
Published in: Proceedings of OZCHI’98, IEEE Computer Society, 1998

1

Usability Requirements in a Tender Process

Søren Lauesen
Copenhagen Business School

Howitzvej 60, DK-2000 Frederiksberg
slauesen@cbs.dk

Abstract
How should the customer specify usability requirements
in a tender situation? This is particularly difficult if the
product is a standard system with enhancements, since
the customer cannot prescribe a specific user interface.
Furthermore it must be possible to verify the usability re-
quirements with a reasonable effort, and the requirements
must not discourage serious proposers. This paper dis-
cusses six different styles of usability specification and
shows an example of how to combine them in a complex
real-life case to meet these goals. The final requirements
are presented.

1. Introduction
A common type of development project is business

applications for small and medium sized companies. Such
applications are often based on standard systems, modi-
fied and enhanced for the customer. The standard system
is selected during a tender process where various suppliers
propose to deliver their own standard system and develop
modifications.

The central part of the tender document is the require-
ments specification. It specifies what the system must do
(the functional requirements) and also how well it should
do it (the non-functional requirements). Usability is an
example of non-functional requirements.

How do we handle usability in a tender situation? In
some tender processes, the customer has specified the ex-
act user interface as a set of screen pictures and menus.
But when the system is based on a standard system, this
approach would exclude suppliers which have a standard
system with different screens.

The traditional design approach with usability test and
iterative development is also impossible since most of the
system has been developed already. We might apply it to
the system enhancements, but is the supplier willing to
offer iterative development at a fixed price? And how are
we going to specify the usability of the standard part of
the system? In practice, we have to choose between a
small set of suppliers, and if we make unrealistic usability
requirements, we might end up without any suppliers.

How do we balance the various requirements against each
other and against what is possible?

In this paper, I suggest a general approach to usability
requirements and show how to use it in a complex, real-
life tender case.

2. The Shipyard Case
The tender case took place in a medium sized Danish

shipyard which specialises in complex ship maintenance,
rebuilding, and repair.

The shipyard has 150 employees and up to 350 tem-
porary workers from subcontractors. Orders are known
only one to three months in advance. Fast delivery is cru-
cial for this kind of order, and much of the work is not
agreed upon until the ship is docked and inspected by
shipyard staff and a representative for the shipping com-
pany. The situation is thus quite dynamic, and efficient
data registration and quotation calculation are essential.

The shipyard decided to replace most of their busi-
ness applications including accounting, payroll, produc-
tion planning, order handling, inventory, and sales sup-
port. The requirements specification mentioned these
goals for the replacement:

System Goals
(a) Part of the system platform had to be replaced. The

old system consisted of two different hardware plat-
forms with loosely coupled software systems. One
system was proprietary and could not be maintained
anymore, so it had to be replaced. The other system
was based on Unix/Oracle and parts of it had to sur-
vive and become integrated into the new system.

(b) Text-based documents and data base information
should be fully integrated.

(c) Data should be up-to-date in all applications.
(d) Systematic marketing should be supported.
(e) Experience data from earlier orders should be avail-

able for calculation of new quotations.
(f) Invoicing and post-calculation should be speeded up in

order to finish the administrative procedures while the
shipping representative performs final inspection of
the ship just before launch.

2

During the tender process, four suppliers submitted a pro-
posal, and one was selected. The original requirements
specification with a few corrections was part of the con-
tract and specified what to deliver.

The system was based on the supplier's standard ac-
counting system, which used Oracle and could share data
with the surviving system parts. A developer from the
supplier worked one year full time on system extensions
and data conversion in close co-operation with shipyard
staff. The system was delivered on schedule and within
budget.

3. System Problems
Together with a graduate student (Susan Willumsen),

the author conducted an audit of the requirements specifi-
cation and the actual system. The aim of the audit was to
analyse the relation between the actual system and the
original requirements in order to identify good approaches
and residual problems.

During the audit, we identified several problems in
the final system. We could trace most of them to an insuf-
ficient translation of the system goals (a to f above) into
requirements [7]. Some problems related to invoicing,
which turned out to be a critical task. Why is an ordinary
task like invoicing critical in the shipyard? You could not
see it from the requirements specification, but invoices are
not what you would expect from traditional domains.
Some shipyard invoices are more than 100 pages with
more than 2000 items.

Each item on the invoice may be annotated with a
long explanation. Furthermore, various offices enter the
items into the computer system in more or less random
order, but on the invoice they must be grouped according
to the list of repairs originally agreed with the customer.
Each repair comprises several items and they have to be
grouped under the original customer heading.

The customer (the ship-owner's travelling inspector)
scrutinises the invoice, looking for strange expenses,
things where he is charged twice, etc. Proper wording of
the invoice is thus important to avoid haggling.

Furthermore, the entire invoice has to be produced
and accepted by the customer while the ship is still in
dock and the travelling inspector is in town. The invoice is
thus made under time pressure.

We noted two important usability problems with in-
voicing:

(1) The full invoice text was not visible on the screen. The

system could show the text for only a single item at a
time (in an auxiliary window), which made editing and
reviewing difficult. In practice, users had to print out
the full text several times for editing.

(2) There were performance problems when editing long
invoices. When an invoice was more than 20 pages,
the time to scroll from one end of the invoice to the
other was unacceptable to users, and editing became
cumbersome.

It is interesting that management had heard about these
problems, but did not consider them system problems.
Management believed that the problems were due to user
resistance against IT in general, and they were surprised
when we pointed out that the cause actually was system
deficiencies.

What did the requirements specification say about us-
ability? Like most requirements, very little. We could find
four requirements mentioning usability. The first three
were in the section dealing with IT support for sales and
marketing. It said:

1. It shall be easy to learn the user interface.
2. The user interfaces in the systems used by marketing

shall be consistent.
3. The query functions shall be fast and perceived as

more efficient than the present filing systems which
are based on manual letter files.

The fourth was under "quality properties" (non-functional
requirements). In the final contract it literally read like this
(with visible changes from the tender version):

4. No response times shall be so long that employees find

them ’stressful’ . There shall be no waiting time at all
in connection with data entry and master file
maintenance due to inappropriate programming.

The first sentence was part of the tender document, but in
the final contract it was cancelled since the supplier could
not take responsibility for employee stress. The under-
lined part was added in the final contract, since the sup-
plier could only commit to things if they were fairly easy
to implement.

It should be obvious that these "usability require-
ments" are difficult to verify during and after develop-
ment. They are also insufficient to guard against problems
like those we observed with invoicing.

On the other hand, the shipyard case is very much
state of the art, and there is no obvious way of improving
the requirements. Practitioners definitely need a practical
guideline for how to specify usability.

Surprisingly, the literature has very little to say about
usability requirements and rarely provides real-life exam-
ples. Nielsen [10], Preece [12, chapter 19], and Macaulay
[8] give much advise on usability requirements, but in
rather abstract settings without real-life examples. Re-

3

quirements specialists find all non-functional requirements
difficult to handle, including usability requirements [3].

4. Usability Factors
Most developers have only a vague understanding of

what usability is. Usability has nothing to do with program
bugs or system crashes. We assume that the system works
as intended by the designer. Usability is about how the
user perceives and uses the system.

According to traditional definitions, usability consists
of five usability factors:

1. Learnability. The system should be easy to learn for

both novices and users with experience from similar
systems.

2. Efficiency. The system should be efficient in daily use.
3. Recallability. The system should be easy to remember

for the casual user.
4. Understandability: The user should understand what

the system does.
5. Subjective satisfaction. The user should feel satisfied

with the system.

The combination of all the factors is the essence of us-
ability.

Developers often say that it is impossible to make a
system that scores high on all factors. This may be true,
and one purpose of the usability requirements is to specify
the necessary level for each factor.

5. Styles for Usability Requirements
Before proposing usability requirements in the ship-

yard case, I will show six general styles for usability re-
quirements. These styles are based on my observations
from practice, combined with research knowledge from
the HCI field.

No style is ideal. Domain-oriented requirements that
catch the essence of usability are hard to verify during de-
sign. The developer runs a risk when committing to them.
More system-oriented requirements are easy to verify
during design, but do not guarantee the usability the cus-
tomer expects. The customer runs a risk.

The styles also specify and measure the usability fac-
tors more or less directly.

The best choice in practice is often a combination of
the styles, so that some usability requirements use one
style, and others use another style. I will show examples in
the shipyard case. Here is a summary of the requirement
styles. The styles are illustrated with outline requirements
marked R1, R2, etc. In a real specification, more precision
is usually needed (see larger examples in [5]).

Performance style
R1: Novice users shall be able to perform tasks Q and

R in 15 minutes. Experienced users shall be able to
perform tasks Q, R, and S in 2 minutes.

In the performance style we specify how fast users can
learn various tasks, how fast they can perform after
training, etc. We can verify these requirements through
usability tests. By means of prototypes, we can make us-
ability tests early during development, thereby tracing the
requirements forward into design.

The style catches quite well the essence of usability.
However, some of the usability factors, e.g. efficiency in
daily use, are difficult to estimate during development.
The main problem with the style is that effort and experi-
ence is needed to choose the right tasks and iteratively
correct the design to meet the specification. A good ex-
ample of how performance specifications can drive de-
velopment is given by Gould, Boies, and Lewis [2]. How-
ever, the idea cannot readily be used for selecting standard
systems.

Defect style
R2: On average, a novice user shall encounter less than

0.2 serious usability defects when performing tasks
Q and R. [A serious usability problem is typically a
task failure, i.e. that users cannot complete the
task on their own. Thus the requirement roughly
says that at least 80% of users shall be able to
complete the tasks on their own]

The defect style resembles the performance style, but in-
stead of measuring task times, it identifies the usability
defects in the system and specifies how frequently they
may occur. A usability defect is something which causes
the user to make mistakes or feel annoyed. The user is
asked to think aloud during usability tests, and an ob-
server records the defects. The technique has been exten-
sively described. See Dumas & Redish [1], or Jørgensen
[4] for a low-cost approach with high effect on develop-
ment.

The main advantage of the style is that the list of de-
fects gives excellent feedback to developers, allowing
them to correct the design more easily. The disadvantage
is that we are less sure to catch the essence of usability.
For example, low efficiency in daily use will only be re-
ported as a usability defect if the user complains about it.

4

Process style
R3: During design, a sequence of 3 prototypes shall be

made. Each prototype shall be usability tested and
the defects most important to usability shall be
corrected.

The process style specifies the development procedure to
be used for ensuring usability. The style does not say any-
thing about the result of the development, but we hope
that the process will generate a good result. We could
specify various processes such as heuristic evaluation,
structured dialogue design, etc. The example specifies it-
erative prototype-based development since it is recognised
as an effective process.

We could specify the termination criteria for the de-
sign iterations, e.g. continue until no serious usability de-
fects are left, but then we would actually have a defect
style, rather than a process style. However, you could
specify that more iterations shall be negotiated between
customer and supplier after the three iterations. This
would still be in process style.

The main advantage of the process style is that it
avoids the need for finding target values such as task per-
formance times. The disadvantage is that much is left to
developers. Developers often select the wrong tasks and
users for usability testing, or they only make minor
changes to the prototypes [6]. The style is useful in many
cases where developers can commit to a specific process,
but not to performance or defect styles.

Subjective style
R4: 80% of users shall find the system easy to learn

and efficient for daily use.

With the subjective style, we ask users about their opin-
ion, typically with questionnaires using a Likert scale.
Some specialists claim that this catches the essence of us-
ability. Unfortunately, users often express satisfaction
with their system in spite of evidence that the system is
inconvenient and wastes a lot of user time. (If managers
knew about this, they would not be as satisfied as the us-
ers.) Nielsen & Levy [11] summarise investigations of this
factor.

Satisfaction with the system is heavily influenced by
organisational factors outside the reach of system devel-
opment. Another problem with the subjective style is that
it is hard to verify the requirement during development.
Many usability experts ask users about their subjective
opinion after prototype-based usability tests, but the an-
swers do not correlate well with opinions after system de-
ployment.

Design style
R5: The system shall use the screen pictures shown in

App. xx.

The design style prescribes the details of the user inter-
face, essentially turning the usability requirements into
functional requirements. They are easy to verify in the end
product and easy to trace during development.

Through the design, the requirements engineer has
taken full responsibility for the usability. The system de-
signer and programmer can do little to change the usabil-
ity. If the requirements engineer has done a careful job
with task analysis, prototyping, and usability tests, the re-
sulting usability is adequate.

Unfortunately, the prototype style is often used with-
out any kind of usability testing, and the result is as if us-
ability had not been specified at all. Untested prototypes
can be used as examples of what the user has in mind, but
not as usability requirements.

Guideline style
R6: The system shall follow the MS-Windows style

guide. Menus shall have at most three levels.

The guideline style prescribes the general appearance and
response on the user interface. You may think of it as a set
of broad functional requirements that apply to every
window, etc. Guidelines may be official or de facto style
guides, or they may be company guides or experience-
based rules. It is possible, but cumbersome, to verify and
trace these requirements.

Although guidelines usually improve usability, they
have little relation to the essence of usability. In other
words, you can have a system that users find very hard to
use although it follows the guidelines. (Such systems are
actually quite common, as demonstrated by the many
programs that follow the MS-Windows guidelines, yet are
very difficult to use.) As a supplement to other styles, the
guideline style is quite useful, particularly to help users
switch between applications.

6. Eliciting the requirements
In this section I will show how usability requirements

could have been elicited and formulated in a systematic
fashion in the shipyard case. Table 4 shows the final us-
ability requirements for the tender.

In general it is a good idea to identify the issues or
concerns first, and later translate them into verifiable re-
quirements. Below I have used this method:

1. Identify the key usability issues by looking at critical

tasks, user profiles, system goals, previous usability
problems, etc.

5

2. Choose requirements styles to cover the issues.
3. Choose metrics and target values.

The method is not a formal step-by-step procedure. Crea-
tivity, experience, and judgement is needed to carry it out.

6.1. Identify key usability issues
Critical Tasks

In a complex system, the number of user tasks is very
large, and it is unrealistic to fully cover usability for all of
them. So we have to identify the critical tasks.

We identify critical tasks and critical usability factors
by analysing system goals, time-consuming tasks, tasks
made under stress, and difficult tasks. In the shipyard
case, we have a statement of system goals which can give
some clues (points a to f above). We need further domain
knowledge to identify difficult tasks, etc. Table 1 shows
the resulting critical tasks and issues in the shipyard.

Note that invoicing comes up several times since it is
made under stress, it is difficult, and it is critical for one
of the system goals.

The critical usability factors for invoicing are effi-
ciency and understandability. (Understanding what the
system does is particularly important under stress). We
have added a non-standard usability factor, overview, to
denote the need for overview and navigation in long texts.
Learnability is not critical for this task, since all invoice
staff will receive special training.

Learnability is critical for some other tasks, such as
using experience data, since these tasks might still be per-
formed in the old manual way. Using the system will give
better results, however, and it is important that users find

it easy to do so.
Similar discussions lie behind the other critical tasks

and factors.

User Profiles
Setting up user profiles will often highlight some us-

ability issues. Table 2 shows user profiles and related us-
ability issues for two roles: marketing and accounting. We
can make similar profiles for other user groups. Some
issues turn up again, other issues are new, e.g. the cut-over
issue and the switching issue.

Other Issues
Some system goals give rise to critical tasks, other

system goals give rise to different usability issues. In the
shipyard, one of the system goals was "to encourage em-
ployees to use computers, e.g. by making the interfaces
uniform". This gives rise to this issue:

Issue: Uniform interfaces

The issue is closely related to the issue of easy switching
between different systems.

Previous experience from text processing suggests
that editing of long texts may take an unacceptable time
because the system has a long response time for scrolling

 Critical tasks: Issues:
System goals:
Use experience
data for quotation

Recording experi-
ence data

Efficiency

 Using experience
data

Learning

Shorten admini-
stration of ship
departure

Invoicing Efficiency

Other goals (No critical tasks)
Tasks taking much of the working day:
 Accounting Efficiency
Tasks made under stress:
 Invoicing Understanding,

efficiency
Difficult tasks:
 Invoicing Efficiency, over-

view
 Detail planning Learning, over-

view

Table 1. Critical tasks and usability factors

User role: Marketing No. of users: 4
Domain experience Experts
IT experience Text processing. Job costing with

old system.
Domain attitude Proud
IT attitude Reluctant
Learning new system Must use many systems in the fu-

ture.
Difficult to take time off for
courses.
Prefer learning gradually on their
own.

Issues Easy to learn on your own.
Easy to switch between systems.

User role: Accounting No. of users: 6
Domain experience Experts
IT experience Much, different systems
Domain attitude Other staff delay things and don't

provide correct data
IT attitude Integrated part of work. Willing to

learn
Learning new system Cut over to new system critical. At

most two days
Issues Cut over: Short course to learn all

basic daily routines

Table 2. User profiles and associated issues

6

and searching. It gives rise to this issue:

Issue: Reasonable response time for scrolling and
searching invoice text

We have chosen to handle this issue as a usability re-
quirement. Since it is more of a technical requirement, it
could also have been handled as a performance require-
ment.

If we compile all the usability issues into one list,
omitting redundancies and overlaps, we end up with the
nine issues shown in table 3. The next step is to transform
the issues into requirements using an appropriate style.

6.2. Choose Requirement Styles
We do not have to use the same style for all the us-

ability requirements. Some issues are better dealt with in
one style, others in another style. Table 3 gives an over-
view of the possibilities. An X in the table shows that an
issue can use a specific style.

Since we assume that the suppliers will suggest solu-
tions based on their standard business application with
enhancements, some styles are not useful at all. A proto-
type (design style), for instance, cannot be used as a re-
quirement since the prototype may not be implementable
at a reasonable cost under that standard application.

The table shows that the process style might be used
for several issues. This means that the supplier would
have to make a number of prototypes, usability test them,
and improve them. Such a process only makes sense if the
supplier lacks the feature and needs to enhance the sy-
stem. As an example, the supplier might not have a stan-
dard solution for the use of experience data. But in case he
has a standard solution, we have to specify the usability
requirements in some other way. The table shows that
instead of the process style, we could in all cases use the
performance or the defect style.

Why not use the performance or defect style in all
cases? This might exclude potential suppliers that would
not commit to a risky performance specification. The so-
lution is to leave it to the supplier to choose between al-
ternative requirements. We will show details below.

The table shows that guidelines may be useful for
easy switching (issue 9). This is no surprise, since guide-
lines are particularly useful for that. However, we have
also shown that guidelines are useful for invoicing (issue
3). Why is that?

The reason is that it is quite difficult to specify usabil-
ity requirements for invoicing, particularly to ensure a
good "overview" of the entire invoice. If we use the per-
formance style, we have to specify tasks that reveal
whether the user has a good overview, but such tasks are
difficult to specify. On the other hand, experience shows

that a good overview of 100 pages is barely possible with
a good text processor, but we should accept the text pro-
cessor approach as a possible solution since we do not
know better solutions. As a result, a guideline saying that
"it shall be possible to edit an invoice in the same way as a
full text" might be acceptable.

Some suppliers may have a better solution than the
text processing approach. We could allow for that by
leaving it to the supplier to choose between performance,
process, or guideline styles.

6.3. Choose Metrics and Target Values
The final step is to write the actual requirements. We

have to specify something that can be verified (the me-
trics) and the target values we require. Table 4 shows the
final usability requirements corresponding to the first four
issues. These are the more complex ones.

In table 4 we briefly explain why each requirement is
necessary. This explanation gives a link to the issues we
have identified. It also helps the supplier understand the
purpose of the requirement. The requirements themselves
are numbered in the typical manner used in practice.

The first three requirements are in the perform-
ance/defect style, and many suppliers may hesitate to ac-
cept them, particularly if it is an added feature. For this

Style

Issue P
er

fo
rm

an
ce

D
ef

ec
t

P
ro

ce
ss

S
ub

je
ct

iv
e

D
es

ig
n

G
ui

de
lin

e

1. Recording experience
data, efficiency

X X

2. Marketing, learn on
your own, particularly
using experience data

X X

3. Invoicing, efficiency,
understanding, overview

X X X

4. Invoicing, scroll and
search time

(X)

5. Accounting, cut-over
course

X

6. Accounting, efficiency
X

7. Detail planning,
learning

X X

8. Detail planning,
efficiency, overview

X X

9. Easy to switch beween
systems

X

Table 3. The requirement styles suitable for each
usability issue are shown with X. In the final re-
quirements, some issues are covered by alternative
styles, allowing the supplier to choose.

7

reason the supplier can choose a process oriented require-
ment instead, R10.6, which specifies that iterative design
is to be used. For R10.3 (ease of invoicing), the supplier
may even choose a guideline style, R10.9, which essen-
tially says that if invoicing looks like text processing, the
usability is adequate.

As usual, it is difficult to set target values. In some
cases we have defined a value, for instance 30 seconds to
record experience data. We based this figure on observa-
tions of what people do in similar cases when they are not
in a hurry. We also believe that it is quite easy to satisfy
the demand.

In general, it is risky to insist on such targets in a ten-
der process with standard systems. If the target is too re-
strictive, suppliers may decide not to make a proposal. In
reality, the customer might be satisfied with a system that
does not fully meet the target, if the system has other
qualities. On the other hand, why set a too pessimistic
target if you could get something better.

The solution is to let suppliers specify the target val-
ues. For instance we ask them to specify the necessary
course time for performing certain jobs. Experience from
actual tender processes shows that suppliers vary a lot in
the course times they recommend for their product. A re-
cent paper by Maiden & Ncube [9] explains how to col-
lect information from suppliers when buying package
software (COTS).

In one case (R10.10), we have given the suppliers a
clue to what we expect, but leave the actual specification
to them.

When the customer later compares the various propo-
sals, he will compare prices as well as performance fig-
ures and other issues. The decision of which supplier to
choose is always a complex affair, where apples are com-
pared against oranges. These multi-criteria decisions are
not the topic for this paper.

When the customer has selected a supplier, they set
up a contract based on the tender requirements. In the
contract, the requirements show the supplier's choices and
target values.

In case the supplier chooses an iterative design, there
is a risk that he cannot provide a satisfactory design in
three iterations. In this instance, the customer might want
to cancel the contract, but that is difficult since the sup-
plier has not committed to any specific usability level. A
way out is needed, and we suggest that the customer pay a
fee for the cancellation, while the supplier specifies the
fee up front (R10.8). Customer and supplier may also
agree to make more iterations, of course.

Table 4. Final usability requirements for the shipyard
tender. [Comments are shown in brackets.] A mixture of
several styles is needed, and the supplier may choose
between alternative requirements.

Section 10. Usability Requirements
Some of the usability requirements below cover the same issue,
but in different ways. The efficiency of invoicing, for instance, is
covered by R10.3, R10.6, and R10.9. The vendor may choose
between the alternatives as shown below.

It must be easy to record experience data. Otherwise it will not be
done. This will most conveniently be done while entering or edit-
ing job data:

R10.1 When a job has been selected for data entry, it shall be

possible for an experienced user to attach experience
data within 30 seconds, including lookup of experience
keywords. (See task description in App. xx.1.) The vendor
may choose R10.6 through R10.8 instead of R10.1.
Chosen requirement: _____.

Marketing has little time for courses and prefer to learn on their
own. The vendor should specify the minimum course time that
will allow marketing staff to use the system through their own ex-
periments:

R10.2 After a ___ hour course, marketing staff shall be able to

perform 90% of the tasks in App. xx.2 on their own. [This
essentially limits the number of serious usability defects.
We don't care about task time. Users are allowed to take
the time they think necessary. App. xx.2 has about 20
tasks, two of them dealing with the use of experience
data.] The vendor may choose R10.6 through R10.8 in-
stead of R10.2. Chosen requirement: ______

Invoicing is critical. Invoice staff need an efficient solution, easy
to understand and with a good overview of the entire invoice:

R10.3 After the cut-over course, it shall be possible for an in-

voice user to edit the invoice printed in App. xx.3 (as
shown by the edit markings) within __ minutes. This in-
cludes time to verify the corrections without printing the
invoice. [App. xx.3 shows an invoice about 50 pages long
with 20 corrections.] The vendor may choose R10.6
through R10.8 or R10.9 instead of R10.2. Chosen re-
quirement: ______

R10.4 After the cut-over course, the invoice user shall be able to

explain the effect of editing the invoice text, the cost
fields, and the discount fields, for instance what changes
it causes in the data base and on the accounts. The user
shall also be able to explain what effect a system break
down has on a partially completed invoice.

The cut-over to the new system must be accomplished in a few
days. This means that accounting and invoice staff must be able
to learn the new system at a short course and soon after use the
new system:

R10.5 After a cut-over course of ___ days, accounting and in-

voice staff shall be able to perform the daily tasks listed
in App. xx.4. [App. xx.4 contains about 5 tasks for each of
the functional areas mentioned in the original require-
ments specification.]

The vendor may choose an iterative design approach instead of
some of the above requirements:

8

R10.6 During design of non-standard features, a sequence of 3

prototypes shall be made. Each prototype shall be us-
ability tested and the defects most important to usability
shall be corrected. Usability testing shall include the
tasks mentioned in the appropriate requirement above.

R10.7 After the last usability test, the customer and the vendor

negotiate whether to make additional prototypes at an
additional fee, whether to implement the last prototype, or
whether to cancel the contract due to insufficient usabil-
ity.

R10.8 In case the contract is cancelled according to R10.7, the

customer shall pay $_________ as compensation.

Instead of fulfilling R10.3, the vendor may provide an invoice
system resembling a text processor:

R10.9 During invoicing, the user shall be able to see and edit

the entire invoice as in word processing (WYSIWYG
style), including cut and paste, undo, scrolling, and
searching.

Scrolling and searching in long invoices are frequent operations.
The customer expects a response time of less than 5 seconds.

R10.10 Scrolling one page up or down in a 200 page invoice with

4000 items shall take at most ______ seconds. Search-
ing for a specific word or item number shall take at most
_____ seconds.

7. Conclusion
This case study investigated a tender situation where a

standard system was the major component. The study
showed that usability specifications in this case could be
handled by a mixture of four requirements styles. Two
other styles were useful in other situations, but not here.

In a complex case like the one studied, it seemed un-
realistic to specify usability for all user tasks. The effort of
verifying all such specifications would be excessive. The
solution is to select only the more critical tasks. There is
also a risk of specifying too strict requirements, for in-
stance a very short time to learn the system. The result
could be that no supplier offers a proposal. The solution is
to ask the suppliers to specify the learning times and
include the values as criteria in the decision process.

In practice, it seems necessary to give the suppliers al-
ternative requirements. If a supplier has a standard feature
that covers a certain functional requirement, he may
accept one style of usability requirement, but if he covers
the functionality through an added feature, he may accept
another style.

Acknowledgements
The author thanks Jens-Peder Vium for his willing-

ness to reveal and discuss the original requirements, and
Houman Younessi for many discussions while we strug-
gled with the concept of requirement styles.

References
1. Dumas, J.S. & Redish, J.C.: A practical guide to usability

testing. Ablex 1993.
2. Gould, J.D., Boies, S.J., & Lewis, C.: Making usable, useful,

productivity-enhancing computer applications. Comm.
ACM, Jan. 1991, Vol. 34, No. 1, pp. 75-85.

3. Hochmüller, E.: Requirements classification as a first step to
grasp quality requirements. In: Dubois & al.: Proceedings of
the Third International Workshop on Requirements Engi-
neering, REFSQ'97, 1997, Barcelona.

4. Jørgensen, A.H.: Thinking-aloud in user interface design: a
method promoting cognitive ergonomics. Ergonomics,
1990, Vol. 33, No.4, pp. 501-507.

5. Lauesen, S. & Younessi, H.: Six styles for usability require-
ments. In: Dubois et al. (eds): Proceedings of REFSQ'98,
Presses Universitaires de Namur, 1988.

6. Lauesen, S.: Usability engineering in industrial practice. In
Howard et al. (eds.): Human-Computer Interaction, Inter-
act'97, Chapman & Hall, 1997, pp. 15-22.

7. Lauesen, S. & Vium, J-P.: Lessons learned from assessing a
success. Fifth European Conference on Software Quality,
Dublin, September 1996, pp. 335-344.

8. Macaulay, L.: Requirements engineering. Springer, 1996.
9. Maiden, N.A. & Ncube, C.: Acquiring COTS software se-

lection requirements. IEEE Software, March/April 1998, pp.
46-56. [COTS means Commercial, Off The Shelf software,
i.e. standard applications.]

10. Nielsen, J.: Usability engineering. Academic Press, 1993.
11. Nielsen, J. & Levy, J.: Measuring usability, Preference vs.

performance. Communications of the ACM, 37(4), 1994,
pp.66-75.

12. Preece, J.: Human-computer interaction, Addison Wesley,
1994.

