
Acta Informatica 2, 1-11 (1973)
©by Springer-Verlag 1973

Job Scheduling Guaranteing Reasonable Turn-Around Times

S0ren Lauesen

Received September 3, 1972

Summary. This report describes the algorithm for job scheduling and resource
allocation used in the operating system Boss 2 for RC 4000. Most resources in the
system are nonpreemptible, which causes the usual deadlock problems. The algorithm
gives modest jobs a short tum-around time and more greedy jobs a correspondingly
larger tum-around time .. All jobs are guaranteed a finite tum-around time even if an
infinite stream of other jobs is fed to the system (i.e. Holt's permanent blocking [7] is
prevented). An estimate of the expected finishing time is computed when the job is
enrolled. The estimate is updated continuously and is available from all terminals.
The algorithm is a modification of the Banker's Algorithm described by Habermann
[5]. It pays high attention to turnaround tii:ne and less attention to resource utilization.

1. Introduction

The Boss 2 operating system for RC 4000 handles batch jobs, on-line editing,
remote job entry, time sharing jobs, and process control jobs [8-10]. It is imple
mented for the RC 4000 computer manufactured by Regnecentralen, Copenhagen.
The system works under a modified and extended version of the monitor
described in [1, 6].

A job running under Boss 2 may use the following types of resources: Disc
space, drum space, tape stations, special devices (punch, process control device,
etc.), core store, CPU-time, and certain buffers and catalog entries.

Boss allocates the available resources among the jobs enrolled for the moment
according to a strategy to be explained in the sequel. The resources are exclusive
in the sense that a resource allocated to one job cannot be allocated to another job
simultaneously. In some cases, access rights to files should be considered a resource
too [2]. However, in Boss such rights may be allocated to any number of jobs at
the same time, leaving the control of the sharing to the jobs. Hence we disregard
this "resource" in the scheduling of exclusive resources.

Resources may be classified as preemtible, temporary, or permanent in the
following way:

Preemptible resottrces may be allocated to a job and withdrawn again at any
time without acknowledgement from the job. In Boss core store and CPU-time are
handled as preemptible resources. The core store of the job may be withdrawn
by means of swapping, the CPU-time is constantly multiplexed between the jobs
and the operating systems.

Temporary resources allocated to a job may only be withdrawn at job termina
tion or when the job orders it explicitly. The bulk of the resources are handled in
this way. Some of them (e.g. tape stations) might be handled as preemptible
resources, but this is not done because of the overhead involved.

1 Acta Informatica, Vol. 2

2 S. Lauesen:

Permanent resources are allocated to projects or users by the computer staff.
Unused permanent resources cannot be borrowed by a job from another project,
and thus the allocation algorithm is straightforward. The permanent resources
comprise part of the disc and part of the file catalog.

The main problem in the resource allocation is to handle the tern porary resources
in such a way that deadly embrace is avoided and reasonable turn-around times are
obtained for all jobs. Temporary resources are to some extent reserved and released
dynamically by the the jobs, which improves the possibilities for resource utiliza
tion. Typically, a job needs very few resources for a long initial period (spooling
of input files, waiting for bulk of resources) and for a long terminal period (spooling
of output files).

The deadly embrace problem arises because a job may refuse to release it's
temporary resources until it has reserved further resources. In order to solve the
problem at all, we need a predefined set of claims for the job, i.e. a strict upper
limit on the resources demanded by the job. The deadly embrace problem may
then be put as follows: A request exceeding the claims is refused. Any other
request for temporary resources must be granted in a finite time.

In the literature the problem has occurred in two versions:

Habermann's deadly embrace problem [5]: The request must be granted in a
finite time after stopping the input stream of jobs (corresponding to close down
at night).

Holt's permanent blocking problem [7]: The request must be granted in a
finite time even if a steady stream of input jobs is submitted.

The Boss algorithm solves the problem in the stricter Holt version, and in
such a way that modest jobs will have a short turn-around time, greedy jobs a
correspondingly longer turn-around time. An estimate of the finishing time is
computed when a job is enrolled, and it is updated whenever changes in the
schedule occur. The latest estimate is available from any terminal. It is rather
precise in practice, with a tendency to be somewhat pessimistic.

In Sections 2 to 4 below we explain our concepts of a reasonable turnaround
time. In Sections 5 to 7 we describe the algorithm to avoid Holt's permanent
blocking and estimate the turn-around times.

2. Job Priorities

To each job j is associated a priority function which defines the job priority
h(t) at timet. We assume that the user is interested in the final priority only,
i.e. h(t) at t =job termination. The larger the final priority, the more dissatisfied
is the user. One part of the scheduling problem may now be formulated as the
following bottleneck problem: Keep the largest final priority as low as possible.

In principle any increasing function might be used as a priority, but for the
sake of simplicity Boss uses functions of this form:

t- 1 1 1 {(t-a·) U·fb ·
h ()- (t- ai)large

for t-ai<Mi

for t-ai-;;;;_Mi.

Job Scheduling 3

Here, a; is the arrival time of the job, b; is the expected run time of the job, and
ui is a constant associated with the user in question. The constant large is larger
than all values of u;fb;. M; specifies a maximum turn-around time and may be
stated by the user within certain limits (most users have a very high lower limit
on M;)·

The first part of the function (t- a;< M;) defines the final priority in all
normal cases. It expresses that dissatisfaction is proportional to turn-around and
inversely proportional to expected run time.

Assume that all jobs in a certain period terminate with nearly the same
final priority. The priority functions chosen for Boss will then make the turn
around times nearly proportional to the run time of the job (except when M;
becomes significant). This reflects our wish to encourage short jobs by means of
the best payment to programmers: short turn-around times.

3. Optimal Job Sequence

Assume that the system at a given moment" now" has to execute n jobs with
these remaining run times:

Suppose for a moment that we want to execute these jobs strictly sequentially.
The following algorithm determines the priority sequence, which is the optimal
sequence of execution in the sense of making the largest final priority as low as
possible:

Step 1. Determine the time T when the last job is finished:

T =now +r1 +r2 + .. · +r,
Step 2. Choose the job i with the lowest value of P; (T) and let this job be executed

last. Disregard the job in the rest of the algorithm.

Step). Repeat from step 1, working on the remaining jobs until none are left.

Fig.1 illustrates this algorithm. Below we prove that the priority sequence deter
mined by the algorithm is optimal under these conditions:

1. All priority functions are increasing.

2. All job sequences are possible.

). All sequences have the same total execution time r1 +r2 + ... +r,.
4. All run times are known in advance.

Only condition 1 is completely fulfilled in practice.
Condition 2 is not fulfilled if some job has reserved temporary resources

already, as this may prevent jobs wanting the same resources from being first
in the sequence. Section 4 explains how the effect of this may be reduced,
sectionS explains how a more realistic sequence is computed.

Condition 3 is not completely fulfilled, especially not if multiprogramming is
used. Boss executes the first few jobs in the sequence simultaneously in core,
hoping in this way to reduce the total execution time. Unfortunately, such
multiprogramming may increase the total execution time instead, for instance if

1*

4 S. Lauesen:

job a, b.= 1, u.= 1

job c, b.=S, u.=1

L-------~~~~==~=====---------~tilne
b. t

now+b.+bb+b.

Fig. 1. The priority functions for three jobs a, b, and c are shown. The jobs have
remaining run times ba, bb, and be and thus the latest job is completed at time
now +ba +bb +be. The job to run last is determined as the job with the lowest priority

at that moment. The algorithm is then repeated for the remaining jobs

two jobs use the same disc simultaneously, each job working on one cylinder only.
Nevertheless, it is generally believed that multiprogramming on average reduces
the execution time by a certain factor. If this is true, condition 3 becomes reason
able if all ri are multiplied by this factor. Section 9 elaborates on the subject.

Condition 4 assumes that all jobs have a correct run time specification, but
in practice we only have an upper limit. To compensate for this we compute a
new schedule whenever a job is finished. The run time specification does not
include waiting time for teletype ifo, for operator to mount tapes, etc. Various
precautions are taken to ensure that such waiting does not wreck the schedule. For
instance the user must specify (implicitly or explicitly) the total resources on
backing store needed for spooling of teletype output.

The proof of the algorithm goes as follows: Assume that 7'1 f2 ••• i,. is the
priority sequence computed. Let ia be the job with the largest final priority and
let Ta be the termination time of ia· Now consider some other job sequence. If
ia terminates later than Ta, condition 1 implies that this sequence will have a larger
maximal final priority. If ia terminates before Ta, at least one of the jobs f1 f2 ... ia-l
will terminate at Ta or later (because of condition 3). But because of step 2 of the
algorithm, this job will have a final priority 'i:;_pi• (Ta)· Thus, no sequence is better
than i1 i2 · · · f,..

4. Dispersion Bounds

A typical situation preventing a short turn-around time for a modest job is
this: Assume that job2, job3, ••• are long running jobs, which have reserved nearly
all temporary resources. Now the short job1 enters the system, and according to
the priority sequence it should run first. But as insufficient resources are left,
job1 has to await the completion of some long job.

We have chosen the following solution to this problem: Let M 1 be the set
of all jobs with a run time larger than t. For each type of resource r let the total

Job Scheduling 5

amount of resources of type r

class 0 class 1 class 2 class 3
~---------,__,____._.-----

6 ----l
I ~dispersion bound
L ____ l/ l~,

L ____ _)h,
I

1-------1------
~A,(t)=total amount reserved

f by jobs longer than t

Fig. 2. Illustration of dispersion bound and time classes. A, (t) corresponds in this case
to 4 jobs with run times 1, 3, 6, 7, and having reserved 1, 1, 1, 2 units of resourcer

amount reserved by jobs in M 1 be A,(t). A, is a decreasing function with an
appearance as in Fig. 2.

The resource allocation introduces· an upper boundary function on A,. The
boundary function prevents long running jobs from spreading their possessions
over too many resources, and hence we call the function a dispersion bound. In
Boss we use a step function with 4 levels (dashed in Fig. 2). The step height is
called h,. The step function also classifies the jobs according to run time in four
classes, class 0 being short jobs and class 3 very long jobs.

Now, consider a job from class 0 with a demand of resources -:;;;,h,. Resources
occupied by jobs from class 1 to 3 cannot effect our job, which may be executed
according to the pirority sequence except for delays caused by other jobs from
class 0. If it had a demand less than 2h, delays from class 0 and class 1 jobs
would be possible. Similar results hold for jobs in other time classes.

Thus the dispersion bounds define our notion of modest and greedy jobs:
A modest job has short run time and low claims of temporary resources. The goal
of the resource allocation is now to ensure that modest jobs will have short turn
around time.

A side-effect of the dispersion bounds is that jobs with a long run time may
claim a fraction of the resources only, while very short jobs may claim the entire
computer.

5. Feasible Job Sequence

Any job requesting a preemptible resource (e.g. core store) will get it unless
a preceding job in the priority sequence uses it for the moment. This means that
if the jobs used preemptible resources only, they might be executed in the optimal
sequence.

6 S. Lauesen:

The following algorithm computes a feasible fob sequence which takes into
account the temporary resources and which is as close as possible to the optimal
sequence. The feasible sequence is the basis for granting requests for temporary
resources and for computing the expected finishing time reported to the user.

Step 1. Let the potential resources be the temporary resources free for the moment.
Let the feasible job sequence be an initially empty list.

Step 2. Search the jobs in priority sequence and find the first job for which the
claims may be fulfilled by means of the potential resources.

Step 3. Let this job be the next in the feasible job sequence. Add the resources
held by this job to the potential resources (thus simulating the completion
of the job). Disregard the job in the rest of the algorithm.

Step 4. Repeat from step 2 until no jobs are left.

This algorithm is the Banker's algorithm for determining whether a situation
is safe [5]. In step 2 we might imagine that no job can have its claims fulfilled.
This would be Habermann's Deadly Embrace; but if just one feasible sequence
exists, the algorithm will find it (proof in [5]). However, at least one feasible
sequence exists because of the way requests are granted (Section 6) and because
no job may have claims exceeding the total resources of the system (strictly:
the dispersion bounds) .

It should be obvious that the sequence in fact is feasible, as the algorithm just
simulates that the jobs are executed one by one, each job releasing all of its
temporary resources when it terminates. An estimated finishing time for a job
is computed as the sum of the run times for the job and the jobs preceding it in
the feasible sequence. If no jobs are enrolled later, this estimate is pessimistic
because many jobs terminate earlier than expected. Jobs enrolled later may cause
the estimate to be optimistic, but the user may at any time ask the system for the
latest estimate.

The algorithm works on resource vectors with one component to each type of
resource. The operations on such vectors are addition (step 3) and comparison
(step 2), defined straightforward like this:

a+b =(a.t +bv ... , a,. +b,.)

a<b'<=?Vi (a;<b;).

However, because of the dispersion bounds and the time classes of Section 4,
Boss works with matrices of resources. Each time class corresponds to a row of the
matrix, the row containing a resource vector as above:

A= (ai;), i =0, 1, 2, 3 (time classes), i =1, 2, ... , n.

When a job in time class c holds resources r, they will be treated as this matrix:

A=(a;;), whereai;=r; for O<i~c, a;;=O for c<i~3·

Addition and comparison is now done element by element like this:

Job Scheduling 7

This means that resources of a job in time class c are considered borrowed from
the resource pools of time classes 0, 1, ... c. The matrix describing the total
available set of resources has a row corresponding to each of the four plateaus of
the dispersion bound (Fig. 2).

6, Granting Requests

When the feasible sequence has been determined, Boss grants requests and
allocates resources in this way:

Step 1. Let the available resources be the temporary resources free for the moment.

Step 2. Examine the next (first) job in the feasible sequence: If the job requests
resources now and if the available resources are sufficient, grant the
request and reduce the free resources and the available resources cor
respondingly.

Step 3. If the job has not yet requested all resources claimed by it, then reduce
the available resources by the amount not yet requested.

Step 4. Repeat from step 2 until all jobs in the sequence have been examined.

This algorithm clearly avoids Habermann's Deadly Embrace, because a job
will have its request granted only if the preceding jobs can reserve all resources
claimed by them (step 3). Thus the sequence is still feasible, so that the algorithm
of Section 5 will work properly the next time. If a new job with legal claims is
enrolled, it will always be possible to make a feasible sequence by extending the
present sequence by the new job.

Step 3 of the algorithm-which holds back all resources claimed by the job-is
unnecessary strict if only Habermann's Deadly Embrace is to be avoided. It
would be possible to grant more low priority requests if step 3 reduced the available
resources only by the amount needed to prevent Deadly Embrace. However, the
Boss algorithm is designed to avoid Holt's permanent blocking under certain
reasonable conditions to be explained below. We tried for a long time to find a less
strict algorithm which also avoided permanent blocking and which had a simple
uniform appearance like the one above-but in vain. In Section 7 we show such
a promising but wrong attempt and a correct solution with improved resource
utilization.

The algorithm as it stands pays greater attention to justice in turn-around
time than to efficient resource utilization. A useful property of the algorithm is
that the sequence stays feasible after reservations of resources, so that a new
feasible sequence must be computed only after changes in claims (i.e. when jobs
leave or enter the system).

We will now prove that jobs with a sufficiently high priority are executed sooner
or later. Precisely we will prove this:

Theorem 1. A job I which after time T precedes all other jobs in the priority
sequence will eventually terminate.

Proof. Though I precedes all other jobs in the priority sequence, a non-empty
set P (t) of jobs may precede I in the feasible sequence. The set P (t) will contain

8 S, Lauesen:

some jobs which hold resources claimed by]. Let Q (t) be the remaining jobs
i.e. those which follow 1 in the feasible sequence.

Because of step 3 of the granting algorithm, jobs in Q will not be granted
resources claimed by 1 or P-jobs. Because the sequence is feasible, P-jobs will
either execute to the end or move to the Q-set. Q-jobs will never have to move
to the P-set. When all P-jobs have disappeared, 1 will run to the end.

Next, we will prove that the priority functions of section 2 prevent Holt's
permanent blocking. Assume that a set of jobs are never executed. Let 1 be the
earliest submitted job in the set. Wait until all jobs enrolled prior to 1 are
completed and wait further-if necessary-until the moment a1 + M1. From then
on the priority functions will cause the conditions of theorem 1 to be fulfilled,
which causes a contradiction.

However, this result is not satisfactory as we wish to keep Mi very large. The
first part of the priority function (t- a i < M i) is the important one in practice
and yet does not enter the proof. At present I search for a proof with weaker
conditions on the priority functions, perhaps something like all functions -+oo
and all functions have a common bound on their steepness. This must be combined
with restrictions on the total execution time of all jobs enrolled for the moment.
A better safe estimate of the completion time will also needed.

7. A Wrong Granting Algorithm, and an Improved One

For a few days we believed that the following granting algorithm would
prevent permanent blocking. It resembles the algorithm of Section 6, but in step 3
it holds back only the resources wanted by the job for the moment and resources
needed to prevent Deadly Embrace:

Step 1. Let the available resources be the temporary resources free for the moment,
and let the released resources be 0.

Step 2. Exactly as in Section 6.

Step 3. Reduce the available resources by the amount wanted by the job now,
but not granted. Cover the resources claimed by the job but not yet
requested in the following way: Use part of the released resources first.
If insufficient, then use part of the available resources. Increase the set
of released resources by the resources claimed by the job, thus simulating
the completion of the job.

Step 4. Repeat from step 2 until all jobs in the sequence have been examined,

Obviously, this algorithm utilizes more of the free resources. The reader is
invited to construct a counter-example which exhibits the permanent blocking
(a hint may be found in Holt's reply in [4]).

This wrong algorithm may be mixed with the algorithm in section 6 and yield
a correct algorithm with improved resource utilization. All what is necessary is
to follow section 6 up to and including the first job in the priority sequence, and
the algorithm above for the remaining jobs in the feasible sequence. That per
manent blocking is still prevented follows from the proof of theorem 1 which works

Job Scheduling 9

without modifications. Step 3 may be relaxed even more, as the wanted resources
need not be deduced from the available resources. Furthermore, the strict part
from section 6 need only be invoked when the priority of the first job in the priority
sequence becomes critical in some sense.

8. Overload

C. A. R. Hoare has drawn my attention to the overload problem occurring
when the Banker's algorithm is utilized fully: So many resources are granted away
that very few feasible sequences remain, and as a consequence the jobs will be
executed sequentially one by one.

Hoare proposed that a limit was put on the sum of the claims of the jobs
with nonzero allocations. Another solution is to define that at any time N jobs
should be able to have all their claims fulfilled simultaneously. This would make
it likely that several jobs could reside in the core store simultaneously and enjoy
the multiprogramming. The Banker's Algorithm is a special case of this-employ
ing N =1.

The implementation with N > 1 could be built into the algorithms above. For
instance, determination of the feasible sequence (Section 5) could be modified in
step 3 so that the resources held by the job were not added to the potential re
sources. Instead, resources, of a job scheduled earlier (if any) would be added.
Other minor changes are needed to assure that the actual degree of concurrency
is between 1 and N, and as close toN as possible.

The overload problem has not been felt under Boss because of the dispersion
bounds and the strict algorithm of Section 6.

9. Improvement of the Turn-around Prediction

In the preceding sections we have argued as if the job execution was sequential.
This may be ok for batch processing-even with several jobs executing in core
store simultaneously, but if several time sharing jobs are executed in parallel,
they will complete much sooner than stated by the sum of their run times (meas
ured as teletype time). In general this is the case when jobs are bound by different
processors (i.e. peripheral devices, in this case the teletypes). Batch jobs are usually
bound by the common processors: CPU, drum, disc. Thus they fulfil condition 3 of
Section 3 more closely.

In fact the prediction algorithm of Section 5 will give poor results when time
sharing jobs are present, as these are often in the beginning oft he feasible sequence.
The calamity is cured if the feasible sequence is used to simulate more accurately
the future job execution, in this way computing better estimates. Such a simulation
is implemented in Boss and is based on the granting algorithm and two expected
run times for each job: the net run time stating the demand for the common
processors and the gross run time which includes waiting time for teletype, operator
actions, etc. The simulation assumes that the net run time parts of the jobs are
executed sequentially and the gross run times may overlap. Resources are
simulated to be released after completion of the gross run time.

10 S. Lauesen:

10. Temporary Resources not Released

For practical reasons, some resources are not released when a job terminates.
Instead they are transferred to a special purpose job which is expected to release
them later. In Boss this is done with backing store areas which are to be printed
after the job termination (a kind of spooling), and with accounting information
which is to be collected and processed later.

These details are simulated in the algorithm for computing the feasible
sequence. As a by-product we get reasonable moments for starting the special
purpose jobs, i.e. as late as possible, but before deadly embrace and otherinfluences
on the normal execution occurs.

11. Implementation and Evaluation

The scheduling algorithm was designed and implemented by the author
during 1971. The algorithm occupies about 2000 instructions of which the 1000
implement what has been described here.

The Boss 2 operating system was designed and implemented in the period 1970
to 1972 with an effort of 8 man-years, and it consists of 25 000 instructions. The
system was released to costumers in August 1972, but two installations had used
it experimentally since April 1972. All installations needed help to trim the
dispersion bound, but after that the resource allocation performed satisfactorily
and we have had no complaints about turn-around time-not even from heavily
loaded installations where the common processors (CPU and disc) are busy 22 hours
a day serving jobs (overhead disregarded). I believe that the main reason for this
is the estimated finishing times. Users are at ease when they know what to expect
and they can better stand a long turn-around time.

At present we develop programs to measure the resource utilization and the
accuracy of turn-around prediction, but results are not yet available.

The resource allocation algorithm is executed about 4 times a job. The run
time of the algorithm depends upon the number of jobs in the queue, for20 jobs it is
about 30 ms (one machine instruction is about 4 microsec). This should be compared
to the basic time to execute a job: about 15 jobs can be executed a minute, each
job consisting of translation and execution of a small program.

Acknowledgements. Inspirating discussions with Karolyi Simonyi in 1966 led me
into the algorithm for computing the optimal job sequence. The proof of this algorithm
is due to Per Mondrup. Collaboration and fruitful discussions with }0rn Jensen and
PerMondrupin 1971 are a main source of my construction of the allocation algorithm.
I would like to thank C. A. R. Hoare for many valuable suggestions, which also caused
me to improve the strict algorithm of Section 6.

References

L Andersen, P. L.: Monitor 3, RCSL No: 31-D109, Copenhagen, Regnecentralen,
1972.

2. Bernstein, A. J ., Shoshani, A.: Synchronization in a parallel-accessed data base,
Comm ACM 12, 604-607 (1969),

Job Scheduling 11

3. Dijkstra, E. W.: A class of allocation strategies inducing bounded delays only,
1972 Spring Joint Computer Conference, p. 933-936, AFIPS Press.

4. Habermann, Y. N., Parnas, D. L.: Comment on deadlock prevention method
with a reply by R. C. Holt), Comm ACM 15, 840--841 (1972).

5. Habermann, A. N.: Prevention of system deadlocks, Comm ACM 12, 373-377, 385
(1969).

6. Hansen, P. B.: The nucleus of a multiprogramming system, Comm ACM 13,
238-241' 250 (1970).

7. Holt, R. C.: Comments on prevention of system deadlocks, Comm ACM 14,
36--38 (1971).

8. Lauesen, S.: Boss 2, User's Manual, RCSL No: 31-D108, Copenhagen, Regne
centralen, 1972.

9. Lauesen, S.: Boss 2, Operator's Manual, RCSL No: 31-D123, Copenhagen,
Regnecentralen, 1972.

10. Lauesen, S.: Boss 2, Installation and Maintenance, RCSL No: 31-D191, Copen
hagen, Regnecentralen 1972.

Soren Lauesen
A/S Regnecentralen
Falkoner alle 1
2000 Copenhagen F
Denmark

Universitatsdruckerei H. SHirtz AG Wurzburg
Printed in Germany

