

Extending Applications with Visualization
Soren Lauesen, Mohammad Kuhail, Kostas Pandazos, Shangjin Xu and Mads B. Andersen

Abstract—It is hard to add visualization and interaction to existing applications. The data may be in the database, but users cannot
see it in a convenient way. Often different departments need to see the data in their own way. You may of course ask the supplier of
the system to develop such extensions, but this is expensive and time consuming. The ideal would be that local non-programmer
staff could do it, but current tools are either hard to integrate with daily production applications, require too much programming or
lack visualization.

This paper presents uVis, a tool that allows local staff to build an additional user interface. They combine simple components in the
traditional drag-drop-set-property way, but contrary to current tools, any property may be a formula that combines data from other
visual components and from relational databases. The formulas look rather simple, yet they are able to combine simple components
into traditional as well as new visualizations and provide interaction. Uvis has its own integrated development environment (IDE)
that helps local staff write formulas, see database tables, locate errors, etc.

At present uVis performs reasonably. As an example, it takes 0.8 seconds to retrieve 10,000 data records and show them as 10,000
visual components. We are currently testing the usability of the tool. Preliminary results indicate that it is roughly as easy to learn as
spreadsheets.

Index Terms—Data visualization, database, interaction, user interface, end-user development, toolkits.

1 THE PROBLEM AND THE SOLUTION
Many large IT applications lack integrated data visualization. They
show data only in textual form as simple database fields and tables of
data records. Further they are hard to customize so that individual
user departments see data in different ways. A good example is elec-
tronic health records, where different medical specialties (intensive
care, hearth surgery, psychiatry, etc.) use the same database but need
to see data in their own way. Other examples are ERP systems, fi-
nancial systems, project management and resource allocation.

In order to create an extension of an application for daily produc-
tion work, it must comprise a combination of textual presentation,
advanced graphical visualization, interaction and data entry. In other
words, it must provide a complete additional user interface.

One way to deal with the problem is to ask the system provider to
deliver local extensions with visualization. However, this is very
expensive, particularly if the extension is to be part of normal system
maintenance. In addition it is hard to get the user interface right and
easy to use; it requires several iterations, which adds further to the
cost.

The ideal would be that local staff with some IT expertise could
make this kind of extensions in cooperation with local end-users. We
will use the term local designer to mean this local IT expertise. They
don't have to be professional programmers, but they need some IT
expertise such as understanding database tables and understanding
formulas that compute values.

This paper presents a tool (uVis) that supports local designers. As
many other tools, uVis is based on dragging components to the
screen to be designed, and setting their properties (the drag-drop-set-
property principle). However, any property can be a formula that

computes a value based on data in other components as well as data
in relational databases. The formulas look like spreadsheet formulas
but are able to combine simple components into existing or new
visualizations. The formulas also provide interaction and data entry
without further programming.

Figure 1 shows a visualization screen developed locally with
uVis. During bronchoscopy, the surgeon marks spots where he takes
a biopsy. When he later gets the lab results, he changes the color of
the marks accordingly. Notice that the bronchia are upside-down,
because this is the way the surgeon sees the patient during broncho-
scopy. The screen is a simple visualization, but it requires interaction
and database updates. Present tools require programming to do this.

Figure 2 is a more complex visualization made locally with uVis
(inspired by Lifelines [11]). It gives an overview of a patient's medi-
cal record from birth to some time into the future. This specific pa-
tient has several chronic diseases and has been treated by a general
practitioner for years. On the 16th of January, the patient was hospi-
talized with a serious infection. The hospital stopped most of the
patient's medication and ordered something else.

All the data is extracted from the existing database. The data is
shown as color (e.g. the color of the note icons), as shape and as
position and size (e.g. the medication boxes). The time scale at the
top consists of several zoom intervals, and the end-user can zoom by
dragging points in time from one interval to another. The end-user
can click on the various objects to see details.

2 RELATED WORK
Existing tools vary in many ways. Some need programming exper-
tise, some don't. Some integrate well with existing data sources,
some need programming to do so. Some allow you to make new
visualizations, some only provide predefined ones.

Myers et al. [7] gave an excellent overview of user interface tools
in 2000 and explained why drag-and-drop tools were more success-
ful than program-based tools. What is the situation today? A recent
study [10] showed that local designers (called "savvy users") still
need better tools and more attention from the information visualiza-
tion community. Below we will give an overview of tools today.

• Soren Lauesen, E-Mail: slauesen@itu.dk.
• Mohammad A. Kuhail, E-Mail: moak@itu.dk
• Kostas Pandazos, E-mail: kopa@itu.dk
• Shangjin Xu, E-mail: xush@itu.dk
• Mads B. Andersen: mban@itu.dk
• All authors are with the IT-University of Copenhagen.
•
• Manuscript received . . .

2.1 Standard Graphics
Standard graphical presentations such as pie charts and bar charts are
provided in Excel [6], Google Spreadsheets [4], [2] and others. They
don't require programming skills and widely used.

However, designers have no way of creating new visualizations
beyond what is predefined. The tools are stand-alone systems, which
mean that users have to manually transfer existing data to the tool.
Further you have little interaction with the data and cannot feed data
back to the existing application without programming.

2.2 Data Analytical Tools
These tools integrate well with existing data and help users explore
the data. They don't require programming skills.

Tableau [13] is a commercial data analytical tool based on Polaris
[15]. Users can visually compare ordinal and quantitative fields of
relational tables. Tableau also employs interaction techniques such as
zooming, and filtering. Spotfire [14] and Omniscope [9] are in the
same category as Tableau.

However, with these tools designers have no way of creating new
visualizations beyond what is predefined. You cannot integrate these
systems with existing applications and you cannot feed data back to
the existing applications without programming.

Improvise [17] is more powerful than the other tools in this cate-
gory. Designers can combine visualizations and add simple controls.
Expressions and data used for the dialog can be stored in a repository
"behind" the visualization. It is to some extent a drag-drop-set prop-
erty tool, but the properties are not general formulas. The queries, for
instance, seem to be defined in the repository. Improvise cannot up-
date source data and is not intended for close integration with daily
production systems.

2.3 Graphics APIs
Several programming languages provide general purpose graphics
libraries (APIs), such as GDI+ and Java 2D. They provide basic
components such as line, polygon, and ellipse. By means of a pro-
gram you can make them create any visualization and bind to any
data.

However, to accomplish this, you must be a professional pro-
grammer.

2.4 Visualization Toolkits
These toolkits allow you to construct traditional and new visualiza-
tions by means of a special programming language (sometimes
called a domain-specific language).

Protovis [1] uses a declarative programming language based on
Javascript. At run-time, the language generates visible components,
called marks. Each mark has a piece of data that it transforms to
visual properties by means of functions (similar to formulas). An
event can be attached to a mark as another function. All data are
embedded in the Protovis program as lists of constants, possibly
nested. Each mark must have such a list and Protovis generates a
mark instance for each element in the list. To visualize existing data,
other tools are needed to transform the data to lists of constants. The
successor of Protovis is D3 where visualizations are created with
CSS3, HTML5 and SVG.

Prefuse [5] is the predecessor of Protovis. Prefuse can access re-
lational databases and query the tables with SQL statements. The
result is stored as a table structure and visualized.

InfoVis [3] is in the same category as Protovis, but uses another
kind of visible components.

These toolkits don't use a drag-and-drop approach but require a
program that generates the screens. They are not easy to integrate
with existing relational data and you cannot feed data back to the
existing application without programming.

2.5 Drag-Drop-Set-Property Environments
Current industry tools such as Microsoft Visual Studio, Eclipse and
NetBeans allow designers to construct user screens with drag-and-
drop of text boxes, buttons and other components. For each compo-
nent the designer sets size, position, color and other properties to a
constant. This approach can quickly generate a mockup that looks
right, and the designer can set some dummy values in each text box.

In simple cases the designer can also bind a database table to a
component, for instance a combo box. However, when a join is
required or the screen has to interact, "programming behind" is
needed and local designers have to let professional programmers do
this. Making an advanced visualization with these tools requires a lot
of programming, and according to our own industrial experience
even professional programmers find it hard.

2.6 Summary
When we look at tools for a local designer, the tools above have gaps
in one or more areas. They may require too much programming, they
may not allow construction of new visualizations, they may be hard
to integrate with existing applications or they may not use the drag-
and-drop approach that has proven successful with local designers
[7].

Uvis tries to fill all of these gaps with one simple principle, but it
has been a challenge.

3 DESIGN RATIONALE FOR UVIS
Uvis uses the drag-drop-set-property principle, but the properties are
not constants, but formulas that compute a value. The challenge is to
make the formulas so powerful that simple components can combine
to traditional as well as new visualizations. The formulas must also
be able to access databases and provide interaction. At the same
time, they must be easy to understand, somehow like spreadsheet
formulas.

Why have we chosen to access databases directly? The short an-
swer is that it gives the designer sufficient freedom to experiment
with the many ways to present the raw data. Today many systems are
service oriented (SOA) and don't get their data through SQL, but
through XML-services that retrieve data in a predefined way, corre-
sponding to a specific database query. Our industrial experience is
that even slight changes to the user interface require a different data-
base query and this requires that the programmers develop a new

Figure 1. Surgeon marks biopsy location during bronchoscopy. Later
he changes the color to reflect the lab results.

service. There are various ways to get around the problem, but we
will not discuss them here.

VALUE FORMULAS
By means of formulas, the designer can tell uVis to compute a value
based on other components and database contents. The value can for
instance become the position or color of a component. It can also be
a list of data rows to be used for generating many components (see
more in section 3.2).

EVENT-HANDLER FORMULAS
In order to handle interaction such as clicking or typing, it is not
sufficient to compute values. Some action must be performed too, for
instance setting a value, opening a form or committing a database
transaction. This is handled by properties that are event handlers. A
component may for instance have a Click property. Whenever the
user clicks the component, uVis carries out the Click property's for-
mula. It may for instance open a form.

Depending on the application, it may be necessary to perform ac-
tions beyond the built-in uVis ones, for instance to send an email or
transmit data to/from an external system. This requires that someone
makes a piece of real program, tests it and exposes it as a method.
Usually it will be a programmer. The designer can then call the
method through an event handler. This is "programming behind", but
it is used far less than in the traditional approaches.

3.1 Addressing visual components and database stuff
The formula language should be of "spreadsheet complexity", but
there is an inherent problem here. A spreadsheet formula can only
address cells in the spreadsheet and it uses constant row and cell
numbers to do so. In contrast, uVis must be able to address several
kinds of entities given by the surrounding software:

1. Forms (a special kind of component). The designer defines
the form name.

2. Components on forms (also called controls or widgets). The
designer defines the component name.

3. Properties of components. The operating system (MS Win-
dows) has defined most of the property names.

4. Database tables. The database has defined the name.
5. Database fields. The database has defined the name.
6. Relationships between database tables. The designer can de-

fine the name.

In a visualization such as Figure 2, a formula in one component must
refer to properties in other components. As an example, the height of
the diagnoses grid row must refer to the bottom of the last diagnosis
label in order to give the grid row the correct height. Since the bot-
tom of the last diagnosis label is also defined by a formula, uVis
must be able to deal with a network of formulas in the same way as
spreadsheet formulas. And in the same way as spreadsheets, it has to
deal with potential circular references [12]. However, in our case it is

Notes from practitio-
ner and hospital. The
patient was hospitali-
zed the 16th.

Time scale with
several zoom areas.

Diagnoses
according to
ICD10.

Medication. Box
height indicates
amount.

At the hospital,
each medicine
intake is recorded.
Shown as a
vertical line.

Diagnoses
grid row

Diagnosis
Label (ICD10)

Diagnosis Box "Now" indicator line

Medication
grid row

Figure 2. Overview of a patient's medical record from birth to some time into the future.

much more complex because entities are created dynamically and
addressing may use several levels of names.

How to address all of these entities in a uniform way? The tradi-
tion in programming is the dot-notation: A.B.C means walk from A
to B to C. This works well when walking from a form to a compo-
nent on the form, and then to a property in the component.

However, addressing database entities follows the SQL paradigm.
Figure 3 shows an entity-relation diagram of some of the tables
behind the life line. The crow's foot from Patient to Diagnosis shows
that each data row in the Patient table is related to several data rows
in the Diagnosis table. To address ptName in the Patient table and
Start in the related Diagnosis table for a specific patient,
programmers would have to write something like this SQL query:

SELECT ptName, Start FROM Patient JOIN Diagnosis
ON Patient.ptID = Diagnosis.ptID WHERE Patient.ptID = 52;

Some real programming is involved too because the "52" is the key
for the patient we want. It was inserted into the query string by a
program based on end-user input.

This is a completely different paradigm and it is hard to see how
it can be combined with the programming paradigm in a simple way.
(This is part of the problem called object-relational impedance mis-
match [8]).

Uvis deals with it by allowing a formula to walk from one table
to another along a crow's foot. Whether we walk to one or many

rows depends on the direction of the crow's foot.
Walking to many rows generates a list of rows and uVis then cre-

ates a visual component for each row. As a result each component is
connected to a row in a table or a query.

Using the walk-principle, the SELECT statement above will look
like this in a uVis formula:

 Patient -< Diagnosis Where Patient.ptID = txtID.Text

The -< symbolizes a one-to-many crow's foot. It tells uVis to walk
from a patient row along the crow's foot the related Diagnosis rows.
The Where clause is similar to the SQL version, but the criterion 52
is now a reference to a visual component, the textbox txtID. Uvis
automatically gets the value the user has typed in this box (Text),
inserts it in the SQL statement and sends it to the database. The Se-
lect-part has disappeared. Uvis generates it automatically based on
what the formulas refer to.

The uVis queries support the usual Sql clauses such as Where,
Order By, Group By and Top.

In the example there is only one crow's foot between the two
tables. However, in general there may be many. Figure 3 shows an
example. A row in FamilyRelation specifies that two patients are
related to each other. One of the crow's feet points to one of these
patients and the other points to the other patient. Clearly we some-
how need to name the crow's feet. Uvis provides two names for each
crow's foot: one when we come from the many-end and one when we
come from the one-end. When there is only one crow's foot between
two tables, the crow's-foot names can be the table names. Figure 3
shows this for Patient -< Diagnosis.

In section 3.2 we will show an example of walking along named
crow's feet.

Next, let us see how a formula can walk between visible compo-
nents and database tables. Figure 4 shows an example where a Diag-
nosisBox aligns its Bottom to the bottom of the related Diagnosis-
Label. A diagnosis label is connected to an ICD10 row. ICD-10 is
the international classification of diseases. Each row contains a diag-
nosis code and a diagnosis name (e.g. M154, Arthrosis erosiva).

The Bottom formula starts in the diagnosis box itself (Me), walks
to the connected Diagnosis row in the database, from there along the
crow's foot to the related ICD10 row in the database, and from there

Diagnosis
Start, Stop, Comment

Patient
ptID, ptName,

ptAddress

Family
Relation

kind

Diagnosis

Patient

isFam

hasFam has

member

ICD10
Code, Name

e.g. "parent",
"spouse"

Figure 3. Entity-relationship diagram of some of the tables.

Diagnosis
Start, Stop, Comment

Patient
ptID, ptName

ICD10
ICD10id, Description

TreeNode: DiagnosisLabel
. . .
Top: (value for this instance)
Bottom: ...

Me

Formula for aligning Me with my label:
Top: Me.Diagnosis.ICD10.DiagnosisLabel.Top

Top: Me.Diagnosis >- ICD10 -= DiagnosisLabel ! Top

Figure 4. A formula that walks from a visual component to a data row to another data row, to a component and to the component's property.

to the connected diagnosis label. Then it gets the Bottom position of
this label. With the dot-notation it would look like this:

 Box: DiagnosisBox
 Bottom: Me.Diagnosis.ICD10.DiagnosisLabel.Bottom

Early experiments showed that this was hard to read. What was
visual component stuff and what was database stuff? It was much
easier to read if we used different "dot" operators to show what is
what. If the designer types the formula as above, the uVis compiler
will show it as this:

 Bottom: Me.Diagnosis >- ICD10 -= DiagnosisLabel ! Bottom

The dot (.) tells uVis to walk from the component to the connected
Diagnosis row. The >- tells uVis to walk from the Diagnosis row
along the crow's foot to an ICD10 row. The -= tells uVis to walk
from a row to the connected visual component, DiagnosisLabel.
Finally the ! (bang) tells uVis to look for a property in the compo-
nent. With some experience, the designer can immediately see
whether this is what he intended.

The various dot-operators also allow us to resolve name conflicts.
Some of the entities have names we cannot change. We may for
instance encounter a database field called Top and this conflicts with
the name of the built-in Top property. The designer can tell uVis
what he means by using dot (.) or bang (!). In some cases we need a
prefix to tell uVis what we talk about. As an example, we may want
to refer to the database table Top. To resolve the ambiguity, the de-
signer has to use a Map prefix and write Map.Top.

Some components offer properties with complex functionality.
The timeScale in Figure 4 is an example. It has a property called
Hpos (horizontal position) that converts a point in time to a horizon-
tal pixel position. The DiagnosisBox calls Hpos to convert the start
time from the Diagnosis row to its own Left position. In the same
way it converts the stop time from the row to its Right position:

 Box: DiagnosisBox
 Left: timeScale ! Hpos(Me.Start)
 Right: timeScale ! Hpos(Me.Stop)

3.2 Repeated components
A visualization will usually have repeated components. Visualization
tools such as Protovis generate them based on lists of data (arrays).
Uvis does the same, but the difference is that in uVis the generation
of the list - including the joins - is a simple "walk" with a formula,
while in Protovis it is a separate, complex program.

We have observed that designers with low IT skills find it hard to
understand the relation between a list of data and the repeated com-
ponents that calculate their own individual property values. We
strive for "spreadsheet complexity" so how does a spreadsheet
handle the repetition? It doesn't. The user has to copy cells manually
as needed. The formula in the cell can use relative addressing and in
that way generate different values for different cells. The manual
copying is not suitable for the kind of applications we aim at, so uVis
generate lists in spite of the mental barrier they create.

So how does uVis generate repeated components? All compo-
nents have a property called DataSource. It has a formula that calcu-
lates a list of data rows. Uvis will then generate a component in-
stance for each row and connect the component instance to the row.
We will illustrate the principle with examples from Figure 5.

REPEAT ACCORDING TO DATABASE CONTENTS

The FindPatient screen has a list of patients. Each row in the list
consists of two textboxes, the patient name and the patient address.
We will first make the patient name repeat itself. In the basic version
its DataSource and other key properties look like this:

 Label: PatientName
 DataSource: Map.Patient
 Top: 30 + Index * 20
 Text: Me.ptName

The data source is the Patient table, so the list of data rows comprises
all patients in the database. Uvis will generate a PatientName label
for each of them. The first component will have Index=0 and its Top
position in pixels will thus be 30. The next component has Index=1
and Top position 50. Each component will show the patient name
(ptName) from the connected row.

Formulas may refer to list components by index. The formula Pa-
tientName[2] will refer to the third component in the list. A compo-
nent can refer to its sibling with Me[Index-1], etc.

The real version needs a search criterion so that it doesn't show
20,000 patients. The search criterion is a textbox, Crit, and we want
wild-card search on the patient name. Further we want to show at
most 20 patients. This is accomplished with this DataSource prop-
erty:

DataSource: Map.Patient Top 20
 Where ptName Like "%" & Crit ! Text & "%"

If the end user has typed for instance "ha" in the Crit box, uVis will
generate this Where clause:

 Where ptName Like "%ha%"

As a result, the database will retrieve patients with a name that con-
tains "ha". Due to the Top 20 clause, it will at most retrieve 20 pa-
tients.

We will now give an example that is not for uVis beginners, but
shows the expressiveness of the walk principle. Assume that we want
a list of all patients related to a selected patient according to Figure
3. We would start in the patient row, walk along hasFam to all
related FamilyRelation rows, and for each of these along member to
the related patient. In uVis notation it looks like this:

 Patient -< hasFam >- member Where Patient.ptID = txtID.Text

The resulting list of rows has fields from the start patient, from
FamilyRelation (hasFam) and from the target patient (member). We
can address the fields by means of the relation name. As an example
we could make a list of the related patients with this label compo-
nent:

Label: PatientName
DataSource: Map.Patient
Top: 30 + Index * 20
Text: Me.ptName

Label: PatientAddress
Parent: PatientName
Top: Parent ! Top
Text: Me.ptAddress

Figure 5. Label PatientName repeats itself for each patient row.
Label PatientAddress repeats itself for each label PatientName.

 Label: Relatives
 DataSource: Patient -< hasFam >- member
 Where Patient.ptID = txtID.Text
 Text: Patient.ptName & " has " & member.ptName &
 " as " & hasFam.kind
 Top: Index * 15

(We use the Visual Basic notation & for string concatenation.) The
result would look like this:
 John Smith has Alice Smith as child
 John Smith has Sofia Auriel as parent

REPEAT ACCORDING TO ANOTHER COMPONENT

Another way to repeat a component is to specify that it has a re-
peating component as its parent. Uvis will then generate a child
component for each parent component. In order to generate the pa-
tient addresses, the designer creates a patient address label and sets
its parent property in this way:

 Label: PatientAddress
 Parent: PatientName
 Top: Parent ! Top
 Text: ptAddress ' A Parent prefix is not needed

There will now be one PatientAddress for each PatientName. Fur-
ther, the Top formula refers to the parent's top and in that way aligns
the patient address to the patient name.

CREATE BUNDLES OF COMPONENTS

Sometimes we don't need a single component for each parent
component, but a whole bundle of components. This is the case with
the diagnosis boxes in Figure 4. For each diagnosis label, there is a
bundle of diagnosis boxes because the patient may get the same dis-
ease several times. We can use these formulas to generate the bun-
dles:

 Box: DiagnosisBox
 Parent: DiagnosisLabel
 DataSource: Parent -< Diagnosis

Each DiagnosisLabel is connected to an ICD10 row. Uvis will walk
to all diagnosis rows that relate to this ICD10 row and generate a list
of them. It then creates a DiagnosisBox for each row in the list. The
result is a bundle of components for each DiagnosisLabel.

The parent concept works in many levels. As an example, the
colored intake bars at the bottom of Figure 2 are made by walking
from each medication box to the related intakes.

3.3 Interaction
The end-user searches and selects a patient from the FindPatient
form (Figure 5), then clicks the patient name to open the patient form
(the lifeline). This involves two events: One when the user types into
the Crit textbox and one when he clicks the patient name. The Crit
textbox needs this event handler:

 Label: Crit
 TextChanged: Refresh()

TextChanged is an event provided by MS Windows. It is triggered
whenever the textbox changes its value, e.g. when the user types a
character, but not when he presses an arrow key. We have specified
that when the event occurs, uVis must refresh all open forms, i.e.
recompute all formulas, requery the database if the SQL statement
has changed, and update the screen accordingly. The result is a live
search where the list of patients changes as the user types.

If the database is heavily loaded, the response may be slow. The
designer may then decide to refresh the screen only when the end-
user has finished typing. Another built-in event, FocusLost, triggers
this. So the designer would have to write this instead:

 FocusLost: Refresh()

Opening the patient form is handled by the Click event in the patient
name:
 Label: PatientName
 Click: OpenForm("PatientForm", Me.patientID)

OpenForm has one or more parameters. The first is the name of the
form, the rest are parameters transferred to the open form. In this
case there is one parameter, the ID of the patient clicked. The patient
form has a data source that gets a patient with the ID passed as a
parameter. It looks like this:

 Form: LifeLine
 DataSource: PatientName Where ptID = Param[0]

An event handler can also set properties that don't have a formula.
As an example the designer could define that F6 expands and
collapses the medicine tree. The medicine tree has a Collapsed prop-
erty that defines whether the tree is collapsed or not. All we have to
do is to toggle Collapsed and then call refresh. In Visual Basic style,
the event handler looks like this:

 KeyDown: If e.KeyCode = Keys.F6 Then _
 MedTree ! Collapsed = Not MedTree ! Collapsed,
 Refresh()

3.4 Formula Language
We have based the formula language on Visual Basic because it is
widely known among the designers we aim at. This choice means
that the designer can type names without caring about upper/lower
case, and uVis gives feedback by correcting them to the proper case.
It also means that "=" means assignment or comparison depending
on the context, and other trivial details.

Most of the functions available in Visual Basic are also available
in uVis, for instance Sin(), ToDay(), Format() and Choose. As an
example, the colors and shapes of the Note icons are generated with
these formulas:
 BackColor: Choose(Me.noteWarningLevel, Color.LightGreen,

 Color.Yellow, Color.Red)

We have introduced some additional functions and operators to
simplify life for the local designer. One is called OnError. It makes
it easy to handle missing or inconsistent data in the database. As an
example, diagnoses have Stop time = null until the disease is gone.
As a result the formula for calculating the Right position of a diagno-
sis box would fail. Using OnError the designer writes this formula:
 Right: timeScale ! Hpos(Me.Stop OnError Date()+30)

When Stop is null, OnError catches the error and makes Right corre-
spond to a point in time 30 days ahead. This is why most of the diag-
noses in Figure 4 end at the right border of the screen.

3.5 Uvis Architecture
Uvis provides two kinds of visual components: the ones provided by
Windows Forms and some implemented with the more basic GDI
interface. There are two reasons for the GDI components: (1) Win-
dows Forms doesn't provide components needed for advanced visu-
alization, such as pie slices and line curves. (2) Windows Forms is
slow when the form contains many components, and when we pass
1000 components response time becomes intolerable. However, to
the designer the two kinds of components look the same and have the
same properties, Parent, DataSource, Top, Height, etc.

There have been many surprises working with Windows Forms
on the level we do. As an example, the designer puts a component on
a panel with the formula Left: 100. What happens when we scroll the
panel for instance 50 pixels to the left? The designer would expect
that Left is still 100. Not so in Forms. Left becomes 50. The uVis
kernel has to compensate for this. We also noted that designers often

tried to specify formulas for Right or Bottom, but Forms doesn't
support this. We made the kernel support it and transform the values
to what Forms allow.

We have added some visual components our self. Except for the
time scale, they are all rather simple.

Figure 6 gives an overview of uVis and its surroundings. A uVis
application consists of a folder with a file for each form (extension
.vis) and a file that specifies the connection to databases and the
relations between tables (extension .vism). These files are in a tradi-
tional text format and may be edited with notepad. The vis-files
contain formulas similar to the ones we have shown above. The

folder may also contain icons, pictures and other resources used by
the forms.

The uVis kernel is a set of API's that can be called from any
.NET program, in that way integrating uVis with the program. The
API's can open the vis and vism files and run the application. Other
API's provide creation of components, setting of formulas, access to
error messages, etc.

We provide two stand-alone programs that call the uVis kernel.
One is a development environment, uVis Studio. It uses the APIs for
setting formulas, etc. The other is a simple program that allows the
end-user to select an application folder, open the initial form and run
the application.

The code for the various visual components is kept in a library
folder. Adding a new kind of component is basically a matter of
programming it and adding it to the folder.

3.6 Uvis Studio
In principle you could develop a uVis application with notepad, but
it is hard to remember the names of components, properties, database
tables, etc. Further, you don't see the changed screens immediately,
but have to save the file and open it with the Simple program. A
development environment helps here.

Figure 7 shows the uVis development environment (uVis Studio)
in action. The forms you design are floating on the desktop in the
same way as they will do in the final application. The Studio is a
separate form with toolbox panel, property grid, etc. as in other de-
velopment environments. When you type or edit a property formula,
Studio provides Intellisense, meaning that it tells you which property
names, field names, etc. you can use at this point. As soon as you
have edited a formula, Studio refreshes the forms you design so that
you see the consequences of your change.

The Studio can be in several interaction modes. In end-user
mode, you can use the forms as the end user will do, click on buttons
to open additional forms, scroll, enter data, etc. In design mode you

Orthopedics

Intensive
care

uVis Kernel

Screen descriptions (.vis files)
Each property is a formula

Connection description
(.vism files)

Data map

Admin
system

Medication

Existing
EHR

Data buffer

ADO.NET
Compiler +
generator

PC

Mobile

Simple.exeuVis Studio

Local
designers

API calls

End-users

Component
library

Figure 6. Uvis architecture.

Interaction mode

Design (setting properties)
or interact (as end-user) uVis Studio

Simulated time

Figure 7. The forms being designed (at the left) and uVis Studio (at the right).

click on components to see and edit their properties through Studio,
drag and drop new components to the form you design, etc. There is
also a mixed mode where most interaction works in end-user mode,
but when you use Control+click, you see and edit properties.

When you work directly with data from a database, it is crucial to
get an overview of the existing data. Uvis Studio provides a panel
with boxes and crow's feet for all the tables, similar to Figure 3. You
can detach the panel and enlarge it to get a better overview. You can
also click on a table box and see the real data as a data grid.

We have paid some attention to the test situation versus the de-
ployed version. Whether it is one situation or the other depends on
the data-map file you provide. In a typical test situation, you connect
to a test database (with anonymized data in case of a health record
system). You may also want to use simulated time rather than real
time so that a form such as Figure 4 looks the same today as when
you do some testing next week.

When you deploy the application for real use, you provide a data
map file that connects to real data and uses real time.

4 EXPERIENCE AND QUALITY ASPECTS
We have developed many small applications in an experimental way
with uVis (see some examples on the last page). Most of them be-
came surprisingly simple as we learned to utilize the power of the
formula language. In particular, the spreadsheet-like style was a great
help. As an example, a simple formula could express that the height
of a tree node was the difference between the top of the first child
node and the bottom of the last child node, and these in turn de-
pended on the top of the tree node. Sometimes the formulas were so
complex that we thought there would be a cyclical reference, yet
uVis easily computed them.

Another simplification was interaction. With the traditional .NET
approach, components (controls) had to respond to many kinds of
events, for instance color changed and border changed, in addition to
the real user events such as click and key down. This makes it very
hard to get an overview of who calls whom and when. With uVis, we
only had to deal with the real user events and then ask uVis to re-
fresh everything. That this works in practice depends of course on
refresh being fast.

SPEED

There are various ways to optimize refreshing, for instance only
recompute properties that depend on the item changed. At present we
don't try to optimize. We get adequate performance with a simple
algorithm:

Recompute all formulas, requery the database when an SQL
statement has changed, set all component properties to the new
computed value (whether it has changed or not), and update the
screen accordingly.

The table below shows the time to query a local database for n
rows, each of 1700 bytes, create a box for each row and show it on
the screen. The table shows figures for using simple GDI boxes ver-
sus MS Forms' GUI controls.

As the table shows, with simple GDI boxes, uVis can query and
show 10,000 boxes in 0.8 s. With GUI controls the time for 4,000
boxes is 8.1 s. In both cases there is a base time of around 50 ms to
start a query.

Number of
GDI boxes

Total time Database
part

Time per
box

Database
per box

1,000 135 ms 67 ms 135 μs 67 μs
10,000 800 ms 275 ms 80 μs 27 μs

Number of
GUI boxes

1,000 650 ms 67 ms
2,000 2100 ms 91 ms
4,000 8100 ms 126 ms

However, we have made one important optimization. We mini-
mize the number of queries. A query base-time of 50 ms easily
makes the system slow. As an example, if each line of medication in
Figure 2 (one bundle of components) used its own query, we would
use 14 queries to show the medications, amounting to 0.7 s just for
this. The total time to show the lifeline in Figure 2 would be several
seconds. Instead we make one query to get all the medications, one
to get all the diagnoses, etc. As a result we can show the lifeline in
around 0.5 s. Refreshing is much faster because we don't have to
requery the database.

USABILITY

Usability is of course an issue when we aim at non-programmer
designers. We are currently running usability tests to see how diffi-
cult the tool is to learn. At the same time we develop tutorials and
other support information. Preliminary results indicate that it is
roughly as easy to learn as spreadsheets. Programmers learn to use it
in half an hour, staff with some MS Access background has to ex-
periment for a couple of hours, some novices also learn it in a few
hours and some novices will probably never figure out.

SECURITY

There are several security aspects if we want to deploy a uVis ap-
plication as an extension of an existing application for daily work.
One aspect is whether the formulas can crash the system so that other
users are harmed. This is easy; the formulas have no access to other
parts of the system. However, if the visualization draws heavily on
the database, other users may experience longer response times. We
see only one way to prevent it. Measure the processor capacity used
when the uVis application runs on test data rather than production
data. The easy change between data maps for testing and data maps
for production supports this.

Another aspect is access rights - whether the end user is allowed
to see or update the data in question. There are several ways to do it.
One is to rely on access rights implemented in the database, another
is to allow access only through views, and a third one is to use pro-
tected and/or encrypted data maps and vis-files. This has to be
worked out for the specific application.

5 CONCLUSION
We have shown that it is possible to construct a tool (uVis) that

allows local non-programmers to add visualization and interaction to
traditional applications that use a relational database. Uvis provides a
solution to the object-relational impedance mismatch, because for-
mulas can "walk" across visual components and relational tables in a
uniform way.

In addition the tool combines the best of existing tools:
1. an integrated development environment (IDE) with drag-drop-

set-property of visual components,
2. properties that are formulas and can combine data from other

visual components and from relational databases,
3. formulas that can combine simple components into traditional

as well as new visualizations,
4. interaction and database updates,
5. no need to "program behind".

Further, the tool has adequate performance and usability similar to
spreadsheets.

REFERENCES
[1] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.

IEEE Trans. Vis. and Comp. Graphics, 15(6):1121–1128, 2009
[2] M. Bostock, V. Ogievetsky, and J. Heer, "D³ Data-Driven Documents,"

Visualization and Computer Graphics, IEEE Transactions on , vol.17,
no.12, pp.2301-2309, Dec. 2011

[3] J.-D. Fekete. “The InfoVis Toolkit”. In Proc. IEEE InfoVis, pages 167–
174, 2004.

[4] Google Visualization API.
http://code.google.com/apis/visualization/documentation/gallery.html,
February 2012.

[5] J. Heer, S. K. Card, and J. A. Landay. “Prefuse: a toolkit for interactive
information visualization”. In Proc. ACM CHI, pages 421–430, 2005

[6] Microsoft Excel. http://office.microsoft.com/en-us/excel/, February
2012.

[7] B. Myers, S. E. Hudson and R. Pausch: Past, present and future of user
interface software tools. ACM Transaction on Computer-Human Inter-
action, Vol. 7, No. 1, March 2000, pp. 3-28.

[8] Object-relational impedance mismatch, Wikipedia. March 2012.
http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch

[9] Omniscope | Visokio. http://www.visokio.com/omniscope, February
2011.

[10] K. Pantazos and S. Lauesen, “Constructing Visualizations with InfoVis
Tools - An Evaluation From A User Perspective”, In Proceedings of the
International Conference on Information Visualization Theory and Ap-
plications, 2012.

[11] C. Plaisant, D. Heller, J. Li, B. Shneiderman, R. Mushlin, and J. Karat.
Visualizing medical records with lifelines. In CHI 98 conference sum-
mary on Human factors in computing systems, CHI ’98, pages 28–29,
New York, NY, USA, 1998. ACM.Processing. http://processing.org,
February 2011.

[12] P. Sestoft. "A Spreadsheet Core". IT University Technical Report Series
TR-2006-91, ISSN 1600–6100, September 2006.

[13] Tableau. http://www.tableausoftware.com/, February 2011.
[14] Spotfire. http://spotfire.tibco.com/, February 2011.
[15] C. Stolte, D. Tang, and P. Hanrahan.. “Polaris: a system for query,

analysis, and visualization of multidimensional databases”. Commun.
ACM 51, 11 (November 2008), 75-84, 2008.

[16] F. B. Viegas, M. Wattenberg,, F. van Ham, J. Kriss and M. McKeon,
"ManyEyes: a Site for Visualization at Internet Scale," Visualization
and Computer Graphics, IEEE Transactions on , vol.13, no.6, pp.1121-
1128, Nov.-Dec. 2007

[17] C. E. Weaver. "Building Highly-Coordinated Visualizations in Impro-
vise," Information Visualization, 2004. INFOVIS 2004. IEEE Sympo-
sium on , vol., no., pp.159-166, 0-0 0

http://code.google.com/apis/visualization/documentation/gallery.html�
http://office.microsoft.com/en-us/excel/�
http://www.visokio.com/omniscope�
http://www.tableausoftware.com/�
http://spotfire.tibco.com/�

	2 Related Work
	2.1 Standard Graphics
	2.2 Data Analytical Tools
	2.3 Graphics APIs
	2.4 Visualization Toolkits
	2.5 Drag-Drop-Set-Property Environments
	2.6 Summary

	3 Design rationale for uVis
	3.1 Addressing visual components and database stuff
	3.2 Repeated components
	3.3 Interaction
	3.4 Formula Language
	3.5 Uvis Architecture
	3.6 Uvis Studio

	4 Experience and Quality Aspects
	5 Conclusion

