
UIT 13 (1973), 323-337

PROGRAM CONTROL OF OPERATING SYSTEMS

S0REN LAUESEN

Abstract.
The traditional job control language becomes superfluous if the existing program­

ming languages are extended slightly. Such extensions also allow drivers and ope­
rating systems to be programmed entirely in high level languages. Ultimately, we
may see machine independent operating systems. A framework is presented for an
extendable operating system which allows a simple, lmiform implementation of
these language extensions.

1. Introduction.

This paper is concerned with what shall be called the control language,
meaning the complete interface between the user and the operating sys­
tem of a computer. This control language includes both statements of
the job control language and statements of the programming language
proper. The purpose of the paper is to show the advantages of an approach
which eliminates the job control language by augmenting the ordinary
programming languages with a few inter-process communication primi­
tives.

In more detail, in present day systems the full interface between user
and operating system has two parts. One part consists of external contml
statements of the job control language. They treat the compilers and object
programs as procedures, and leave little or no possibility for the user
program to modify the flow of control. The other part consists of the
statements of the ordinary programming language for opening files and
for calling input and output. In the approach proposed, the second part
is extended so as to make the first part superfluous. This requires that
the ordinary programming languages are extended with inter-process
communication primitives and more complicated procedures for file defi­
nition, file creation, calling of translators, etc. External control state­
ments as used to-day would then have to be expressed by an ordinary
user program. Loops and conditions are then easily expressed, and we
may think of the user program as controlling the operating system.

With an appropriate design of the extended programming language it
will also become possible to handle peripheral devices in ways not anti-

Received September 15, 1972.

324 SOREN LAUESEN

cipated by the designers o£ the operating system, and it will become pos­
sible to write operating systems entirely in a high-level language.

It seems feasible to introduce the communication primitives in all
the major programming languages in a simple and uniform way, and so
that mutual job security is maintained.

The advantages o£ this approach are, first, that the ordinary program­
ming languages will become useful over a wider range o£ applications,
second that the user control o£ the operating system will become more
natural, and third that the control language will become as clearly de­
fined as present day programming languages and will admit a similar
degree o£ standardization.

Solutions to many o£ the technical problems are outlined in the paper.
A set o£ communication primitives and a set o£ basic operating system
features are proposed in Section 5. One major technical problem remains
as discussed in Section 5.5: The design o£ a strategy £or working store
allocation which is efficient, flexible, and allows the sharing needed £or
the communication primitives.

The incentive £or this paper was the Nordic Working Conference on
Basic Software, held in Copenhagen on October 1971 [3]. A main theme
o£ this conference was the possibility £or constructing a machine inde­
pendent control language £or operating systems. Starting from the exist­
ing major operating systems it seems tempting to propose a common job
control language, including conditions, loops, and procedures (macros),
and with an Algol-like appearance. In the author's opinion this approach
would hide the fundamental problems o£ the field (besides adding to
the Tower o£ Babel). I therefore submitted the present proposal, in a
preliminary form, to the conference. Later I have found that the
CODASYL Data Base Task Group follows a similar approach in another
field [1, 2].

2. Interface between user and operatin~ system.

The control language is defined as the complete interface between user
and operating system. The commands o£ a control language may be
classified roughly as follows :

External control commands specify data files, calls o£ translators, re­
sources £or the job step, etc. They are in many systems called "control
cards" and they may be the only control commands o£ which the ordinary
user is aware. The external control commands are interpreted by the
operating system and form the external control language (sometimes
called the command language or the job control language).

PROGRAM CONTROL OF OPERATING SYSTEMS 325

Internal in1;utjoutput commands specify block transfers, etc. and are
invoked by the translators and the inputfoutput procedures of the user
programs. The information i~;~ communicated in binary form as various
supervisor calls behind the back of the ordinary user.

Internal declarative commands specify things like open file, reserve
working store, end job. They appear much like the inputfoutput com­
mands, but are less frequent and involve a lot of housekeeping.

The internal inputfoutput commands and declarative commands form
the internal cont?·ollanguage.

Inmost systems some external control commands do not have a corre­
sponding internal control command. For instance in OS/360 it is neces­
sary to use a DD control card to get access to a file. In early versions,
even the connection between a logical unit and a physical dataset had
to be stated in the DD card [8].

3. Control languages viewed as languages.

3.1. Classical p?"Ogramming languages.

Let us try to see how the classical programming languages Algol,
Cobol, and Fortran perceive the computer in order that we can analyze
the difference between for instance Algol 60 and a job control language.

Obviously, Algol 60 perceives the computer as a large working store
plus a control and arithmetic unit. The working store contains the program
and all the variables. The declarations of the language specify the struc­
turing of the store. By means of operato?'S we can perform simple opera­
tions on the structure, by means of procedures we can form more com­
plicated operators.

In Cobol the computer is further viewed as equipped with a set of se­
quential files structured as records. The structuring and the files are
specified statically in the environment and data divisions.

Fortran, as far as files are concerned, takes a position between Algol
and Cobol.

3.2. External cont?"Ollanguages.

Unfortunately, a modern computer contains many things which do
not fit these simple pictures: A very varied set of peripheral devices, each
with its own unique properties. A dynamic set of files (usually on disc)
which may be structured in many ways. A set of jobs executed in parallel
and more or less dependent of each other. (In particular, I do not mention
the interrupt system, because I believe that interrupts should be hidden
in the lowest level possible [22]).

326 S0REN LAUESEN

It seems that job control languages are invented in order to utilize
these possibilities without changing the classical programming languages.
A job control language may be described crudely as a poor programming
language working mainly with the data types "files" and "jobs" [6, 7].
Usually, not even all existing devices are included, as software cannot
keep up with hardware development. The execution is normally strictly
sequential, job step by job step, without the conditions and loops of a
higher language.

The most peculiar thing is that all operators (commands) of the job
control language are very complicated, for instance working with entire
files. In Algol 60, it would correspond to omitting simple variables and
allowing only operators like "matrixmult" and "matrixadd". Such a
language is very useful for certain limited problem fields, and one of the
troubles with the job control languages is exactly that they only work
for a very limited problem field, which just happens to have been domin­
ating for a long time: fast handling of many independent jobs.

In light of this, most new programming languages are very frustrating
as they mainly present new ways of structuring the working store (e.g.
Algol 68, Simula, APL, Snobol, Basic).

Furthermore, papers about general operating system principles tend
to stress the concept of an external control language [6, 7, 9, 21].

3.3. Internal contmllang·uage.

If instead we try to think of the troubles such as the inability of the
classical programming languages to handle the new data types (devices,
files, jobs), another solution turns up: Make a corresponding set of new
basic data types and introduce them in all languages. Define declarations for
them. Introduce the necessary basic operators working on them. Finally,
introduce a suitable set of standard functions covering the frequently
used composite functions now expressed by means of control cards. If
the basic data types and operators are chosen properly, the standard
functions may be expressed entirely in terms of basic operators.

The basic operators may be classified as internal declarative commands
(which specify the structuring of devices, files, etc.) and internal input/
output commands (which perform simple operations on the structures).

When using an internal control language, the sophisticated user has
full freedom to handle his part of the computer. Security is still main­
tained as the operating system prevents the user from destroying other
parts of the system. The simple-minded user need not worry about all
these possibilities, because he may use the standard functions solely.

PROGRAM CONTROL OF OPERATING SYSTEMS 327

4. Using the internal control language.

When a user logs in on the system, he will have to state his user name
and password (project number). This is all of what remains of the old ex­
ternal control language. Next, the user communicates through his initial
programming language, for instance Algol 60. The compiler will now
read a program, compile it, execute it, read the next program, and so
on. A program may correspond to a single control command or to an
entire algorithm.

If the user is so simple-minded, that he believes the computer just has
a large working store for him, he need know nothing more about control
commands. If the user wishes to use files, generate subjobs, or switch
to another programming language, he can express this as statements in
his current programming language.

Some languages are more suitable as initial languages than others.
For instance, if I were using a non-conversational Cobol compiler, I
would choose some other language as the initial programming language
(a language like Basic perhaps), and then invoke the Cobol compiler later.

5. Proposal for a general operating system framework.

In this section I will outline an operating system suitable for intro­
duction of a simple internal control language. Since many unimplemented
functions and all unimplemented strategies may be executed manually
by the operator (but hopefully slower than an automatic system), the
operating system may be implemented gradually.

5.1. P1·ocess concept, standard commnnication.

The system may be thought of as a set of parallel processes, i.e. a set
of programs executed simultaneously. Some of these processes are jobs
in the normal sense, others are drivers communicating with peripheral
devices and receiving device interrupts, still others are called operating
systems because they control job processes.

These processes communicate with each other by means of a standard
set of communication procedures. Several choices of such sets exist [4, 8,
ll, 13, 20, 23]. My favourite set resembles the proposal of [4], and em­
ploys just two procedures: send a message to a specified queue and wait
jo1· a message in a specified queue. These two procedures correspond closely
to the semaphore operations of [11], but they associate a queue of mes­
sages to each semaphore. This has the advantage of resolving the prob­
lem of [15] and enables a safe communication between erroneous pro-

328 S 0REN LA UESEN

cesses. The procedures have been used successfully in the Boss 2 operat­
ing system for RC 4000 [18, 19].

In this communication the queues exist rather independently of the
processes, which distinguishes the system from the message communica­
tion system in [13, 14]. In general only a subset of the processes may use
a certain queue. A message is a part of the sender's working store area
(often containing a buffer) which is "disconnected" at the moment of
"send". When a process receives a message as a result of "wait", it is
treated as an extension of the receiver's working store area.

The message will typically contain an operation code (input, output,
backspace, etc.) and the buffer involved in the data transfer between
sender and receiver. In most cases the message is sent to the receiver and
later back again as an answer, and then the message must specify the
answer queue.

This proposal for communication is used in the sequel, but other forms
of standard communication might be substituted-except in the examples
of section 5.8.

The communication procedures and the code for the time multiplexing
between the parallel processes are part of the monitor (supervisor).

5.2. Opemting systems and jobs.

Each process possesses a set of resources as follows :
An area of the working store.
A set of queues for which the process is allowed to wait.
A set of queues to which the process may send.
A maximum fraction of the available CPU-time.
A set of peripheral devices (this set is empty except for drivers).

If the process attempts to exceed its resources, it will get a warning
signal from the corresponding procedure, showing that the operation was
not carried out, but it will not be aborted automatically or otherwise
influenced.

Every process may now use a subset of its resources to create one or
more new processes--child processes with the creator as parent. Later,
the parent may increase or decrease the resources of a child, possibly
as a consequence of messages received from the child. Eventually the
parent may remove a child entirely, which causes the resources to be
returned to the parent.

A problem arises with the resources sent as messages (part of the work­
ing store of the child) to another receiver process. They may either be
returned to the parent's resources (via a special queue) when later ans-

PROGRAM CONTROL OF OPERATING :SYSTEMS 329

wered by the receiver process, or they may be forced back to the parent
when the child is removed (the solution of [5]). The original solution to
the problem in [13] corresponded to the first possibility, but with the
special queue omitted; as a consequence, the parent could not keep track
of his resources except by means of "busy waiting" (i.e. asking with
regular intervals whether the situation has changed).

As a child can only have a subset of the parent's resources, the child
can do no more harm than the parent, so that child creation in principle
is allowed for all processes.

The parent process also determines the initial contents of the child's
working store, i.e. the initial program of the child. If the initial program
is a compiler or an interpreter for a job control language, the parent is
an operating system and the child is a job.

The procedures for creation and removal of children and for resource
delegation are the remaining part of the monitor.

A child process may again in principle create its own children, but
normal jobs do not do this of course. However, the possibility allows
debugging of new operating systems and drivers under the control of
existing operating systems. Initially, the computer contains one process
only: a simple operating system which possesses all resources and which
is able to create jobs and drivers according to commands typed in by
the main operator.

5.3. Job execution.

When the user logs in, he will first talk to an operating system, which
will read his identification, look it up in a user catalog and determine
the initial program (programming language) of the job. A certain set of
maximum resources (resource claims) is also specified by the user or by
default in the user catalog. This information is needed for the later dyn­
amic resource allocation in order to avoid Deadly Embrace [12]. Essen­
tially the same steps are followed when the user submits a batch job
instead of working on-line.

At a suitable moment, the operating system will create a child process
(the job) with the specified initial program. The job is informed of a
queue to use for obtaining the first stream of input, a queue to use for
printing messages, and a queue to use for communicating with the oper­
ating system. These three parameters are sufficient for the job to proceed.
For an on-line run, the input stream corresponds to lines (or characters)
typed in at the terminal and the print stream corresponds to output to the
terminal.

330 S0REN LAUESEN

Presumably, the job will soon need access to some file on the disc.
It will then send a message to the operating system asking for "opening"
of the file in question. The operating system will check to see that the
request is legal (this involves loolmp in file catalogs) and at a suitable
moment the operating system creates a child process (a driver) to handle
the file. The driver will be allowed to receive messages from a certain
queue and the job will be allowed to send messages to this queue. When
the job receives the answer from the operating system (specifying the
queue, etc.), it can go ahead communicating with the driver in order to
access the blocks of data in the file. The splitting of the blocks into
characters or logical records is done entirely inside the job in most cases.

Creation or removal of files on the disc is also requested by means of
messages to the operating system. In general all internal declarative com­
mands are issued as messages to the parent, as only the parent may
change the resources of the child. Further, these operations involve
strategic decisions concerning all jobs of the parent. Once the connection
is established between job and driver, the internal inputfoutput com­
mands may proceed rather fast, without bothering the parent.

Notice that the declarative message specifies the physical file (or vol­
ume) and not some logical unit invariant from run to run. This is essen­
tial for the omission of an external control language, but it also allows
the program to handle things like incarnations of files automatically by
means of its own algorithm, as is needed in business applications for
instance.

5.4. Drivers.

A real driver is a process which possesses a peripheral device with
which it communicates as prescribed by hardware (inputfoutput instruc­
tions and interrupts, for instance as in [22]). Towards jobs and operating
systems it exhibits the standard interface of message communication.

Any process may work as a pseudo-driver: Towards jobs and operating
systems it exhibits the standard interface, but instead of executing
inputfoutput instructions, it communicates with a real driver. Since
complexity (e.g. spooling) may be added as pseudo-drivers-possibly
specifically for a particular a pplication-allreal drivers should be kept very
primitive. In this way, the larger working store necessary for the com­
plexity may be allocated by the operating system, which usually is
superior to a low level store allocation done by the monitor.

On some computers the interrupt and inputfoutput system is suffi­
ciently simple, so that an ordinary job may be allowed to perform some
inputfoutput directly without a driver. This may be possible for devices

PROGRAJ\I CONTROL OF OPERATING SYSTEMS 331

which are not shared between jobs-magnetic tape stations, process
control devices, etc.

The pseudo-driver principle enables the following handling of several
files on the same disc: The disc has a real driver which requires absolute
physical disc addresses in the messages. When a file is opened, the operat­
ing system creates a corresponding pseudo-driver which transforms the
logical segment numbers from the job into absolute segment numbers
(after appropriate checking) and passes the modified message on to the
real driver. In such cases it is advantageous to have reentrant driver
processes, as several files are open simultaneously.

The checking and error recovery needed after input/output-transfers
may be done partly in the drivers, partly in checking procedures inside
the job. In the RC 4000 system [16] a user specified checking procedure
is associated with each open file in Algol and Fortran programs. The
checking procedure may be called as a side-effect of all wait operations,
especia.lly those which complete input/output-transfers.

5.5. Working store optimizing.

Until now we have ignored the problem of storage allocation occurring
when all jobs cannot be kept in the working store at the same time.
Two main techniques are in use: 1) Swapping and roll-in/roll-out, where
a job occupies a contiguous area of the working store which may be saved
(swapped) temporarily on drum or disc. 2) Paging or virtual storage,
where only some pages of the job's virtual storage area need be in the
working store.

In both cases we are faced with a buffer problem, a detection problem,
and a delegation problem.

The buffer problem occurs when it is decided to save a part of the
working store on drum or disc and the part contains inputfoutput buffers.
In this case the part is stopped which means that the save is delayed until
the buffer transfers are completed and further transfers to that part are
prevented. With a paging scheme the page containing the buffer can
easily stay in the working store during the stop, but with a swapping
scheme the entire job area has to stay, which is unacceptable for slow
buffer transfers. In the RC 4000 system [13, 14] a parent process may
ask the monitor to execute such a stop of a child process, in this way
preparing for a swap. This stopping causes severe problems for the driv­
ers and various solutions are employed. For instance, drivers for slow
devices are prepared to halt in the middle of a buffer transfer leaving
it to the child to repeat the transfer when it is later swapped back to
the working store. When two jobs share the same place in the working

332 S0REN LAUESEN

store-one swapped out while the other runs-they cannot communicate
by means of buffers at all.

The detection problem occurs when a job initiates a wait for a time
consuming operation. This will be an excellent moment to swap the job
or-with a paging scheme-to give low priority to all pages of the job.
As the system is outlined above, the operating system knows in many
cases when the job sends a message specifying a time consuming opera­
tion (e.g. an internal declarative message), but the moment when the job
starts waiting for the answer remains hidden. In RC 4000 we have some­
times doubled the communication for this purpose. For instance, we have
a message specifying "mount a magnetic tape and let me continue" and
another one specifying "mount a magnetic tape and answer when ready".
The detection problem is circumvented in systelllS where a part of the
working store (a job or a page) is stopped and saved when the part has
been unused for a certain time (the working set model [10]). This tech­
nique is inefficient in detecting that a job awaits a slow operation­
which is to be expected as the technique discards essential information
from the communication primitives. When the time-consuming operation
is completed, similar detection troubles occur.

The delegation problem concerns the ability of a parent to influence
the storage allocation strategy of its children. Swapping schemes may
allow a parent to apply its own swapping strategy to the children, but
it seems that paging schemes must be implemented at the lowest level
possible: in the heart of the monitor, which makes experimentation with
the strategy a dangerous thing.

5.6. Gradual implementation of the opemting system.

The set of declarative commands to the operating system will be rather
comprehensive, but it is possible to make a design so that the operating
system can handle all "unknown" commands in the same way: the
message is displayed to the operator in a standard format containing the
job identification. The operator then decides whether the message is
legal, and at a suitable moment he performs the operation by means of
the following basic commands implemented in the operating system from
the beginning :

Answer a specified message.
Create a process with a specified program (driver or job).
Allow a process to use some queues.
Remove a process.

As the system is improved, the operating system may take over thP.
handling of more and more messages.

PROGRAM CONTROL OF OPERATING SYSTEMS 333

As an example, consider an operating system which ignores the
request "mount mag tape 5001", but just displays it to the operator.
The operator is now responsible for the legality of the job using the tape.
He mounts the tape, asks the operating system to create a driver for
the tape, allow the job to communicate with the driver queue, and send
the answer to the job. A more advanced operating system takes care of
selecting a free station, detecting the tape by means of the label as soon
as it is mounted, and checking the access rights of the job.

This form of interface was designed by the author in 1969 for RC 4000
-several months after the completion of the monitor. The interface has
since then allowed jobs to run without change under very different
operating systems [18].

5. 7. The intemal control language.

In order to utilize the interface above, all major programming lan­
guages should be extended with a set of basic commands and data types.

In case of the message communication proposed, data types describing
messages and jobs seem necessary. At least in Algol 60 the working store
areas holding the message buffers and child processes need special treat­
ment in the stack on block exit, as one must ensure that no modifications
by parallel processes take place after completion of the block exit. The
queues need not be new data types (although this may be convenient) as
they may be represented by integers in the same way as in machine
language; the monitor will be able to check them anyway.

In a language like Algol 60, which does not have means for composing
data types into records, it will be advantageous to introduce a more
complex data type like a multi-buffered file-as files are so common­
and then allow access to the constituents of this data type by means of
special operators or procedures. Some of the constituents will be messages
and jobs, so that no generality is lost. This approach was followed in
Algol 60 and Fortran for RC 4000 [16].

Basic operations for message sending and waiting, and process crea­
tion and removal are necessary. Standards for message formats must be
adopted in case transferability of the programs is wanted. Although this
will be a difficult task, I feel that only a common approach to the basic
principles may avoid a hodgepodge like PL/1.

The final step is to implement procedures for the composite commands
needed in present external command languages, but this is comparable
to implementing procedures for matrix operations, Bessel-functions, sort­
ing, etc. In fact the composite commands might be programmed in one
of the extended programming languages. A consequence of the approach

BIT 13-22

334 S0REN LAUESEN

is that all utility programs and compilers should be available as proce­
dures in all the languages.

5.8. Examples of message communication.

A multi-buffer scheme for inputjoutput is established by the user
program when it sends two or more messages asking for inputjoutput
before it awaits the first answer. The driver need not care about the dif­
ference. The scheme is exactly the elegant producer-consumer algorithm
of Dijkstra [11], but with the pointer updating taken care of by the
queues.

The method can be modified to the case where for instance 3 files
share 4 buffers in an optimal way. Notice, that everything is organized
by the user program (possibly by means of library procedures), so that
the operating system need not care.

A multi-access system for terminals (resembling QTAM of OS/360) is
established when the user program sends one message to each of the ter­
minals involved and specifies the same answer queue for all of them.
Waiting for the first answer in the queue then allows the job to handle
the terminals in a sequential manner.

Critical regions between processes may be established by means of a
common queue (corresponding to the binary semaphore of Dijkstra).
The variables involved in the critical region are sent as a message
to the queue and may be waited for by any of the processes involved,
but only one process at a time may have access to the message.

6. Comparison with existing systems.

The system proposed above has the following characteristics:
1. A standard form of communication between all processes.
2. Declarative functions and resource control handled by exchangeable

operating systems and not in the monitor (permanent nucleus).
3. Dynamic creation and removal of processes.
4. Dynamic definition of physical files controlled by user's program.
5. Extendable interface to the operating system with possibility for

gradual implementation.
6. Internal control commands comprising the entire interface to operat­

ing system and drivers.
7. Composite control commands in all programming languages making

each of them suitable as a control language.
8. Possibility for pseudo-drivers programmed entirely in high level lan­

guages.

PROGRAM CONTROL OF OPERATING SYSTEMS 335

9. Possibility for operating systems programmed entirely in high level
languages.

The system is much influenced by the RC 4000 system [5, 13, 14, 16,
17, 18, 19], which however falls short of the goal in the following four
essential points :

1) The message communication of RO 4000 does not allow the simple
solutions of the examples in section 5.8. Nor is it possible to introduce
pseudo-drivers in the general case.

2) In RO 4000 many of the declarative functions are built into the
monitor (for instance all functions concerning backing store) and all
systems programs utilize these functions. As a consequence, the operating
system cannot take over these functions without changes in the present
programs, because communication with the operating system would be
needed instead of calls of monitor functions. This has been a severe re­
striction as the monitor had to be modified a lot before an advanced
operating system could be implemented [5, 18].

3) The monitor function for process removal was incomplete as it
could not guarantee the return of all resources to the parent. This has
been remedied as explained in [5].

4) The Algol and Fortran languages for RO 4000 contain all the basic
operations of a.n internal control language, and in fact operating systems
and sophisticated inputfoutput strategies have been implemented in
Algol. But the composite procedures corresponding to normal job con­
trol commands have not been written, so that the ordinary user has to
use a simple, interpretive language for job control [17]. The interpreter
is loaded as the initial program of the job according to the proposal
above.

Most other dialects of Algol 60, Fortran, and Oobol are very far from
the requirements above. It seems that PL/1, with multi-tasking and
WAIT-statements, is close to the goal, although very much depends on
the operating system. Under OS/360 a standard communication does not
exist, resources cannot be controlled for subtasks by the PL/1 program,
an extendable interface does not exist, and PL/1 cannot be used as a
control language in the general case.

Burroughs's Extended Algol is comparable to PL/1 in these respects.
The ZIP-statement enables the language to be used as a control lan­
guage.

In most systems, the interface between jobs and operating systems
suffers from the same flaws as the RC 4000 system. Too much is put
into the central system without allowing another (experimental) operat-

336 S0REN LAUESEN

ing system to intervene. For instance, in IDA [23] the file system is part
of the supervisor and only single user devices may be handled freely.

Another general flaw is that the communication between systems parts
is heterogeneous. For instance in OS/360 a lot of special supervisor calls
exist and two basic process communication methods are in use:
W AITJPOST and ENQJDEQ [8]. The communication method in IDA is
very interesting, but it employs busy waiting (i.e. inspection of conditions
at regular intervals even though no changes have occurred).

An interesting system with a sound communication method and with­
out an external job control language is described in [4]. Unfortunately
the system is not suited to support other languages than the language
constructed for the purpose.

Acknowledgements.

The ideas in this paper have originated during years of inspiring collab­
oration with Peter Lindblad Andersen, J0rn Jensen, Klavs Landberg,
and Per Mondrup. Finally I would like to thank Peter Naur for his
criticism which forced me to sharpen my thoughts.

REFERENCES

I. The debate on data base management, EDP Analyser, March 1972.
2. Report of the Codasyl Base Task Group, April 1971.
3. Nils Andersen, and Niels Gellert, (eds.), Nordic Working Conference on Basic Software,

Dansk Selskab for Datalogi, Copenhagen, 1972.
4. P. Lindblad Andersen, J. Jensen, P. Jensen, and J. Steensgaard-Madsen, Grok, Data­

logisk Institut, Copenhagen, 1972.
5. P. Lindblad Andersen, Monitor 3, RCSL No. 31-D109, Regneoentralen, Copenhagen,

1972.
6. D. W. Barronand I. R. J aokson, The evolution of job control languages, Software-Practice

and experience, Vol. 2, p 143-164 (1972).
7. J. Bubenko and T. Ohlin, lntroduktion till operativsystern, Del 2, Studentlitteratur

Lund 1971.
8. W. A. Clark, G. H. Mealy, and B. I. Witt, The functional structure of OS/360, IBM

Systems Journal, no. 1, 1966.
9. G. Cuttle and P. B. Robinson, (eds.), Executive progmms and operating systems, Mao

Donald, London 1970.
10. P. J. Denning, Thrashing: Its causes and prevention, AFIPS 1968 FJCC, Vol. 33, pp.

915-922.
11. E. W. Dijkstra, Cooperating sequential processes, In "Programming Languages", F.

Genuys (ed), Academic Press, New York, 1968, pp. 43-112.
12. A. N. Habermann, Prevention of system deadlocks, Comm. ACM 12,7 (July 1969),

pp. 373-377,385.
13. P. Brinoh Hansen, The nucleus of a multiprogramming system, Comm. ACM 13,4

(April 1970), pp. 238-250.

PROGRAM CONTROL OF OPERATING SYSTEMS 337

14. P. Brinch Hansen, RC 4000 Software, multiprogramming system, RCSL No: 55-D140.
Regnecentralen, Copenhagen, 1971.

15. D. E. Knuth, Additional comments on a problem in concurrent programming control,
Comm. ACM 9,5 (May 1966), pp. 321-322.

Hi. S. Lauesen, RC 4000 Software, Algol 5, RCSL No: 55-D14l. Regnecentralen, Copen­
hagen, 1970.

17. S. Lauesen, RC 4000 Software, file processor, RCSL No: 55-D2l. Regnecentralen,
Copenhagen, 1969.

18. S. Lauesen, Boss 2, User's Manual, RCSL No: 31-D211, Regnecentralen, Copenhagen,
1972.

19. S. Lauesen, Boss 2, Installation and Maintenance, RSCL No: 31-D191 Regnecentralen,
Copenhagen 1972.

20. E. I. Orgunick, and M. J, Spier, The multics interprocess communication facility,
Proc. Second Symp. on Oper. Syst. Princ., ACM, New York, 1971, pp. 83-91.

21. H. R. \Viehle, C. Seegmuller, W. Urich, and F. Peischl, A monitor system for high-speed
computers, Elektron. Rechenanl. 6(1964), H.3, pp. 119-125.

22. N. Wirth, On multiprogrwmming, machine coding, and computer organization, Comm.
ACM 12,9 (Sept. 1969), p. 489-498.

23. R. Stockton Gaines, An operating system based on the concept of a superoisory computer
Comm. ACM 15,3 (March 1972), pp. 150-156.

NORDISK BROWN BOVERI, COPENHAGEN, DENJIIARK

