, refers to several
long subtasks: C11, prescribe medicine, C12, booking, etc.

C11 is shown in detail. Notice that a long subtask doesn't have its own start and
end description. It is simply a part of the main task, C10. However, it makes sense
to specify the frequency because only some clinical sessions have prescriptions or
bookings.

Subtask 6, Calculate dose, shows how business rules can be embedded in a task.
We might split the rules into several subtasks, but as stated we leave this to the
supplier.

C20. Another environment (Perform clinical session, mobile)
It may happen that a task is carried out in different environments with different
needs for IT support. One example is the clinical session (C10) when the clinician
moves around from patient to patient. The customer would like to support it
through PDA's or Smartphones. In theory all we need is to state in the introduction
to C10 that it may also be a mobile environment.

However, where should the supplier specify his solution, which is probably different
from the normal PC support of C10? And how will the customer assess the solution?
We suggest that you repeat the task for each environment:
C10: Perform clinical session, stationary.
C20: Perform clinical session, mobile.
What about the long subtask C11, prescribe medicine? To make sure that it too is
supported well in both environments, we should repeat it.

As for C2, admit immediately, don't worry about the same subtasks appearing in
several tasks. We need to check the support of them in all contexts.

Tasks, user stories and use cases
User stories
Like tasks, user stories try to describe what the user will use the system for. We see
User Stories being used more and more in requirements. They come in many
versions. Here are three typical examples:

A. As the patient's doctor I want to see an overview of the patient's diagnoses.

B. As the patient's doctor I want to see an overview of the patient's diagnoses.
(Followed by a screen with an outline of the overview).

C. In order to see the patient's diagnoses, I right click the patient's name and
chose See diagnoses.

41

All three examples are unsuitable as requirements. You cannot see what the
overview is to be used for. Is it to find a treatment, to explain a new symptom, or
to write a discharge letter? You may get support for these user stories, yet fail to
get adequate support for the full task from trigger to coffee break. In the worst case
the user may have to write the diagnoses on paper in order to execute the next
steps of the task.

Examples B and C are on a wrong level (design level) and prescribe a specific
solution. It is not suitable if you want to get an almost finished system.

C11. Prescribe medicine for the patient (long subtask)
This is not a separate task but a long subtask carried out during a clinical session. For this reason "start",
"end", and "user" are unnecessary.

Frequency: In total: Around 30,000 times per day. Per user: A maximum of 20 times per day.

Subtasks and variants: Example solutions: Code:
1. Assess the entire medication pattern of the

patient, in this admission as well as other
admissions.

The system shows an overview of all
medications, CAVE and diagnoses.

1p. Problem: Cumbersome to see standard
recommendations

The system can show recommenda-
tions and checklists based on
diagnosis and drug type.

…
6. Calculate dose. Check that it is reasonable.

Check for interaction with other drugs.
The system offers a calculation based
on body weight retrieved from the
health record.

6p. Problem: Translation between various units.
There may be a difference between the unit of
prescription (e.g. mg) and the unit of dose (e.g.
number of tablets).

The system shows the dose in
prescription units as well as dose
units.

…

…

C20. Perform clinical session, mobile
Clinical sessions may be performed when medical staff is moving around from patient to patient, e.g. with
a PDA or mobile phone. In principle we have the same subtasks as in C10, but they cannot be supported
in the same way. In order to allow the supplier to specify his solution for the mobile situation, we repeat the
clinical session task here.

Start: When …
End: When …
Frequency:

42

Use cases
Use cases also try to describe what the user will use the system for, but are also
very solution oriented. They have a short time span and rarely stretch from the true
trigger to the deserved coffee break.

In use cases you don't mention problems. Some use case authors become upset if
you do it: You haven't done your work properly. (Yes, but isn't it the supplier who is
supposed to solve the problems?)

If you use the task concept correctly, there will be rather few tasks to describe.
Many large systems can be described with just 10-30 tasks. This is an advantage
because you get a better overview and have much less to write.

We often see requirement specifications where 10 tasks have been expanded to
around 100 use cases, each of which takes up one or more pages, although little
happens in each of them. The cause is usually that each subtask has been specified
as if it was a separate task with start and end, frequency, etc. In real life these use
cases are not separate but done in combination with other use cases until "coffee
break". When described in the use-case way, the supplier gets no feel for how the
use cases relate to each other, and as a consequence he cannot support them well.

Here is a scaring real-life example from the hospital world:

A harmful specification from a real EHR project - 3 pages in total
Use case 2.1. Show diagnoses
The clinical user wants to obtain an overview of the patient's diagnoses and their relationships.

Start: The user wants to inform himself of the development in the patient's state of health.
End: …
Precondition: The user is logged in. The patient is recorded and selected.

Step: Example solution:
1. Show the hierarchy of diagnoses.
2. Select display mode. E.g. a hierarchy or a Gantt diagram.
3. Select the level of detail. E.g. expand or collapse with plus and

minus.
4. Show notes about a selected diagnosis.
5. Show date and author for the note.
6. Show possible external causes of the diagno-

sis.

. . .
This is not a true task because it isn't closed in the coffee-break sense. It will be
part of a larger task, for instance a clinical session. Furthermore it has so many
details that it prescribes a specific user dialog. Notice the out-of-the-blue trigger:
The user wants to . . . It is an indication that we don't know when this is done.

As for user stories, we cannot see the purpose of this use case.

43

Don't describe data as subtasks
The use case above is 3 pages in total. One reason is that the analyst has tried to
describe data as steps. Notes, dates and external causes are handled as separate
steps. The real specification also had use cases such as Create diagnosis (4 pages)
and Change diagnosis (3 pages). They referred to almost the same data. It was
hard to use the data names consistently in all the use cases. The original
specification had also a log-in use case and a select patient use case.

With SL-07 you describe data separately in Chapter D. From the subtasks you may
briefly refer to the data that are relevant in this subtask. The template shows
examples in C1-3 and C10-3.

Sometimes it is useful to list the necessary data more precisely, for instance in a
single subtask or as a requirement note below the task.

Tasks have no preconditions
The use case above has two preconditions: The user must be logged in, and the
patient recorded and selected. This enforces a flow between use cases. The user
must first carry out the login use case, next the select patient use case, then the
show diagnoses use case.

Tasks don't have preconditions, but the subtasks may have, although we rarely
need to write them. The clinician can start a clinical session at any time without any
precondition. It is part of the task to identify and select the patient (subtask 1). It is
an implicit precondition for the remaining subtasks that this has been done. Since
the context is clearly visible, there is little reason to write an explicit precondition
for all of these subtasks.

What about the login precondition? In a task perspective this is not a demand but a
solution to a problem: who is the user and what is he allowed to do? Login is only a
cumbersome way to do this. The template deals with these issues in section H,
security, and doesn't mention them in the tasks.

Lauesen & Kuhail, 2010, have a detailed comparison of use cases and tasks. It is
based on requirements specifications from 15 professional teams in 5 different
countries.

44

D. Data to record
This chapter describes the data to be stored in the system. Data may be described
in many ways. The template shows five ways:

1. a short explanation of each of the data classes (tables)
2. a data model (also called E/R diagram or Entity/Relationship model)
3. a data dictionary with details of each field, data volume, etc.
4. the contents of some existing tables
5. the contents of existing screens

Unfortunately there is no ideal way to describe data. Some are easy to understand
for stakeholders, but hard to make precise and consistent. Others are opposite.

Chapter D of the template starts with a short explanation of the data classes
followed by a data model. Next there is a detailed data description (a data
dictionary) and finally examples of using tables and screens as requirements.

Data model (E/R)
Data models are great to give overview and consistency. Domain experts can often
understand them, but ordinary users find them hard to understand.

Figure 3 in the example is a data model or E/R diagram. Each box is a class of data.
Imagine that there is a pile of file cards behind the box. As an example, behind the
Person box there is a file card for each person the system deals with. The box
symbolizes a card for one single person. For this reason the name on the box
should be singular, i.e. Person rather than Persons.

Next to the box we list the fields on the card. A card for a person contains the
person ID, the name and other simple fields. There should not be repeating fields
on the card, such as a list of the person's hospital admissions (in database terms:
first normal form). Data about an admission must be on one card in the Admission
box and should not be replicated on the Person card. On a user screen we can show
a person plus all his admissions, but not on a file card in the data model.

There are relationships between the boxes, shown as crow's feet. A crow's foot
shows that a card relates to one or more cards in another pile. As an example, a
person's file card is related to several admission cards (strictly speaking to zero or
more admission cards). Reading the crow's foot the other way, one admission card
is connected to only one person card.

A dotted box shows that the data in that pile are shared or partly shared with aan
external system.

When the data are in a relational database, a class corresponds to a table. Each file
card corresponds to a record or row in the table. However, E/R diagrams are also
very useful when data are not in a database.

The diagram lists the fields (attributes) outside each box to save space and improve
overview. In many cases we show only some of the fields and indicate with … that
there are more. Notice that we don't show the tables' foreign keys. It is database
technology and confuses the users. The crow's feet show what is needed.

A UML class model is very similar to an E/R model, but fields are shown inside the
boxes, so boxes become very large. Connectors are lines with cardinality shown as

45

0:1, 1:*, etc. When a line cannot be straight, it is not a smooth curve, but a broken
line. These seemingly small differences make a huge difference when you try to get
an overview of a large diagram. Our brain can much easier perceive an E/R diagram
than a UML diagram. Further, a UML diagram often needs five times as much space.

 D. Data to record
The system must record the data described in this chapter. The user can create, view, and change the
data through the tasks described in Chapter C. In many cases data has to be exchanged with external
systems as specified in Chapter F.

Figure 3 is a data model (an Entity/Relationship diagram, E/R) that gives an overview of the data. Each box
is a class of data. Imagine a pile of file cards behind the box. The box symbolizes one of the cards. As an
example, D5 is a pile that holds a card for each person the system deals with. Next to the box is a list of the
fields on the card.

There are relationships between the boxes, shown as crow's feet. A crow's foot shows that a card relates
to one or many cards in another pile. As an example, a person can have many admissions, but an
admission relates to only one person. Data need not be structured this way in the system, but it must be
handled in some way.

The dotted boxes show data that are (partly) shared with external systems.

D1. Diagnosis: Each record contains data about one of the patient's diseases. It corresponds to the
National Health Classification (SKS), but there is also a need for recording diseases that are not in SKS or
cannot be classified until later.

D2. Diagnosis type: Each record contains data about a type of diagnosis - independent of the patient: the
diagnosis name and SKS code (where possible), recommendation, standard treatment packages (through
the relationship to the catalogue of service types) … The clinicians will choose diagnoses from this
catalogue of diagnosis types.
…

D5. Person: Each record holds data about a person: name, address … A person may be a clinician, a
patient, or a relative.

D6. Admission: Each record holds data about an admission: start time, related person …

Figure 3. Data model for the system

D5. Person

D1. Diagnosis

D6.
Admission

D3. Service

D2. Diagnosis
Type

D4. Service
Type

Start time, state (. . .),
. . .

name, start time, registration time,
state (obs | valid | canceled | closed),
. . . recommendation

diagnosis code, name,
state (considered | . . .),
description, recommendation

Consists of

Hierarchy

person ID, name . . .

state, start,
end, name

Hierarchy
service code, name,
state (. . .), . . .

Plus 12 more
boxes

Dotted box: Shared
with external system

46

D0. Common fields
In many systems we need to keep track of the data history, i.e. who created or
changed data and when. It is fields that all tables must have. Old versions of the
"file cards" are kept. Technically it can be done in various ways, but they are
solutions the customer doesn't have to care about. The important part is the
requirements in D0.

D1. Data dictionary (Diagnosis)
This section is the data dictionary for the diagnosis class. It consists of these parts:

1. The number and name of the class. Classes are numbered D1, D2, etc. To avoid
too much renumbering during analysis, you may bundle the classes and start
each bundle with a round number.

2. Examples of what a file card may represent. Show typical as well as unusual
examples. For the diagnosis class, a file card represents a diagnosis for a spe-
cific patient. A diagnosis may for instance be "cholera" or "coughing".

3. The source of the data. Where does it come from? It might be entered during a
task, collected by the system, or imported from another system. In many cases
you can describe it for all fields at the same time; in other cases some fields
need a description of their own. In the example, the diagnosis name is usually
retrieved from a diagnosis type-card, but it may also be entered by the clinician.

4. The use of the data. It may be used in tasks or exported to other systems.
Again there may be a common description for all the fields or separate descrip-
tions for some fields.

5. The data volume. This is in the table and thus a requirement. The system must
be able to store this amount of data. Section L3 specifies for how long time the
data must be kept and how fast archived data must be retrieved.

In the example, the data volume is given as the number of new diagnoses per year.
This also gives us the number of create-transactions per day, and an indication of
the number of create-transactions in peak load periods. This is important for stating
response time requirements in L1.

6. A table with details for each field. Attributes are numbered sequentially.
Problems associated with an attribute are numbered p, q, etc. The list has three
columns, similar to tasks. Notice that we describe the crow's feet (relations) as
a kind of field, e.g. D1-2 and 3.

The example is written without details of the data format (e.g. whether it is text or
numbers). In some cases details such as date format and text lengths are useful,
for instance in the solution column as shown for D1-4. If a specific format is
necessary, it must be a requirement in column 1. Use it sparingly; it reduces the
chance of finding a COTS system that matches the requirement.

Notice that problems, requirement notes and solution notes may be used in the
same way as for other chapters of the requirements.

47

D0. Common fields
Each data class records history, i.e. each change creates a new version of the "file card" and preserves
the old one. This is recorded in these fields.

Fields and relationships: Example solutions: Code:
1. Change Time: The date and time when the "file

card" was created or changed.

2. Source: The person who created or changed
the "file card".

3. History: Relation to earlier versions of the "file
card" (not shown in the diagram).

D1. Diagnosis
A diagnosis is a disease or a symptom for a specific patient.

Examples: There is a fuzzy distinction between diseases and symptoms. As an example, cholera as

well as coughing are "diagnoses".
Data source: Diagnoses are recorded during clinical sessions (C10) and often during admission (C1).
Data use: Diagnoses are shown in patient overviews, for billing and for government reporting.

Data volume: Example solutions: Code:
1. Around 800,000 diagnoses are recorded a year.

Fields and relationships: Example solutions: Code:
2. Diagnosis Code: Relation to Diagnosis Type.

The patient's primary diagnosis may change
during the admission. The primary diagnosis
type is used for billing and government
reporting.

2p. Problem: Very hard to select the right SKS code
from the 20,000 possible ones.

See solution notes below.

3. Admission: Relation to the Admission, which in
turn refers to the patient (Person).

The system records it automatically
based on the currently selected
patient.

4. Name: Usually the name from Diagnosis Type,
but may be a name entered for this specific
patient.

Field length: 100 characters.

5. State: A diagnosis may be in these states: Obs,
valid, canceled, closed.

6. Start Time: The date and time from which the
diagnosis is in this state. Usually it is the same
as the Change Time, but not always, e.g. if you
record that the patient started coughing
yesterday.

The system makes it easy to choose
the Recording Time as the Start Time.

…
17. Recommendation: The recommendation valid at

the time of creating the diagnosis.

Solution notes
The user might for instance select a diagnosis code in these ways:
a. Browsing a conceptual hierarchy (corresponding to the SKS super and subclasses)
b. A reduced hierarchy so that the department as a default see only the diagnoses relevant for them.
c. "Live search" where the user enters part of the diagnosis name, and the system shows possible

matches keystroke by keystroke.

48

D2. A type class (Diagnosis type)
The diagnosis table D1 holds the actual diagnoses for the patients. In contrast, D2
is an example of a type class. The file cards behind the D2-box make up a catalogue
of all possible diagnoses.

It is usually important to specify also the type tables, particularly when the system
must be able to add a type, change it, and maybe keep track of the history of each
type. The EHR system gets the diagnosis types from the web site of the National
Health Organization (SKS), see F1.

Notice how D2-5 mentions an example in column 1 (Cholera DA00). This is a good
way to explain what the field may contain. We often see people write such an
example in column 2. This is wrong - column 2 is for example solutions - DA00 is
not a solution.

Notice how D2-6 deals with the length of the description field. It should be around
two lines, but the exact number is not important. For this reason the customer has
written a suggested length in the solution column. The supplier may adjust it to
what is convenient for him, for instance 255 characters.

In the EHR example, there is also a Service Type class (D4 in the model). It
corresponds to a catalogue of all possible services, e.g. "Blood pressure
measurement" and "Hearth bypass surgery". In some cases there may be several
levels of type classes. As an example, doctors don't just prescribe Aspirin. They
prescribe the service type "Aspirin, 12 tablet package". This service type belongs to
a Drug medicament type that is "Aspirin, 500 mg tablets". The Drug medicament
type belongs to a Drug preparation type that is "Aspirin, tablets", which corresponds
to an Active ingredient type that is "Acetylsalicylic acid".

The Drug medicament type, the Drug preparation type and the Active ingredient
type are separate data classes (separate boxes) not shown in the template
diagram.

49

D2. Diagnosis Type
The collection of diagnosis types makes up the diagnosis catalogue.

Examples: DA009: Cholera without specification; DR059: Coughing.
Data source: Imported from the SKS web site.
Data use: The user selects a diagnosis type when recording a patient diagnosis.

Data volume: Example solutions: Code:
1. There will be around 30,000 diagnosis types.

SKS has presently around 20,000 types.

Fields and relationships: Example solutions: Code:
2. Diagnosis code: SKS code or a temporary code.
3. Name: The full name of the diagnosis, e.g.

"Cholera without specification".

4. State: A diagnosis type can be in one of these
states: Considered, valid, outdated.

5. Parent: Relation to a more general diagnosis
type, e.g. "Cholera, DA00" rather than "Cholera
without specification, DA009".

Example: "Cholera, DA00".
WRONG - not a solution example.

6. Description: A longer text, but not more than
one or two lines. Even longer descriptions may
be found in the "Recommendation".

Field length: 160 characters.

7. Service types: Relation to service types that
may be used to treat this diagnosis.

The system may extract the informa-
tion from the Recommendations.

…
10. Recommendation: A long text describing

indications, medical practice, etc.
Might be a URL.

50

D3. Using existing tables and screens (Service)
In this section we show some other ways of specifying data: Existing tables and
existing screens.

There are many kinds of service in an EHR system. It is hard for the customer to
specify all of them. In the first part of D3, the customer has specified the common
fields and relations that all services should have.

D3-4 is the state of the service. When the clinician requests a service, it starts in
state ordered, then becomes confirmed by the service provider, then started and
completed, and it should end up as assessed by a clinician. Keeping track of the
state and when it changes, is important for taking action when things don't proceed
as expected. It also allows the system to issue warnings when something is forgot-
ten. The rules for changing state and issue warnings can be complex. You may write
the rules as requirement notes below the table or as business rules in Chapter E.

Section D3.1 specifies the services that are clinical measurements. In principle, the
special fields for a clinical measurement should be written in table D3.1, but D3.1-2
just refers to a screen taken from the existing database system. The screen lists the
existing fields. This gives the supplier an idea about what is needed, but the details
may have to be sorted out during development.

Section D3.2 specifies the services that are surgery. They are specified in the same
way as the measurements.

Section D3.3 specifies the services that are patient medication. In this case, the
customer didn't have the table formats, but used screen cuts from his existing
medication system. This also gives the supplier an idea about what is needed, but
again the details may have to be sorted out during development.

D3. Service
A service is something measured or given to the patient. There are many subclasses of service, e.g.
measurements, surgery and medication. At present they are stored in separate tables or even in external
systems to be integrated.

Fields and relationships common for all services: Sample solutions: Code:
1. Service code: Relation to Service Type.
2. Admission: Relation to the Admission, which in

turn refers to the patient (Person).
The system records it automatically
based on the currently selected
patient.

3. Start time: The date and time the service was
given.

4. State: In the normal flow a service may be in
these states: Ordered, confirmed (by the service
provider), started (e.g. sample taken), comple-
ted, assessed (by the clinician). Exceptionally,
the state may be: Canceled, changed.

5. Consists of: Relation to services that are part of
this service, e.g. surgery that consists of several
services.

51

D3.1. Patient measurement

Examples: Blood pressure; Body Weight; B-glucose; Gamma globulin; X-ray.
Data source: Some are recorded during a clinical session; others are imported from an external system,

e.g. lab results.
Data use: Used in patient overview and detail view to support diagnosing and treatment.

Data volume: Example solutions: Code:
1. Around 100,000 measurements are recorded a

day. Of these 5,000 are pictures.

Fields: Example solutions: Code:
2. A patient measurement should include the data

from the present table, see Figure 4, tblPatient-
Measurement. Notice that the present table
doesn't have these common service fields:
admissionID and state.

D3.2. Patient surgery

Examples: Heart Bypass Operation; Photodynamic Therapy (PDT).
Data source: Recorded during and after surgery.
Data use: Used in patient overview and detail view to support diagnosing and treatment.

Data volume: Example solutions: Code:
1. Around 100 surgeries are recorded a day.

Fields: Example solutions: Code:
2. A patient surgery record should include the data

from the present table, see Figure 4,
tblPatientSurgery. Notice that the present table
doesn't have the common service fields:
admissionID and state.

 Figure 4. Present service

52

D3.3. Patient medication

Examples: Ibumetin, 400 mg*3; Furix, 40 mg*2.
Data source: Recorded as prescriptions during clinical sessions.
Data use: Used in patient overview and detail view to support diagnosing and treatment.

Data volume: Example solutions: Code:
1. Around 30,000 prescriptions are recorded a

day.

Fields: Example solutions: Code:
2. A patient medication record should include the

data that the present system shows. See Figure
5, screen shot from the present medication
system.

Figure 5. Present medication data
MedicineEnd Unit Daily dosis Path

Solid

Solid

Solid

Solid.Inf.

Solid.Inf.
Solid

Solid

Solid

Solid

Type Dosis InfoStart

53

(Intentionally left blank)

54

E. Other functional requirements
Most of the system functionality is simple data creations, deletions, edits and que-
ries that are implicitly required to support the tasks, system integrations, etc. This
chapter describes functionality that is more complex.

E1. System generated events
The system may do things on its own, for instance collect data from the environ-
ment or send reminders to users when time limits are exceeded.

Requirement E1-1 asks for a reminder when an admission has been "forgotten".
There must be a task that handles this reminder. In the example, task C1 Admit
patient deals with it as one of the possible triggers.

Requirement E1-2 asks for a reminder when a LabSys service has been lost. Here
too there must be a task that handles this reminder. This task is not mentioned in
the template. It is carried out by a department secretary or the chief nurse.

E2. Reports
Often the existing system can print heaps of reports, but for most of them the
customer doesn't know whether they are used and for what. The template shows
how to transform this lack of knowledge into requirements.

Report 1 has a well-defined purpose and we can describe the format precisely, for
instance through a sample print.

Report 2 has a well-defined purpose, but no specific format. It is useful to refer to
the task or tasks where this report is used to help the supplier understand what is
convenient.

Report requirement 3 deals with the lack of knowledge by asking the supplier to
offer a fixed price per report. In this way the customer can delay the decision on
which reports are needed. The fixed price prevents the supplier from abusing the
de-facto monopoly he has got after signing the contract. The supplier must specify
the price, and maybe how it depends on the complexity of the report. He might for
instance use a price per Function Point (see L5-7).

Requirement 4 deals with the problem in another way by asking for a report gen-
erator. It will allow the customer to develop his own reports. The example asks the
supplier to specify how easy it is to develop the reports, for instance by stating
what kind of users can do it and how much training they need.

Requirement 5 states that all reports must be available on the screen as well as in
print.

55

E. Other functional requirements
Most system functions are simple creations, deletions, edits, and queries that need no further specification.
They are implicitly given by the task descriptions (Chapter C), system integrations (Chapter F), etc. In
addition, the system must be able to perform the functions specified in this chapter.

E1. System generated events

The system must generate these reminders: Example solutions: Code:
1. If an admission has been parked for X days, the

doctor's secretary must be reminded. System
administration must be able to define X.

X is typically 4 days, but may vary
between departments.

2. If a LabSys service has been ordered but not
completed within 24 hours, the clinicians must
be reminded.

E2. Reports
Some reports are needed in connection with the tasks described in Chapter C. The report formats are not
essential as long as the tasks are supported well. These reports are not described in this chapter. There is
also a need for reports with ad hoc purposes, cross-task purposes, and reports with a precise format. They
are specified here.

Report requirements: Example solutions: Code:
1. Checks must be printed on preprinted forms

with the format shown in …

2. The system must be able to show an overview
and forecast of the bed occupation (used for
instance in task …).

Figure … shows an example of such
a report.

3. The supplier must develop up to 100 new
reports at a fixed price as part of the
maintenance.

The price per report is _. (The
price may depend on the complexity.)

4. The system must contain a report
generator that is easy to use.

How many of the staff will be able to develop
the reports in appendix X after a course of
days:

type 1 type 2
ordinary users % %
super users % %
the customer's IT staff % %

5. The system must be able to show all reports on
the screen as well as on print.

…

56

E3. Business rules and complex calculations
Rules and computations may be described in several ways. Some fit nicely into task
descriptions, for instance this subtask in C11, Prescribe medicine:
 Check that the medicine doesn't interact with other drugs the patient takes.
The supplier can specify that his system automatically does this and how.

Other rules are part of the data requirements (e.g. possible states of a service) or
security rules (e.g. who has the right to do what?). This section specifies additional
complex rules.

E3-1 in the example requires a computation that is described in a separate
appendix (waiting list calculation). The appendix may for instance contain an algo-
rithm described as a small program, a flow chart, or a table of the possibilities.

E3-2 refers to a public document where the rules are described (salary
agreements). In order to translate this into a solution, the supplier needs a lot of
expertise in the salary domain.

You may also indirectly specify a function through an accuracy requirement, for
instance that the system must be able to recognize human speech with a back-
ground noise of 30 dB. Or that the system must be able to calculate a duty roster
that is at most 3% more expensive than the optimal plan.

E3-3 shows a rule expressed as a state-transition diagram. A diagnosis for a specific
patient can be in one of these states: obs, valid, canceled, closed. Officially, it can
only change state as shown by the arrows. User actions cause all these state
transitions, except deletion of the diagnosis. Deletion is done automatically after 20
years. As requirement E3-3 explains, users should be able to make any state
change anyway.

E3-4 shows a more complex rule as a state-transition diagram. It shows the states
of a LabSys service request. The possible states are shown as boxes with round
corners. It corresponds to the service states mentioned in D3-4. The diagram shows
how the state of a LabSys service changes inside the EHR system.

The clinician creates the service in the EHR system, which set the state to Ordered.
At the same time the EHR system sends a LabRequest to LabSys. LabSys sends a
LabConfirm message to the EHR system, which sets the service state to Confirmed.
Next the clinician sends the physical sample and marks it in the EHR system, which
sets the state to Started. Later LabSys sends a message with the result to the EHR
system, which set the state to Completed. When the doctor later sees the result in
the EHR system, the system sets the state to Assessed.

Diagrams such as these can be detailed further with activity diagrams (from UML)
or SDL (from the telecommunication industry). Sometimes this level of detail is
important, but in most cases it specifies a solution rather than a user demand. In
the example, the user doesn't really care about these LabSys details, but it is im-
portant to him that he can see how far the LabSys request has come. This could be
stated as the real requirement.

57

E3. Business rules and complex calculations
Some business rules are specified in the task steps, e.g. Check that … (example in C11-6). Other
business rules are specified in the data descriptions (example in D3-4), and some are specified as access
rights (section H1). Here are additional business rules and complex functions:

Function: Example solutions: Code:
1. Waiting list priority must be calculated as

described in …

2. Salary calculations must at any time follow the
collective agreements (see also the
maintenance requirements in …).

3. Normally, a diagnosis may only change state as
described in Figure 6. In case of mistakes, the
user must be able to deviate from the rules (see
also H4-2).

A user who tries to deviate from the
rules will be asked whether it is
intentional. If so, the change is made
and logged in …

4. Inside the system, a service requested from
LabSys changes state as described in Figure 7.

Requirement note: State-transition diagrams
Figure 6 shows that a clinician creates the diagnosis. It is created in either state Obs or state Valid.
Clinicians can change the state according to the diagram. The diagnosis disappears when the system
automatically cleans up the data after 20 years.

Figure 7 shows how the state of a LabSys service changes inside the system. A clinician creates a LabSys
service in state Ordered. During the creation, the system sends a LabRequest to LabSys. When LabSys
sends a LabConfirm message to the system, it changes the service state to Confirmed. A clinician takes a
sample from the patient, sends it to the lab and tells the system, which changes the service state to
Started. The service can change state in other ways as specified in the diagram.

Figure 6. Diagnosis states

Obs

Valid

Canceled

Closed

Clinician

Clinician

Automatic
(20 years)

any state

Figure 7. LabSys service states and messages

Ordered

Canceled

Confirmed Started
Clinician LabConfirm

Completed

Assessed

changed

any state

LabRequest

Clinician

LabSample LabSys

Doctor

LabRequest

Automatic
(20 years)

Clinician

any state
LabCancel
Clinician

58

E4. Expansion of the system
In some cases the customer needs to be able to expand the system himself in some
areas. He may for instance want to experiment with new screens to improve usabil-
ity, or he may fear that the supplier will charge an unreasonable price for expan-
sions.

This section asks for functionality that will make some kinds of expansion possible
without involving the supplier. Some years ago, suppliers were reluctant to allow
such things, because they feared for the correctness and stability of the system.
This has changed and even ERP systems such as SAP and Axapta provide better and
better possibilities for expanding the system.

In the EHR example there is a significant demand because there are more than
20,000 types of patient service, each with their own data fields; and the number
grows steadily. It is not acceptable that the supplier is needed for changing the
system whenever a new type of service is introduced. Similarly, many medical
specialties have their own needs for data visualization.

There is also a demand for future integration with external systems. This is handled
in section F10.

Notice that the template not only asks for expansion functionality, but also for the
rights to use it (E4-8). This is based on bad experiences with suppliers who provide
the functionality but keep the rights for using it and for extracting the data stored in
the system.

59

E4. Expansion of the system
The system shows and maintains data through the user screens. In this section, "customer" means the
customer's own IT staff or a third party authorized by him. The customer expects to be able to modify the
screens and add new ones in order to create overview for medical specialties, new work procedures, etc.

The system handles many types of medical services, often with special combinations of data. The
customer expects to be able to add new types of services. The requirements below state the demands.

Expansion requirements: Example solutions: Code:
1. The customer can define new types of services

based on data in Chapter D.

2. The customer can define screens that combine
data from the entire data model in Chapter D
(arbitrary views of data).

3. A screen can activate functionality in the EHR
system and in external systems integrated with
the EHR system. E.g. request of a service,
notification, print of a report.

4. A screen can be composed of many types of
components (controls) and their color can reflect
data values. E.g. text boxes, tables, buttons,
graphs, pictures.

5. The customer can add new types of
components for use in the screens.

6. Screens can be defined for several kinds of
equipment, e.g. PC, PDA, Smartphone.

Documentation and rights: Example solutions: Code:
7. The tools for composing screens, adding new

component types, etc. must be documented in
such a way that the customer's IT staff or a third
party can understand them and use them for the
intended purpose.

A course of days is necessary to
use the tools.

8. The customer must have the right to use the
tools and the data stored in the system.

60

F. Integration with external systems
Integration means that two systems shall communicate. Usually it is a matter
transferring data from one system to the other. The trend is that new systems must
be integrated with more and more other systems - external systems. More than
ten external systems are quite common.

In some cases we can avoid explicit integration requirements because full support
of the tasks requires integration. We did so in C1-3a (use of MedCom for data
transfer). Usually, however, integration is a complex affair, and it will be hard to
evaluate a supplier's integration solution by trying to carry out the tasks. It is par-
ticularly difficult if we want to make an early proof of concept (B3). So usually we
need explicit integration requirements.

The template starts with a verbal overview of the external systems and a graphical
overview in form of a context diagram. It is similar to the context diagram in
section A1, but will usually contain more details, for instance the system codes F1,
F2 . . .

Show the system to be delivered as a box with double-line borders. Show the inte-
grations to be performed by the supplier as double-line arrows. Let the arrows point
in the direction data move. Label each arrow to indicate the data that flow.

In the example, the supplier has to integrate with the existing SKS system and
LabSys. Note that he is not required to integrate with new external systems. Some-
one else may do it.

Which system should initiate the data transfer? It depends on what is possible with
the existing systems. And the customer shouldn't care. He should only ensure that
his demands are met. So what are the real demands? A study of many system
integrations shows that several aspects are involved:

A. Access rights to data. Who is allowed to transfer what?
B. Protection of data: Avoid data loss, duplication, and corruption.
C. Documentation and rights: What to document? Who may use it for what?
D. Responsibility: Who will make and test the integration and how will the "other

end" help?
E. Task support: Can the user tasks be supported well with this integration?
F. Data to import from the external system: Which data?
G. Data recency: How old is the data that the customer's system shows? This is the

key concern in integration. With the ideal SOA architecture (see below), the
data on the screen will be only a few seconds old. With a batch-wise transfer it
may be hours or weeks old, but this may be sufficient.

H. Response time at import: When the system requests import of data, how fast
should it be transferred?

I. Data to export: Which data and when?
J. Response time at export: When the system requests export of data, how fast

should it be transferred?
K. Other functionality: Can the system order other functions in the external sys-

tem, for instance remind users or print data? Or does it offer functions itself?

The template has sections and examples for each of these aspects.

61

F. Integration with external systems
The system must integrate more or less closely with the external systems shown in Figure 8 (context
diagram). The integration comprises data sharing or replication, and the ability for the user to activate
functionality in the external systems.

In this Chapter, "customer" means the customer's own IT staff or a third party authorized by him.

S-Data (System data) are the integrated data stored locally in the EHR system, S.
E-Data (External data) are the integrated data stored in the external system, E.

Here is a short explanation of the external systems:
F1. SKS: The National Health Classification system. The National Health Organization updates it

regularly.
F2. LabSys: The customer's present lab system for …
F3. …
F10. An external system that the customer will buy later and integrate.

Requirement note: Response times
The response times specified in this chapter must be interpreted in the same way as in L1, i.e. with L1's
fractile, measured in peak load periods, etc.

Integration aspects
For each integration there are many aspects to consider:
A. Access rights to data.
B. Protection against loss of data.
C. Rights and means to integrate the system with other systems or migrate data.

D. Integration responsibility, e.g. the supplier, or the customer with support from the supplier.
E. Tasks the integration must support.
F. Data import from E (the external system). Which data to import.
G. Data recency (how old may the local copy of the data be).
H. Response time at import.
I. Data export to E. Which data to export.
J. Response time at export.
K. Other functions, e.g. warnings to the user or E.

For practical reasons the requirements in group A, B and C are written as common integration
requirements, which means that they are valid for all integrations where relevant.

Figure 8. Context diagram

F2. LabSys

F1. SKS

F10. New external
systems

Clinician

Patient
management

EHR system

New medica-
tion system requests,

results

codes

Double line:
The supplier integrates

62

What should the requirements say about the external systems that the supplier has
to integrate with. The systems exist and the supplier has to know about their
technical interfaces (API's or XML services) in order to estimate his own integration
costs. Yet the customer rarely has this information.

The customer can refer to the supplier of the external system, but often he is not
willing to help. He sees the new supplier as a competitor. The customer must
ensure that the old supplier will help, for instance by buying the necessary rights.
This is an important assumption for the supplier. It must be stated above the
requirements table, in the same way as other assumptions the supplier can make.

To avoid that the new supplier later causes similar troubles, he must accept
requirements F0-6 to 9. Then the customer doesn't have to negotiate with him the
next time something has to be integrated.

SOA or data replication?
Some customers listen to the IT gurus and ask for a Service Oriented Architecture
(SOA) where systems connect with XML services, and data are stored only in their
source system. Other systems must retrieve it from there. In principle it is a great
idea, but the customer doesn't realize that this requires 10-50 times more computer
time than traditional approaches. It also makes it impossible for the supplier to
ensure fast response times and high operational availability, because his system
depends on other system's response times and availability.

When the supplier offers a COTS-based system, SOA may become a really expen-
sive solution for other reasons too. The COTS system retrieves data from its own
database, but now data must be retrieved through SOA from another system. The
supplier must change his system in hundreds of places - even if it is nicely made
with a multi-layer architecture. A system that has been changed in so many places
cannot be maintained as part of maintaining the COTS system. So maintenance will
also be very costly.

An alternative solution is to replicate data across systems, and synchronize data
periodically (batch transfer). This is usually much easier to add to a COTS system.

F0. Common integration requirements
This section covers requirements that apply for all the integrations where relevant
and unless something else is stated.

F0-1 requires that data may only be transferred to the user's PC if he is allowed to
see them. So data confidentiality doesn't depend on only special PC programs
showing the permitted data. It would be too easy to install a spy program that lets
the user peek at the forbidden data. This requirement could also be considered a
security requirement and placed in section H1.

F0-2 to 3 require the system to protect against technical problems with lost or
duplicated data. This could also be considered a security requirement and placed in
section H3.

F0-4 recognizes that it may be necessary to analyze the actual data transfers, and
asks for ways to do it.

63

F0-5 specifies that it must be easy to add new technical interfaces to the system,
e.g. SOA services. Although some customers believe they can define the necessary
services in the requirements, experience shows that new services are often needed.
If you need a new service, it is very expensive because the suppliers of the two
systems have to agree and test their systems together. An alternative is to use an
OData interface (Open Data Protocol) where the client to a large extent can define
on his own what he wants to retrieve (like an SQL statement).

F0-6 specifies that the customer (or a third party) must be able to migrate the data
to another system. This is a key requirement for being able to switch supplier later.
Surprisingly many customers forget this and the supplier gets a monopoly.

F0. Common integration requirements
The requirements in this chapter apply for all the integrations unless explicitly stated.

A. Access rights to data: May be moved to H1 Example solutions: Code:
1. The system may only transfer E-data to the

user's PC when the user has the right to see it
according to H1.

B. Protection of data: May be moved to H3 Example solutions: Code:
2. The system must protect against loss or

duplication of data transferred between the
systems, e.g. because one or both systems
have been off-line or closed down.

3. The system must protect against concurrency
problems, e.g. that user A sees and then
updates E-data, while user B does the same.
Neither A nor B will notice the conflict.

4. The system must support error tracing at data
transfers.

Logging all transfer errors.

C. Documentation and rights: Example solutions: Code:
5. It must be easy to add new interfaces, e.g. SOA

services, database queries, or API's.
The system provides an OData
interface that allows the client to
define services.
Or: The supplier can do it at a fixed
price.

6. The customer must have the means and rights
to extract and use all data described in Chapter
D, e.g. for converting the data to another
system.

7. The technical interfaces to S must be
documented. The documentation must be
understandable to a typical software house and
found suited for integration and data retrieval.

A course of days is necessary to
use the documentation and make the
integration. Documentation samples
must be delivered early (see B2-4).

8. The customer must have the right to use the
documentation and the interfaces themselves.

9. The supplier must loyally support the customer
in the integration or migration effort with
qualified staff at a fair price.

64

F0-7 to 9 specify that the customer must be able to integrate the system with other
systems. He must have the means, documentation, and rights to do so, and the
supplier is obliged to support the work. If all the existing external systems had met
similar requirements, integration would be much simpler.

Notice how it is possible to verify the quality of the documentation by asking a
typical third party software house to try out the documentation. This should be
done early in order to make it likely that the supplier's way of documenting will
suffice for third party integration with the EHR system (see section B2).

F1. Simple one-way integration (SKS)
This section is an example of a very loose integration with an existing system, SKS,
the National Health Organization's classification codes. SKS has code files that
anyone may download.

The introduction above the tables gives the assumptions for the requirements,
similar to the assumptions for tasks descriptions.

Tasks: Which tasks utilize the integration?
E-support: Who has the rights to integrate? How to get the documentation of

the external interface? Who can provide support?
E- updates: How frequently are SKS codes updated inside the SKS system?
Data volume: How much data to transfer?

The template shows two versions of the requirements table for F1. One where we
carefully have considered all points from D to K, and one where we only write the
strictly necessary requirements.

All points considered
F1-1 specifies that the supplier has to make the integration. It is assumed that he
doesn't need support from someone else to do it (a reasonable assumption in this
case).

There are no special requirements for task support. The introduction says that the
data are used in most tasks. It is sufficient in this case.

F1-2 specifies the data to be transferred from SKS.

F1-3 shows that the recency of data is not urgent. If the system has the data one
week after they have been released by SKS, everything is okay. The example solu-
tion mentions that a periodic transfer is sufficient. The transfer might also be
started manually by IT support when the health authorities announce the changes.

F1-3p mentions an existing problem about conflicts between local codes and new
official codes, and suggests two solutions.

F1-4 mentions that more recent data are needed sometimes.

There are no requirements for a specific response time (how fast the transfer is).
The system is not required to use other functions in SKS or transfer data to SKS.

The short version
Here we can do with just two requirements: (1) The supplier is responsible. (2) The
new SKS tables must be used by the system shortly after having been released.

65

Integration requirements: Example solutions: Code:
1. The supplier must integrate the system with the

relevant SKS tables.

2. The system must use the new tables shortly
after their release.

The tables are imported within a week
after their release.

F1. SKS
E-data (external data): The SKS tables comprise codes and corresponding names for diagnoses, services,

health departments, etc.
Tasks: The codes and names are used in most of the tasks. However, the department codes

are retrieved from another system.
E-support: The tables are publicly available from the web site of the National Health

Organization. They are zip text files with fixed field spacing. They are documented on
the same web site.

E-updates: The department data are updated on a monthly basis, the other codes every three
months.

Data volume: The SKS tables comprise around 100,000 records, each around 100 characters.

Alternative 1: All points considered
D. Integration responsibility: Example solutions: Code:
1. The supplier must integrate the system with the

SKS tables.

E. Task support: No special requirements. Example solutions: Code:

F. Data import: Example solutions: Code:
2. All codes and names are needed, except the

department data.

G. Data recency: Example solutions: Code:
3. S-data should not be older than a week. The system imports E-data every

days.
Or: IT support starts a transfer when
the Health authorities announce that
data are available.

3p. Sometimes new SKS codes conflict with local
codes or cause other problems.

IT support can roll SKS data back to
the previous version.
Or: Local codes may have a tag so
that they don't conflict.

4. In special cases, there may be demand for more
recent data.

IT support can start a data transfer.

H. Response time at import: No requirements. Example solutions: Code:

I. Data export: None. Example solutions: Code:

J. Response time at export: N/A. Example solutions: Code:

K. Other functions: No requirements. Example solutions: Code:

Alternative 2: The short version

66

F2. Two-way integration (LabSys)
This section is an example of a close integration with an existing system. Data are
transferred both ways: requests to LabSys and replies the other way. The introduc-
tion explains what LabSys can do from a user perspective. Only task C10 uses
LabSys.

Tasks: Which tasks utilize the integration?
E-support: The customer refers to a technical document and promises that

a specific company, MediData, can provide support (see the
introduction to Chapter F). The customer has contracted the
necessary rights.

E-data updates: Each update corresponds to LabSys generating a reply.
S-data updates: S is the EHR system. S-data are the requests. An update

corresponds to sending a request.
Data volume: A reply consists of around 500 characters per result.

F2-1 specifies that the EHR supplier has to make the integration. He can assume
support from MediData as promised under E-support.

F2-2 says that support of task C10 must be efficient. This requirement seems a bit
unnecessary since the introduction mentioned C10. However, stating it as an ex-
plicit requirement makes it easier to assess the solution. It also allows the supplier
to explain what he considers a good solution.

F2-3 specifies the data to import. The data correspond to Service records in the
data model (section D3).

F2-4 and 5 specify that LabSys results must be in the EHR system (S) within 3
hours, but sometimes better recency is needed. The customer mentions a couple of
solutions. They assume that the supplier can work out a solution with MediData,
since electronic data at present are transferred over night.

F2-6 specifies the response time for data import (getting the test reply). The exam-
ple solution allows time for LabSys to send the reply. In general the supplier will
have troubles meeting a response time that includes time for external system re-
quests. So a fair requirement allows the time needed by the external system.

As mentioned in the requirement note at the introduction to Chapter F, response
times must be interpreted in the same way as in section L1, e.g. with fractiles and
peak load periods.

F2-7 specifies that the user can send LabSys requests by means of S. This is con-
sidered a kind of data transfer. It might also be called a function and be specified in
"other functions" (F2-K).

F2-8 specifies the response time for data export (sending the request). There are
actually two times involved: The time until the user can continue typing or clicking,
and the time until the user can see the LabSys confirmation.

F2-9 and 10 specify that the EHR system can notify its own users and LabSys about
new and missing replies.

67

F2. LabSys
E-data (external data): LabSys version yyy. Users can request lab tests from LabSys. The sample itself is

delivered by … and the reply comes on fax and electronically. One reply may contain
several results.

Tasks: LabSys is used in connection with task C10, Perform clinical session.
E-support: The technical interface to LabSys is described in … MediData supports LabSys in

Denmark and can provide integration support. The customer has contracted the
rights with MediData.

E-data updates: LabSys generates replies continuously by fax, but at present the electronic replies
are only sent as a batch over night.

S-data updates: The entire hospital requests around 8000 tests a day, mainly between 8:00 and
16:30.

Data volume: Each reply consists of one or more results, each of around 500 characters.

D. Integration responsibility: Example solutions: Code:
1. The supplier must integrate with LabSys.

E. Task support: Example solutions: Code:
2. The integration must support C10 in an efficient

manner.
Requests and replies are handled in
the same way as other services -
without retyping patient ID.

F. Data import: Example solutions: Code:
3. All E-data that can match the data in section D3.

G. Data recency: Example solutions: Code:
4. S-data should not be older than 3 hours. The system imports E-data every

hours.
Or: Data is imported at E request when
they are available.
Or: Data is always retrieved from E.

5. Sometimes the latest results are needed for
a specific patient, e.g. during surgery.

The system retrieves data on the user's
request.
Or: Data is always retrieved from E.

H. Response time at import: Example solutions: Code:
6. When the user requests a lab reply, it must be

so fast that the user doesn't lose patience.
The result is visible within s plus
the time LabSys needs to send the
reply. (The customer expects 3 s.)

I. Data export: Example solutions: Code:
7. The user can send LabSys requests through the

EHR system (S)..

J. Response time at export: Example solutions: Code:
8. A lab request can be sent and the user continue

typing within the mental switching time (around
1.3 s). The confirmation from LabSys should be
visible a bit later.

Typing is possible within s. (The
customer expects 1.3 s.)
The confirmation from LabSys
appears s after LabSys has sent it.
(The customer expects 3 s.)

K. Other functions: Example solutions: Code:
9. S can notify the user about new or missing

LabSys replies.

10. S can notify LabSys (E) about missing LabSys
replies (reminders).

68

F10. Integration with new external systems
Once the customer has acquired the system, it can become very expensive to inte-
grate it with new external systems because the supplier usually has a monopoly on
carrying out such changes. Section F0 (requirements 5-9) avoids the monopoly by
requiring that the customer (or a third party) is able to implement such
integrations. In section F10 the customer tries to get information about what kind of
integrations he can make himself.

E-support explains that it is the customer's responsibility to get documentation for
the external system (of course).

F10-1 says that the customer (or a third party) is responsible for the integration,
but the supplier of the EHR system must assist him according to F0-9.

F10-2 specifies that the EHR system should allow an integrated system to work off-
line for a period and reconnect gracefully later.

F10-3 to 6 specify features that the EHR system should provide for data import
from the external system: Being able to transfer data on request or periodically;
transferring only data younger than a certain point in time; transferring only data
about a specific patient. The customer imagines that he can configure the EHR
system to do these things.

F10-7 asks for response times. However, it is not possible for the EHR supplier to
promise response times unless he knows the load of the EHR system and the kind
of transfer. If the customer integrates the EHR system heavily with other systems,
the EHR system can become overloaded and respond slowly.

How can we make a fair requirement about this? One way is to ask for additional
capacity so that the EHR system can carry a load x times as high as the load speci-
fied in L1, and still provide the response times specified in L1. The customer can
then use the additional capacity for data transfers. This is what F10-7 asks for.

F10-7p mentions a known problem in this kind of integrations: An unusually long
data transfer may block the system and ordinary small transfers.

F10-8 to 11 are similar to F10-3 to 6, but specify features for data export to the
external system.

F10-12 and 13 ask for a list of the functionalities the EHR system can use in an
external system and a list of those it offers to external systems.

69

F10. Integration with new external systems
The customer expects that he can integrate new external systems with S - with little or no help from the
supplier of S. This section lists the demands such integrations might have and asks for the supplier's
suggestion for what he can deliver to meet the needs.

External system: In principle any system. Examples: X-ray system, mobile applications, specialist

system for intensive care.
Tasks: Defined later.
E-support: The customer's responsibility.
E-data updates: Defined later.
Data volume: Defined later.

D. Integration responsibility: Example solutions: Code:
1. The customer is responsible for the integration.

The supplier must assist as specified in F0-9.

E. Task support: Example solutions: Code:
2. For mobile applications E may in some periods

be off-line. When E connects to S again, data
synchronization is needed.

The customer can configure S to
automatically synchronize data at
reconnect.

F+G. Data import and data recency: Example solutions: Code:
3. S can import data from E assuming that they fit

into S's existing data tables.
The customer can configure S to
import at S's request or E's request.

4. S can periodically import data from E. The customer can configure S to do
this.

5. S can optimize the import by asking only for
data younger than a certain point in time.

The customer can configure S to do
this.

6. S can optimize the import by asking for data
about a specific patient only.

H+J. Response time at import and export: Example solutions: Code:
7. S can scale up to carry a significantly higher

load than specified in L1 with the response
times specified in L1. The customer may use
this additional load for data transfers.

The system can scale up to handle a
load times as high as required in
L1. (The customer expects 2 times.)

7p. When a long transfer is in progress, it may block
for shorter transfers so that they have a very
long response time.

The system can handle several
concurrent transfers.

I. Data export: Example solutions: Code:
8. S can export data to E assuming that the data

exist in S's existing data tables.
The customer can configure S to
export at S's request or E's request.

9. S can periodically export data to E. The customer can configure S to do
this.

10. S can optimize the export by sending only data
younger than a certain point in time.

The customer can configure S to do
this.

11. S can optimize the export by sending data about
a specific patient only.

K. Other functions: Example solutions: Code:
12. S can use functionality in E, e.g. request

services or warn about missing requests.
The supplier is asked to specify the
functionality S can use.

13. E can use functionality in S, e.g. notifying the
user or printing on printers managed by S.

The supplier is asked to specify the
functionality S provides.

70

G. Technical IT architecture
The term IT architecture has over the years come to mean two different things. The
classical meaning is the configuration of hardware, software, data communication,
etc. This is the technical architecture. The new meaning is the technical architecture
in addition to data model, usability, operation, support, etc. The template deals with
this in other chapters.

Requirements to the technical architecture depend on the situation. Does the cus-
tomer already have equipment that he wants to use? Or will he buy it? Or does he
leave it to the supplier because the supplier is going to operate the system anyway?

The template shows an example for each of these three situations. Choose the one
that fits your situation, modify it as needed, and delete the other two.

G1. Existing hardware and software
This section describes the customer's existing equipment. It also explains that other
applications may run on the equipment at the same time, but they leave a certain
amount of resources for the new system. Notice that free resources must be avail-
able for any 1 second period. Without this limit, the supplier cannot guarantee
response times in the one-second range.

The supplier needs this information to estimate whether his system requires addi-
tional resources.

G1-1 asks the supplier to specify how many users the proposed system can serve
on the existing equipment. "Serve" means meeting the response time, availability
and storage requirements of Chapter L.

G1-2 asks the supplier to specify any additional equipment needed to handle the full
nominal load.

Often some parts of a system are executed in an internet browser, e.g. parts
intended for the public. G1-3 requires that these parts can execute on common
browsers. The solution column lists the browsers the customer considers.

Many IT gurus claim that everything should be web-based, in order that it can be
used everywhere. Unfortunately this is not correct. Simple web pages, okay, but
when things get complex, they are browser dependent. Short-cut keys, database
connections and security settings vary from browser to browser. In practice the
supplier must include tests in the program to see whether things must be done one
way or another. And it has to be tested on all browsers - also when a new browser
version is released.

G2. New hardware and software
This section asks the supplier to specify which equipment the customer must pur-
chase, and how it scales up according to the number of users.

G2-3 states that only equipment from the customer's favorite list should be used.
This may be important if the customer has expertise in this equipment or has a
purchase agreement with specific suppliers.

Here too we need requirements for browser support.

71

G3. The supplier operates the system
This section simply states that since the supplier operates the system, he decides
which equipment to use.

Here too we need requirements for browser support.

G. Technical IT architecture
G1. Existing hardware and software Alternative 1: Use what we have
At present, the customer has the following IT equipment, which is intended for operating the new system:
1. 2 servers of type …
2. 300 PCs with Windows XP and at least 100 GB disks.
3. Optical fiber net …
4. Oracle database …

The equipment is used by other applications at the same time, but within these limits:
5. Within any 1 second period, servers leave 50% of the speed capacity for the EHR system.
6. Within any 1 second period, the optical fiber net leaves 50% of the capacity for the EHR system.
7. No other applications run on a PC when it runs the EHR system.

Platform requirements: Example solutions: Code:
1. Initially the system must run on the existing

equipment and meet the requirements in L1, L2
and L3 for a limited number of users.

On these conditions the system can
serve users.
The customer expects 20 users.

2. In order to reach the full peak load (see L1) the
system must be expanded to meet the
requirements in L1, L2 and L3.

The customer has to add this
equipment .

3. The browser-based parts must be able to run on
common browsers.

MS-Internet Explorer, Chrome, Safari

G2. New hardware and software Alternative 2: Supplier suggests
The customer intends to buy new equipment to operate the system.

Platform requirements: Example solutions: Code:
1. In order to meet the requirements in L1, L2 and

L3 the customer needs new IT equipment.
The customer needs this equipment
 .

2. When the peak load grows by a factor of two,
the system must be expanded to meet the
requirements in L1, L2 and L3.

The customer has to add this
equipment .

3. As far as possible, only equipment from the list
in appendix X should be used.

4. The browser-based parts must be able to run on
common browsers.

MS-Internet Explorer, Chrome, Safari

G3. The supplier operates the system Alternative 3: Supplier's problem

Platform requirements: Example solutions: Code:
1. The supplier operates the system and uses the

necessary equipment to meet L1, L2 and L3.

2. The browser-based parts must be able to run on
common browsers.

MS-Internet Explorer, Chrome, Safari

72

H. Security
The purpose of security requirements is to guard the security factors (CIA+A):
Confidentiality of data, Integrity (correctness) of data, Availability (of data and
processor capacity), and Authenticity of the users (that the user actually is the
person he claims to be).

H1. Login and access rights for users
This section describes the situations where the user's access rights must be
checked. The system must guard Confidentiality, Integrity and Authenticity. The
requirements are expressed as subtasks to be supported and problems to be re-
moved. The template shows two alternatives: (1) The new system must do as our
other systems. (2) The new system should provide better or more convenient
security.

Alternative 1: Login as today
H1-1 says that the user must be identified with the existing method and what this
method is.

H1-2 says that access is only allowed to users with the proper rights. The example
solution mentions two ways to do it.

Alternative 2: Better security wanted
H1-1 again says that the user must be identified. The example solution suggests
the traditional approach but also an alternative identification.

This requirement doesn't say anything about the length of passwords. The length is
considered a protection against intruders and is handled in section H5-3.

H1-2 asks for support of the situation where user 1 has been away from the system
for some time and another user may access the system with user 1's rights. The
traditional solution is time out, but it causes problems that need support.

H1-3 says that the rights must be checked and mentions the existing problem with
a password for each system. A solution is mentioned: single sign-on. (This is only
part of a solution because the customer's other applications must be changed to
follow the same scheme. This is not the EHR supplier's responsibility.)

H1-4 mentions a threat to protect for, e.g. by changing passwords.

Possible access rights and their granularity
For alternative 1 as well as 2, it is important to specify the possible access rights.
They are shown as a requirement note below the requirements table. In the EHR
system there are separate rights for prescribing drugs and seeing patient data. A
crucial point is the granularity of the rights. Does the user get the right to prescribe
medicine in general or only medicine in a specific department? In the example, the
granularity is a department. Notice that a person can have multiple rights.

Many customers neglect the list of rights although it is important for the supplier's
assessment of the solution complexity. Assigning the proper rights to the users is
not technically difficult, but checking the rights with the proper granularity is often
complex and has to be handled deep down in the system.

73

H. Security
H1. Login and access rights for users
Login is not a separate user task, but subtasks that occur in many tasks. The system must support the
following subtasks relating to the user's access rights.

Alternative 1: Login as today
Subtasks for user access: Example solutions: Code:

1. Identify the user with the existing user
identification, login method, and time-out
method, which is …

2. Check that only authorized users get access to
systems and data. (See the requirement note
below.)

The database system checks the
rights.
Or: The user screens show only the
authorized functions and data.

Alternative 2: Better and more convenient security wanted
Subtasks for user access: Example solutions: Code:
1. Identify the user.

(See section H5-3 about the length of
passwords.)

A user identifies himself with a user
name and a password; preferably also
an alternative identification such as
voice or finger print recognition.

2. The user has been away from the system for
some time.

2p. Problem: Another user may access the system
with the rights of the first user.

The system times out after 10
minutes of non-use.

2q. Problem: If the system logs out automatically, it
is cumbersome to log on again.

The system requires password only.
The timeout period may depend on
the physical location, for instance a
long timeout in the operating room.

2r. Problem: If the system logs out automatically,
entered data may be lost.

3. Check that only authorized users get access to
system and data. (See the requirement note
below.)

The database system checks the
rights.
Or: The user screens show only the
functions and data he is allowed to
use.

3p. Problem: Today the users have a password for
each system. It is cumbersome to switch
between systems and hard to change
passwords regularly. As a result, users tend to
post passwords where everyone can see them.

Each user has only one user name
and one password (single sign-on).

4. Stolen passwords are often traded by criminals.
Limit the possibility.

Users must change passwords
regularly. When a leak has been
detected, it must be possible to reset
all passwords.

Requirement note: Possible access rights
1. Right to prescribe drugs in department M.
2. Right to see patient data in department M.
3. Right to record clinical data (diagnoses and services) in department M.
…
A physician in department M might for instance have rights 1, 2, and 3, while a supervising physician for
department M has rights 2 and 3 only.

74

H2. Security management
Security management assigns and removes user rights, defines new roles, etc. An
organization may have central security management or delegate it to departments.
This is specified as an assumption before the table.

The template describes security management as subtasks to be supported and
problems to be removed. One of the problems is to assign rights to many users
when they start working at the beginning of the month.

Some of the solutions are well-known techniques such as role-based rights and
time-limited rights. They are example solutions and not requirements.

The template shows two alternatives. Alternative 1 expects that the new system
includes functionality for creating users, changing rights, etc.

Alternative 2 expects that security rules are handled by the customer's existing
security management. The EHR system should ask the existing system when
checking user passwords and rights.

75

H2. Security management
Each department has its own security management.
Or: Security management is centralized for the entire hospital.
The work in security management includes the following subtasks.

Alternative 1: The new system has its own security management

Subtasks for security management: Example solutions: Code:
1. Assign or remove rights for a user.
1a. First, create the user.
1p. Problem: A lot of users need access rights when

they start the first day in the month.
The system transfers data from the
personnel system once a month.

1q. Problem: A temporary employee has been
appointed in a hurry and is not yet in the
personnel system. Needs access rights anyway.

Possibility for temporary registration
in the department, bypassing the
central department.

1r. Problem: Security management must keep track
of the relationship between 4000 users and 300
rights.

Each user is assigned one or more
roles, e.g. physician in department M
and supervising in department N.
Each role has one or more rights, e.g.
prescription and diagnosing.

1s. Problem: Security management forgets to
assign and remove rights on the right dates, e.g.
in connection with hiring and resigning.

Rights and roles can be defined
ahead of time and be valid for a
certain period, e.g. from the day the
person is employed.

2. Create new roles with new combinations of
rights.

3. Get an overview of who has which rights and
whether some rights have not been assigned to
anyone.

Alternative 2: Use the existing security management

The customer uses LDAP and AD and wants to manage all rights in this way.

Subtasks for security management: Example solutions: Code:
1. Create and remove users. Leave it to the existing security

management.

2. Assign or remove rights for a user. Leave it to the existing security
management.

3. Check that the user has the necessary rights.
(Strictly speaking, this is a subtask in H1).

The EHR system retrieves the rights
data from the customer's existing
system.

76

H3. Protection against data loss
The template mentions some typical risks of losing data, and the supplier is asked
to describe his solution. For disk crashes and fire, the template suggests the tradi-
tional solutions.

These requirements guard Availability and Integrity of data.

With the help of a security expert, the customer may ask for protection against
many other sources of data loss. The template shows an example where the
supplier let a subcontractor operate the system (in the cloud). The subcontractor
didn't store data properly. As an example, he stored the backup version of the
database at the same disk as the primary database. The day when the disk
collapsed, database as well as backup disappeared.

In the template this experience is treated as a threat similar to other threats. The
customer has suggested some solutions.

H4. Protection against unintended user actions
This section mentions typical risks caused by users unintentionally doing something
with unexpected results.

H4-1 says that no user action may cause the system to close down. This is a tacit
requirement to all systems and if not written it might still hold in court. Writing it,
however, removes any doubt. The example solution mentions a way the customer
could be convinced.

H4-2 and 3 specify protections against simple mistakes and use of undo at
unexpected system response.

H4-4 recognizes that not all functions are undoable, but asks for ways to prevent
that they are used by mistake.

H4-5 asks for a way to stop a function that turns out to take a long time.

These requirements guard Integrity of data, and for H4-5 also Availability.

77

H3. Protection against data loss
Data may unintentionally be lost or misinterpreted in many ways.

The system must protect against: Example solutions: Code:
1. (See F0-2 for protection of data against loss or

replication during transfer between systems.)

2. (See F0-3 for protection against concurrency
problems with external systems.)

3. Local concurrency problems, for instance that
user A makes a prescription, but before the
system has recorded it, user B makes a
prescription that interacts. Neither A nor B will
notice the conflict.

4. Disk crash Periodic backup or RAID disks.
5. Fire and sabotage Remote backup at least 10 km away

…

5p. The system operator doesn't store the data
properly, as an example stores the backup data
on the same drive as the database. Mainly
observed with subcontractors.

The main contractor regularly audits
whether it is done properly.

Or: The customer gets a weekly
backup of all his data for his own
storage.

H4. Protection against unintended user actions
An unintended user action means that the user happened to do something he didn't intend to do, e.g.
hitting the wrong key or using a command that does something he didn't expect.

Requirements: Example solutions: Code:
1. Unintended user actions may not cause the

system to close down, neither on the client nor
on the server.

May be hard to test at delivery, but
the supplier's issue log and a
description of the supplier's test
methods may help.

2. All data entered must be checked for format,
consistency and validity. In case of doubt, the
user must be warned and asked what to do.

3. The user must be able to correct mistakes
easily.

The system provides extensive use of
undo.

4. Prevent mistaken use of undo-able functions. Position the button so that it is not hit
accidentally - or ask for confirmation.

5. The user must be able to interrupt functions that
take a long time, e.g. a long data transfer,
without compromising data integrity.

78

H5. Protection against threats
This section deals with threats caused by viruses, hacking, SQL injection, Trojan
Horses, etc. They can threaten all the security factors (Confidentiality, etc.). In
order to identify the most important ones, somebody should make a security risk
assessment.

During a security risk assessment, you look at the potential threats one by one,
estimate the frequency of their occurrence and the consequence when they occur
(preferably in money terms). Then you calculate the "average" damage per year for
each threat. Based on this, you deal with the most serious threats.

In practice, protection against threats is the weakest part of security requirements,
and proper security risk assessments are rarely made. Customer as well as supplier
believes that following standards is sufficient (e.g. H5-6). To make things worse,
the list of potential threats keeps growing as attackers become smarter.

Alternative 1: The customer knows the risks
The customer has made a security risk assessment and has listed the serious
threats. He then asks the supplier to suggest a protection. The template shows only
a few examples of threats.

We often see security requirements that specify a solution rather than a need. As
an example, we see requirements like this:
 The password must be at least 9 characters with at least one capital letter.

This is cumbersome to the user, so let us ask the security specialist why this is
necessary. Well, he says, an intruder might try all possible passwords with a special
program. If the system handles login attempts at full speed, it is possible to break
eight-character passwords in around a month.

H5-3 handles this as a threat. We can now see that there are other solutions. The
solution column mentions two that are far more convenient.

H5-5, preventing unauthorized persons from accessing personal data, sounds easy,
but it comprises a lot of independent threats, such as wire tapping and IT staff
looking at the data on the disk. The supplier's proposal can easily become a long
novel - and it is hard to compare two suppliers' novels. We suggest omitting this
requirement and ensuring that the risk assessment covers all the threats in this
area and includes the serious ones as requirements in H5.

H5-6 tries to solve the problem by referring to a law on the matter. This is fine
because laws must be followed. However, it often creates an interesting game
between customer and supplier. The customer hasn't read the law in question, but
imagines that it covers the threats (it only partly does so). He reasons that if he
requires the supplier to follow the law, then the supplier has the responsibility for
adequate protection.

Most likely, the supplier knows the law and knows that it doesn't cover adequately.
He also knows that the purpose of the customer's requirement is to renounce the
responsibility, and that the law will not be verified at delivery time. Why should he
point this out to the customer? The result is that the real protection demand isn't
covered.

79

H5-6 may be a useful addition to the security risk assessment and the specific
threat requirements (H5-1 to 4 in the example). However, it should not be consid-
ered a replacement for the risk assessment and the specific threat requirements.

Alternative 2: No risk analysis has been made
There is only one requirement: The supplier is asked to list the important risks and
propose safeguards. Notice that we don't ask him to make a risk assessment but
only list typical threats for this kind of project. If we talk about simple applications
such as web shops, and the supplier has expertise in the area, this is sufficient.

However, in unusual projects the customer should ask the supplier to make a spe-
cific assessment with the customer's profile. This is costly to both parties, so it
should be made during the project, maybe during the early proof-of-concept (B3).

 H5. Protection against threats
Alternative 1:
A risk assessment has shown that the following threats are the most serious. The system must protect
against them.

The system must protect against: Example solutions: Code:
1. Unauthorized persons obtaining manager rights

through the internet (hacking).
The rights can only be used on the
internal network.

2. Wire-tapping of passwords. Password encryption.
3. An intruder tries all possible passwords with a

special program.
Passwords must be at least 9
characters and Caps as well as …
(cumbersome).
Or: at least 5 seconds between login
attempts.
Or: Block access after 3 attempts.

4. SQL injection (the intruder types a database
command where the system expects e.g. a
person name; as a result the system carries out
the database command).

5. DoS attack (Denial of Service). An attacker
sends so many requests to the system that it is
paralyzed.

6. Unauthorized persons getting access to
personal data. Too open-ended, see the guide
booklet.

7. The system must conform to Law on Handling
of Personal Data (Law 429, May 31, 2000).
Okay, but check for completeness. See the
guide booklet.

8. The supplier must follow developments in the
security area and deliver safeguards.

. . .

Alternative 2:
The customer has not made a security risk assessment.

Threat protection: Example solutions: Code:
1. The supplier must list the threats that are most

serious for this kind of system and specify the
safeguards he proposes.

80

I. Usability and design
Usability means that the system is easy to learn, efficient for the frequent user,
easy to remember for occasional users, easy to understand - also in unusual situa-
tions, and pleasant to use. These usability factors are not equally important. Im-
portance depends on the kind of system we specify.

When talking about lack of usability, we assume that the system from a technical
viewpoint works correctly and replies fast, and that it actually can support the
tasks. Nevertheless the users have troubles using the system.

Many developers, designers and expert users believe they can scrutinize the
screens and see whether the system has adequate usability. It has been proven
over and over that this is not possible. Usability has to be tested and measured with
real, potential users.

Usability can be measured in many ways. The most important is that we observe
users carry out some realistic tasks by means of the system or a primitive prototype
of it. We log events where the user needs help, spends too much time finding the
solution, etc. This is called a usability test. The problems we log are called usability
problems.

We can rather objectively classify the problems as critical or less critical. The tem-
plate explains the details as a requirement note below the table. We may then
express the usability requirements as the allowed number of critical problems.
Notice that a problem is critical only when two or more users have experienced it.
The reason is that a large number of usability problems are only observed once
(singular problems). Usually it doesn't pay to remove them.

We may ask the user to think aloud during his attempts. This gives us far better
possibilities for understanding why the user encountered the problems, and the
developers get a better chance of removing the problems.

Experience shows that usability problems must be detected and removed before
programming. Later on it is too expensive to remove the many problems that re-
quire program changes. To achieve this, we draw mockups of the screens with
paper and pencil or simple computer tools. We use the mockups for think-aloud
usability tests. Most usability problems can actually be detected this way. Next we
modify the mockups to remove the problems, and test again. This approach is the
basis for the early proof of usability in B2-2.

I1. Ease-of-learning and task efficiency
The template suggests two alternatives for usability requirements.

Alternative 1: The system has a user interface already
Often the new system is almost finished and it is little you can change in the user
interface. If the customer complains about the cumbersomeness of the interface, he
is told that it is a COTS system that cannot be changed, or that he has seen it
before he bought it (implying that the users simply are too stupid). However, he is
willing to repair serious errors, such as the database crashing.

Alternative 1 has only one requirement: Critical usability problems are to be treated
as other errors, i.e. being prioritized and repaired according to how serious they are
for the customer (see L5).

81

I. Usability and design
I1. Ease-of-learning and task efficiency

Alternative 1: The user interface exists already
Although the system has a finished user interface, it may in some places give the users considerable
troubles. The customer wants to avoid the situation where the supplier rejects the problem with reference
to the system being a COTS system.

Requirements for handling usability problems: Example solutions: Code:
1. Critical usability problems (see definition in the

requirement note below) must be handled as
system errors in the same way as other errors in
the system.

The error is handled by the support
organization and eventually
transferred to maintenance.

Requirement note: Serious and critical usability problem
A serious usability problem is a situation where the user:
a. is unable to complete the task on his own,
b. or believes it is completed when it is not,
c. or complains that it is really cumbersome,
d. or the test facilitator observes that the user doesn't use the system efficiently.

A critical usability problem is a serious usability problem that is observed for more than one user.

Requirement note: Test tasks
A good test task corresponds to something a real user would have to do. It must be presented in such a
way that it doesn't guide the user. Here is a good and a bad example:

Test task 1 (good): Prescribe medicine: The patient complains about pain. Use the system to treat the
problem.
(When the user carries out the task, notice whether he checks the existing medication situation before he
prescribes something.)

Test task 2 (bad - guides the user): Prescribe medicine: The patient complains about pain. Enter the
patient ID and choose the medication screen. Look at the other medications and decide what to prescribe.
Close the medication screen and select the prescription screen …

82

Alternative 2: Essential parts of the user interface will be developed
I1-1 states the usability requirements in such a way that we during the early proof-
of-concept can estimate whether the system will get sufficient usability. We also
define the detailed usability requirements to be used later. At the same time we
design parts of the user interface and test it for usability. Experience shows that
development is faster when a detailed, proven user interface is known early on.

Before the proof of concept it may be hard to specify the exact way of measuring
the usability, and the customer may easily state unrealistic usability requirements.
As an example, imagine that we deleted I1-1 in the template and kept I1-2 to 6.
We would thus require that users were able to carry out all tasks with few critical
usability problems, were able to understand error messages, etc.

In his proposal, the supplier would have to specify the allowed number of usability
problems, misunderstandings, etc. This is close to impossible for system parts that
don't exist yet. One purpose of I1-1 is to find some reasonable usability require-
ments early in the project.

I1-2 to 6 are outlines of usability requirements that have to be defined in detail
during the proof of concept. For instance the precise test tasks have to be defined
and the numbers in column 2 must be filled in.

I1-2 checks that after the planned introduction, users can carry out their tasks with
minimal support from others.

I1-3 checks that error messages are usable. Why is this necessary when we have
checked that users can carry out their tasks? Because users only encounter a few
error messages during the test tasks. I1-3 makes it possible to test more mes-
sages, also those that rarely occur.

I1-4 says that it must be possible to operate the system without a mouse, and
users must learn it on their own. For some systems this is irrelevant, of course.

I1-5 deals with large systems that typical users cannot learn on their own. Tradi-
tionally, customers ask for courses that all users must take, but it is often an ex-
pensive and inefficient approach. Instead we ask for ways the super-users can learn
the system and then train other users. One way is to provide courses for the super
users. In J2-1 we ask the supplier to run such courses.

I1-6 deals with efficiency for the frequent user. During the early usability tests, we
may get a feeling for how fast users should be able to work, but we cannot measure
it until the system is operational.

Web systems used occasionally
The template shows requirements suited for production systems that are used on a
daily basis. However, I1-2, 5 and 6 are usually irrelevant for websites used occa-
sionally by the public. There are no super users around, and efficiency is unimpor-
tant.

Test tasks
The basic idea in section I1 is to do usability testing to detect and remove usability
problems. A crucial part of this is how you define the test tasks that users will carry
out. The template suggests that you write some test tasks in a requirement note

83

before asking suppliers for proposals. This will give the supplier an idea what you
ask for. The parties can revise the test tasks during the early proof of concept.

The template gives an example of a good test task and one with "hidden help", but
there are other things to consider, for instance how well the test tasks cover the
most important aspects of the system. See for instance Lauesen (2005), Chapter
13.

Alternative 2: Essential parts of the user interface have to be developed
It is important that the system obtains adequate usability. This is best done through early usability tests.
After the early tests, customer and supplier jointly decide the detailed requirements to be verified at the
time of system delivery. This may for instance be a detailed specification of the test tasks and the numbers
to be used in column 2 below.

If the parties cannot agree on the detailed requirements, they may cancel the contract (cf. section B2-2).

Requirements for early proof of concept: Example solutions: Code:
1. The parties must test the user interface for

usability soon after signing the contract. The
critical usability problems must be corrected
until usability testing gives acceptable results
(see the requirement note below). In addition
the parties must agree on the detailed usability
requirements.

Usability testing (think-aloud testing)
is carried out for existing parts of the
system in a suitable setup. For parts
that don't exist yet, think-aloud testing
is done with paper mockups. Three
new users participate in each round of
testing.

Requirements to be agreed in detail during the early
proof of concept, and verified at the time of delivery:

2. After a short instruction by super users, the
ordinary users must be able to carry out all
tasks in Chapter C within their own work areas
with few critical usability problems.

Within each work area, thinking-aloud
testing is done with three randomly
selected users. A maximum of
critical usability problems may be
observed.

3. Error messages must be understandable and
helpful.

During the usability test, a selection of
error messages is shown to the user,
who tries to explain what the message
means and what to do about it.
 % of the explanations must be
acceptable.

4. It must be possible to operate the system with
keyboard only. Users must be able to learn it on
their own.

Late in the usability test, the user is
asked to use keyboard only. __% of
the users must be able to do so.

5. Super users must be able to learn the system
quickly so they can train other users (cf. J2-1).

Training of a super user takes
days. (The customer expects 3 days).

6. A user who has used the system for a week,
must be able to quickly order 5 services for a
patient, e.g. lab test, scanning …

A typical user is able to order these
services in minutes.

84

I2. Accessibility and Look-and-Feel
Some usability aspects are hard to express through usability tests. Rules and stan-
dards may be better.

I2-1 says that the user interface must follow the MS-Windows guidelines. Notice
that the reason is stated: Most users are familiar with Windows, and the guidelines
will make the system easier to learn. If you don't have a good reason, there is no
need to follow a guideline. Many people believe that a guideline ensures usability. It
does not. At most it contributes a bit, and in some cases it may even be harmful.
Following a guideline is not free. It is amazingly difficult to check that the guideline
is followed - and correct the mistakes.

I2-2 says that the user interface must be suited for blind and visually impaired
users. One solution is to follow the HTML principles, which were developed for this
purpose (and many other purposes). As an example, standard heading tags should
be used rather than self-defined, visually impressive styles. Heading tags allow
screen reader programs to use intonation for "highlighting" the headings. In the
same way, fixed column widths and font sizes should be avoided so that visually
impaired users can enlarge the text many times.

Some requirements specifications replace I2-2 with a requirement that the web
pages must pass a W3C Markup validation test (http://validator.w3.org). This test
analyzes the web pages and finds errors. This is yet another example of analysts
prescribing a standard in the belief that it covers the demands. The test only finds
formal errors, for instance missing end tags or missing quotes. It doesn't say any-
thing about suitability for the blind. The guidelines in WCAG10, however, have rules
for supporting the blind, but they cannot be verified by a computer.

I2-3 is an example where the language must be specified.

85

I2. Accessibility and Look-and-Feel

Requirements: Example solutions: Code:
1. The user interface must follow the MS-Windows

guidelines, which most users are familiar with.

2. Web pages must be suited for screen readers,
scaling for visually-impaired users, and utilizing
the full screen size on small as well as large
screens.

The pages follow the HTML
guidelines for Accessibility (WCAG10
from W3C).

3. The user interface must be in Danish. The
pages with opening hours, phone numbers, and
addresses must be available in Danish, English,
Turkish, and Urdu.

86

J. Other requirements and deliverables
This chapter contains requirements that don't fit into the other chapters.

J1. Other standards to obey
Most required standards belong to other chapters, for instance security and
usability. The rest may be stated here.

In practice we see customers write a long list of standards, often without knowing
what they cover. Usually it is cumbersome to check whether a standard is met. As a
result a careful supplier must increase the price, while a less careful supplier as-
sumes that the customer doesn't check whether the standards are met. (See the
examples in H5 and I2.)

The template shows only a single example of a standard (of the soft kind). The
supplier is required to obtain the certification, i.e. an independent check that the
system meets the standard. This relieves the customer of the need to check for
himself.

J2. User training
User training is often forgotten - or an unrealistic amount of training is requested.
Often the training takes place at the wrong point in time, for instance so early that
users have forgotten all of it when the product finally arrives.

J2-1 is an example where the customer realizes that only super users need training
from the supplier. We ask the supplier to train 50 super users. The training must
enable them to train other users. This is in recognition of the fact that most supplier
courses are too far from the user's real tasks. The idea is to use super users as
mediators. It is specified what the super users must be able to do after the training
(see also I1-5).

J2-2 specifies similar requirements for training the customer's IT staff.

J2-3 specifies when the training must take place relative to system delivery.

87

J. Other requirements and deliverables
J1. Other standards to obey

Requirements: Example solutions: Code:
1. The system must follow good accounting

practice. The supplier must obtain the
necessary auditor approval or certification.

2. …

J2. User training
The customer wants to deliver a large part of the training himself. The idea is to train super users first and
then let them train others.

Requirements: Example solutions: Code:
1. The supplier must train 50 super users, making

them able to train other users. The training must
enable the super users to carry out all tasks in
Chapter C, including variants, within their own
work areas.

Training of a super user takes
days. (The customer expects 3 days).

2. The supplier must train 10 IT staff, making them
able to handle the customer's part of system
operation and support.

Training of IT staff takes days.
(The customer expects 10 days).

3. The training must be carried out within the last
month before system delivery in order that users
and IT staff can use the system immediately
and haven't forgotten what they learned. If
necessary, the training must be repeated and
the delivery delayed.

4. …

88

J3. Documentation
User and system documentation are often forgotten. The example points out that
full documentation isn't needed for everybody. This is in recognition of the fact that
few users read the documentation or on-line help, even if it is available and rea-
sonably useful. This recognition may save many expenses and frustrations for both
parties.

J3-1 and 5 specify that course material must be available to super users when they
train other users, i.e. before system delivery. It must be available in a form that
allows the super users to adapt it, for instance with examples from the customer's
world. Requirement 2 specifies that full documentation for super users must be
available shortly after system delivery.

J3-3 specifies in the same way the documentation for the customer's IT staff.

J3-4 specifies documentation for specially developed software and technical inter-
faces. The criterion is that the documentation must be sufficient for third party to
maintain these parts and to transfer data to another system. To ensure that the
supplier can actually deliver the necessary documentation quality, you can ask for
an early proof as in section B2.

J4. Data conversion
Data conversion from previous systems to the new system often makes up a signifi-
cant part of the supplier's price. This section specifies what to convert. It is impor-
tant that the customer documents the data formats since the supplier must other-
wise obtain the information from other sources in order to calculate the correct
cost. This may scare good suppliers from bidding.

Validation of the conversion is a big issue that some suppliers know much more
about than the customer. For this reason, requirement J4-3 asks the supplier to
explain how he will do the validation.

J5. Installation
This section specifies who installs what. If the customer wants to install the system
himself, he may ask for the necessary documentation and an estimate of the time it
will take.

89

J3. Documentation
The customer expects that only super users, IT support staff, and systems developers will read the
documentation. Thus there is no need for beginner's documentation, except for course material.

Requirements: Example solutions: Code:
1. Before system delivery, course material must be

available for super users to use when teaching
other users. (The customer contributes with
documentation of the future work processes,
see K-10.)

2. A month after system delivery, user-oriented
documentation of all system functions must be
available. The documentation must be suited for
super users.

3. Before system delivery, sufficient
documentation must be available for the
customer to handle his part of IT operation and
support.

4. For specially developed software and technical
interfaces for third-party development, sufficient
documentation for further development must be
available two months after system delivery.

5. All documentation must be delivered in
electronic form. The customer may freely modify
it and copy it for his own use.

6. …

J4. Data conversion

The supplier must convert the following data from the
existing systems:

Example solutions: Code:

1. Those data from the patient management
system that the EHR system will handle in the
future. The format is described in …

2. Those data from the old EHR system that the
EHR system will handle in the future. Data must
be transferred through IBM 3270 emulation. See
the screen format in …

3. All converted data must be validated. The supplier is asked to describe
how.

4. …

J5. Installation

Requirements: Example solutions: Code:
1. The supplier must install all parts of the delivery,

hardware as well as software.

2. The supplier must install all converted data.
3. …

90

J6. Testing the system
The supplier must do system testing himself (see Chapter 5), so in principle the
customer need not care about it. However, experience shows that many suppliers
are very bad at testing, so there is a good reason to look for what they do. It is
particularly important to be able to retest the system after changes (regression
testing).

J6-1 and J6-2 specify the needs and outline some solutions.

In addition the customer needs to do his own testing, e.g. the deployment test in
connection with the acceptance test (Chapter 5). Many customers have been
persuaded to test on a system that has been put into operation with real users and
real data. This can leave strange data in the database and disturb the operation in
other ways. Should be avoided.

J6-3 to 5 specify the needs and outline some solutions.

J7. Phasing out
At some point in the future, the customer wants to phase out the old system and
migrate to a new one. Then new problems turn up. Which data are in the old
system? How can we convert them to the new system? Will the supplier help us -
also when we want to get rid of him?

F0-5 to 9 cover some of the needs, e.g. documentation of data. J7 adds
requirements for the supplier's assistance and the tools needed by the customer.

It is important to have these agreements in place while the parties are on good
terms.

91

J6. Testing the system

Requirements for the supplier's test: Example solutions: Code:
1. The customer wants to audit which tests the

supplier makes and how well they cover.
The supplier makes his test cases
and test methods available to the
customer.

2. There is a need for repeating large parts of the
tests after changes.

The supplier uses regression testing.

Requirements for the customer's own testing: Example solutions: Code:
3. The customer needs to test the system before

accepting the delivery.
The supplier makes a test version
available to the customer.

4. Special situations must be tested. The customer can insert special test
data.

5. There is also a need for testing with realistic
data.

The supplier converts parts of the
customer's existing data and inserts
them in the test version.

J7. Phasing out
In this section "customer" means the customer's own staff or third party authorized by the customer.

Requirements: Example solutions: Code:
1. On request, the supplier must extract all data

described in Chapter D in a format that is suited
for import in other systems.

2. The customer must be able to extract all data
described in Chapter D in a format that is suited
for import in other systems.

3. The supplier must loyally assist with phasing out
the system and transferring it to another
supplier.

4. The supplier must carry out the work at a fair
price that covers time and material.

92

K. The customer's deliverables
Most of the requirements specify what the supplier must deliver. However, an IT
system isn't something that the supplier just rolls in and plugs into the power out-
let. The customer's employees have to contribute in various ways, and the sup-
plier's employees may need office space and other facilities during development and
deployment.

This chapter specifies what the customer has to provide. The supplier may in col-
umn 2 specify what he expects, and in his proposal he may add new points to the
list.

In many acquisitions, system integration is a big issue because the supplier of the
external system to be integrated must help. K-11 specifies that the customer must
provide the necessary rights, for instance buy them from the supplier of the exter-
nal system. This should be stated in Chapter F as assumptions the supplier can
make, but ensure it is somewhere.

In many contracts, this Chapter K is replaced by a separate contract appendix.

Like other sections of the template, the requirements in this chapter are only exam-
ples and not an exhaustive list. So take care: In many countries legal practice is
that the contract must specify everything the customer has to deliver. After signing
the contract, the supplier cannot expect office facilities or expertise in some cus-
tomer area unless it is specified in the contract or its appendices.

93

K. The customer's deliverables
The following list of the customer's deliverables and services must be complete. The supplier cannot
expect more from the customer. If necessary, the supplier must add to the list in his proposal.

The customer delivers: Example solutions: Code:
1. Hardware, software, and external systems that

the EHR system requires (see the details in
Chapter G). The equipment must be available
when the installation test starts.

 N/A

2. Office with three IT work places from one month
before the planned installation test to one month
after system delivery.

 N/A

3. Samples of production data for testing purposes
and the full data set for conversion.

 N/A

4. Test cases for deployment testing. N/A
5. Expertise in the application area corresponding

to a half-time employee during the entire
project.

 N/A

6. Test subjects for usability tests. N/A
7. A half-time project manager and a half-time

secretary.
 N/A

8. Super users/instructors who learn the system in
order to train ordinary users.

 N/A

9. Expertise for validation of converted data. N/A
10. Contribution to the course material on future

work processes (cf. J3-1).
 N/A

11. Rights to integrate with the systems mentioned
in Chapter F and get the support mentioned.

94

L. Operation, support, and maintenance
This chapter specifies the supplier's responsibilities after delivery of the system
itself. These requirements can only partly be verified (tested) at the deployment
test. We may for instance set up a simulation of 2000 users and measure response
times, or we may test that the support organization works, but we cannot test that
it also works well when 2000 real people work with the system.

The full verification takes place after delivery, for instance at the operational test or
through investigation of logs and statistics.

The template corresponds to the situation where the supplier is responsible for
operation, support, and maintenance. If the supplier for instance isn't responsible
for support, the corresponding section should be empty. In this case the customer
may need courses and documentation that allows him to support the system. Re-
quirements for this are stated in Chapter J.

If the supplier isn't responsible for operations, we cannot just delete sections L1
(response times) and L2 (availability). The supplier is still responsible for the re-
sponse time - assuming that the system runs on the configuration described in
Chapter G. Similarly the supplier is responsible for part of the availability. If the
system breaks down due to errors in his software, he is responsible for the corre-
sponding lack of availability. This is explicitly stated in section L2.

In many contracts, this chapter is moved to separate contract appendices.

L1. Response times
The introduction part specifies the nominal load of the system. The nominal load is
the number of transactions the system must be able to handle per second with the
specified response times. The actual number of transactions per second should be
well below the nominal load. If the actual number of transactions per second is
larger than the nominal load, the system need not respond as specified.

Based on the nominal load, the supplier can estimate the necessary hardware.

In the example, the nominal load is specified as the number of transactions of
various kinds. Experience shows that this often creates conflicts late in the project,
because transactions are of many sizes. As an example, the supplier assumed that
all transactions were quite small, but in reality some of them are huge, but rare.
The customer insists on measuring on these too. The advice is to specify the trans-
actions in the nominal load more precisely, maybe during the early proof of con-
cept.

The system is expected to be most busy in certain periods, the peak load periods.
They are not important for the requirements, because the system must be able to
handle the nominal load in any period, but the customer wants to measure the
actual load and response time in these peak load periods.

The solution note describes a way to measure the response times in practice. This is
not a requirement, and the supplier can specify his way of measuring the response
times in L1-2.

95

L. Operation, support, and maintenance
This chapter specifies the supplier's responsibilities after delivery of the system itself. The requirements
can only partly be verified (tested) at the deployment test. The full verification takes place later, at the
operational test. Some of the requirements are only relevant when the supplier is operating the system,
others only when he has support responsibility, etc. See the guide booklet.

L1. Response times
It is important that response is so fast that users are not delayed. Response time is particularly important
during the busiest hours, the peak load periods, which are morning 9-11 and …

When the system is operating, it must be able handle the number of transactions specified below with the
specified response time. The figures are estimated from task frequency (Chapter C), data volumes
(Chapter D) and statistics from the present operation about peak load periods. The figures are the
nominal load, i.e. the supplier is not responsible for response time if the actual load exceeds the nominal
load.

Nominal load
1. Simple queries in clinical sessions (C10): 10 per second on average.
2. Updates in clinical sessions (C10): 2 per second on average.
3. Simple queries in patient management (C1 to C4): 3 per second on average.
4. Public web access: 5 page loads per second on average.
5. …

Solution note: Measuring response time
The response time is the period from the user sends his command to the result is visible and the user can
send a new command. A command means a key press or a mouse click. All measurements are made in
peak load periods with the actual number of users, assuming that the actual load is within the nominal load
above.

Production work: Measurements are made with a setup according to Chapter G.

The public web part: Measurements are made on a PC connected to the Internet through a 1 MB
connection with low traffic on the route to the servers, but with peak load of the servers themselves.

96

L1-1 specifies that the required response times must be valid for a certain fractile
of the cases. The example solution says that the customer expects 98%, but the
supplier can specify another fractile. We could also expect 99%. Why not ask for
100% of the cases? Because it is unrealistic in a multi-user system. Transactions
arrive randomly, and by coincidence, a lot may arrive within the same second. In
this case the last ones get a very long response time. Although this is very rare, we
cannot guarantee a good response time in 100% of the cases. See more in Lauesen
(2002), section 6.5.

L1-2 simply says that there is a need to measure regularly - and in the peak load
periods. In column 2 the customer has given examples of how it might be done. The
supplier will specify his solution according to what is feasible for him.

L1-3 to 9 specify the required response times. They are based on ergonomic meas-
urements of how people work at computers (the keystroke-level model, Card et al.,
1980). A fast user types 5-10 characters per second, so 0.2 seconds to move from
one field to the next on the screen, will barely slow down the work.

A user spends around 1.3 seconds to change focus from one "mental chunk" to
another, for instance from entering client data to entering the client's request. If the
screens are structured accordingly, 1.3 seconds to switch screen will not slow down
the user. This principle applies to L1-4, 5 and 6.

In practice there will be cases where the system needs more time to reply, and
where the user expects it. Here we meet an ergonomic constant of 20 seconds.
Even when the user knows that it takes time, he will unconsciously wait around 20
seconds and then start working on something else. Switching from one task to
another takes time - wasted time. For complex tasks the mental switch time might
be as long as 10-20 minutes. L1-7 is an example where 20 seconds are acceptable.

Finally there may be functions where we for technical reasons expect response
times above the ideal. L1-8 and 9 (login) are examples of this. Ideally, login should
take place within 1.3 seconds, but present experience shows that we might have to
accept a slower response.

The supplier may in column 2 specify functions that don't follow the common re-
sponse time rules, for instance an overview screen that may take 3 minutes to
display.

Web systems used occasionally
The response times in the example are for production work through a local area
network. For websites used occasionally, these requirements are much too strong,
and meeting them might be unnecessary and costly.

97

Response time requirements: Example solutions: Code:
1. Fractile. The times specified below must apply

in almost all cases.
In any one-hour period, % of the
response times must be within the
limits. (The customer expects 98%.)

2. Response time measurements must be made
regularly in the peak load periods.

Measurements are made once a
week with a stop watch.
Or: The system measures all the time.

3. When moving from one field to the next, the
user's typing speed must not be slowed down.

Typing is possible within s.
(The customer expects 0.2 s.)

4. When moving from one screen to the next, data
must be visible and typing possible within the
mental switching time (around 1.3 s).

Data is visible and typing possible
within s.
(The customer expects 1.3 s.)

5. Lookup in drop-down lists must allow selection
from the list within the mental switching time.

Selection is possible within s.
(The customer expects 1.3 s.)

6. Reports used frequently must be visible within
the mental switching time.

The report must be visible within
s. (The customer expects 1.3 s.)

7. Reports used occasionally must be visible
before the user loses patience.

The report must be visible within
s. (The customer expects 20 s.)

8. Login must be completed before the user loses
patience.

The user can start working within
s. in addition to the time he spends
typing name and password. (The
customer expects 10 s or better.)

9. Repeated login when the user temporarily has
left the system must be completed before the
user loses patience.

The user can start working within
s. in addition to the time he spends
typing his identification. (The
customer expects 4 s.)

98

L2. Availability
Availability is the fraction of time where the system must be operational from the
user's perspective. We have to define more precisely what it means that the system
is out of operation, and how we deal with cases where some users can access the
system but others cannot. If only one user cannot access the system, we would
hardly call it a system breakdown.

A breakdown can have many causes and the template mentions 5. Not all of them
are the supplier's responsibility. When the supplier isn't responsible for operation,
he will still be responsible for breakdowns with cause 3 (errors in software or con-
figuration). When the supplier is responsible for the operation, also power failure,
hardware breakdown, capacity problems, etc. are his responsibility.

In principle the customer can state all kinds of requirements for calculating the
availability, but in practice he must accept the possibilities the supplier can offer -
as long as they cover his real needs.

The solution note suggests one way to calculate a breakdown period: A breakdown
is always calculated as at least 20 minutes. An operational period must last at least
60 minutes. The reason is that users don't resume their interrupted tasks until
around 20 minutes after the breakdown, and they cannot produce much in an op-
erational period less than an hour.

The template also suggests a way to calculate the availability when only some of
the users are affected by the breakdown.

L2-1 says that the availability must be calculated periodically. This means that
excess availability cannot be transferred from one period to the next. In column 2
the customer has suggested that availability is calculated as described in the intro-
duction part. The supplier may propose his own way of calculating the availability,
for instance by referring to an appendix.

L2-2 and 3 state the required availability in two different operational periods. Take
care not to ask for too much. It may be very expensive. As an example, operating a
large system with 99% availability may cost $1 million a year, while 99.8% may
cost $4 million a year. Is it worth it? An availability of 99% in the normal work
hours means that the system may be out of operation 16 hours a year in these
hours. An availability of 99.8% means 3.2 hours a year.

Notice the way L2-2 and L2-3 are stated. It allows the supplier to propose other fig-
ures than the customer's. See more in section A2.

L3. Data storage
This section specifies the amount of data to be stored. The example distinguishes
between data with immediate access and archived data with slower access. Certain
kinds of pictures are stored for a shorter time.

The example refers to the detailed data volumes in Chapter D, where each table has
a total size and sometimes a yearly growth. We might also specify all table sizes
here in section L3 and remove them from Chapter D. Keeping them in both places
would be convenient, but easily creates inconsistencies.

99

L2. Availability
The system is out of operation when it doesn't support some of the users as usual. The cause of the
breakdown may be:

1. The customer's issues, e.g. errors in the customer's equipment.
2. External errors, e.g. power failure.
3. The supplier's issues, e.g. errors in software or configuration.
4. Planned maintenance.
5. Insufficient hardware capacity.

Solution note: Measuring availability
A breakdown is counted as at least 20 minutes, even if normal operation is resumed before. If the following
period of normal operation is less than 60 minutes, it is considered part of the breakdown period.

When the supplier is not responsible for operations, only breakdowns with cause 3 are included in the
availability statements. When the supplier is responsible for operations too, he is also responsible for
causes 2, 4, and 5.

The operational time in a period is calculated as the total length of the period minus the total length of the
breakdowns for which the supplier is responsible. The availability is calculated as the operational time
divided by the total length of the period. When only some of the users experience a breakdown, the
availability may be adjusted. One way is to calculate the availability for each user and take the average for
all users.

Availability requirements: Example solutions: Code:
1. The availability must be calculated periodically.

The calculation should compensate for the
number of users experiencing breakdowns.

The availability is stated monthly and
calculated as described above.

2. In the period from 8:00 to 18:00 on weekdays,
the system must have high availability.

In these periods the total availability is
at least %.
(The customer expects 99.5%)

3. In other periods the availability may be lower. In these periods the total availability is
at least %.
(The customer expects 99%)

L3. Data storage
The data volume is specified in Chapter D. Data must be stored as follows:

Data storage requirements: Example solutions: Code:
1. The system must give access to data for the last

5 years with the response times specified in L1.

2. MR scans and … are only kept for 60 days.
3. The system must give access to archived data

for the last 20 years with response times as for
occasionally used reports (L1-7).

100

L4. Support
This section specifies the supplier's support services, for instance helping users
(hotline), changing the system configuration, and monitoring operations. (ITIL has
specific terms for this. Hotline is for instance called Service Desk. See Bon, 2004.)

The introduction states as an assumption that super users are the first point of
contact. If they cannot remedy the problem, the super user or the ordinary user
may contact hotline. We might allow ordinary users to contact hotline directly, but
in most organizations it would be much more expensive, and less effective.

L4-1 specifies that the required response times for hotline must be valid for a
certain fractile of the cases. The example solution says that the customer expects
95%. Don't specify a maximal time for a reply (valid for 100%). The worst case,
where everybody asks for help at the same time, will be excessively expensive to
handle.

L4-3 and 4 specify in which periods users can contact the hotline by phone or in
person (direct contact), and that the supporter must try to resolve the problem on
the spot.

L4-4 asks for on-the-spot handling of direct contacts. Many SLA's (Service Level
Agreements) specify that a certain fraction of the requests must be resolved on the
spot. Experience shows that this makes the supplier interested in getting a lot of
trivial requests. He is not motivated to prevent them, for instance by broadcasting
how certain problems can be avoided.

For this reason L4-4 only asks the supporter to spend a few minutes on the spot.
Whether the support quality is adequate in general is hard to measure. L4-11 sug-
gests that the parties discuss this at regular meetings.

L4-5 specifies that for indirect contacts the user must get a first reply within a few
hours.

L4-6 to 7 asks for specific services such as remote diagnostics and sending a sup-
port person to the customer's site. As for other requirements, the supplier may
respond that he doesn't provide this. In many projects there is no need at all for
this, since the customer does it himself already.

The requirement note after the table explains what it means to handle a request for
help (an incident in ITIL terminology). It is described as a list of optional subtasks.
After most of the subtasks, the user gets a first reply. A reply means that the user
has got help in solving or circumventing the problem, or that a technical problem
has been remedied, or that the problem has been transferred to another
organization. It is not a valid reply that the request has been received by the hotline
or transferred to another supporter in the support organization. The user may often
get a first reply and later additional replies as supporters investigate the case.

Like other sections of the template, the support requirements are only examples
and not an exhaustive list. The ITIL specifications may be used for creating a longer
list of support processes. As with other standards, don't just use them blindly. You
may end up paying for more than you need or asking for inconvenient processes,
such as always send the reply back to the user through the first point of contact.

101

L4. Support
Support comprises help to users, configuration changes, and monitoring of the operation. In this chapter,
"supplier" means the supplier's operational organization. A "supporter" means a qualified supplier
employee. The support covers all hardware and software delivered under this contract.

Super users are the ordinary user's first point of contact. The supplier only has to help when the super
users cannot remedy the problem.

Support requirements: Example solutions: Code:
1. Fractile. The response times specified below

must apply in almost all cases.
__% of the response times must be
within the limits.
(The customer expects 95%.)

2. The supplier must handle user requests for
help. See the requirement note below.

2p. Problem: Even super users find it hard to decide
which product a specific problem relates to. It is
even harder to mediate between several
suppliers.

The supplier involves the necessary
other parties on his own initiative.

3. Direct contact: In the period from 8:00 to 18:00
on weekdays, users can quickly contact a
supporter by phone or in person.

In this period, contact is available
within minutes. (The customer
expects 10 minutes.)

4. For a direct contact, the supporter handles the
request on the spot as far as possible.

On the spot means what can be done
within 5 minutes.

5. Indirect contact: Requests sent by email, sent
by web, or escalated from the direct contact.
The user gets a reply within a few hours.

The supplier replies within work
hours (8:00 to 18:00 on weekdays).
(The customer expects 3 hours.)

6. The supplier sends a supporter when this is
necessary to remedy the problem.

7. The supplier can perform remote diagnostics to
remedy the problem.

8. The supplier monitors request handling to see
that requests are closed and response times
met.

9. The supplier records data for computation of
support response time, and identification and
prevention of frequent problems.

The supplier keeps a log of all steps
in the request handling and the cause
of the problem.

10. The supplier monitors the operation in order to
foresee availability problems, and changes the
technical configuration so that availability is
maintained.

11. Customer and supplier meet regularly to review
response times and discuss prevention of
problems.

The parties meet every month.
(The customer expects monthly
meetings.)

Requirement note: Handle a request
When a supporter receives a request, he can perform one or more of the following subtasks. All subtasks
except e (escalation) end with a reply to the user. The request is closed when nothing more can be done
about the request (subtask f).
a. Help user: Assist the user in solving the problem or circumventing it. If needed contact the user for

clarification. Assistance is considered a valid reply.
b. Change configuration: E.g. start servers, change settings, replace printer cartridges, install software.

Reply to the user when it has been done.
c. Order equipment or help from another organization: Reply to the user about the expected delay.
d. Defect: The support organization cannot solve the problem. Report it to the maintenance organization.

Reply to the user that it has been done.
e. Escalate request: The supporter cannot fully solve the problem himself. Pass the request on to

another supporter. This person may again perform one or more of the subtasks.
f. Close the request: Nothing more can be done about the request. This may happen at the first point of

contact. The request may also escalate several times, wait for external delivery or wait for a reply from
maintenance before it can be closed. Reply to the user that the request has been closed.

102

L5. Maintenance
This section shows examples of typical maintenance requirements, including defect
removal, system updates, and system changes.

L5-1 specifies that the required response times must be valid for a certain fractile
of the cases. The example solution says that the customer expects 95%.

L5-2 makes the supplier responsible for keeping a log of the maintenance requests.

L5-4 says that business-critical errors must be handled quickly, e.g. within 24
hours. But who decides whether a reported defect is urgent (business critical)? Is it
the user who reported it or the supplier? The answer depends on the kind of system
and customer we deal with. Usually it is not the user because ordinary users tend to
consider everything urgent. On the other hand, the supplier prefers to deny that it
is urgent.

L5-3 suggests that the supplier decides and that his decisions are reviewed
regularly (L5-5). Alternative 1 is that the local super user decides and alternative 2
that the customer's IT department decides.

When the system is to be modified or expanded, the supplier has a de-facto
monopoly and can charge the customer accordingly. L5-7 shows a way around it:
The size of the change is estimated as a number of Function Points, and the
supplier has specified a fixed price per Function Point.

Function Points (FP) are a technology-independent way to measure the size of a
development project. It is based on experience data from thousands of projects all
over the world.

The measurement can for instance be based on the number of classes in the E/R
model and their complexity, plus the number of user screens and their complexity.
FP experts can use tasks to give reasonable estimates of the number of screens. A
medium complex class requires 10 FP and a medium complex screen requires also
10 FP. In addition there is an adjustment factor of 0.3 to 1.6 for the project
organization, etc. Changes to a system can be estimated in a similar way.

Without something like E/R and task/use cases you cannot estimate the project
size.

Depending on the supplier's skills and technology, he can quote a higher or lower
price per Function Point. A typical price for a FP in Denmark is 2,000 to 4,000 USD.

Expertise is needed to estimate Function Points. FP experts claim they agree very
precisely when they independently estimate the same project. In case the parties
cannot agree on the number of FP, you can have your local FP group decide. L5-8
might specify that this group must be used to resolve conflicts.

COSMIC points are similar to Function Points. They are much easier to use, but
don't have the same extensive experience base.

103

L5. Maintenance
Maintenance includes defect removal, system updates and system changes.

Requirements for defect removal: Example solutions: Code:
1. Fractile. The response times specified below

must apply in almost all cases.
 % of the response times must be
within the limits.
(The customer expects 95%.)

2. The supplier keeps a log of reported defects as
well as change requests.

3. For all reported defects, the supplier quickly
decides whether the defect is business critical,
possible to circumvent temporarily, or possible
to circumvent permanently (i.e. reject).

Alternative 1: The local super user decides.
Alternative 2: The customer's IT department decides.

In the period from 8:00 to 18:00 on
weekdays, the supplier completes the
assessment within hours.
(The customer expects 3 hours.)

4. Business-critical defects are removed quickly. Business-critical defects are removed
within hours.
(The customer expects 24 hours.)

5. Customer and supplier meet regularly to check
the defect assessments, and to decide what to
repair or change, and what it will cost.

The parties meet every months.
(The customer expects monthly
meetings.)

Requirements for system improvement: Example solutions: Code:
6. The supplier installs new versions and releases

of the delivered software without unduly delay.
Installation takes place within
days after release of the new version.
(The customer expects 30 days.)

7. Within a period of 3 years, the supplier must
offer changes at a fixed price per Function
Point.

The price per Function Point is .

8. Disagreement on the Function Point calculation
must be resolved by …

104

7. Literature and other templates
Alexander, Ian & Beus-Dukic, Ljerka: Discovering Requirements - How to Specify

Products and Services. Wiley, 2009, ISBN 978-0-470-71240-5. Provides good
advice and examples of many methods and notations. Contains cases from
several domains.

Bon, Jan v., et al. (eds. 2004): IT Service Management - an Introduction based on
ITIL. Van Haren Publishing, ISBN 90-77212-28-0. Describes in a comprehen-
sive way the processes associated with operating and supporting a system (240
pages).

Card, Stuart K. et al. (1980): The keystroke-level model for user performance time
with interactive systems. Communications of the ACM, 23 (7), pp. 396-410.
Breaks down the user part of the task into basic elements and measures the
time for each type of element.

Constantine, Larry & Lockwood, Lucy A.D. (1999) Software for Use: A Practical
Guide to the Models and Methods of Usage-Centered Design, Addison-Wesley.
Describes a systematic design method for user interfaces, starting with elicita-
tion of essential use cases and ending up with prototypes and usability testing.

COSMIC, Common Software Measurement International Consortium. A modern
method for measuring the size of IT projects. It is applicable to business, real-
time and infrastructure software. The method is entirely 'open'; all method
documentation is available in the public domain for free download.

 http://www.cosmicon.com/

International Function Point Users Group IFPUG. http://www.ifpug.org/
The traditional method for measuring the size of IT projects. It is based on
experience from thousands of projects all over the world.

Lauesen, Soren (2002): Software Requirements - Styles and Techniques. Addison-
Wesley, ISBN 0-201-74570-4. A textbook on how to formulate requirements,
elicit them, assess solutions and test them. In total it explains around 100
techniques with realistic examples. There is also advice on how to verify
requirements (check that they are met) and how you as a supplier can convince
the customer. Contains large sections of real-life specifications formulated in
different ways. See:

 http://www.itu.dk/people/slauesen/SorenReqs.html

Lauesen, Soren (2005): User Interface Design - A Software Engineering Perspec-
tive. Addison-Wesley, 0-321-18143-3. Shows how the designer gets from task
descriptions and data model to a user interface that meets the usability re-
quirements. Answers the difficult question: How many screens are needed and
what should they contain? See:

 http://www.itu.dk/people/slauesen/SorenUID.html

Lauesen, Soren & Kuhail, Mohammad (2012): Task descriptions versus use cases.
In Requirements Engineering (a Springer Journal): ISSN 0947-3602
Requirements Eng (2012) 17:3-18, DOI 10.1007/s00766-011-0140-1. Shows
with experimental results why use cases aren't suited for requirements and

105

how the task approach solves the problems. See also:
 http://www.itu.dk/people/slauesen/SorenReqs.html#UseCases

Patton, Ron (2006): Software testing. Sams Publishing, Indiana. ISBN 0-672-
32798-8. Covers many kinds of test such as white box test, black box test,
compatibility test, foreign-language test, and security test.

Robertson, Suzanne & Robertson, James (1999): Mastering the Requirements
Process. Addison-Wesley, ISBN 0-201-36046-2. Explains the author's Volere
approach by means of a specific example, a system for managing roads in
winter time. It mainly covers systems to be developed from scratch. The
Robertsons' templates are available on

 http://systemsguild.com/GuildSite/Robs/Template.html

Technology Group International: Software Selection Requirements Template (ac-
cessed May 2011). A template for comparing business systems (ERP systems)
according to around 1250 functional requirements on "product level". You have
to register, but then the template is free.

 http://www.tgiltd.com/erp-software-selection/erp-requirements-template.html

Wiegers, Karl E. (2003): Software Requirements, 2nd Edition. Microsoft Press, ISBN
0-7356-1879-8. Covers many aspects of requirements from rights and obliga-
tions to tools, notations and processes. Illustrated with good and bad require-
ments, and dialogues from the elicitation process.

Withall, Stephen (2007): Software Requirement Patterns. Microsoft Press, ISBN-0-
7356-2398-8. A comprehensive set of things to consider and examples of re-
quirements in many areas. All requirements are on product level, i.e. solutions
rather than true demands. Usability, for instance is absent.

	1. The purpose of the template
	1.1. Beware of template blindness
	1.2. The major requirements dangers
	1.3. The right requirement level
	1.4. Precise (verifiable) requirements
	1.5. Cover the customer's needs
	1.6. Early mitigation of major risks

	2. Gathering the requirements
	2.1. Centralize the work
	2.2. Involve the stakeholders and maybe the suppliers
	2.3. Early change control

	3. Contract issues
	3.1. When solution doesn't meet demand
	3.2. Rights to terminate the contract and try another supplier
	3.3. Exceeding expectations

	4. Assessing proposals
	4.1. Alternative solutions
	4.2. Options

	5. Testing the system
	6. Guide to the template sections
	A. Background and supplier guide
	A1. Background and vision
	A2. Supplier guide

	B. High-level demands
	B1. Flows
	B2. Business goals
	B3. Early proof of concept
	B4. Minimum requirements and selection criteria
	B5. Benefit in dollar
	B6. Benefit in score points

	C. Tasks to support
	C1. Task rules (Admit patient before arrival)
	C2. Similar tasks (Admit immediately)
	C10. A complex task (Perform clinical session)
	C11. A long subtask (Prescribe medicine)
	C20. Another environment (Perform clinical session, mobile)

	D. Data to record
	D0. Common fields
	D1. Data dictionary (Diagnosis)
	D2. A type class (Diagnosis type)
	D3. Using existing tables and screens (Service)

	E. Other functional requirements
	E1. System generated events
	E2. Reports
	E3. Business rules and complex calculations
	E4. Expansion of the system

	F. Integration with external systems
	F0. Common integration requirements
	F1. Simple one-way integration (SKS)
	F2. Two-way integration (LabSys)
	F10. Integration with new external systems

	G. Technical IT architecture
	G1. Existing hardware and software
	G2. New hardware and software
	G3. The supplier operates the system

	H. Security
	H1. Login and access rights for users
	H2. Security management
	H3. Protection against data loss
	H4. Protection against unintended user actions
	H5. Protection against threats

	I. Usability and design
	I1. Ease-of-learning and task efficiency
	I2. Accessibility and Look-and-Feel

	J. Other requirements and deliverables
	J1. Other standards to obey
	J2. User training
	J3. Documentation
	J4. Data conversion
	J5. Installation
	J6. Testing the system
	J7. Phasing out

	K. The customer's deliverables
	L. Operation, support, and maintenance
	L1. Response times
	L2. Availability
	L3. Data storage
	L4. Support
	L5. Maintenance

	7. Literature and other templates

