
Text in gray: Maybe implement later Uvis Reference Card v2.4 © Soren Lauesen, June 2020

Template for TextBox: txtPerson

Rows: Map.Person

Top: 10 + Index * 25

Left:: 10

Width: 100

Text: Person.name

BackColor: Color.LightGreen

Click: Requery()

Template for TextBox: txtActivity

Rows: Activity >- Project Where start > #1-1-2017#

Top: staff ! Top

Left: (start - #1-1-2017#) * 2.5 ‘ 2.5 pixels per day

Right: (end - #1-1-2017#) * 2.5

Text: Project.code & ", " & Activity.name Default staff.name

BackColor: Project.code=null ? Color.Yellow : Color.Purple

Staff: Find txtPerson On Person.id = Me.staffID Order By Me.start

Activity

start

end

name

staffID

Person

id

name

Project

code

name

Map of tables

P2, Test

P2, Repair

P4, Contract

P3, Repair

P2, Repair

Alice

Noel

Peter Inspect

Bundle of

txtPerson
Bundle of txtActivity

with Alice as staff

staff

Properties Properties

Rows: Map.tblA Get tblA from the data map. Generate

a component for each data row.

Rows: tblA Where zip = 35

Get only the rows where the zip field is 35.

tblA Where zip = txtCrit!Text

Get only the rows where the zip field matches the text in

txtCrit.

tblA Where name Like txtCrit!Text & "%"

Wildcarding: Get only the rows where the name field

matches the text in txtCrit followed by any characters

(%).

tblA-<relB (Left) join many

Get all B rows that relate to tblA. (Usually there are

more B rows than A rows.) Add the fields from tblA to

each row. If a tblA row has no related B rows, include a

null row and add the fields from tblA to it.

tblA=<relB Inner join many

As left join many, but omit tblA rows without a related B

row.

tblA>-relB (Left) join one

Get all tblA rows, add fields from the related B row. If

there is no related B row, add null fields.

tblA>=relB Inner join one

As left join one, but omit A rows without a related B row.

(Inner join one is not allowed if the path has an earlier

left join.)

Paths in tables - Join paths

Me is “txtActivity”:

Me ! staff ! Bundle[Last] Walk to the bundle of

components referring to my staff, walk to the last

component of this bundle.

Me ! Staff ! Bundle ! Index My index in this bundle.

Me is “txtPerson”:

Me ! Bundle(txtActivity ! staff) [Last] Find the bundle of

txtActivity components referring to me through their

staff property. Walk to the last component of the

bundle.

Paths to Find-bundles

SQL aggregate functions need a Rows formula with a

Group By. Each row links to a group of source rows.

SQL aggregate functions count the source rows in the

group, sums them, etc.

Null handling: Omits rows where the field is null.

Me.Count(x) The number of rows in my group,

omitting rows with field x = null.

.Sum(x) The sum of the x fields in my group.

Min(x) The minimum of the x fields in ...

Max(x) The maximum of the x fields in ...

Avg(x) The average of the x fields in ...

Var(x) Variance of x fields (divide by Count-1)

VarP(x) Variance (divide by Count)

StDev(x) Standard deviation (square root of Var).

StDevP(x) Standard deviation (square root of VarP)

First(x) The first non-null x field that the dabase

engine happens to find in the group.

SQL aggregate functions

Event handler formulas. Done when event triggered.

OpenForm("F", 1, "ab") Open form F with two params.

Close any other open F.

OpenMulti("F", 2) Open F, keep clones of F.

CloseForm(c) Close c's form.

CloseMulti("F") Close all clones of form F.

SetFocus(c) Let c receive all keyboard events.

GotFocus(c) True when c receives key events.

RefreshForm("F") Recalculate all form F instances;

requery where formula changed.

RefreshForm(c) Recalculate c's form.

Refresh() Recalculate all open forms.

RequeryForm("F") Requery and recalculate.

RequeryForm(c) Requery and recalculate.

Requery() Requery and recalculate all.

MsgBox("Go?", 0) Show a message box and wait for

the user to click OK.

ShowPopup(s, c) Show the popup text s next to c.

ClosePopup(c) Close the popup next to c.

MsgLog("Done") Write the message to the log.

c ! Top=3 Set c's Top value to 3.

c.addr = txtAddr!Text Set the addr field of c's data row

to the text in txtAddr.

CreateRow(c) Create an empty row in c's

primary table in memory.

DeleteRow(c[0]) Delete the first of c's rows.

CommitForm(c) Save all row changes in c's Form

in the database.

CommitOne(c) Save all changes of c's rows.

IsDirty(c) True if unsaved changes in c's

form

CancelUpdates(c) Cancel changes in c's rows.

if (b) OpenForm(...) When b is true, open the form.

if (b) { A; B} else { C; D} When b is true do A and B, else

do C and D.

for (i=0; i<10; i=i+1) OpenMulti("F"+i)

Open F0, F1 ... F9

Return Return from the event handler.

Statements - event handling

Prefixes can resolve any ambiguity. May be omitted if

there is no ambiguity.

Me. Start in my data row.

Me! Start in my properties.

Main Start in the component that has my data.

Form Start in my form component.

Forms Start in the collection of all forms.

Map Start in the map of tables.

System Start in the collection of system items, e.g.

System.MouseX or System.OpenForm(…).

Templates Start in the collection of form templates.

Path prefixes

Page 4 - Uvis Reference card

Forms ! frmF ! Top Walk to a form: From the open

forms, get frmF. Get its Top value.

Forms ! frmF(1)!Top Form bundle: There may be

several open bundles of frmF. Get the second

bundle. Get the Top of the first form in this bundle.

Forms!frmF(1)[1]!Top Form instance: The second

open bundle may contain several open forms. Get

the second form. Get its Top.

Paths to another Form

Prefixes (Me, Map . . .) can be omitted if unambiguous.

The first dot or bang can be omitted if unambiguous.

Me.id . (dot): Field in my data row.

.id id Omitting prefixes.

tblA.id Table prefix: Walk to the tblA part of my

row. Get its id Field.

Me!Top ! (bang): Property in my component.

!Top Top Omitting prefixes.

!HPos(t) Function: Call property function.

Index My number in my bundle.

Me[Index-1] Indexing: The previous component

in my bundle.

Me[0] The first component in my bundle.

Me[Last] The last component in my bundle.

Form !Top Form: Walk to my form. Get its Top.

Param[1] Param: The second form parameter.

Me!txtID ! Top Component walk: Walk to my related

txtID box. Get its Top property.

Me!txtID[Last] !Top Walk to my related txtID box.

Get the last in its bundle. Get its Top property.

Staff: Find txtPerson On Person.id = Me.staffID

Order By Me.start

Find the txtPerson component with id =

my staffID. Bundle us having the same

txtPerson. Order us by our start time.

Staff ! Top Indirect reference: Walk to my staff

component. Get its Top.

heading: Find txtCaption All of us refer to txtCaption

Paths from the Me component

Find-bundle Me is “txtActivity”:

A join path can have an SQL tail with optional Where,

Group By, Having and Order By parts, in this sequence.

Can also have optional Top and Create parts.

Note: Joins in Uvis have no Select part. Uvis decides

what to select based on the property formulas.

tblA Where id=2 And time > CDate(txtCrit !Text)

Get only the rows where id=2 and time > a dialog value.

tblA -< relB Where tblA.id=2 And relB.code>txtCrit !Text

Get rows based on fields in tblA as well as the related B.

tblA Where name>"ab" Order By name Desc, id

Get the rows where ... Order them by name in

descending order and for those with the same name, id

in ascending order.

tblA Group By zip

Divide all tblA rows into groups according to their zip.

Calculate aggregates for each group according to

formulas using Min(x), Count(x), etc. The result has one

row for each group.

tblA -< relB Where relB.name>"ab" Group By tblA.zip

Get all B rows related to the A rows and include the A

fields. Include only rows with name>"ab". Divide into

groups according to tblA's zip field.

tblA -< relB Group By tblA.zip Having Min(id)>12

Group by zip, but include only groups where the smallest

id is larger than 12.

tblA Where time>txtCrit !Text Top 10 Create 2

Include only the first 10 rows and add 2 empty ones.

tblA Where @ Form ! Include

Insert the text from Form ! Include into the SQL-string

SQL tails

Top + index*20 ‘ Comment

' Comment before line

“long text A” & _ ‘ Line continuation and comment

“long text B” ‘ Comment in last line too

Line continuation and comments

IIf(a=a, b, c) = b Immediate If

IIf(a<>a, b, c) = c

IIf(Null, b, c) = c

Choose(2, a, b, c) = b Choose

Choose(4, a, b, c) = Null

Choose(Null, a, b, c) = Null

Iif and Choose

Text in gray: Maybe implement later Uvis Reference card - page 3Page 2 - Uvis Reference card

Nulls: Null operands give Null results and error report.

Chr(65) = “A”, a one-letter string with this

ascii character

Asc(“AB”) = 65, Ascii code for first character

Len(“A_B”) = 3, length of string.

Left(“abc”, 2) = “ab”, leftmost two characters

Left(“abc”, 8) = “abc”, as many as available

Right(“abc”, 2) = “bc”, rightmost two characters

Mid(“abcdef”, 2, 3) = “bcd”, three chars, chars 2-4

LTrim(“ ab ”) = “ab ”, leading spaces removed

RTrim(“ ab “) = “ ab”, trailing spaces removed

Trim(“ ab “) = “ab”, leading and trailing removed

Lcase(“A-b”) = “a-b”, lower case of all letters

Ucase(“A-b”) = “A-B”, upper case of all letters

Space(5) = String of 5 spaces

NewLine() = String of one new line char

String functions

Sqr(x) Square root of x. Sqr(9) = 3.

Sin(r), Cos(r), Tan(r), Atn(x), Acos(x), Asin(x)

Trigonometric functions. R measured in radian (180

degrees = π = 3.141592 radian)

Sin(0) = 0, Sin(3.141592 / 2) = 1.

Pow(x,y) X to the power of y. Pow(2, 3) = 8.

Log(x, y) Logarithm of x with base y. Log(8, 2) = 3.

Rnd() A random double number between 0 and 1.

RndInt(n,m) A random integer between n and m-1.

Abs(x) Returns x for x>=0, -x otherwise.

Hex(x) Returns a string with the hexadecimal

value of x. Hex(31) = “1f”

Oct(x) Returns a string with the octal value of x.

Oct(31) = “37”

Sgn(x) Returns 1 for x>0, 0 for x=0, -1 for x<0

Int(x) Rounds x down to nearest integral value

Fix(x) Rounds x towards zero

Math functions

Null parameters: Always give a Null result.

Now() = current DateTime (maybe simulated)

Date() = current date, 0:00 (simulated)

ToDay() The same as Date()

Time() = current time (since midnight)

TimeOfDay() The same as Time()

Day(#25-12-2012#) = 25, the day as Integer

Month(#25-12-2012#) = 12, the month as Integer

Year(#25-12-2012#) = 2012, the year as Integer

Weekday(#25-12-2012#) = 3 (Sunday=0)

Hour(# ... 13:14:15#) = 13

Minute(# ... 13:14:15#) = 14

Second(# ... 13:14:15#) = 15

DateAdd("d", 4, #30-12-2012#) = #03-01-2013#

"y" "m" "d" "h" "n" "s"

Year, month, day, hour, minute, second.

Timer() = Number of seconds since

midnight, with fractional seconds.

DateSerial(2002, 12, 25) = #12/25/2002#

TimeSerial(12, 28, 48) = 0.52 (Time 12:28:48)

Date-time functions

Nulls: Null operands give Null results and error log.

System prefix can be omitted if unambiguous.

System.CInt(“2.6”) = 3

CInt("2.6") = 3, omitting prefix.

Round(2.6) = 3.0000 (Double)

Rounding down: See Math functions Int, Fix.

CByte(“37”) =37. Overflow outside 0..255

CLng(“99456”) = 99456

CDbl(“-2.6”) = -2.6

CCur(1/3) =0.3333 (always 4 dec)

CDate(“23-10-03”) = #23-10-2003#

Uses local settings for input format

CDate(1) = "31-12-1899"

CStr(23) = “23”. No preceding space.

CStr(#23-10-2003#) = “23-10-03 00:00:00”

Converts to local date format

IsNull(A) True if A is null. See also operator

Default.

IsDate(v) True when v is a date or a string that can

be converted to a date

IsNumeric(v) True when v is a number or a string that

can be converted to a number.

Conversion and test functions

23, -23, 0, -4.9E-20 Decimal numbers

&h09A0FF, &o177 Hex and Octal

Color.Red Predefined colors

Keys.Enter, Font.Arial Keyboard keys, fonts, etc.

"Letter to:" Strings

Chr(65) The text “A”

"John" & NewLine() "Doe" Two lines

"Don’t say ""no"" " Don’t say “no”

True, False Booleans

Null Null and DBnull

In local format Date/time

#24-12-2011# 24th Dec 2011

#24-12-11 14:15:00# 24th Dec 02 at 14:15

Constants

Nulls: Null operands give Null results and error log.

^ Exponentiation

- Unary minus, 2*-3 = -6

* Multiply, Result type is Integer, Double, etc.

/ Divide, Single or Double result, 5/2 = 2.5

\ Integer divide, result truncated, 5\3 = 1

Mod Modulus (remainder), 5 Mod 3 = 2

+ - Add and subtract numbers and DateTime.

DateTime as number of days: Now() – 0.5

& + String concatenation, String result

= <> < > <= >= Equal, unequal, less than, etc.

s Like “s%n” Wildcard compare. % any char sequence

here. _ any char here. [cz] c or z here. [!cz] not

c or z here.

Not Negation. Bit-wise negation for integers

And Logical And. Bit-wise And of integers

Or Logical Or. Bit-wise Or of integers

Xor Exclusive Or. Bitwise on integers

A ? B : C If A is true, B else C.

A Default B A, but B if A is null or error. Errors are not

logged. Not allowed in SQL; use IsNull(A).

Init B B when the form is opened. User actions may

change the value later.

Partition(22, 0, 100, 10) = "20:29" Only in SQL

a Between 3 and 9 Only in SQL

a IN (2, 3, 5, 7) Only in SQL

Operators, decreasing precedence

Rows: tblA For each row in tblA, create a component.

Rows: txtB For each txtB component, create one of me.

I share txtB's data row and index.

Name The name of the template, e.g. txtPerson.

txtPerson Ignore Don’t show me for the time being.

Form My Form component. Read-only.

Main The component that has my row. Read-only.

Index 0, 1, 2 ... My index in my bundle. Read-only.

Last The last index in my bundle.

Top Pixels from my canvas top to my top.

Bottom Pixels from my canvas top to my bottom.

Height Pixels between my top and bottom border.

Left Pixels from my canvas left to my left.

Right Pixels from my canvas left to my right.

Width Pixels between my left and right border.

BackColor Color of my inner area.

BorderColor Color of my border.

Weight Number of pixels across my border.

Visible False if I am not visible. Default: True.

Canvas The component where I am located. It may

scroll and clip me. My left and top don't

change when it scrolls. Default: My form.

ZOrder Integer. On my canvas, I am above

components with a lower ZOrder.

Common event handlers Act when the event occurs

Click, DoubleClick, KeyDown, KeyUp, KeyPress

MouseDown, MouseUp, GotFocus, LostFocus

MouseEnter, MouseMove, MouseLeave

Common component properties

Converts a value to a string, based on a format string.

Format characters that are not placeholders, are shown

as they are. Backslash+character is shown as the

character alone, e.g. \d is shown as d.

Numeric placeholders

0 Digit, leading and trailing zero okay here

Digit, no leading or trailing zero here

. Decimal point (shown as the local variant)

, Thousand separator (shown as the local variant)

e- or e+ Exponent or exponent with plus/minus

% Show number as percent

Format(2.3, “00.00”) = “02.30”

Format(2.36, “#0.0”) = “2.4”

Format(0.3, “##.0#”) = “.3”

Format(32448, “(00)00 00”) = “(03)24 48”

Format(32448, “##.#e+0”) = “32.4e+3”

Format(32448, “##.#E-0”) = “32.4E3”

Format(0.5, “#0.0%”) = “50.0%”

; Separator between formats for positive,

negative, and zero values:

Format(-3, "000;(000);zero") = “(003)”

Predefined numeric formats

g (general), c (currency), f (fixed), p (percent), e

(scientific), n (with thousand separator), x (hex)

Date/time placeholders

Example: DT = #3-2-2002 14:07:09# (Sunday)

Format(DT, “yyyy-MM-dd HH:mm:ss”)

= “2002-02-03 14:07:09”

Format(DT, “dddd yy-MMM-d a\t HH:mm”)

= “Sunday 02-Feb-3 at 14:07”

yy Year, two digits “02”

yyyy Year, four digits “2002”

M Month, no leading zero “2”

(Interpreted as minutes after h)

MM Month, two digits “02”

(Interpreted as minutes after h)

MMM Month, short text “Feb”

MMMM Month, full text “February”

d Day of month, no leading zero “3”

dd Day of month, two digits “03”

ddd Day of week, short text “Sun”

dddd Day of week, full text “Sunday”

H Hour, no leading zero, 24-hour clock

HH Hour, two digits, 24-hour clock

h, hh Hour, 12-hour clock

tt Show AM or PM here, 12-hour clock only

zz, zzz Show time zone, +1, -8.30

m Minutes, no leading zero “7”

mm Minutes, two digits “07”

s Seconds, no leading zero “9”

ss Seconds, two digits “09”

f, ff ... Fractions of seconds

Predefined date formats

G (local date and/or time), D (long date), d (short date)

T, t (local long/short time), u (local GMT sortable) ...

Format function

