
Microsoft-Access Tutorial
Soren Lauesen

E-mail: slauesen@itu.dk

Version 2.4b: July 2011

Contents
1. The hotel system... 4
2. Creating a database ... 6

2.1 Create a database in Access 6
2.2 Create more tables ... 10
2.3 Create relationships 12
2.4 Look-up fields, enumeration type 14
2.5 Dealing with trees and networks.................... 16

3. Access-based user interfaces 18
3.1 Forms and simple controls 18

3.1.1 Text box, label and command button...... 18
3.1.2 Adjusting the controls............................. 20
3.1.3 Cleaning up the form 20
3.1.4 Shortcut keys for the user 22
3.1.5 Lines, checkbox, calendar....................... 22
3.1.6 Combo box - enumeration type 24
3.1.7 Combo box - table look up 26
3.1.8 Control properties - text box................... 28

3.2 Subforms.. 30
3.2.1 Subform in Datasheet view..................... 31
3.2.2 Adjust the subform 34
3.2.3 Mockup subform..................................... 36
3.2.4 Subform in Form view............................ 36
3.2.5 Summary of subforms............................. 38
3.2.6 Prefixes ... 38

3.3 Bound, unbound and computed controls........ 40
3.3.1 Showing subform fields in the main form42
3.3.2 Variable colors - conditional formatting. 42

3.4 Tab controls and option groups...................... 44
3.5 Menus .. 46

3.5.1 Create a new menu bar............................ 46
3.5.2 Add commands to the menu list 48
3.5.3 Attach the toolbar to a form.................... 48
3.5.4 Startup settings - hiding developer stuff . 48

3.6 Control tips, messages, mockup prints 50
4. Queries - computed tables................................. 52

4.1 Query: join two tables.................................... 52
4.2 SQL and how it works 54
4.3 Outer join ... 56
4.4 Aggregate query - Group By.......................... 58
4.5 Query a query, handling null values 62
4.6 Query with user criteria 64
4.7 Bound main form and subform...................... 66

4.7.1 Editing a GROUP BY query................... 67
5. Access through Visual Basic 68

5.1 The objects in Access 68
5.2 Event procedures (for text box) 72

5.2.1 More text box properties......................... 72

5.2.2 Computed SQL and live search...............74
5.2.3 Composite search criteria........................76
5.2.4 Event sequence for text box78

5.3 Visual Basic tools...80
5.4 Command buttons ..84
5.5 Forms ...86

5.5.1 Open, close, and events...........................86
5.5.2 CRUD control in Forms..........................87
5.5.3 The OpenForm parameters......................89
5.5.4 Multi-purpose forms (hotel system)........90
5.5.5 Dialog boxes (modal dialog)...................92
5.5.6 Controlling record selection....................93
5.5.7 Column order, column hidden, etc.94
5.5.8 Area selection, SelTop, etc......................94
5.5.9 Key preview ..97
5.5.10 Error preview ..97
5.5.11 Timer and loop breaking98
5.5.12 Multiple form instances.........................99
5.5.13 Resize..100

5.6 Record sets (DAO).......................................102
5.6.1 Programmed record updates..................102
5.6.2 How the record set works......................104
5.6.3 The bound record set in a Form106
5.6.4 Record set properties, survey108

5.7 Modules and menu functions110
5.7.1 Create a menu function110
5.7.2 Define the menu item............................112
5.7.3 Managing modules and class modules ..112
5.7.4 Global variables114

6. Visual Basic reference......................................116
6.1 Statements ..116
6.2 Declarations ...120
6.3 Constants and addresses...............................122
6.4 Operators and conversion functions124
6.5 Other functions...128
6.6 Display formats and regional settings132

7. Access and SQL..134
7.1 Action queries - CRUD with SQL134

7.1.1 Temporary table for editing134
7.2 UNION query...136
7.3 Subqueries (EXISTS, IN, ANY, ALL . . .) ..138
7.4 Multiple join and matrix presentation140
7.5 Dynamic matrix presentation142
7.6 Crosstab and matrix presentation144

8. References...148
Index..149

Printing instructions
Print on A4 paper with 2-sided printing so that text and associated figures are on
opposing pages.

Version 1: October 2004.

Version 2.1: November 2004. Changes:
a. Restructured section 3.2 with small additions.
b. Section 7.1 on action queries added.
c. Small changes and additions to Chapter 6 with corresponding changes in the

Reference Card.
d. Index provided

Version 2.2: April 2004. Changes:
a. SQL HAVING introduced in section 4.2 and the example in section 4.4.
b. More on aggregate functions in section 4.4.
c. ColumnOrder, ColumnWidth discussed in section 5.5.7.
d. Selection of an area in the datasheet is discussed in section 5.5.8.
e. Section 5.7 (action queries) now moved to Chapter 7.
f. Action queries, Union, Subqueries, Crosstab, etc. discussed in Chapter 7 (a new

chapter).
g. Various small changes and improved explanations here and there.

Version 2.3: September 2006. Changes:
a. Access 2003 dialog when opening a database changed (page 8).
b. Look-up fields for foreign keys deleted (last part of section 2.4). Access's

automatic creation of relationships caused too much confusion.
c. Combo boxes described in sections 3.1.6 and 3.1.7.
d. More events explained in section 5.2.3.
e. Various misprints corrected.

Version 2.4: August 2007 and July 2011. Changes:
a. Partial integrity (page 12).
b. Adding a label to a control (page 20).
c. DateTime Picker (page 22).
d. More Null rules (page 62, 77, 124).
e. Access data model and experiments improved (page 68-70).
f. Composite search criteria, more computed SQL, date comparison (page 76-77).
g. Event sequence for textbox: small corrections, e.g. OldValue (page 78).
h. Improved area selection (page 95-96).
i. Error handling, user errors (page 97-98).
j. Timer and loop breaking (page 98-99).
k. Managing modules and class modules (page 112).
l. Error handling, VBA errors, Err object (page 117).
m. Enum type (page 121).
n. Partition operator (page 124).
o. Week number in the Format function (page 126).
p. Dynamic matrix simplified (page 136).
q. Minor corrections and improvements in many places.
r. Version 2.4a: Note on AutoNumber added to Figures 2.1C and 2.4.
s. Version 2.4b: Copyright notice more liberal. Misprint corrected (page 65, step

14 and 15). Figure 52B (page 75) shows quote-stuff more clearly. SendKeys on
page 99 elaborated.

© Soren Lauesen, 2007
Permission is granted to use, print and copy the file on a non-profit basis as long as
the source is clearly stated. The document is available on the author's web site on
these conditions.

2 Preface

Preface
This booklet shows how to construct a complex appli-
cation in Microsoft Access (MS-Access). We assume
that the user interface has been designed already as a
paper-based mockup (a prototype). How to design a
good user interface is a separate story explained in
User Interface Design - a Software Engineering Per-
spective, by Soren Lauesen.

After design, development continues with constructing
the database, constructing the user interface, binding
the user interface to the database, and finally develop
the program. This is what this booklet is about.

The reason we illustrate the construction process with
MS-Access is that it is a widely available tool. Any-
body who has Microsoft Office with MS-Word, also
has Access and the programming language Visual Ba-
sic behind Access.

MS-Access is also a good illustration of many princi-
ples that exist on other platforms too, for instance a re-
lational database, a Graphical User Interface (GUI),
event handling, and an object-oriented programming
language. MS-Access contains all of these parts - co-
operating reasonably smoothly.

Organization of the booklet
The chapters in the booklet are organized like this:

1. An introduction to the hotel system that is used as
an example throughout the booklet.

2. Creating a database. Construct a database that cor-
responds to the data model behind the design. The
user will only see the database indirectly - through
the screens we construct.

3. Access-based user interfaces. Construct the screens
and menus that the user will see. We follow the pa-
per-based mockup designed in User Interface De-
sign. You can use the result as a tool-based
mockup.

4. Queries - computed tables. Connect the screens to
the database, usually by means of queries - com-
puted data tables. The result will be a partially
functional prototype.

5. Access through Visual Basic. Program what the
buttons and menus will do when the user activates
them. The result will be a fully functional prototype
and later the final system to be delivered to the
customer. The first part of the chapter is tutorial -
mandatory reading if you want to work with Visual
Basic and Access. The rest of the chapter is for
looking up various subjects. We assume you know
a bit of programming already.

6. Visual Basic reference. A reference guide to the
Visual Basic language for Applications (VBA).

7. Access and SQL. An overview of the remaining
parts of SQL, for instance how to update the
database through SQL. We also explain how to
generate matrices of data with dynamically chan-
ging headings.

Using the booklet for teaching
We have experimented with using the booklet for
teaching. First we tried to present part of the material
with a projector, then let the students try it out on their
own, next present some more, etc. Although the
students listened carefully, it turned out to be a waste
of time, partly because the students worked with vastly
different pace.

Now we give a 15 minute introduction to the main
parts of Access: the database window, the tables, the
forms - and how they relate to what they have learned
in user interface design. Then the students work on
their own. We have instructors to help them out when
they get stuck.

The hotel system
We have chosen to illustrate the construction process
with a hotel example, because most people have an
idea what it is about, yet it is sufficiently complex to
show typical solutions in larger systems. Some of the
complexities are that a hotel has many types of rooms
at different prices; a guest can book several rooms,
maybe in overlapping periods; a room may need reno-
vation or repair, making it unavailable for a period; the
hotel keeps track of regular guests and their visits over
time.

Simplifications
However, we have simplified the system in many other
ways to shorten the discussion. For instance we ignore
that in most hotels, rooms are not booked by room
number, but by room type; hotels usually overbook, i.e.
book more rooms than they have, expecting that some
customers will not turn up. We also ignore all the other
aspects of operating a hotel, for instance keeping track
of when rooms are cleaned and ready for the next
guest, purchasing goods, planning who is to be on duty
for the next weeks, payroll and general accounting. In
spite of these simplifications, the example still shows
the structure of larger systems.

On-line resources
A demo-version of the hotel system, a VBA reference
card, etc. are available from the authors's web site:
www.itu.dk/people/slauesen. Comments are welcome.

Soren Lauesen, slauesen@itu.dk

 Preface 3

1. The hotel system
In this booklet we illustrate MS-Access by means of a
system for supporting a hotel reception. The system is
used as the main example in User Interface Design - a
Software Engineering Perspective, by Soren Lauesen.
If you know the book, skip this section and go straight
to Chapter 2.

Screens
The hotel system consists of the screens shown in Fig-
ure 1A.

Find guest. The Find guest screen allows the recep-
tionist to find a guest or a booking in the database. The
receptionist may enter part of the guest name and click
the Find guest button. The system then updates the
lower part of the screen to show the guests or bookings
that match. The receptionist may also find the guest by
his phone number, room number, or stay number (also
called booking number).

The receptionist can select the guest from the list and
click the buttons to see details of the booking or create
a new booking for the guest.

Room Selection. The Room Selection screen gives an
overview of available rooms in a certain period. Avail-
ability is shown as IN when the room is occupied,
BOO when it is booked, etc. The receptionist may
specify the period of interest and the type of room, then
click the Find room button. The system updates the ta-
ble at the bottom of the screen to show the rooms of
interest. The receptionist can then choose a room and
book it for the guest – or check a guest into the room.

Stay. The Stay screen shows all the details of a book-
ing, for instance the guest and his address, the rooms
he has booked and the prices. When the guest is
checked in, the Stay screen also shows breakfast and
other services he has received. The system shows these
details on the Services tab. Here the receptionist can

record services that the guest has received. The system
uses the term Stay to mean a booking or a guest who
has checked in.

Breakfast list. The Breakfast screen shows the break-
fast servings for a specific date. It handles just two
kinds of breakfast: self-service breakfast in the restau-
rant (buffet) and breakfast served in the room. The
waiter in the restaurant has a paper copy of the list and
records the servings here. Later the receptionist enters
the data through the Breakfast screen.

Service list. The Service list shows the price for each
kind of service. Hotel management uses this list to
change service prices or add new kinds of service.

Database
The system uses a database with several tables. They
are shown as an E/R data model on Figure 1B.

tblGuest has a record for each guest with his address
and phone number.

tblStay has a record for each stay (booking or checked
in) with a booking number (stay number) and the pay
method.

tblRoom has a record for each room in the hotel.

tblRoomState has a record for each date where a room
is occupied. It connects to the room occupied and the
stay that occupies it. If the room is occupied for repair,
it doesn’t connect to a stay.

tblRoomType has a record for each type of room (room
class) with a short description of the room type, the
number of beds, and the prices.

tblService has a record for each type of service with its
name and price per unit.

Fig 1B. Tables as E/R model

tblStay

tblRoomState

tblRoom

tblServiceReceived tblServiceType

tblGuest

tblRoomType

tblServiceReceived has a record for each delivery of
service to a guest. It connects to the type of service and
to the stay where the service is charged (there is an in-
voice for each stay).

4 1. The hotel system

Fig 1A. Hotel system screens

 1. The hotel system 5

2. Creating a database
Highlights
• Transform the data model to a database in MS-

Access.
• Use lookup-fields to enter foreign keys and enu-

meration types.

In this chapter you learn how to realize a data model as
a relational database in Microsoft Access. We assume
that you know about data modeling, tables, attributes,
and foreign keys as explained in User Interface Design.
The description below is based on Access 2000, but

there are only small differences from Access 97 and
Access 2003. We will mention the more important
ones.

In this and the following chapters we will use the hotel
system as an example, and you will construct several
parts of the system. However, the purpose is not to
construct the hotel system, but to show how MS-
Access works. This knowledge will enable you to con-
struct a functional version of your own system - for in-
stance the one you have designed when reading User
Interface Design.

2.1 Create a database in Access
In Microsoft Access a database consists of one single
file. The file contains all the tables of the database, the
relationships (the crow's feet), queries (computed ta-
bles), forms (user windows), and many other things.

As a systems developer you will design tables and user
windows. As a user you will enter data into the tables
(usually through user windows) and get data out of the
tables, for instance through the same windows or
through printed reports.

In Access it is very easy to switch between the devel-
oper role and the user role. As a developer you will
typically design some tables, then switch to the user
role to enter data into them, then switch back to the de-
veloper role to change the design, design more tables,
etc. Access can to a large extent restructure the data
that already is in the database so that it matches the
new table design.

Warning: Make sure you follow the steps below
closely. Don't skip any of the numbered steps. The
result might be that you get stuck later in the text.

Create the database
1. Locate the Access program. Depending on the way

the system is set up, you may find it under Pro-
grams -> Microsoft Access or Programs -> Micro-
soft Office -> Microsoft Access.

2. In Access 97 and 2000: Open Access and ask for a
"blank" database.
In Access 2003: Open Access and click the New
icon (under the File menu). Then click Blank da-
tabase in the help area to the far right.

3. Access now asks where to store the new database.
Select the folder you want and give the database
the name hotel (or hotel.mdb).

The screen now shows the database window. It should
look like Figure 2.1A. (In Access 97 it looks slightly

Fig 2.1A The Access database window

One Access database = one file.
File name = hotel.mdb

Create a
table

The database window:
List of tables
(empty initially)

Use the table.
Shortcut: Enter

Design the table.
Shortcut: Ctrl+Enter

6 2. Creating a database

Fig 2.1B Define a table (design view)

Primary key.
Right click

Possible
data types

Field properties.
Also use F1 - Help.

Table name. Access asks for it the
first time you close the window.

One line
per field

different). We have selected the Tables tab, but there
are no tables or other things in the database as yet.
However, you see three icons that can create tables for
you. When you have created a table, it will appear in
the table window and you can then Open it and enter
data into it, or you can Design it, i.e. change the defi-
nition of it. (In Access 97 the database window looks
like a traditional tab form. There are no create-icons,
but function buttons for the same purpose.)

Define a table
4. Double click on Create table in Design view.

Now you get a window as shown on Figure 2.1B. Here
you define the fields (attributes) of the table. The list of
fields runs downwards with one line per field. Initially
there are only empty lines. The table hasn't got a name
yet. Access asks for the name when you close the win-
dow.

The figure shows the finished guest table. You see the
field names to the left. In the middle column is the type
of the field - Data Type. The figure shows all the pos-
sible types as a combo box. The most important data
types are Text, Number, Date/Time, and AutoNumber.
An AutoNumber is a counter that Access increases for
each new record, so that it serves as a unique key. The
value is a Long Integer (32-bit integer). We explain
more about data types in the next section.

5. Fill in all the field lines according to the attributes
in the guest table (see the figure). All the fields are

of type Text, except the guestID which is of type
AutoNumber.

Note that although we say phone number and passport
number, these fields are texts because the "numbers"
contain parentheses, dashes and maybe letters.

When you have chosen a data type, you can choose a
number of other field properties. They are in the lower
part of the window. On the figure you can see that the
name field is a text field with space for 50 characters.
You can also see that the user doesn't have to enter
anything in the name field (Required=No). You should
change this to Yes since it doesn't make sense to have a
guest without a name.

Try to use Access's help to find more information about
the data types and their properties. For instance, put the
cursor in the Data Type of a field and click F1. Or
point at one of the properties and click F1.

Lookup Wizard is not a field type. If you select Lookup
Wizard, it makes the field into a combo box where the
user can select a value instead of typing it into the
field. We will look closer at Lookup in section 2.4.

Key fields
Often you have to define a key field so that other tables
can refer to this one. In our case, guestID must be the
key field:

6. Right-click somewhere in the guestID line. Then
select Primary Key. Access now shows that the
field is the key.

 2. Creating a database 7

You can remove the key property again by once more
selecting Primary Key. If the key consists of more than
one field, you first select all the fields by clicking on
their left-hand marker with Ctrl down. Then select
Primary Key by right-clicking inside one of the field
lines.

7. Close the window. Access asks you for the name
of the table. Call it tblGuest. (The prefix tbl will
help you remember that it is a table. As the system
grows, there will be guest windows, guest buttons
and many other things. Without discipline on your
part, it becomes a mess.)

If you have not defined a primary key, Access will
warn you and suggest that it makes one for you. Don't
let it - do it yourself. Or at least check what Access
makes in its excessive helpfulness.

Enter data
After these efforts, it is time to record some guests.
Fortunately it is easy:

8. Select the guest table in the database window.
Click Open or just use Enter.

Now the system shows the table in user mode (Da-
tasheet view) so that you can enter guest data.

9. Enter the guests shown on Figure 2.1C. You add a
new guest in the empty line of the table - the one
marked with a star. Notice that as soon you start
entering something, the record indicator changes to
a pencil and a new star line appears. The pencil
shows that you are editing the record, and the
record you see is not yet in the database.

On Figure 2.1C we originally entered a guest that got
guestID 4, later deleted this guest. Access will never
reuse number 4 for a guest.

Close and reopen the database
To feel confident with Access, it is a good idea to close
and open the database now.

10. Close the large Access window. (Not the small
database window inside the Access window.)

Notice that Access doesn't ask whether you want to
save changes. Access saves them all along, for instance
when you define a table or when you enter a record in
the table.

11. Find your database file (hotel.mdb) in the file fold-
ers. Use Enter or double click to open it.

Access 2003 is very security concerned and asks you
several questions when you open the file. The dialog
may vary from one installation to another, but is
something like this:

12. The file may not be safe. Do you want to open it?
Your database is safe, so answer Open.

13. Unsafe expressions are not blocked. Do you want
to block them? You want full freedom, so answer
No.

14. Access warns you one more time whether you
want to open. Say Open or Yes. (In some versions
the question is a very long text box, and you
cannot understand it. Say yes anyway.)

As an alternative, you may say yes to blocking the
unsafe expressions. This will save you some questions
when you open the file in the future. However, some
installations don't allow you to block expressions.

Note that Access 2003 shows that your database is in
Access 2000 format. This is all right. It allows you to
use it also from Access 2000. You can convert it to
other formats with Tools -> Database Utilities -> Con-
vert Database.

Undo. Use Esc to undo the changes you have made to
the current record.

• The first Esc undoes changes to the field where the

cursor is.
• The second Esc undoes all changes to the record

where the cursor is.

As soon as you move the cursor to the next line,
Access stores the record in the database and you cannot
make an automatic undo anymore. However, you can
manually edit the stored record. Notice that the pencil
disappears when the record is stored in the database.

Shortcut keys for data entry
F2: Toggles between selecting the entire field and se-

lecting a data entry point.
Shift+F2: Opens a small window with space for the

entire field. Useful for entering long texts into a
field that is shown only partly in the table. How-
ever, the text cannot be longer than you specified in
the table definition.

Alt+ArrowDown: Opens a combo box. Choose with
the arrows and Enter.

Shortcut keys for navigation
Tab and Shift+Tab: Moves from field to field.
Ctrl+Tab: Moves from one tab form to the next, for in-

stance in the lower part of the table definition win-
dow.

F6: Moves between upper and lower section of a win-
dow, for instance in the table definition window.

Ctrl+Enter: Opens the table in design mode (in the da-
tabase window).

See also shortcuts on the reference card

8 2. Creating a database

Fig 2.1C Enter data in user mode (datasheet view)

In database window:
Select table -> Open (or Enter)

Shift+F2 to see field in a separate windowF2 to select entire field

Record
selector

Edit
indicator

Add
record

Esc to undo.
First Esc: Undo field change
Second: Undo record changes

AutoNumber: You get
1, 2, 3, 4. Don't worry
that it is different
from the figure.

 2. Creating a database 9

2.2 Create more tables
You should now create the remaining tables for the
hotel. The data model on Figure 2.2 shows the tables
we will use. To simplify your job, we have shown all
the keys, including the foreign keys and the artificial
keys.

1. Close the guest table.
2. Create all the remaining tables in the same way as

you created the guest table (from the Tables tab
use Create table in Design view - or click New).

 Make sure you define all the fields. Otherwise you will
get stuck when later constructing the user interface.
Here are a few notes about the various tables:

tblStay:
stayID is the primary key of tblStay. Make it an Auto-

Number.
guestID is a foreign key that refers to the AutoNumber

in tblGuest. The foreign key must have a matching
data type - a long integer. Choose Data Type =
Number and Field Size = Long Integer. Warning:
Don't make the foreign key an AutoNumber. This
would cause Access to fill in the foreign key fields
automatically, and you cannot change the numbers
so that they point to the primary keys in the guest
table.

paymethod is an enumeration type. Make it an integer
(a 16-bit integer, not a long integer). Choose Data
Type = Number and Field Size= Integer. We will
use the value 1 to denote Cash, the value 2 to de-
note Visa, etc. We will look closer at this in section
2.4.

state must also be an enumeration type. Make it an in-
teger. Here the value 1 will denote booked, 2 in, etc.

tblRoomType:
Contains one record for each type of room, for instance
one for double rooms, one for single rooms, etc. (In the
book User Interface Design, we added this table late in
the design process to illustrate the normalization con-
cept.)

roomType is an artificial key. An AutoNumber is okay.
description is a short text, for instance "double room,

bath".
bedCount is the number of beds in the room, including

temporary beds.
price1 and price2 are the standard price and a possible

discount price. The price should be a decimal num-
ber. Choose Data Type=Number, Field Size= Sin-
gle, Decimal Places =2.

tblRoom:
roomID is a natural key - the number on the door. So

don't use an AutoNumber. Use an integer.
roomType is a foreign key that refers to tblRoomType.

(You should by know how to deal with it.)

tblRoomState:
stayID and roomID are foreign keys. Ensure their types

match what they refer to. Notice that roomID refers
to a natural key, not to an AutoNumber.

date should be a Date/Time field with Format = Short
Date.

personCount is the number of persons staying in the
room. An integer should suffice.

state is similar to state for tblStay, although the values
are slightly different.

The key consists of two fields: roomID and date. It is a
bit tricky to specify this: select both fields by
clicking on the left-hand marker (hold down Ctrl
while selecting the second field). Then right-click
somewhere on the text inside the line.

Optional tables
The following two tables are needed for the full sys-
tem. However, you don't need to create them in order
to follow the tutorial.

tblServiceType:
serviceID is an artificial key. Should be an Auto-

Number.
name and price should be obvious. The price should be

a decimal number. Choose Data Type=Number,
Field Size= Single, Decimal Places =2.

tblServiceReceived:
stayID and serviceID are foreign keys that refer to

AutoNumbers. The foreign keys must thus be long
integers.

roomID is an optional reference to a room. An integer
should suffice. (This reference is needed when a
waiter records a service for a specific room and the
guest has more than one room.)

date should be a Date/Time field. Choose Format =
Short Date.

quantity is the number of items the guest has got - an
integer should suffice.

Data types
Data is stored in the computer according to its type.
Here is a description of the most important types in the
data base. Visual Basic deals with almost the same
types (see section 6.2 and the reference card under
Declarations).

Text. The field can contain any characters. The Field
Size property defines the maximum number of charac-
ters. The maximum cannot be above 255 characters.

Memo. Like a text field, but the maximum number of
characters is 65,535. Access takes more time to process
a memo field, so use text fields if adequate.

Number. The field can contain a number. The Field
Size property defines what kind of number:

10 2. Creating a database

• Integer. A small integer. It must be in the range -
32,768 to +32,767 (a 16-bit integer).

• Long Integer. It must be in the range from around
-2,140 million to +2,140 million (a 32-bit integer).

• Single. A decimal number in the range from
-3.4*1038 to +3.4*1038 with an accuracy of 6 or 7
significant digits (a 32-bit floating point number).

• Double. A decimal number in the range from
-1.8*10308 to +1.8*10308 with 14 significant digits
(a 64-bit floating point number).

• Decimal. A very long integer with a decimal point
placed somewhere. Intended for monetary calcula-
tions where rounding must be strictly controlled.
In the book we use Single or Double instead.

Numbers can be shown in many ways depending on the
format property of the field. You may for instance
show them with a fixed number of decimals, with a
currency symbol, etc.

Some formats show data in a way that depends on the
regional settings of the computer. If you for instance
specify the format of a number as Currency, the
number will show with a $ on a US computer and with
a £ on a British computer.

Date/Time. The field gives a point in time. In the
computer it is stored as the number of days since
30/12-1899 at 0:00. It is really a Double number, so the
number of days may include a fraction of a day. In this
way the field specifies the date as well as the time with
high precision. As an example, the number 1 corre-
sponds to 31/12-1899 at 0:00, the number 1.75 to
31/12-1899 at 18:00 (6 PM).

Usually we don't show a date field as a number, but as
a date and/or a time. The format property specifies this.

Also here you can choose a format that adapts to the
regional setting.

Yes/No. The field contains a Boolean value shown
either as Yes/No, True/False, or On/Off. The format
property specifies this.

AutoNumber. The field is a long integer (32 bits) that
Access generates itself as a unique number in the table.
Access numbers the records 1, 2, . . . as you enter the
records. However, you cannot trust that the sequence is
unbroken. For instance when you add a record and
undo the addition before having completed it, Access
uses the next number in the sequence anyway.

A foreign key is a field (or several fields) that refer to
something unique in another table - usually the primary
key. Be careful here. The foreign key and the primary
key must have the same type. However, when the
primary key is an AutoNumber, the foreign key must
be a long integer.

Changing a data type. Access is quite liberal with
changing a data type to something else - even if there
are data in the records. It can also change an Auto-
Number field to a number field, but not the other way
around. If you need to change field B to an Auto-
Number, create a new field C and make it an Auto-
Number. Then delete field B and rename field C to B.

If you for some reason want to store a record with an
AutoNumber of your own choice (for instance create a
stay with stayID=728), you need to append the record
with an INSERT query (see section 7.1). You cannot
just type in the stayID.

Fig 2.2 Create remaining tables

tblStay

tblRoomState

tblRoom

tblServiceReceived tblServiceType

stayID, roomID,
date, personCount,
state (booked | occupied | repair)

guestID, name, address1,
address2, address3,
phone, passport

roomID, roomType

serviceID, name, pricestayID, serviceID,
roomID, date, quantity

tblGuest

stayID, guestID,
paymethod (cash | visa ...),
state (booked | in |out | canceled)

tblRoomType roomType, description
bedCount, price1, price2

Optional tables

 2. Creating a database 11

2.3 Create relationships
When we have several tables, we can make relation-
ships (crow's feet). Then we get an E/R model instead
of a simple collection of tables. The relationships allow
Access to help us retrieve data across tables, check ref-
erential integrity, etc.

Figure 2.3 shows the hotel relationships in Access. It
resembles the crow's feet model quite well. You define
the relationships in this way:

1. Start in the database window and right-click
somewhere.

2. Choose Relationships.

Now you see an empty Relationship Window. You
have to tell Access which tables to show here. Some-
times a Show Table window pops up by itself. Other-
wise you have to invoke it with a right-click in the re-
lationship window.

3. In the Show Table window, select the tables you
want to include. In the hotel system it is all the ta-
bles.

4. Click Add and close the window. Now the tables
should be in the relationship window.

5. Create the relationship between tblGuest and
tblStay by dragging guestID from one table to
guestID in the other.

6. An edit-relationship window pops up. If not, right-
click on the relationship connector and choose the
edit window.

Access may complain:

Relationships must be on the same number of fields
with the same data types.

The cause is often that one end of the connector is an
AutoNumber and the other end a simple integer. It
must be a long integer to match the AutoNumber.

In the edit-relationship window, you can specify
foreign keys that consist of several fields. You can also
specify that the relationship has referential integrity, so
that all records on the m-side point to a record on the 1-
side.

7. In our case, all stays must point to a guest, so mark
the connector enforce referential integrity. (If
Access refuses this, it is most likely because you
have not defined the foreign key as a long integer.)

8. Close the relationship window. The relationship
connector now appears in the window between the
foreign key and its target.

The referential integrity makes Access show the con-
nector as 1-∞ (1:m). Based on referential integrity and
whether the connected fields are primary keys, Access
may also decide that it is a 1:1 relationship. It is not
important what Access decides in these matters. You
can later tell it otherwise when you want to use the
connector.

9. Create the remaining relationships too. Note that
there is no referential integrity between tblStay and
tblRoomState. It is on purpose - if the room is in
repair state there is no connected stay.

Partial integrity. Access provides a more relaxed
version of referential integrity. It allows the foreign key
to be either empty (Null) or point to a record on the 1-
side. This is the case for the relationship between
tblStay and tblRoomState. Give it partial integrity in
this way:

10. Open tblRoomState in design view. For stayID
(the foreign key) set the Default Value to empty
(delete all characters in the field). Also set
Required to No.

11. In the relationship window, right-click on the
connector and choose the edit window. Select
enforce referential integrity.

Note that you cannot see in the relationship window
whether the relationship has full or partial referential
integrity.

Deleting a relationship. If you need to delete a rela-
tionship, click it and press Del.

12 2. Creating a database

Fig 2.3 Create relationships

Right-click in database window.
Select Relationships

Choose tables to show
in the ER diagram

Create a relationship:
Drag 1-side field to m-side field (or opposite).
Edit the relationship - Referential integrity!

Right-click in ER diagram.
Select Show Table

Primary key

Foreign key

 2. Creating a database 13

2.4 Look-up fields, enumeration type
Your next task will be to fill in some data in all the ta-
bles. However, some of the fields are cumbersome to
fill in correctly. As an example, the pay method field is
a code where 1 means Cash, 2 Visa, etc. The user
should not have to remember these codes, so we will
let the user choose the value from a list. It is an
enumeration-type field:

 paymethod(Cash | Visa | . . .)

Figure 2.4 shows what we want when the user fills in
the paymethod field. We want the field to be a combo
box where the user can select the mnemonic text while
Access stores the number code. Here is how to do it:

1. Open tblStay in design view. (Select it and click
Design or use Ctrl+Enter).

2. Select the paymethod field and the data type
Lookup Wizard.

3. Access asks whether you (as a user) want to select
the values from a table or from a list of values that
you (as a designer) type in. Choose to type them
in. Then click Next.

4. Access asks how many columns your combo box
should have. Choose two and fill in the columns as
shown on the figure. Then click Next.

5. Access asks which column holds the value to store
in the table. In our case it is column 1.

6. Finally, Access asks for the column name that the
user will see. In our case, paymethod is okay.
Click Finish.

Fill in some stay records
You are now going to create some stay records and
connect them to a guest.

7. Close the table design window and open it in user
mode.

8. Also open tblGuest in user mode. Keep the two
tables side by side so you can see both. Make sure
you have created some guests. Otherwise do it
now.

9. Fill in a stay record using the combo box for
paymethod. Notice that what you see as a designer,
is the number stored in the database. The user
should not see the number, but the text. We can
arrange for this when the field becomes a text box
in the user window (see section 3.2.2).

10. Also fill in the foreign key guestID so that it refers
to one of the guests. Since there is referential
integrity, Access won't let you store the stay record
without a proper guestID. If you get into real
trouble, use Esc twice (see the Panic box for the
explanation).

11. Fill in a few more stay records in the same way.

How the look-up field works
Open tblStay in design mode and study the Lookup tab
for paymethod (bottom of Figure 2.4). The display
control property is Combo Box. It means that when the
user is to fill in the paymethod, he sees a combo box.

• For ordinary fields Display Control is Text Box. A
text box shows texts, numbers, etc. as a string of
characters. If you want to change the field back to
an ordinary field, just set Display Control to Text
Box.

The values the user can choose between are listed in
Row Source. You may edit the values here. Column
Count shows that these values are to be displayed as
two columns. Notice that Limit to List is No. It means
that the user can enter other values than those in the
list. In our case, it is not desirable, so set the property
to Yes. Sections 3.1.6 and 3.1.7 explain more about
combo boxes.

Undo the Lookup Wizard?
How do you make the field an ordinary field rather
than a lookup field? It doesn't help to make it an integer
or a text. Choose the Lookup tab at the bottom of the
table design window. Change Display Control to Text
Box. (See bottom of Figure 2.4.)

Panic? Undo data entry
When you enter data into the tables, Access checks
against the rules you have defined for the tables and the
relationships. For instance, when you enter the guestID
in tblStay, this ID must correspond to a guest in the
guest table. Access doesn't allow you to leave the
record before this is fixed. The reason is that Access
stores the record in the database as soon as you move
the cursor away from the record. And the database
must meet all the rules you have stated.

Sometimes you may not know what to type to satisfy
Access, and on the other hand you cannot leave the re-
cord to look at what to type. Many users panic here and
even switch off the power to close down the system.
The solution is to use Esc twice:

• First Esc: Undoes the correction you made in the
field where the cursor is.

• Second Esc: Undoes all the changes you made to
the record where the cursor is. This means that the
database returns to a consistent state where all the
rules are met.

14 2. Creating a database

Fig 2.4 Look-up fields, enumeration type

Desired result

H
ow

?

AutoNumber: You get
1, 2, 3, 4. Don't worry.

The values the
user sees

To undo the Wizard:
Change to Text Box

User may enter
anything.
Should be Yes?

What to store
in the table

Table in design mode:
Select Paymethod ->
Data Type -> Lookup Wizard

Possible values

Populate the database
12. Define the other enumeration fields as lookup

fields in the same way (the state fields in tblStay
and tblRoomState).

13. Fill in some realistic data in all the tables. You
may for instance use data corresponding to the
situation in Figure 1A. Now you have test data for
the rest of the booklet.

Important: Compact the database
Access is very liberate with disk space and when you
change things, it consumes new blocks on the disk.

You may soon find that a simple little database uses
several megabytes. Fortunately, Access can compact
the database. Do that every now and then in this way:

14. Select Tools->Database Utilities->Compact and
Repair Database. That is all. You may check that
the file length actually became much smaller. (In
Access 97, the Compact and the Repair utilities are
separate.)

 2. Creating a database 15

2.5 Dealing with trees and networks
E/R models can neatly describe complex relationships,
for instance as we saw it for the flight routes in User
Interface Design. Figure 2.5 shows the E/R model, but
Access cannot show such a model directly.

The problem is that Access identifies a relationship by
means of the two tables it connects. This means that
Access cannot have two connectors between the same
two tables. Also you cannot have a self-referential con-
nector. In the flight route model we need both of these.

As a compensation, Access offers shadow copies of a
table. The table and its shadow copies are the same ta-
ble, but they have different names. You can now create
connectors to the shadow copies and thus indirectly
create multiple connectors between the same two ta-
bles.

Figure 2.5 shows how to handle the flight routes in
Access by means of shadow copies.

1. Create a new database, FlightRoutes. Create the
tables City, Leg and Route in the usual way.

2. Open the relationship window and add all three ta-
bles to the relationship window. Then add City and
Leg once more. The relationship window should
now contain also a City_1 and a Leg_1 as shown
on the figure.

3. Drag the connectors as shown. You now have two
connectors between City and Leg. One is deter-
mined by City and the foreign key from. The other
is determined by City_1 and the foreign key to.
You also have a self-referential connector from
Leg to itself. It is determined by Leg_1 and the
foreign key next.

4. Try to fill in data for AA331 according to the fig-
ure. Note that there are only one City table and one
Leg table to fill in. The shadow tables are not real
tables.

16 2. Creating a database

Fig 2.5 Flight routes - shadow tables

Route

LegCity

next

from

to

routeID, mon, tue,
wed, thu, fri, sat, sun

legID,
route, next, from, to
deptTime, arrTime,

cityID, name

Route: AA331. Mon, Wed
Arr Dep

Chicago 10:45
Columbus 11:40 12:20
Washington 13:30 14:15
New York 15:10

Relationship between Leg and
Leg: Shadow copy of Leg.

Two relationships between City
and Leg: Shadow copy of City.

Right-click -> Show table.
Show City once more.

A leg

 2. Creating a database 17

3. Access-based user interfaces
Highlights
• Construct user windows (Forms).
• Add fields, sub-windows, etc. (Controls).
• Construct menus and other details.

An Access-based user interface consists of user win-
dows (called Forms in Access) , menus, and all the
little things such as error messages (message boxes)
and pop up help when the cursor rests on a field

(control tips). These are the things the user sees on the
screen. Access provides a lot of built-in functionality
that makes the user interface respond to user actions.
However, for a real system the built-in functionality is
rarely sufficient, and you will have to add your own
program pieces written in Visual Basic.

In this chapter we look only at what the user sees on
the screen. We hardly put real data into the fields. What
we are after is a tool-based mockup. Later we will add
real data and functionality to the screens.

3.1 Forms and simple controls
In this section we will gradually implement the
mockup window you see in Figure 3.1A. This window
helps the receptionist find a guest or a booking in the
database. Large hotels may have more than 100,000
guests in the database.

In the Access world, the window consists of a Form
with various Controls on it. A control may be a simple
field such as Last name, a button such as Find guest, an
area for a list of records such as the list of stays, and
several other things.

Let us get started:

1. Start in the database window, click the Forms tab,
and select Create form in Design view.

You now get an empty form in design mode, looking
somewhat like the one at the bottom of the figure. We
will put some of the controls on this form in a moment.

In order to align the controls nicely, it is best to show a
visible grid of dots on the form:

2. The property box for the form should be open. If
not, double click on the anonymous little square on
the form - where the rulers meet.

3. Set the grid dots. The form has a grid of lines.
They may be spaced as on the figure - a one-cm
grid. Or with larger cells - a one-inch grid. We also
want to see the grid dots. Look at the Format tab
and find the Grid X and Grid Y properties. (They
are far down the list - you may have to scroll down
to them). For a one-cm grid, set Grid X=5 and
Grid Y=5. For a one-inch grid set Grid X=12 and
Grid Y=12. Move the cursor to another property to
make the changes take effect. You should now see
a grid of dots as on the figure.

3.1.1 Text box, label and command button
4. The screen should show a toolbox window where

you can choose between various controls (bottom
left on the figure). If it doesn't, use View ->
Toolbox to see it.

5. Click the Text Box tool that looks like ab| and then
draw the white part of the field Last name. Draw it
so that it is two grid units high and about ten units
wide.

At this stage, don't worry if your controls are not prop-
erly aligned and sized. We explain about these details
below. To delete a control, select it and click Del. Or
use Esc to undo the last thing you made.

6. Access has automatically added a label part to the
left of the field. Click it and change the label for
the control to Last name:

7. Draw the two next text boxes as shown on the fig-
ure (Street and Phone). If you double click the text
box icon in the toolbox, the draw tool remains se-
lected so that you can draw many text boxes.
(Click Esc to get rid of it.)

8. Also draw a spare text box for later experiments
(Text 6 on the figure).

9. Now make sure the Wizard button is off at the top
of the toolbox.

10. Select the Command Button tool and draw the New
guest button. Make it three grid units high to allow
space for the text on the button. Click on the text
in the box to change it.

If you have the Wizard button on, Access will try to
make the button do something. (Our mockup has
nothing to do, so don't use the Wizard.)

In general, two grid units are a good height for a text
box and three units are suited for a command button.

18 3. Access-based user interfaces

Fig 3.1A Create a Form - a user window

Create a Form

List of forms
(empty initially)

The Forms
(user windows)
of the database

Wanted:
Tool-based
mockup

The Form

ControlsControlsControls

Property box for
the Form.

Set grid size to
5 units per cm .

Toolbox:
Click Text Box control.
Draw a box on the Form.

Click for
Form
properties

 3. Access-based user interfaces 19

Using the fields
You may wonder why Access writes unbound inside
all the boxes. It means that the box is not bound to any
record in the database. The user may enter something
but it is not automatically stored in the database. Try
this:

11. Close the form. Access asks for its name. Call it
frmFindStay. (We use the prefix frm for forms.)

12. Open it again in user mode. It should now look
like the bottom of Figure 3.1B. This is how the
user would see the form.

13. Try to enter something in the fields. It stays on the
screen, but is it persistent data?

14. Close the form and open it again (in user mode).
All the fields are blank - no data was saved. It was
just dialog data - not persistent data. Click the
command button - nothing happens. It is just a
mockup we have made. (In the next chapters we
will add real data and functionality.)

3.1.2 Adjusting the controls
1. Close the form and open it in design mode. Select

one of the text boxes. Notice the two black han-
dles, one on the label part and one on the text box.

2. Moving and sizing. Point the mouse at the label
handle. The cursor changes to a finger. Try to drag
the label part around. The text box itself doesn't
move. Point at the text box handle and use the fin-
ger to drag it around.

3. Point at the border of the text box. The cursor
changes to a hand. Drag it - both label and text box
should move.

4. Point at one of the sizing handles in the corners or
on the middle of a side. Drag here and the box
changes size.

5. Deleting a control. Click on the text box and click
Delete. Oops - both box and label disappeared!
Undo it using the Undo button or Ctrl+Z.

6. Click on the label part. Notice that now the sizing
handles are on the label part. Click Delete. The la-
bel part disappears.

If you want a label without the text box, select the label
tool from the toolbox and draw a label control.

If you want to add a label to a label-less text box, select
some label, copy it (Ctrl+C), select the text box and
paste the label (Ctrl+V).

7. Moving and sizing with the keyboard. Select a
control, then try moving it around with Ctrl+up,
Ctrl+down, etc. Try moving it with Shift+up, etc.
Now it changes size. This is one way to fine-tune
the positions and sizes. There is no way to enlarge
the picture as you can do in Word and many other
programs.

8. Select several controls at the same time. Either
hold Shift down while clicking on the controls one
by one, or drag a rectangle around them. (All con-
trols touching the rectangle will be selected.) Now

try to move and resize the controls with the key-
board, or drag them with the mouse.

9. Undo. You can undo your last operation with the
Undo button or Ctrl+Z. But only the last! You can
undo all changes since you last opened the form by
closing the form and saying No to saving the
changes. Try it now - you don't want to save the
last adjustments.

Make sure you see all menu items
Access 2000 and 2003 have an annoying feature where
it shows only the last menu items you have used. It
makes it difficult to follow the procedures below. Get
rid of this feature:

10. Right-click anywhere in the menus. Select Cus-
tomize->Options. Access 2000: Look at the
checkbox "Menus show recently used commands
first". Make sure that there is no check mark here.
Access 2003: Look at the checkbox "Always show
full menus". Make sure there is check mark here.

The Format menu and the grid
Open the form in design mode and select a control.
Now look at the Format menu at the top of the Access
window. There are several things here that can help
you design the form:

• Snap to Grid. If you check this box, all controls
you draw or move with the mouse will snap to the
grid in all four corners. If the grid points are
closely spaced - more than 9 per cm - Access
doesn't show the grid, but snaps to it anyway.

• Align. You can align the selected controls to the
left, right, etc. or you can align them to the grid.
Only their top-left point is aligned. They don't
change size.

• Size. You can change the size of the selected con-
trols so that they just fit the data in the control
(matching the chosen font size). Or you can make
them fit the grid in all four corners. Finally, you
can give all the selected controls the same width or
height.

• Change to ... You can transform the selected con-
trol to another one - with reasonable limitations.
For instance you can turn a text box into a combo
box or vice versa.

3.1.3 Cleaning up the form
You may notice that the form has things in the corners
that we don't want in the final user window (bottom of
Figure 3.1B). The title bar, for instance, holds our pro-
grammer-oriented form name, frmFindStay. It should
be Find Guest. There are also record selectors, naviga-
tion buttons, and space for a scroll bar that we don't
need in the final window. We can correct all of this by
setting properties of the form:

11. Make sure the form is open in design mode. Show
the property box for the form (double-click the lit-
tle square where the rulers meet).

20 3. Access-based user interfaces

Fig 3.1B Adjusting controls and the Form

Form name. Access asks for it
when you first close the form.

Handle for moving
Label part .

Handle for moving
Text Box part .

Drag here to
move both.

Form View:
User mode

Record
Selector

Navigation
Buttons Space for

scroll bar

Caption

Underline letter for
shortcut: &New guest

MinMax buttons

Control BoxControl Box

12. Set these properties on the Format tab: Caption
(the form name the user sees), Scroll bars (not
needed), Record selector (not needed), Naviga-
tion buttons (not needed).

There are other interesting properties on the Format tab
that you may need for other windows:

• Border Style specifies whether the form looks like
a resizable window, a dialog box or a message
box.

• Control Box is the buttons on the left and right of
the title bar. You may hide them.

• MinMax buttons and Close button are shown
when the control box is shown, but you may dis-
able them.

• Picture is none in our case, but you may specify a
picture file to be used as background.

You can get a good explanation of most of the proper-
ties by selecting the property and clicking F1.

Look and feel - Autoformat
You can give the form another look by means of Auto-
format. This changes the style, that is the background
of the form and the appearance of all fields and
buttons. You may try it if you like:

• Open the form in design mode. From the Format
menu at the top of the Access window, select
AutoFormat.

• You can choose various auto-formats. Through the
Options button you can determine whether you
want to change also field colors, fonts and borders.
When you close the AutoFormat box, the form has
changed its look.

• You may also create a new auto-format style based
on one of your forms. Open the form in design
view. In the AutoFormat box, select Customize ->
Create a new, and give the new AutoFormat a
name. You can then use this auto-format for other
forms.

 3. Access-based user interfaces 21

3.1.4 Shortcut keys for the user
In the final system, the user should be able to work
without a mouse. An easy way to do this is to assign a
shortcut key for each button and each label. As an
example, we might want the user to activate New Guest
with Alt+N. Why not do it now?

1. Change the name on the button into &New guest.
Change to user mode with the little icon in the top
left corner (Figure 3.1C). You should see that the
N is underlined.

2. Try Alt+N to move the cursor to NewGuest. Try
Tab and Shift+Tab to move between fields.

3. Add shortcut keys for the other labels too, for in-
stance as &Last name. Try it out in user mode.

What if you want a label with an &, such as
Bed&Breakfast? Access will treat & as a shortcut
mark. Remedy: Write && instead of &.

Tip: Changing mode/view. During design, you fre-
quently change between design mode and user mode.
The little icon at the top left (Figure 3.1C) allows you
to toggle between the modes. Click it - you change to
user mode (called Form View in Access). Click it again
- you change to design mode (Design View).

The icon has also a menu of views that you can roll
down as shown on the figure. There is one more view,
Datasheet View, which we will use later. It shows all
fields of the form as a table.

Saving. The form is not saved when you change mode.
You can thus experiment easily with the design. Saving
is not done until you close the form or explicitly save it
with Ctrl+S.

Shortcuts. You can change to design mode with
Alt+V+Enter, and to user mode with F5.

3.1.5 Lines, checkbox, calendar
Above we have tried some of the controls: text box,
label, and command button. Figure 3.1C shows some
other controls you may try now:

1. Line. Select the Line tool from the toolbox and
draw a line somewhere on the form. The line is
just a visual effect. It has no functionality.

2. Rectangle. Select Rectangle from the toolbox and
draw a rectangle around some of the existing con-
trols, for instance the left fields. The rectangle is
just a visual effect without functionality.

3. Colors. Double click on the rectangle to open its
property box. On the format tab, give the rectangle
a back color and set back style to normal. Now it
hides the controls it surrounds. Use the main
Access menu, Format -> SendToBack, to move it
behind the other controls. Experiment with differ-
ent back colors, border styles, and border colors. It

may in some cases be a good way of grouping
controls visually.

4. Checkbox. Select the checkbox tool and put a
checkbox on the form. The checkbox has function-
ality and shows a yes/no variable (a Boolean vari-
able). You can of course change the value in user
mode. If the variable is undefined - as it is initially
- the checkbox is gray in user mode.

Calendar control. The middle part of Figure 3.1C also
shows a calendar control.

5. To make room for the calendar control, extend the
grid area of the form by dragging its borders in
design mode.

6. Select the lower right icon of the toolbox (the
hammer). It gives access to more controls, most of
them rather complex. Depending on the way
Access was installed, you can see more or less of
the many controls. One of them is a Calendar con-
trol.

If you cannot see any Calendar control, you may have
to tell Access to look for it. Use Tools -> References.
You now see a list of the software packages Access
may look at. Find a Calendar Control and make sure it
has a check mark. Then close the reference list and se-
lect once more the hammer from the toolbox.

7. Select the Calendar from the tool list and draw a
large rectangle with the tool.

The Calendar control shows a single date variable. In
user mode you can click on a date in the calendar and
in that way store a date in the variable. In principle, the
Calendar control is just a kind of text box with a differ-
ent way of presenting and editing the text value.

DateTime picker. The bottom part of Figure 3.1C
shows two DateTime pickers. They look like combo
boxes, but when the user clicks the down-arrow, a
calendar appears.

8. Extend the grid area further, or remove the
calendar control.

9. Select the hammer tool again and look for
Microsoft Date and Time Picker Control. Select it.
(You may have to include it from Tools ->
Reference, as above.)

10. Draw the combo-box part of the control. You now
have a control that holds a date-time variable. Try
it out in user mode. Notice how the user can
increase or decrease dates and months with arrow
up and down.

11. The control doesn't have label. Give it one: Select
one of the other labels. Copy it (Ctrl+C). Select the
date-time control and paste it (Ctrl-V).

12. Create the other date-time control in the same way
- or copy and paste the first one.

13. Experiment with the properties of the DateTime
picker: In design mode, double-click the control. A

22 3. Access-based user interfaces

Fig 3.1C Form after changes

Checkbox
control

Line
(visual effect only)

Shortcut keys

Rectangle
(visual effect only)

Calendar
control

Select view mode:
Design, Form, Datasheet

DateTimePicker
control

DateTimePicker
drop-down

special DTPicker properties window should
appear.

(You can also get to this special window from Access's
standard property window: Select the Other-tab and
then Custom.)

14. Try changing the date format: Select format 3,
dtpCustom. In the CustomFormat box, define the
format as dd-MM-yyyy. Note that MM means
month, while mm means minute. (See also Figure
6.4B, Format function).

Try other changes too, for instance the UpDown
checkbox and the colors.

15. We are not going to use this fancy version of the
form in the following. If you want to keep it, save
a copy of it: Select the form in the database win-
dow and use copy and paste.

16. Delete the line, rectangle, checkbox and calendar
controls. We don't need them in the following.

 3. Access-based user interfaces 23

3.1.6 Combo box - enumeration type
Combo boxes are a bit more complex. We will first
make the Include combo box shown on Figure 3.1D. It
is one of the search criteria for guests, and with some
programming it will allow the user to display only
booked stays, only canceled stays, etc.

Technically speaking, this combo box holds a value of
enumeration type:

 include(booked | canceled | . . .)

In the same way as in the database, the user should see
the values booked, canceled, etc., but they should be
stored as the values 1, 2, etc.

1. Switch to design mode.
2. Set the Wizard button on at the top of the toolbox.
3. Select the Combo box tool and draw the Include

box as shown at the top right of the figure.

The Wizard appears. It works much the same way as
when you defined an enumeration-type field in the
database (section 2.4):

4. The Wizard asks you whether you want to look up
the values from a table or type them in yourself.
Select the latter and click Next.

5. The Wizard asks you how many columns you
want. Choose two: one for the stored value and
one for the value the user should see.

6. Fill in the columns as shown, and click Next.

7. The Wizard asks you to specify whether the stored
value is column one or two. Select column 1 and
click Next.

8. Finally, you may specify the label text in front of
the combo box. Use the text Include: (Or modify
the text directly on the Form). Finish the Wizard.

Look a the result in user mode. It doesn't look quite
right. The drop-down list has two columns and the box
itself shows the number - not the user text. We have to
repair this:

9. Look at the property box of the combo box. The
Format tab has a field called Column Widths. It
shows the widths of the two columns. Set the
width of the first column to 0 (see the bottom of
Figure 3.1D).

10. Try it out in user mode. Everything should look
right by now.

• The Format tab has other interesting fields. You
may for instance adjust the List Width for the drop
down list.

11. Select the Data tab. Row Source holds the values

in the list. You may edit them here.
12. Limit to List defines whether the user is allowed to

enter other values than those in the list. In this
case, it should be set to Yes.

• Bound Column defines which column to use for
the stored value.

24 3. Access-based user interfaces

Fig 3.1D Combo Box - enumeration type

Wanted:
Combo box

Width of first
column = 0

 3. Access-based user interfaces 25

3.1.7 Combo box - table look up
We will now make the Room type combo box shown
on Figure 3.1E. This combo box might be another
sorting criteria. The combo box is not an enumeration
type where the designer has typed in the values, but a
table look up. In the example it stores a roomType ID,
but the user will see the name of the room type.

1. Switch to design mode and make sure the Wizard

button is on.
2. Select the Combo box tool and draw the Room

Type box.
3. Tell the Wizard that you want the combo box to

look up the values in a table. Click Next.
4. Select tblRoomType as the source. Click Next.
5. Tell the Wizard that you want to show these fields

as columns: roomType, description. Click Next.
6. Ask the Wizard to hide the key column. This

means that the key will be stored, but the
description shown to the user. Finish the Wizard.

Try out the combo box in user mode. It should look all
right.

The bottom of Figure 3.1E shows the Data tab for the
combo box:

• Row Source now contains a formula called an
SQL-expression. It specifies how to compute the
list that the user will see. We will look at SQL-
expressions in section 4.2.

• Bound Column indicates the column that holds the
value to be stored in the table. In our case it is col-
umn one, which holds roomType.

We won't use these combo boxes later in the booklet.
You may leave them on the form or delete them.

26 3. Access-based user interfaces

Fig 3.1E Combo Box - table lookup

Wanted:
Combo box

 3. Access-based user interfaces 27

3.1.8 Control properties - text box
Each control has a lot of properties that define its color,
font, and many other things. We will explain some of
these properties below, using the text box as an exam-
ple.

Select a text box and look at its property box (Figure
3.1F). If the property box isn't open, bring it up by
double clicking on some control. There are more than
60 properties for a text box. Here we will look at some
of them.

Text box - properties on the Format tab
• Format and decimal places specify the data type

of the control, much the same way as you can
specify the data type for a database field. You can
select among a number of predefined formats, or
type your own format into the format field. The
formats are similar to the Visual Basic formats
(see section 6.4 and the reference card).

• Scroll Bars. A text box may be large and show a
text consisting of many lines. This property speci-
fies whether it should have scrollbars.

• Left, Top, Width, Height specify the position and
size of the control. You may set these properties
instead of dragging with the mouse.

• Back color, fore color, font name, etc. specify
colors, borders and other visible properties of the
control.

• Text Align. You can align the text, e.g. left for a
name, right for a number.

Text box - properties on the Data tab
• Control Source specifies how the value is com-

puted and where it is stored. For unbound controls
as those on the FindGuest form, control source is
blank. We look at the other possibilities in section
3.3.

• Input Mask specifies the text box format when
the box has the focus and the user types into it.
The mask may for instance be used to enter dates
with predefined slashes and hyphens. The input
mask follows different rules than the format
property. (Not described in this booklet.)

• When Locked is Yes, the user cannot enter data
into the text box.

• When Enabled is Yes, the text box can have the
focus.

When Enabled is No, the user cannot enter any-
thing in the box because the cursor doesn't stop
there. In this case, Locked has an interesting influ-
ence on the box color. If Locked is No, the field is
gray. If it is Yes, the color follows the normal pat-
tern determined by Back color and Fore color.

Text box - properties on the Other tab
• Name is the programmer's name for the text box.

Visual Basic programs refer to the text box with
this name. The designer can change the name. No-
tice that the name is shown in the title bar too.

• Tab Index determines how the cursor moves
through the controls when the user tabs through
the form. Tab indexes run from 0 and up. When
the form opens, the cursor is in the control with tab
index 0. The tab key moves the cursor though tab
index 0, 1, 2, etc.

• ControlTip is the pop-up text the user sees when
the mouse rests on the text box.

Label control - properties on the Format tab
The text box has an associated label. The label has a
programmer's name. In the example, Access has given
the label the name Label7.

• Caption is the label text the user sees. In this case
Access generated the caption Text6: The designer
can change it, of course.

Many of these properties exist also for other control
types, for instance for the combo box. For the com-
mand button, many of them work too. For some strange
reason, however, you cannot align the text on a com-
mand button. It is always centered. In the hotel system
we have made a fake left align by entering spaces after
the name. You have to enter the spaces directly on the
button - you cannot do it in the Caption property.

To learn more about a property, click the property line
and click F1 for help.

28 3. Access-based user interfaces

Fig 3.1F Control properties - text box

Date, number, Yes/No . . .

For large text fields

Position and size

How data is computed

Can have focus

The textbox
Text6

User can enter data

Name property -
 the programmer’s name

Field sequence when the
user tabs through the form

Pop-up help when the
mouse rests on the field

Name property -
 the programmer’s name

The label for
the textbox

Name property -
 the programmer’s name

Caption property -
 the user’s name

 3. Access-based user interfaces 29

3.2 Subforms
Figure 3.2A shows the FindGuest form we want to
construct. The controls at the upper part of the form are
now easy, but how do we handle the list of stays at the
lower part? Basically we make a field that can show a
list of data. This field is called a Subform control. The
data in the list is a combination of data from tblGuest,
tblStay, and other tables. In the next chapter we will
show how to combine these data.

To simplify matters right now, we will make an ex-
perimental version of frmFindStay, where the subform
shows only guest data.

The bottom of Figure 3.2A shows the experimental
version. The main form is frmFindStay, which we
made in section 3.1. On it we have made a subform
control - the white area. The list of data is another form
(a continuous form) that shows a list of guest records.
On the figure we have shown this continuous form in
two versions: as a form and as a datasheet.

When we have made the subform control and the con-
tinuous form, it is a simple matter to connect the two.
The result is a form looking like the final FindGuest.

Fig 3.2A Main form and Subform

Subform control

Main form

Final version

Experimental version

A continuous form in Form view

Subform

A continuous form in Datasheet view

30 3. Access-based user interfaces

3.2.1 Subform in Datasheet view
First we will make the continuous form that shows the
guest data. We could create it from scratch in the same
way as we created frmFindStay, but in this case Access
has a Wizard that helps us a lot. Figure 3.2B illustrates
how to use it:

1. Start in the database window, click the Forms tab,
and select Create form by using Wizard. (In
Access 97 you click New, then select Form
Wizard.)

2. Access asks you which table to base the form on.
Choose tblGuest.

3. Select the fields you want to include. In our case,
select all fields except the guestID field, which the
user should not see. Click Next.

4. Access asks you to select a layout for the form.
The best layout in our case is Columnar. It will
show the fields with labels. Click Next.

It is tempting to choose the datasheet layout rather than
columnar. Don't do it. It works, but the fields get no
labels and this makes it much harder to give the fields
user-oriented names later in the process.

5. The next screen asks you to select a style, meaning
the look of the frames around the fields, the picture
behind the fields, etc. Choose Standard in this case
where we just want a simple look.

6. Finally, give the form a name. Choose fsubStay-
List. The prefix fsub is conventionally used for a
form that becomes a subform. Click Finish.

Fig 3.2B Create the continuous form

Base form on
guest table

All fields
exceptguestID

In database window:
Select Forms ->
Create form by using wizard

Columnar format:
Fields with labels

 3. Access-based user interfaces 31

You will now see the form in user mode as on Figure
3.2C. You can use PageDown and PageUp to walk
through the guests. Or you can use the navigation but-
tons at the bottom of the form. You may enter data into
the form. The data will end up in the guest table.

Choose datasheet view
7. Select the continuous form and use the view icon

to change to Datasheet View. Adjust the width of
the form and the widths of the columns. The result
should be as on the lower part of Figure 3.2C.

When we insert the continuous form into the Find
Guest form, we want it to be shown only as a datasheet.
Specify it in this way:

8. Select the continuous form and switch to design
view. Open the property box of the form and select
the Format tab. Set Default View to Datasheet.
Access 2000: Also set Views Allowed to Da-
tasheet. Access 2003: Disallow Form View and
allow Datasheet View.

Bound and unbound forms
9. Use the opportunity to look at the Data tab for the

form properties. It shows that Record Source is
tblGuest. This is why the form can show fields
from the guest table. We say that fsubStayList is
bound to tblGuest.

10. Switch to Datasheet view to check that everything
is okay. Then close the continuous form.

Create the subform control
Now it is time to use the continuous form as a subform
on frmFindStay.

11. Open frmFindStay in design view. Extend the grid
area by dragging its borders (see Figure 3.2D).

12. Select the Subform/Subreport tool and draw a large
box as on the figure. The result is a subform con-
trol. Delete the label for the subform control
(called Child7 or the like).

13. Look at the property box for the subform control.
Set the name property on the Other tab: Name =
subStayList. The prefix sub is used for subform
controls.

Connect the continuous form to the subform control
14. Look at the Data tab for the subform control. Set

this property: Source Object = fsubStayList (select
it from the drop-down list).

15. Switch to Form View.

The result should be as shown at the bottom of Figure
3.2D. The result is not pretty, but is easy to correct the
problems. Notice the names we use:

• Name of the Subform control: subStayList
• Name of the Continuous form: fsubStayList (seen

in the Access database window)

32 3. Access-based user interfaces

Fig 3.2C Continuous form

In Datasheet
view

Continuous
form in Form view

Navigation
Buttons

Adjust dividing lines.
Drag or double-click
heading line

Fig 3.2D Creating and connecting the subform control

Name property:
Other -> Name = subStayListConnect to fsubStayList

Draw a subform
control

Result in
Datasheet view

 3. Access-based user interfaces 33

3.2.2 Adjust the subform
To make the subform look nicer, we remove the navi-
gation buttons at the bottom, give the columns user-
oriented names, etc. (See Figure 3.2E.)

1. Open fsubStayList in design mode. Open the prop-
erty box for the form and set Navigation Buttons to
No.

2. Remove the unnecessary fields address2, address3
and passport. (Select them and click Delete.)

3. Change the labels to user-oriented names. (Click
the label and change the text on the spot.)

4. Close fsubStayList and open the main form in user
mode. It should look like Figure 3.2E.

Notice that the labels are used as column headings.
You may wonder what happens if we have a text box
without a label. In this case the control name (the Vis-
ual Basic name) is used as a heading. You may change
the control name to a user-oriented name, but it is
harder and would influence a program that addresses
the text box.

5. Adjust column widths. The user can adjust the
column widths. Try it: Point the mouse to a divid-
ing line in the header section (see Figure 3.2E).
Drag the dividing line to adjust the column width.
Double-click the dividing line to have Access fit
the line to the existing data. The column widths are
persistent data that are stored as part of fsubStay-
List.

6. Column sequence. The user can also adjust the
column sequence: Click the column heading to
mark the entire column. Then drag the entire
column to another position in the sheet. The
column sequence is also persistent data.

7. Sorting rows. The user may ask for the data rows
to be sorted according to a specific column: Right-
click somewhere in the column and choose Sort
Ascending or Sort Descending. The sorting se-
quence is also persistent data. Access records the
sorting sequence as the Order By property of the
form.

Add another field
What to do if you have forgotten one of the fields on
the subform? Starting all over with the Wizard is
cumbersome. The solution is to use the Field List to
add the missing field:

• Switch to design view. Click the Field List icon on
the tool bar (Figure 3.2E). All fields from the
record source come up as a list.

• Drag the missing field from the list to the form.

Adjust lookup fields
When the field is defined as a lookup field in the
database, it becomes a combo box on the form. This is
usually fine, except for the fact that in the database we
wanted the visible value to be the real thing stored in
the database, for instance the code 2 for Visa. This was
convenient when we as designers entered test data into
the database.

On the user interface we don't want the user to see the
codes, but the mnemonic values, for instance Visa.
Here is how to do it:

• Open the property box for the combo box. On the
Format tab, look at Column Widths. Set the first
column width to 0. This makes this column
invisible to the user.

Font size for datasheets. The datasheets in the booklet
use font size 8 (default is 10). You can set size 8 as the
default font size. Select Tools -> Options -> Datasheet
-> Default Font -> Size = 8. This setting will influence
all datasheets where you haven't set the font size
explicitly.

How to open the continuous form in design mode:
You may simply open the continuous form from the
database window. However, you may also access it
from the main form in design view:

Access 2000 and 2003: When the main form is in de-
sign mode, the subform control will usually also show
the continuous form. You may click and adjust the
controls directly inside the subform control.

Access 97: When the main form is in design mode, the
subform field is always blank. Click in the form out-
side any control. Next double-click the subform con-
trol. The continuous form will then open in design
mode.

34 3. Access-based user interfaces

Fig 3.2E Adjusting the subform

Change labels to
user-oriented names

Delete unneccesary
fields

Remove navigation
buttons through
property box

Adjust dividing lines.
Drag or double-click heading line

Reorder columns:
Mark column + drag and drop

Field List for
adding more fields

Drag to
form

Drag to
form

 3. Access-based user interfaces 35

3.2.3 Mockup subform
Above we have based our experimental subform on
tblGuest rather than a complex computation of the real
stay list. This was to try the mechanisms - it looks all
wrong to the user. When we make a tool-based mockup
for usability testing, we need the planned columns, but
the data fields should be empty because we add the
data with pencil.

The easiest way to make such a mockup is to start with
any continuous form and add dummy text boxes. We
will use this technique to create a mockup list of rooms
occupied by a guest (Figure 3.2F). (We will later use
this form in the Stay window.) When filled in with
pencil, the list shows the first night, the number of
nights, the room number, the number of persons in the
room, the price per night, and the total for all the
nights.

1. Make a copy of fsubStayList: In the database win-
dow, select fsubStayList, copy it with Ctrl+C and
paste it with Ctrl+V. Give the copy the name fsub-
StayRooms.

2. Open fsubStayRooms in design mode. Remove all
fields relating to the guest and insert text boxes as
shown. Give the labels the user-oriented names.

3. Change the caption of the form, for instance to
RoomList.

4. Switch to Datasheet mode, and the mockup should
be ready.

How does this work? The subform is bound to tblGuest
and shows a line for each guest. However, the line
doesn't show any guest fields, only the text boxes we
have added. These text boxes are only dialog data.
They don't store anything in the database. If you for
instance enter a number in Nights, you will see the
same number in all the lines. There is only one instance
of the dialog data.

If you want more lines in the mockup, add new guests
to tblGuest. The mockup shows one line for each guest.

Insert a table directly as a subform?
Access 2000 and 2003 allow you to connect a subform
control to a table - without making a continuous form.
Don't use this shortcut.

The result looks okay at first sight, but you have no
control of the appearance. You cannot remove naviga-
tion buttons, use colors in the fields, or address the
user's selection from a Visual Basic program.

3.2.4 Subform in Form view
A continuous form can also be shown in Form view.
This gives us more freedom to structure the data pres-
entation. As an example, we will create a subform that
makes Find Guest look like Figure 3.2G. The subform
area now shows a heading area and a list of small
forms - the details. Here is how to do it:

1. Make another copy of fsubStayList (Ctrl+C and
Ctrl+V). Give the copy the name fsubStayList2.

2. Open the copy in Design view and drag the border
between header and footer so that you see a header
area (Figure 3.2G). If you cannot see the Form
Header bar, use the View menu:
View -> Form Header/Footer.

3. Change the form so it looks like Figure 3.2G:

 Remove the labels from the detail area and
adjust the sizes of the three fields as shown.

 Adjust the size of the detail area to remove
empty space at the bottom.

 Draw fresh labels in the header area.

At this point, the user can only see the form in Da-
tasheet view. Change this:

4. On the property sheet for the form, set Default
Views to Continuous Forms and Views Allowed
to Form.

In user mode you will now see the continuous form as
a list of small forms. You may connect it to the main
form to get the wanted result: Change the SourceObject
property of the subform control.

Form Wizard - tabular layout
It is a bit cumbersome to construct the continuous form
in this way. You may let the Form Wizard do some of
the job:

5. From the database window, click the Forms tab
and select Create Form by using Wizard.

6. Select the proper table, next select Tabular layout.
7. Finally select a style (e.g. Standard) and give the

form a name.

You will now have a form that looks very much like
the one you constructed above.

36 3. Access-based user interfaces

Fig 3.2F Mockup subform: Roomlist for a guest

Add unbound textboxes
Give them user oriented labels

Delete all
guest fields

Switch to Datasheet view
- the mockup is ready

Make a copy of fsubStayList
Call it fsubRoomListMockup

Wanted:
Tool-based
mockup list

Fig 3.2G Subform in Form view

Make a copy of
fsubStayList
Call it fsubStayList2

Wanted: Subform
in Form view

Drag Detail down to
make a Form Header

Add labels to
the header

Delete labels from detail area.
Adjust fields.

Header

Details

Header

Detail

 3. Access-based user interfaces 37

3.2.5 Summary of subforms

Datasheet view or form view?
Datasheets and forms not only look different. They
have other usability differences too.

Datasheet view allows cursor movements in all direc-
tions as in a spreadsheet. It also allows the user to se-
lect a rectangle of cells. The Visual Basic program can
find out which cells the user has selected.

The weakness is that the display format is very re-
stricted. Each record is shown as a single line with text
boxes, combo boxes, etc. Also the column headings are
very restricted. They are just simple texts and they
cannot even be empty.

Form view allows all the available display formats,
including pictures retrieved from a database. (There
cannot, however, be continuous forms inside another
continuous form. Continuous forms can only be used in
one level.)

The weakness of forms is that the cursor moves less
intuitively. The user can tab through the fields of each
record, but not easily move up and down the list of re-
cords. Furthermore, the user can only select a full
record, not part of a record.

Current record. A subform can show many records at
the same time, but only one of them is the current
record. It is marked with the little arrow to the left, the
record selector, as shown on Figure 3.2H. (You may
change the form settings so that the record selector area
is invisible.)

When the user types something into the form, it will
always be into the current record. When the cursor
moves into another record, it becomes current.

Until now we have only seen a main form that is not
bound to the database. But main forms may be bound
too. Then they have a current record and they need the
record selector (see examples in section 4.7).

The subform concepts
Figure 3.2H gives a summary of the many subform
concepts we have used above. A main form is a user
window with title bar, etc. It may contain one or more
subform controls.

Each subform control may be connected to a con-
tinuous form. The continuous form can be shown in
Form view. Then it has a form header and a list of de-
tail forms. The continuous form can also be shown in
Datasheet view. Then it looks like a table.

Properties. The following properties (attributes) are
important to understand when you work with subforms.
Figure 3.2H shows examples of these properties.

Main form: The Name property is the designer's form
name. It is this form name you see in the data-
base window. You can only change the name
there. The Caption property is the name the
user sees in the title bar of the form. You can set
the caption through the Format tab in the prop-
erty box.

Subform control: The Name is the designer's name of
the control. A program would use this name to
address the control. You can set the name prop-
erty through the Other tab in the property box.
The SourceObject indicates the continuous
form connected to the subform control.

Continuous form: The Name is the form name that you
see in the database window. Record Source in-
dicates the table bound to the form. Default
View indicates whether the form is shown as a
datasheet or as detail forms with a header. An-
other property, Views Allowed, indicates
whether the user can change from one view to
another.

3.2.6 Prefixes
A prefix is a few letters before a name. The prefix
helps the reader understand what this name is about. Is
it the name of a table, a form, etc? In just slightly
complex systems, prefixes are crucial to help the
developers. The bottom of Figure 3.2H shows the full
list of prefixes used in this booklet. For subforms the
following are important:

tbl Table names.
frm Names of main forms.
sub Names of subform controls.
fsub Names of continuous forms connected to a sub-

form control.

38 3. Access-based user interfaces

Fig 3.2H Summary of subform concepts

Subform control

Main form

Main form:
Name = frmFindStay
Caption = Find Guest

Subform control:
Name = subStayList
SourceObject = fsubStayList

Continuous form:
Name = fsubStayList
Record Source = tblGuest
Default View = Continuous Forms
Views Allowed = Both

Table behind the
continuous form

Continuous form
in Datasheet view

Continuous form
in Form view

Current
record

 Control prefixes:
cbo Combobox control.
chk Checkbox control.
cmd Command button
ctl Other type of control
grp Option group
lbl Label
mni Menu item
lst Listbox
opt Option button
sub Subform control
tgl Toggle button
txt Text control

Other prefixes:
bas Module (used by VBA)
frm Main form.
fsub Continuous form (connected to a subform control).
qry Query
qxtb Crosstab query
tbl Table

 3. Access-based user interfaces 39

3.3 Bound, unbound and computed controls
A form may be bound to a table. In this case its
controls can be bound to fields of the table, so that the
user can see the fields and update them through the
control. As an example, fsubStayList was bound to the
guest table, and we could see and update the guest data.
In this section we will look at this in more detail. We
will explicitly bind controls and let controls be com-
puted from multiple fields.

Unbound control in a bound form
1. Open fsubStayList2 in design mode.
2. Select the checkbox tool and add a checkbox to the

detail form as shown on Figure 3.3A.
3. Switch to user mode. There will be a checkbox in

each detail form, but all of them will be gray. The
reason is that the checkbox has not got any value
yet.

4. Click the checkbox so that it shows a tick. Move to
the next record. All the checkboxes have now got a
tick. Click to remove the tick. It disappears from
all the checkboxes.

As we added the checkbox, it became an unbound
control. The Yes/No value is not stored in the database,
but it is a single dialog variable in the form. All the
checkboxes show this single variable and thus show the
same. If you close and open fsubStayList2, the dialog
variables disappear and are created again. The check-
boxes are gray again.

Bound control
5. Show fsubStayList2 in design mode. Set this prop-

erty for the checkbox:
 Data -> ControlSource = passport
(choose the field from the list). Change to user
mode.

This action binds the checkbox control to the passport
field in tblGuest. The first form instance shows data
from the first record in tblGuest, the second instance
shows data from the second record, etc. You can bind
the control to any field in tblGuest no matter whether it
was included when the Wizard generated the form.

In user mode, the checkboxes still look gray but that is
because they try to show the passport fields. A
checkbox can show a Yes/No value or a number (with
zero shown as No). The passport fields are either blank
or contain a text, and the checkbox doesn't know what
to show.

6. Try to check and uncheck some of the boxes.
Notice that they are independent of each other. The
Yes/No value is stored in the passport field of
tblGuest. Look at the table contents. Notice that
Yes is stored as -1, No as 0. (Sorry if some of the
real passport numbers disappeared.)

Computed control
7. Combine two database fields. A text box may be

computed from database fields. Try it with the
address text box. Set its ControlSource to this ex-
pression
 = phone & address2
(Make sure to type the equal sign too.)

The equal sign changes the checkbox to a computed
control. The & is the concatenation operator. We have
asked Access to concatenate the two guest fields and
show them as a single text. Check in user mode that
this is what you get. However, now you cannot enter
anything in the address text box - Access has no place
to store what you enter.

On Figure 3.3A we have made the combined field look
a bit better with a comma and a space between the two
parts. As shown on the figure, we have concatenated
the control source from three parts, the phone field, a
text constant holding the comma and a space, and the
address2 field:
 = phone & ", " & address2
Don't worry about the square brackets on the figure.
Access often adds them as a parenthesis around names
in order to deal with names that contain spaces, # and
other strange characters.

Troublesome expressions
Sometimes an expression may give strange results be-
cause the expression happens to refer to something you
didn't anticipate. Here are some examples.

8. Self-reference. Concatenating phone and address
is just an experiment. It is more useful to concate-
nate address1 and address2. Try to enter this con-
trol source in the address text box:
 = address1 & ", " & address2

Access doesn't give you an error message, but in user
mode you will see the text #Error rather than the guest
data. This highly user-friendly message (;-) is in this
case caused by a self-reference:

Notice that the programmer name for the address text
box is address1 - exactly the same as the name of the
database field. Access assumes that we want to con-
catenate the address1 text box and the address2 field. In
order to do this, Access has to compute the address1
text box, but this means concatenating address1 and
address2 once again. The computation would never
stop and Access shows it with #Error.

9. Repair self-reference. In order to repair the
problem, give the address1 text box another pro-
grammer name. On the Other tab, replace the
name address1 with Address. In user mode, the
form should now look as the last form on Figure
3.3A.

40 3. Access-based user interfaces

Fig 3.3A Bound and unbound controls

Add a checkbox
to the detail form.

As an experiment,
bind it to the passport field

Set Control Source to combine
two guest fields into one.

Result in user mode

Final result: Two address lines in one

Let us look at another troublesome problem:

10. Referring to a built-in property. Let us try to
concatenate the guest name with address2. Change
the text box control source to:
 = name & ", " & address2

In user mode, you will see that you don't get the name
of the guest, but the name of the form itself! The rea-
son is that a form has a Name property, and this is what
you referred to. Notice that Access changed the name
you typed to [Name]. This is a sign that Access recog-
nized the name as something spelled with a capital N -
in this case a property name.

To avoid the problem, precede the name with a bang
operator (!):
 = !name & ", " & address2

The bang operator tells Access that you want a control
or a database field - not a built-in property. We will
discuss this a lot more in section 5.1.

11. Name mistake. Try to use a non-existing name in
the control source:
 = zz & address2

Access doesn't give you an error message, but in user
mode you will see the text #Name? instead of the guest
data.

 3. Access-based user interfaces 41

3.3.1 Showing subform fields in the main
form
In Access 97 and 2000 you may also let a field in the
main form draw on data in the subform. Figure 3.3B
shows an example. We let a text box show a field from
the subform. Try it in this way:

1. Open frmFindStay in design mode and select the
spare text box (Text6 on the figure). Set its control
source to
 = subStayList ! name
(Remember the equal sign.)
This tells Access to look into the subform control
to find the field name. Switch to user mode.

The spare text box should now show the guest name
from the currently selected record. Try selecting differ-
ent records to see that the text box is updated automati-
cally.

Detail area. This approach can be useful if you want to
show details of the selected record. You might for in-
stance set off an area of the main form for details of the
selected record. The area might show several fields
from the selected record.

Unfortunately, in Access 2003 this doesn't work
automatically. You can set the control sources, but
Access doesn't update the fields automatically. You
have to do some programming to update the fields.

Other expressions
You can use a wide range of operators and functions to
compute the control value, such as
 +, -, *, Sin(), IIf()
The rules correspond to what you can write in Visual
Basic, and they are similar to those you find in other
programming languages. See section 6.4 for the
detailed rules.

In practice, you will rarely use complex expressions in
the controls. Complex computations are usually done
either as part of computing a table with an SQL query,
or as part of a Visual Basic program.

3.3.2 Variable colors - conditional
formatting
You can determine the colors and other format aspects
of a control through the Format tab of the property box.
For instance you can set Back Color of Guest to
something different than white. However, the back
color will be the same in every detail form.

Sometimes you can vastly improve the user interface
by showing critical data in color. This means that only
some of the detail records will have a colored control.
It might be tempting to do this by using an expression
for Back Color, but this is not possible. Before Access
2000 it was actually completely impossible to have
variable colors in continuous forms.

Value-dependent color
In Access 2000 and 2003 there is a primitive way to
deal with variable colors. We can for instance let a
number be green in the range 0 to 49, yellow in the
range 50 to 69, and red otherwise. Or we could let a
text be yellow in the alphabetical range from H to P,
and red above it. Try it:

2. Open fsubStayList in any mode, for instance Da-
tasheet view to get a good overview of the records.

3. Select the Guest name (the name control). Use the
Format menu at the top of the Access window and
select Conditional Formatting.

4. Set up the conditional formatting as shown on Fig-
ure 3.3C. Specify yellow background for the range
"h" to "p" and red from "p" and up. You can add or
delete conditions by means of the Add and Delete
buttons at the bottom.

5. Close the conditional formatting box and check
that the colors are as expected. You may also try to
enter new guests to check how the ranges work in
detail.

The variable colors work in datasheet view as well as
form view. The colors do not show in the table behind
the form (tblGuest).

Default colors. At the top of the Conditional Format-
ting box, you can set the default color for the control.
You can also set it through the Back Color property on
the Format tab. However, this only defines the default
color in form view. In datasheet view, the default color
is defined by datasheet settings (use the main menu:
Format -> Datasheet and Format -> Font).

Expression-dependent color
You may also let the color of one field depend on the
values of other fields. As an example, we could let the
color of the Address control depend on the Guest
name. You might try this:

6. Select the Address control (initially named
address1) and select conditional formatting.

7. For Condition 1, select Expression Is. Then select
a background color and specify this expression for
the background color to be used:
 !name > "h"

When you close the conditional formatting window, all
guests with names after H should have the new back-
ground color for the address, but they don't! The reason
is that conditional formatting doesn't address fields in
the same way as the control source property (I would
call this a bug in Access). You have to use a more
elaborate expression:

8. Use the full address for the field
 Forms ! fsubStayList ! name > "h"

The full address tells Access to look for a form called
fsubStayList and find the name control in it. This

42 3. Access-based user interfaces

Set Control Source to show
name of selected guest.

Textbox automatically
reflects the current selection.

Textbox automatically
reflects the current selection.
Access 97 and 2000 only

Fig 3.3B Showing subform fields in the main form

Fig 3.3C Variable colors

Specify condition and
new background color.

Select Guest field.
Main menu:
Format -> Conditional Formatting

should work correctly when you close the formatting
box. (In some cases Access shows an error message
saying that it cannot find the Forms field. Ignore it, the
formula works anyway.)

Unfortunately, this full address works only when we
see fsubStayList separately, but not when we see it as a
subform of frmFindStay. We will have to use an even

more elaborate address to tell Access that it is a sub-
form of frmFindStay we talk about. The address to be
used is

 Forms ! frmFindStay ! subStayList !name > "h"

We will explain a lot more about these addresses in
section 5.1.

 3. Access-based user interfaces 43

3.4 Tab controls and option groups
Tab controls
When space is insufficient on the form, a tab control is
a way out. The property box in Access and the option
window in many MS-Windows programs use tab con-
trols to put ever more fields on a single window.

Figure 3.4 shows how we use a tab control in the hotel
system. The Stay window shows all details of a stay (a
booking). It contains one tab control with two tab
pages. The first tab page shows the rooms booked or
occupied by the guest. The second tab page shows the
services received, for instance breakfast. Try to make
the essential parts of this form:

1. Create a new form from the database window's
Form tab (use Create form in Design view). Re-
member to set the grid size so that the grid is visi-
ble.

2. Add the Stay No. field to the form (to be used for
stayID later), but don't care to add all the other
fields.

3. Extend the grid area. Select the Tab-control tool
from the toolbox and draw a large rectangle on the
form.

You now get three new controls on the form: the tab
control and two tab pages in it. When you click in the
empty area to the right of the tabs, you select the entire
tab control. If you click on one of the tabs, you select
this particular tab page.

How to add further tab pages to the control? You right-
click the tab and select Insert Page. In the hotel sys-
tem, two pages are enough. We need a subform on each
of the two tab pages. Proceed like this:

4. Select the first tab page. In its property box, enter
the caption Rooms.

5. Make sure the tab-page is selected and not the en-
tire tab control. Select the subform tool from the
toolbox and draw a subform on the tab page.

6. Select the text box tool from the toolbox and draw
the two fields for totals on the tab page.

7. Also add the last total field (Total rooms and
services till now). Note that it must be below the
tab control. In design mode, the form should now
look like the right part of Figure 3.4.

8. Connect the mockup room list to the first tab page
in this way. Select the subform control and set its
SourceObject property to fsubStayRooms. (You
created this subform in section 3.2.3.) In user
mode, the form should now look like the left part
of Figure 3.4.

9. Select the second tab page and give it the caption
Services. If you like, you can insert subforms and
other controls on this tab too, similar to the Rooms
tab.

10. Give the Stay form a caption. Close it and give it
the name frmStay.

Warning: It may be tempting to draw a control on the
main form and then drag it to the tab pages. On the
screen it may look right, but it isn't. The control sticks
to the main form and may be either in front of all the
tab pages or behind all of them. You may, however,
copy a control from the main form, select the tab page,
and then paste the control there. When you click the
various tab pages, you see that it sticks to the right
page.

Option groups
If the user has to choose between a few options, it is
traditional to show them as an option group with radio
buttons (called option buttons in Access). The bottom
of Figure 3.4 shows an example where the user can
choose the paymethod with radio buttons.

An option group is in some ways similar to a tab con-
trol. It is a control that contains other controls. How-
ever, an option group is just an elaborate way of
showing a single integer value. The current value de-
termines which radio button has a dot. In our example
this integer would be the paymethod. Make the option
group in this way:

11. In design mode, choose the Option group tool
from the toolbox. Make sure the Wizard is off.
Draw a rectangle like the one on the figure.

12. You have now got the control and its label. The
label is shown across the top border. You can drag
them around exactly as text boxes. Change the la-
bel to Paymethod.

13. Select the Option button tool from the toolbox.
Drag a rectangle where the option button and its
label will be - or just click at the top left corner of
this rectangle. Draw four option buttons.

14. Change the labels for the options to Cash, Visa,
etc.

Look at the result in user mode. The buttons are all
gray. Why? Because the control has no value - it can-
not choose which button to give a dot. Remedy? Click
in one of the buttons. If you click the first button, the
control will get the value 1. If you click the second one,
it becomes 2, etc.

44 3. Access-based user interfaces

Fig 3.4 Tab control and Option group

Select one of the tab pages.
Draw controls on it - or copy
and paste.

Command
Select Tab control.
Draw on form.

CommandOption group.
Draw on form.
Add Option
buttons.

Wanted

Select entire Tab control

 3. Access-based user interfaces 45

3.5 Menus
In Access a form cannot have menus. Only the big
Access window can have menus, but they can change
according to which form is in focus.

Before we start implementing the hotel menu, we need
some terminology. Figure 3.5A shows what we are
talking about. Initially, the Access window has a menu
bar and one or more tool bars. Access uses the com-
mon term toolbar for menu bars as well as real tool-
bars. The toolbar concept also covers the free-floating
toolbars, called toolboxes, and shortcut menus that pop
up when you right click on a control. In a moment we
will add another menu bar to be used by the hotel
system.

Each menu bar has one or more menus. A menu con-
sists of a menu heading - the one we see on the menu
bar - and the menu list that drops down when you select
the menu heading.

The menu list contains the menu items. Most of them

are commands. They do the real work when selected.
Some of the menu items may be second-level menu
headings. They open another menu list when selected,
and this is how we make multi-level menus. Access
uses the word command for the real commands as well
as the lower-level menu headings.

3.5.1 Create a new menu bar
You can make menus whether in design mode or user
mode.

1. Right-click any point on the existing menus and
select Customize. (Or use Tools -> Customize).
You now get the customize window as shown on
Figure 3.5A.

2. On the Toolbars tab, click the New button. Access
asks for the name of the new toolbar. Call it Hotel
- the name the user will see if he chooses the tool-
bar with the View menu. Click OK, and up comes
a tiny menu bar - floating in the universe.

3. Click the Properties button in the Customize win-

Command

Fig 3.5A Create a new menu bar

Menu bar

New menu bar: Hotel

Tool bar

Menu:
Menu heading in the menu bar.
Menu list that drops down Command

(menu item)

Create a new
toolbar/menubar.
Name it Hotel

Right-click.
Select Customize

Make it a
menubar

Drag it to the
menubar/toolbar area.

Checked toolbars
shown as default

46 3. Access-based user interfaces

dow and set the Type of the new toolbar to Menu
Bar. Close the properties window.

The type of the toolbar determines where it is shown. If
it is a Menu Bar, it will be shown at the top with any
other menu bar. If it is a Toolbar, it will be shown be-
low the menu bars.

4. The new menu bar is still floating in the universe.
Drag it to the fellow tool bars in the top of the
Access window.

The menu bar area should now look like the bottom of
Figure 3.5A. The new menu bar looks very empty be-
cause it has no menus.

Add menus to the menu bar
5. Select the Commands tab in the Customize win-

dow (see Figure 3.5B).

This Command tab is really confusing. It allows you to
choose between a lot of built-in menu items - those that

already are in the various toolbars - but also add new
menu items. All these menu items are grouped accord-
ing to categories. For most commands you can get a
short description by selecting the command and click-
ing the Description button.

6. Go to the bottom of the category list and select
New Menu. This category consists of only one
command - a new menu. Select this New Menu
command and drag it to the new menu bar. Since
we want several menus on the menu bar, drag it a
couple of times. The toolbar area should now look
like the one on Figure 3.5B.

7. Keep the Customize window open and right-click
each of the new menus to give it a name. For the
hotel system, use the names &Rooms, &Stays and
&Breakfast. The &-sign shows that the following
letter is to be underlined and used as a shortcut
(e.g. Alt+S for Stays).

Fig 3.5B Add menus to the menubar

CommandDrag new menu headings
to the toolbar.

Command
Right-click and
give it a name.

 3. Access-based user interfaces 47

3.5.2 Add commands to the menu list
As an example, we will add two commands to the Stays
menu: One that opens the FindStay screen and one that
cancels (deletes) a stay.

1. Select the Commands tab in the customize window
and the category All Forms (Figure 3.5C).

This category gives access to commands that open an
existing form. You see the existing forms to the right.

2. Select frmFindStay and drag this command to the
Stays menu heading. Wait a moment for the Stays
menu to unfold so that you can place the command
on the menu list.

3. Right-click the command and give it the name
Show FindGuest screen and the style Text Only.

The right-click allows you to do many other things to
this command. You can assign an icon to it and edit the
icon. (This is more useful when you design toolbars
and toolboxes rather than menu bars.) If you click
Properties at the bottom of the list, you can determine
which action the command shall perform when se-
lected. In our case, we use the built-in action Open a
form.

Add the CancelStay command
4. Select the category File and the command Custom.

(This is the only command that doesn't build on an
existing command.) Drag this command to the
Stays menu and position it properly relative to the
other command on the menu.

5. Right-click the command and set its name to
Cancel Stay.

The Custom command has no built-in action. In its
property box, we will later add a call to a Visual Basic
function (section 5.7) that cancels the stay.

6. Close the Customize window and try out the com-
mands. The ShowFindGuest command should ac-
tually work, while the CancelStay does nothing at
present.

You may add all the other menus and commands at this
stage to complete the mockup, but better spend your
time doing it for your own design project.

3.5.3 Attach the toolbar to a form
You can attach a toolbar to a form so that it is shown
only when this form is in focus.

7. First hide the Hotel menu: Right click any toolbar
to open the customize window. On the Toolbars
tab, find the Hotel menu at the end of the list. Re-
move the check mark and close Customize.

8. The Hotel menu is not visible anymore. Now open
frmFindStay in Design view. In the form's prop-

erty box, select the Other tab. Set the Menu Bar
property to Hotel and close the form.

When you now open frmFindStay in user mode, the
Hotel menu will be visible and it will have replaced
Access's standard menu. Open frmStay too and switch
the focus back and forth between the two forms. The
menus will change accordingly.

If you like, you can make another toolbar and give it
the type Toolbar. Then attach it to frmStay through the
Other-tab, but make it the Toolbar of frmStay rather
than the Menu Bar. Open both forms in user mode and
switch the focus back and forth. Notice that when
frmStay is in focus, its toolbar overwrites Access's
standard toolbar. When frmFindStay is in focus, its
menu bar overwrites Access's standard menu bar.

3.5.4 Startup settings - hiding developer
stuff
When the system is finished, the user should not see all
the Access menus, the database window for selecting
and creating forms, etc. It may be necessary to hide all
of this already in the mockup. Here is how to do it:

9. Select Tools->Startup. You now see the startup
settings (Figure 3.5D).

10. Change these settings: Application Title = Hotel
system (the user sees this name in the title bar in-
stead of the name Access). Menu bar = Hotel (the
user sees this menu at the top of the screen). Dis-
play Form/page = frmFindStay (the user sees this
form on the screen initially).

11. Hide the standard things: Full menus and Database
window.

This will give the correct view for a mockup. When
you later have a functional system, you should disable
most other things too, for instance built-in shortcut
menus (right-click menus) and special keys, for in-
stance F11 to open the database window.

12. Close the database and open it again. You should
now see the naked application window with only
the FindStay window and the hotel menu.

Help! How do you get it back to normal so that you
can work as a developer? You cannot even change the
startup settings anymore. Of course there is a solution:

13. Close the hotel system window again. Now hold
down Shift while you open it. Keep Shift down
until it is completely open. (In Access 2003 this
includes answering about unsafe files.)

The window looks again the developer way, and you
can change the startup settings. You might leave them
in the final user version and remember to use Shift
every time you are working as a developer. My experi-
ence is that this is too cumbersome and you forget

48 3. Access-based user interfaces

Fig 3.5C Add commands to the menu list

CommandDrag new command
to the menu (wait a moment
for the menu list to drop down).

Command
Right-click and
give it a name.

Define style.

See short explanation
of the command.

Fig 3.5D Startup settings for hiding developer stuff

Name shown in
Access title bar

The startup formThe menu shown

Hide other menus Hide database window

Initial
settings

about the Shift too often. I always set them back when
I have tried it out.

 3. Access-based user interfaces 49

3.6 Control tips, messages, mockup prints
Control tips - pop-up help
In the final system we can add Control Tips - the small
texts that pop up when the mouse rests a moment on a
button or another control (Figure 3.6). We can make
them in the tool-based mockup, cut them out, and show
them to the user as stickers. Let us make a control tip
for the Find guest button on frmFindStay:

1. Open frmFindStay in design mode. Click on the
NewGuest button to open its property box.

2. On the Other tab, enter the ControlTip text. There
is little space to type in, so use Shift+F2 to open a
larger window to type in. You may want to split
the text into two or more lines - oops - the window
closes! Use Ctrl+Enter to change line.

3. Switch to user mode and check that the control tip
works.

Messages
The final system will have many messages to show to
the user in various circumstances. They will be deeply
embedded in the Visual Basic program, but when using
the mockup for usability tests, the facilitator has to
bring them up as stickers. So at this stage we have to
generate them on the screen and then print them out.

Figure 3.6 shows the easiest way to do it. It works both
in design mode and user mode.

4. Open the Immediate window with Ctrl+G. (Also
called the Debug window.)

5. If you work in Access 2000 or 2003, this also
opens the Visual Basic window where you can
program. Make the Visual Basic window smaller
than the full screen (use the restore button next to
the cross that closes the window).

Immediate window. The Immediate window is also
called the debug window. In it you can type Visual Ba-
sic statements and have them executed immediately.

MsgBox. We will use the MsgBox function. It has
many parameters, but in most cases we just use the first
two:

MsgBox "the message text to show",
the buttons to show + the icon to use

For our mockup we won't even care about the message
text. We just show it as a very long empty text to make

the message box wide enough. We print out the mes-
sage box, copy it and fill in the message text by hand.

6. Enter the first line shown in the Immediate win-
dow:
msgbox " ", vbYesNo+vbInformation

As soon as you click Enter, Visual Basic will execute
the statement and show the message box. Print it at this
stage (see below). Then play the user's role and answer
Yes.

7. Do the same for the next three lines in the Imme-
diate window. This gives you a sample of the four
basic types of messages in MS Windows.

The strange words vbYesNo etc. are named constants.
Actually, vbYesNo is 4 and vbInformation is 64. When
you add them together, Visual basic can see that you
want a Yes and a No button, plus the icon for an In-
formation message.

VBA guides. Visual Basic can guide you while you
type in the statement. If it doesn't do it by itself, type
Ctrl+I after the function name. It will then show the
parameters you may type. After the first comma, type
Ctrl+Shift+J and it will show a list of the possible con-
stants at this point. You may select a constant from the
list and use Tab to insert it in the statement.

Leave Visual Basic. How do you get out of Visual
Basic and back to the Access world? Simply close the
Visual Basic window. This doesn't close the database
window.

Printing the screens
Above we have developed the mockup so that the right
things appear on the screen. How do you get them on
paper for use as mockups in usability testing? In the
standard installation of MS-Windows and MS-Office
there is only one way as far as I know:

8. Press Alt+PrtSc (Print Screen). This copies the
currently selected large window (the entire Access
window) to the clipboard.

When you have selected a message box, Alt+PrtSc
copies only this box to the clipboard.

9. Paste it into a Word document.

50 3. Access-based user interfaces

Fig 3.6 Messages and control tips

Select New guest in Design mode.
Define ControlTip text.
Use Shift+F2 for long texts

To show a message box:
Enter the Visual Basic world
with Ctrl+G (debugger)
Type these commands.

Select New guest in Design mode.
Define ControlTip text.
Use Shift+F2 for long texts

You can add as many screen parts to the Word docu-
ment as you like. Then print it and your mockup is al-
most ready. What remains is to copy pages, trim mes-
sage boxes and control tips with scissors, and write
data in the various windows. Usually it is best to en-
large the screens when you copy them.

In the document, you now see a copy of the entire win-
dow (or the message box). For mockup purposes, you
will only need a small part of the entire window. Crop
away the unnecessary parts as follows:

10. In the Word document, select the screen picture. If
necessary, open the Picture toolbox (View ->
Toolbars -> Picture). This works but is very cumbersome, and it is almost

impossible to crop away exactly the right amount.
Further, the document becomes a huge file due to all
the large screen dumps (they are there in full size even
if you have cropped most of them away).

11. Select the Crop tool from the picture toolbox.
12. Crop the picture so that you only have the neces-

sary part left.

Copy a menu. With this approach you cannot copy a
drop-down menu, because it rolls up when you press
Alt. To copy a drop-down menu, you have to use Print
Screen without Alt. This copies the entire screen to the
clipboard. You then have to crop away most of the
screen, but it can be done.

For professional use, get a screen grabber (a screen
capture tool). There are freeware screen grabbers avail-
able that work very well. These tools help you copy
just the right part of the screen, and many of them can
also capture a menu when it is rolled down.

 3. Access-based user interfaces 51

4. Queries - computed tables
Highlights
• Combine multiple tables into one (Query).
• Basics of Structured Query Language (SQL).
• User-entered search criteria.

In this chapter we will begin making a functional pro-
totype that can show real data and update it. To do this,
we often have to combine data from many tables in the
database. All relational database systems provide
means for combining tables into new tables by means
of queries. In this chapter we will see how to do it in
Access.

4.1 Query: join two tables
In Chapter 3 we had a simple version of the Find Guest
window. It showed a list of guests based on data from
the Guest table. In the real system we want to show a
list of stays, including data about the guest and the
room booked. This means that we have to combine
data from the Stay table, the Guest table, and the
RoomState table.

Our first version of the stay list will just combine the
Stay table and the Guest table. The bottom of Figure
4.1 shows the result we want: a single table with some
fields from tblStay and some from tblGuest.

Create a query
1. Start in the database window. Select Queries and

Create query in Design view. (In Access 97 select
New and then Design view.)

2. Access asks you to select the tables you want to
combine. Select tblGuest and tblStay (Figure 4.1).
Click Add and then Close.

You now see the query design window (middle of Fig-
ure 4.1). The top part of the window is an E/R-model,
in our case consisting of tblGuest and tblStay. Access
has included the relationship from the full E/R-model.
It shows that the tables will be combined according to
guestID. This is just what we want in our case, but in
other cases you have to remove the relationships you
don't need and add new ones that you need for the
query. These changed relationships are only used in the
query; they don't influence the full E/R-model.

You may delete tables from the query window or add
further tables by right-clicking in the E/R-model.

In the lower part of the window, you see the query
grid where we will make a column for each field in the
computed table.

3. Drag stayID from tblStay to the grid. Then drag
name, address1 and phone from tblGuest. Finally,
drag state from tblStay. (You may also double-
click the fields.)

You may rearrange the columns by selecting a column
and dragging it to another place.

4. Switch to datasheet view. The query table should
look like the bottom of the figure. It contains all

stays recorded in the database with guest informa-
tion attached. In the example, John Simpson has
three stays and Yun Chen two stays.

5. Save the query and give it the name qryStayList.
(The standard prefix for queries is qry.)

This looks almost too easy. What happens really?
Access has made a so-called join of tblGuest and
tblStay. According to the E/R-model, each record in
tblStay has a connecting string to a record in tblGuest.
In the query table, there will be one record for each of
these strings. If one of the stays didn't have a string to a
guest, this stay would not occur in the result.

Since each query record corresponds to a string be-
tween two source records, we can include arbitrary
fields from both source tables. This is what we have
done.

Star = all fields? Note that the data model at the top of
the query window has a star in each box. It means "all
fields". You may drag it to the grid and all source fields
will be included in the query table. This may be con-
venient, but don't do it yet. Why? Assume that you
drag the star from both tables. Then you will have two
guestID fields in the result. You then have to refer to
them as tblStay.guestID and tblGuest.guestID. This
leads to endless confusion later, particularly because
some of Access's built-in Wizards cannot figure out
about these names and screw things up.

Dynaset and data entry to query table
The query not only shows data, it can also be used for
data entry. Try these experiments:

6. Open qryStayList and tblGuest at the same time.
7. In the query table, change the name of one of the

guests. As soon as you move the cursor to the next
line, you will see the change in the query table as
well as the guest table.

8. In tblGuest, try to change the guest name again.
The query table will be updated immediately.

The query table we look at is a dynaset because it is
updated automatically. We can enter data into it be-
cause it is a simple query where Access can find out
how to store the data into the source tables. For more
complex queries, this is not possible.

52 4. Queries - computed tables

Fig 4.1 Query - join two tables

Computed
tables

Tables
to join
Tables
to join

Drag wanted
fields to grid.

Drag the wanted
fields to grid.

(Or double click)

Wanted:
List of stays
with guest data

Datasheet
view

Query grid

The query has a property called Recordset Type. It is
Dynaset as a standard, but you can change it to Snap-
shot. Then Access computes the record list when you
open the query, and doesn't update it dynamically. In
this case you cannot enter data through the query.
(How to find the Recordset Property? From the query
design window, use View -> Properties. But don't
change anything right now.)

Adding/deleting records in a dynaset
9. In the query table, enter a guest name in the last

line (with star-indication). When you move the
cursor up, you have created a new guest record
(but not a new stay record). You cannot see it in
tblGuest, but if you close and open tblGuest, you
will see it. (Using the sort button A/Z on the tool-
bar will also show the new guest.)

10. In the query table, enter a state in the last line and
move the cursor up. Access refuses to do it. It tries
to create a stay record, but lacks the foreign key to

the guest and cannot preserve the referential integ-
rity. If you had included the foreign key in the
query, you could set it now and succeed. Never
mind. (Remember to use Esc to get out of the in-
consistent data update.)

11. In the query table, try to delete a line. What you
delete is the stay record, not the guest record.

Conclusion. The dynaset is suitable for editing data
produced by a simple query. As soon as you fill in a
field in the new record line (star-marked), Access will
try to create a new record. If you fill in a field from the
guest table, Access will make a guest record. If you fill
in a field from the stay table, Access will (also) make a
stay record. When you move the cursor to another
record, Access will check that referential integrity and
other rules are met.

 4. Queries - computed tables 53

4.2 SQL and how it works
SQL means Structured Query Language. Behind a
query is always an SQL-statement that specifies what
to compute. Let us look at the SQL statement in
qryStayList:

1. Open qryStayList. Select SQL view with the view
menu at the top left of the Access window.

The result should be as shown on Figure 4.2. At first
sight, an SQL-statement looks overwhelming, but after
a while it is not so hard to read. Most SQL-statements
are SELECT statements with this structure:

SELECT <the fields to show in the result>
FROM <one or more tables>

The SELECT part corresponds to the top-two lines of
the query grid. Field names may include strange char-
acters, and in this case Access surrounds the name with
square brackets to avoid that the name is interpreted as
something else. (Often Access surrounds the names
with square brackets for no apparent reason.) Examples
of names with strange characters:
 guest# written as [guest#]
 Guest History written as [Guest History]

The FROM part corresponds to the tables and the rela-
tionships in the top part of the query window. In our
example, the FROM part says that tblGuest and tblStay
must be joined, and the join criterion must be that
guestID must be equal in the two tables.

Actually, Access stores the query as an SQL-statement,
and when we want to see the query in design view,
Access translates it into a grid and the data model. You
can sometimes observe this when you have set up the
grid in one way. When you close the query and open it
again, the grid looks different, for instance with the
columns in a different sequence. Your version and
Access's version correspond to the same SQL state-
ment.

You can also type the SQL-statement directly in SQL-
view. Access may still be able to show it as a grid, but
for some SQL-statements it is not possible. For in-
stance this is the case with a UNION statement, where
two tables are to be concatenated one after the other.
Access can handle this, but not show it as a grid.
Expert Access developers sometimes define a query
with a grid, sometimes with SQL, and often they
switch between the two during development.

Capital letters. Access doesn't care whether you type
with capitals or small letters. For instance you may
type SELECT with small letters, but when you close
and open the query in SQL view, SELECT will be with
capitals. When you define field names and other
names, Access remembers the capitalization in the

name definition, but accepts names written with differ-
ent caps as equivalent.

The matrix at the bottom of Figure 4.2 illustrates what
the SQL-statement basically does. It finds the result in
seven steps (a to g):

a) Cartesian product. The SQL-engine takes the
first guest record and extends it with all the fields
from the first stay record. It corresponds to the top
left cell of the matrix. Then it takes the second
guest record and extends it with the first stay
record. This corresponds to the second cell in the
top row. And so on for all the guest records. This
corresponds to all the cells in the top-row of the
matrix. Then it does it once again using the second
stay record. This gives the second row of the ma-
trix. And so on until we have got a row for each
stay record.

In summary, the matrix corresponds to all the possible
combinations of a stay and a guest. If tblGuest has x
records and tblStay y records, the result will be x*y
records. This is called the Cartesian product after the
mathematician and philosopher Des Cartes.

b) Join. Next, the SQL-engine discards all cells
where the join criterion is not met. In our case, the
criterion is that guestID must be equal in the two
source tables. What is left are the cells marked
with a cross on the figure. Notice that all stays are
included because they have a cross in their row.
However some guests (for instance guest 2) are not
included because no stay is recorded for them in
the database.

c) Where. We can also specify Where criteria, for
instance
 Where state=1
This would cause the SQL-engine to discard all
cells where state isn't one. They are discarded at
this point of the process.

d) Group By. We can specify Group-By criteria.
They cause the SQL-engine to bundle the
remaining records according to the Group-By
criteria and compress each bundle into one record.

e) Having. If we have a Group-By, we can also
specify Having criteria. They tell the SQL-engine
to keep only bundles that meet the criterion. Other
bundles are discarded at this point.

f) Order By. We can ask the SQL-engine to order
the remaining records according to some criteria.
Some people say that the records are sorted rather
than ordered.

54 4. Queries - computed tables

Fig 4.2 What SQL does step-by-step

a) Cartesian product:
5*7 combinations of guest and stay

b) Join:
Include only those where
tblGuest.guestID = tblStay.guestID

c) Where:
Include only those where . . .

d) Group By:
Compress bundles of records to one

e) Having:
Include only bundles where . . .

f) Order By:
Sort the remaining records according to . . .

g) Select:
Select and compute new fields,
discard the rest

tblGuest: guestIDtblStay:
stayID, guestID

728 1

736 1

740 1

727 5

729 5

737 6

739 8

1 2 5 6 8

g) Select. Finally, SQL discards all the fields that we
have not mentioned in the SELECT-part. In the
grid there is a Show indication in each column. It
indicates that this column must be in the SELECT-
part and be shown in the final table. We will later
see that we can compute new fields in the
SELECT part. This computation also takes place at
this stage.

Notice that these rules tell us that we can have join
criteria (and other criteria) that refer to fields that are
not shown in the result. We have utilized this rule in
qryStayList because the join criterion is given by
guestID, which isn't in the result at all.

Although the query result is as described above, the
SQL-engine doesn't arrive at it that way. It would take

much too long time in large databases. Assume that we
joined two tables each with 10,000 records. The SQL-
engine would have to create 100 million combination
records, and then discard most of them. In practice, the
SQL-engine uses index tables and other tricks to create
only the "crosses".

Wonder why we talk about Access and the SQL-en-
gine? You don't see the SQL-engine directly because
Access's user interface hides it. But Access and the
SQL-engine are two different software components.
We may connect our Access application to another
SQL-engine than the one delivered with Access. As an
example, we might connect it to an Oracle database.
Most of our user interface would still work the same
way.

 4. Queries - computed tables 55

4.3 Outer join
The query we made above used an INNER JOIN in the
SQL-statement. Can we also make an outer join? Yes,
and we need it right now. Usability tests showed that
users had troubles distinguishing guests from stays.
The solution turned out to be that whatever the user
searched for, the system would show matching stays
and matching guests.

What we need is a list of all stays, but the list must also
include guests that have no stay at present in the data-
base (guest 2 on Figure 4.2 was an example). Now we
want to include all guests, no matter whether they have
a matching stay or not. This is an OUTER JOIN. Make
it this way:

1. Make sure there is a guest in the database without
a stay. If not, enter a new guest record now.

2. Show qryStayList in design mode (Figure 4.3).
3. Select the relationship arrow, then right-click it.

Choose inclusion of all records from tblGuest.
4. Switch to datasheet view. Now the stay-less guests

should appear on the list. These lines will have
blanks in the fields originating in tblStay.

5. Look also at the SQL version. It now says
 FROM tblGuest LEFT JOIN qryStayArrival
 ON ...
This means that all records in the left side table
have to be included. Right joins exist too, of
course. An outer join means a Left or a Right Join.

What happens in an outer join? When the system finds
a guest without any stay, it combines the guest with a
blank stay record and includes it in the result. The bot-
tom of Figure 4.3 shows how this rule would include
guest 2. Blank fields have the value Null.

56 4. Queries - computed tables

Fig 4.3 Outer join

Wanted:
Include all guests

Outer join:
Right-click and choose

Outer join:
Right-click and choose

Blanks for stay fields

Outer join:
Add missing guests combined
with a blank stay (Null values).

tblGuest: guestID tblStay:
stayID, guestID

SELECT tblStay.stayID, tblGuest.name, . . .
FROM tblGuest LEFT JOIN tblStay ON
tblGuest.guestID = tblStay.guestID;

1 2 5 6 8

728 1

736 1

740 1

727 5

729 5

737 6

739 8

Null stay

 4. Queries - computed tables 57

4.4 Aggregate query - Group By
If we want to use the stay list for the real user interface,
we still lack something: the arrival date and the room
number. In order to get this data, we have to include
data from tblRoomState:

arrival = first date among the room states.
room = first roomID among the room states.
 When there is more than one room,
 show only the text "more".

We will first compute an extended version of the stay
table with these data added to each stay. The small da-
tasheet to the right in Figure 4.4A outlines the desired
result. In order to do this, we have to bundle all room
states of the stay into one, leaving only the arrival date
and the room indication. This is an example of an ag-
gregate query. Here is how to do it:

1. From the database window, create a new query in
design mode. Include tblRoomState and tblStay.
(See top of Figure 4.4A.)

2. Drag these fields to the grid: stayID, guestID, state
(from tblStay) , date and roomID. You now have
an ordinary inner join based on the criterion
 tblRoomState.stayID=tblStay.stayID

3. Change to datasheet view. You should now see a
table like the one at the lower left of Figure 4.4A.
It contains a record for each of the room states -
with some of the stay fields added.

Find the smallest date and roomID. We want to
combine all records with the same stayID into one, as
shown on the figure. For instance we have four records
with stayID = 727. They make up a bundle of records.
All the records in the bundle have the same stayID, but
they have different dates and room numbers. We want
to compress this bundle into one record - the one
shown to the right.

4. Click the sum symbol on the tool bar (Σ) or right-
click in the grid to find the Σ. You will now see a
new row in the grid, Total.

Initially, Access shows Group By everywhere in the
total-line. We want to group records by stayID. For
date and roomID we want to find the lowest value in
each group:

5. Change the total-setting for the date column to
Min. Do the same for the roomID column. If you
now change to datasheet view, you should see a
shorter table, somewhat like the one to the right.

The heading for the date column now says MinOfDate
and it correctly shows the first date for this stay. The
roomID column is similar.

You may wonder why we have left guestID and state
as Group By. Actually, when two records have the
same stayID, they also have the same guestID and

state, because these columns are fields from the stay
table. So grouping by them is alright. You may try to
change the setting for guestID to Min rather than
Group By. It makes no change in the result since all
records in the bundle have the same stayID and thus
the same guestID.

6. Save the query and give it the name qryStay-
Arrival.

Alias - renaming a column. At this stage the arrival
date is computed correctly, but we would like a differ-
ent name (an alias) for the column:

7. Open the query in design view. In the grid, change
the heading of the date column to arrival: date.
This causes Access to compute the first date as be-
fore, but give the result the name arrival.

Computed field. The last thing missing is that the first
roomID may be confusing to the user if there is more
than one room in the stay. It is particularly confusing if
John Simpson first stays in room 12, then moves to
room 11. The stay list would then indicate room 11 and
the receptionist might by mistake give him the key for
room 11 when he arrives. This is why we want to show
"more" if the stay involves more than one room. The
receptionist will then have to open the stay window to
see which rooms and when.

In order to find out whether there are more than one
room in the stay, we compute the Min and Max of
roomID and compare them:

8. Add another roomID column in the grid and let it
compute Max rather than Min (Figure 4.4A). Re-
name the two roomID columns to A and B as
shown.

9. Use a blank column - no dragging of fields. In the
total line, indicate that it is an Expression (a com-
puted value). In the top line specify this expres-
sion:
 room: IIf(A=B, A, "more")

Warning: Depending on the regional settings of
your computer, you may have to use semicolons
instead of commas (see more in section 6.6):
 room: IIf(A=B; A; "more")

This expression says that we want a new field called
room. If column A (the smallest roomID) is equal to
columnB (the largest roomID), then the result shown
must be this roomID. Otherwise the result must be the
text "more". The operator IIf is called an immediate if.
See the result in datasheet mode. It should be as shown
at the lower right of Figure 4.4A. The room column is
what we need for the stay list.

Also have a look at the SQL-version:

58 4. Queries - computed tables

Fig 4.4A Aggregate query - Group By - bundle records

Bundle -> Min(date)

Σ: Group By

SELECT Min(tblRoomState.date) AS arrival . . .
FROM tblStay INNER JOIN tblRoomState
ON tblStay.stayID = tblRoomState.stayID
GROUP BY tblStay.stayID . . . ;

Wanted result:
grouped by stayID

Alias

SELECT Min(tblRoomState.date) AS arrival . . .
FROM tblStay INNER JOIN tblRoomState ON
tblStay.stayID = tblRoomState.stayID
GROUP BY tblStay.stayID . . . ;

The renaming is in SQL handled by AS arrival in the
first line. The bundling of records is handled by
GROUP BY in the last line. Group By works after the
Join, but before the Select is made. The Select part can
thus refer to any of the fields Grouped By, but what
about the non-grouped fields, for instance date? If we
mention them in the Select part, which of the date val-
ues in the bundle should the computer choose? For this
reason, non-grouped fields must be accessed via Min or
another aggregate function.

 4. Queries - computed tables 59

Select bundles HAVING
We may select only certain bundles and discard the
rest. Figure 4.4B shows an example. We want to keep
only the stays with arrival 21-10-2002 (European date
format).

10. In the grid column for arrival, set the criterion as
shown in the figure. The result should be as shown
at the lower right of the figure.

Also have a look at the SQL-version:

SELECT Min(tblRoomState.date) AS arrival . . .
FROM . . .
GROUP BY tblStay.stayID
HAVING Min(tblRoomState.date) = #10/21/02# ;

Notice that in the query grid, we could just set the
criterion on the arrival column. It is tempting to make
a similar thing in SQL:

SELECT Min(tblRoomState.date) AS arrival . . .
FROM . . .
GROUP BY tblStay.stayID
HAVING arrival = #10/21/02# ;

However, this fails because SQL doesn't compute new
fields such as arrival until all the criteria have been
handled. Thus arrival isn't available at the time when
HAVING is dealt with. So in SQL you have to repeat
the Min-expression in the HAVING clause.

Also notice the date formats. In the query grid we use
the regional date formats, but in SQL we must use US
date formats.

Other aggregate functions
Above we have used two aggregate functions, Min and
Max. There are others available. Here is a summary of
them:

Count(x) The number of records in the bundle.
Records with a null value in column x are
not counted.

Sum(x) The total of the non-null values in column
x of the bundle. Null if all values are null.

Avg(x) The average of the non-null values, i.e.
Sum/Count. Null if all values are null.

Min(x), Max(x) The lowest (highest) non-null value.
Null if all values are null.

First(x), Last(x) The first (last) value in column x of
the bundle. May be null. Although Access
allows it, never use these functions in a
query. The reason is that the sequence of
the records is arbitrary during the SQL-en-
gine's work - even if you specify that the
input or the result be ordered in some way.
The result will be a random record in the
bundle.

 First and Last are not parts of SQL because
the result of a true SQL query is a set of
records, not an ordered list of records. It
makes no sense to talk about the first or
last in a set. Ordering of the records into a
list only makes sense when the records are
used outside SQL. As an example, First
and Last may be used in Visual Basic to
find the first or last value in a list shown to
the user.

Var(x) The variance of the values in column x. A
variance is used in statistical analysis. It
shows how much the x values in the
bundle deviate from the average x value.

First the Var-function computes the
differences between each x and the
average in the bundle. Then it squares the
differences and finds the total of the
squares. Finally it finds the average
squared difference by dividing with
Count(x)-1.

VarP(x) Similar to Var(x) but divides with
Count(x) rather than Count(x)-1. You
cannot select VarP in the query grid, but
you can specify it in SQL.

In statistics, Var(x) is suited if the group is
a sample of a larger population, while
VarP(x) is suited for the entire population.

StDev(x) The standard deviation of the values in
column x. It is the square root of Var(x).
While Var(x) exaggerates large deviations,
StDev(x) is more like an average
deviation.

StDevP(x) The square root of VarP(x).

60 4. Queries - computed tables

Fig 4.4B Select bundles HAVING . . .

SELECT Min(tblRoomState.date) AS arrival . . .
FROM tblStay INNER JOIN tblRoomState
ON tblStay.stayID = tblRoomState.stayID
GROUP BY tblStay.stayID
HAVING Min(tblRoomState.date) = #21/10/02#;

Stays HAVING
arrival this date.
Local date format

HAVING arrival
this date

US date format

Aggregation and expressions
You can specify the aggregate functions in the total-
line of the grid, but you can also use them in expres-
sions that compute a field. For instance we could have
spared column A and B above, and instead written this
expression in the room column:

room: IIf (Min(tblRoomState.roomID) =
Max(tblRoomState.roomID),
Min(tblRoomState.roomID), "more")

This will only work, of course, in a Group By query.

You can also aggregate computed values that combine
data from more than one table, such as this:

 Min(tblA.x + tblB.y)

Dynaset
A Group By query cannot be used as a dynaset
although you can set its Recordset property to Dynaset.
It will not be updated dynamically, but the VBA
program can ask for a requery of the list. The user
cannot update fields in a Group By query - not even the
Group By fields, which in principle might be
updatable. See section 4.7.1 for ways to deal with it.

 4. Queries - computed tables 61

4.5 Query a query, handling null values
At this point we have a query that produces an im-
proved stay list with arrival date and room indication.
Queries can in many ways be used exactly as tables.
Now we want to join the improved stay list with the
guest table to get the final stay list in the Find Guest
window. The procedure is similar to when we made the
first qryStayList:

Outer join qryStayArrival with tblGuest
1. First delete the old qryStayList from the database

window (or rename it to qryStayList2).
2. Create a new query in Design view. Add tblGuest

and qryStayArrival to the query window (see Fig-
ure 4.5).

3. Access may guess that you want to join tblGuest
and qryStayArrival on guestID. Otherwise, you
have to create this relationship by dragging
guestID from one table to the other.

4. Make the join an outer join so that all guests are
included. (Select the connector and right-click.)

5. Drag the fields to the grid as shown. Include the
guestID from tblGuest. It will not be shown to the
user in the final form, but we need it to make the
program know which guest the user points at.

6. Close the query and give it the name qryStayList.
Open it again in datasheet mode.

In datasheet mode, you will get something like the
table at the bottom of the figure. We are very close to
the final result, but the guest lines without stay look
wrong. They appear in the middle of the list - looks
stupid. Second they have a room indication "more".
Very confusing - there is no stay for these guests, so
how can Access come up with this?

Sort the list. Let us first fix the ordering problem. It
would be better to sort the list by arrival date, and then
put the stay-less guests at the end. It is easy:

7. In the grid, use the Sort line for arrival. Set it to
Decreasing. When you see the list in datasheet
mode, the latest arrival is first and the stay-less
guests last. SQL considers the null value smaller
than any other value, so the stay-less guests are
last. (Below we will look at a way to order the
stays according to increasing arrival times, yet
have the stay-less guests last.)

If you look at the SQL version, you see that SQL
expresses the sorting as ORDER BY arrival.

Null=null?
The erroneous "more" indications are more puzzling.
Let us look closer at the way a query is computed. In
section 4.2 we explained that after discarding the
useless Cartesian combinations, the SQL-engine
computes the final fields in each record. The room field

is a computed field, and what have we asked SQL to
do? Compute this expression:

room: IIf(A=B, A, "more")

For the stay-less guests, both A (the lowest room num-
ber) and B (the highest room number) are null because
the guest is combined with an empty stay record. Now,
what is the value of null=null? You might think it is
True, but not so in SQL. Actually the value is null,
which is neither True nor False.

Think of null as "unknown". Is unknown = unknown?
Hard to know, in other words it is "unknown".

The general rule is that any expression with a null
somewhere is null. So null+7 is null and null>7 is null.
Similarly null=7 is null.

Hey, how do you test whether something is null?
Asking if x = null will always give null. The IsNull
function helps us out:

 IsNull(x) is true when x is null.

There are a few other exceptions to the general rule:
 Null and False is False.
No matter what the unknown is, the result will be false.
 Null or True is True.
No matter what the unknown is, the result will be true.

 "Abc" & Null is "Abc"
The & operator always converts both operands to texts
as far as possible, so Null becomes an empty text.

We might try to repair the room expression by means
of the IsNull function, but there is a simpler solution in
this case. We just ask whether A is different from B
and if so, the result will be "more":

8. In the grid for qryStayArrival, change the room
expression to this:
 room: IIf(A <> B, "more", A)

9. Save qryStayArrival and reopen qryStayList. The
result should now be right.

When A and B are null, A<>B will be null and SQL
will select A. True is required to select "more". So the
result will be A, which is null. Just what we want.

Sorting null last. As a finishing touch, we will fix the
ordering problem. The trick is to compute a field where
null values become higher than anything else, and then
sort by this field:

10. In the grid for qryStayList, use an empty column.
Enter this expression in the top line:
 s: IIf(IsNull(arrival), 365000, arrival)

62 4. Queries - computed tables

Fig 4.5 Query a query, Null values

Order By arrival

You may get
“more” here.

Why?

Here we compute a field s by means of another IIf-ex-
pression. We ask explicitly whether arrival is null, and
if so use the large value 365000. Otherwise we use
arrival as it is. Look at the result in datasheet view.
Notice that 365000 is shown as a large date around
1000 years ahead. Why? Remember that a date is
stored as the number of days since December 30, 1899.
Since a year is around 365 days, we have thus specified
a date around 1000 years after this date.

(Remember the year-2000 problem? We have now cre-
ated a year 2899 problem. We don't care - we will all
be dead at that time. Or should we care anyway?)

11. Now remove the Sort indication from the arrival
column, and set an Increasing indication for the s-
column. Check in datasheet view that it looks
right.

12. Tiny problem remaining. We don't want the s-col-
umn to appear in the result. In the grid, remove the

Show indication for the s-column. Check that the
list is sorted correctly and doesn't have the s-col-
umn.

13. Close qryStayList and save the changes. Now open
it again and look at the query grid. The s-column is
still there, but it is not called "s" anymore. This is
an example of Access changing the grid behind
our back. No harm is done, because it still works
correctly. Access translated the grid into SQL and
when we opened the query again, it constructed the
grid from the SQL version. Try to look at the SQL
version to see what the Sort indication and the
Show indication becomes in SQL.

At this stage we finally have a stay list that is worth
showing in the user's Find Guest window. In the next
section we will use it for this purpose and also do a bit
about the search criteria.

 4. Queries - computed tables 63

4.6 Query with user criteria
Queries are often used in combination with search cri-
teria. The user enters a criterion and the system shows
a list of matching records. This is what we want in the
Find Guest window. First we will make a continuous
form based on qryStayList. The procedure is similar to
when we made the first fsubStayList:

Create the continuous form
1. In the database window's Form tab, use the Form

Wizard. Choose qryStayList as the base for the
form.

2. Select inclusion of all fields except guestID.
Choose the Columnar layout to get a continuous
form with labels, next choose the Standard style.

3. Save the form and give it the name fsubStayList.
(Replace the old fsubStayList or rename it.)

We are going to use the subform in datasheet view,
which gives a compact format and easy navigation. If
you look at the subform in datasheet view, you will
notice that the column headings are programmer-ori-
ented rather than user-oriented. Furthermore, the state
field is shown as a code rather than as the mnemonic
text booked, out, etc.

We want the datasheet to look like Figure 4.6.

Change headings, etc.
4. Open fsubStayList in Design view.
5. For each of the fields, change its label to the user-

oriented name.
6. For the state field, also change a few things on the

Format tab: Width of the first column should be 0
in order that the state code is not shown, but only
the mnemonic text (section 2.4). Also set Text
Align to Left.

7. For the form itself, set Default View and Views
Allowed, remove the navigation buttons. Also set
the Caption to fsubStayList rather than the query
name. (The user will not see the caption when the
form is used as a subform, but the designer can
easily get confused when seeing the query name in
the title of the subform.)

Check the result in datasheet view. Then it is time to
use it the FindStay form:

Connect continuous form to master form
8. Open frmFindStay in user mode (Form view).

Since the new continuous form has the same name
as the old one, the result should look like the mid-
dle of Figure 4.6. To make it look like the final
system, you would have to enlarge the FindStay
form and the subform control. You would also

have to add more criteria fields and command
buttons. It is not important to do it in this exercise.

Simple search criteria
In the real system, there will be thousands of guests
and stays, so search criteria are essential. Start out with
some simple experiments with search criteria:

9. Close frmFindStay and open qryStayList in design
mode.

10. In the Criteria line of the grid, fill in a criterion for
the name column (bottom of Figure 4.6). Try en-
tering
 = "john simpson"
Change to datasheet mode. Now you should only
see John Simpson's stays. (The SQL-engine
doesn't care about capitalization.)

11. Try this too:
 < "john simpson"
You get all guests alphabetically before John
Simpson.

12. Try the criterion "john". There will be no matches
since no name field contains just "john".

13. Now try with a wild-card expression:
 Like ("john*")
You get all guests with names starting with "john".
Try
 Like ("*s*")
You get all guests with an "s" in their name.

The operator Like is a kind of equal sign. It just inter-
prets the stars in the text string as "any characters at
this place". Note that we can have stars in several
places, for instance before and after the text we look
for. Like is also called the wildcard operator. See more
in section 6.4

User-specified search criteria
In order to let the user specify the name part he is
looking for, we have to retrieve the criterion at run
time. We want to specify a criterion something like this
 Like ("* <user text> *")

However, the Like operator knows about the stars, but
not about finding the user text. We have to combine the
text by means of the &-operator from three texts: the
first star, the user text, and the last star. The expression
will be something like this
 Like ("*" & <user text> & "*")

In our case, the user text will be in the Last-name text
box on the master form. We will call this control
txtName. In Access we can then address the text box
with this expression:
 Forms!frmFindStay!txtName

64 4. Queries - computed tables

Fig 4.6 Query with user criteria

User-oriented headings

Mnemonic states

Connected
to fsubStayList

Other -> Name =
txtName

A simple search criterion.
Or try a user-defined search criterion:
Like ("*" &
[forms]![frmfindstay]![txtname] & "*")

This strange-looking expression means: Look in the
collection of forms to find frmFindStay. Then look in
the collection of controls on this form to find txtName.
This is Visual Basic's way of addressing objects, and in
the next chapter we will look more closely at how it
works.

Ready to combine the pieces?

14. Open qryStayList in design mode. Set this crite-
rion expression in the name column:
 Like ("*" & forms!frmfindstay!txtname & "*")
Don't worry if Access adds brackets as usual.

15. Close qryStayList and open frmFindStay in design
mode.

16. Select the Last-name text box and set its name to
txtName (on the Other tab). The prefix txt is the
standard prefix for text boxes.

17. Switch to Form mode. The list looks as usual.
Enter for instance an s in the text box. Then click
F9 for requery. You should now see only guests
with an s in their name.

18. Try other criteria. When you have a blank text box,
the system shows the entire list. Why? In this case
it looks for "**", meaning anything followed by
anything. All names will match!

In the final system, the user should not use F9 to
search, but our carefully planned and tested buttons and
their shortcuts. In a live search, the system will respond
character by character as the user enters a criterion. All
of this needs some Visual Basic programming, and we
will show it in section 5.2.2.

 4. Queries - computed tables 65

4.7 Bound main form and subform
In many cases we want to bind a main form (a window)
to the database. One example is the stay window. It
should show data about a single stay and guest (Figure
4.7). On the stay window, we also have a list of rooms,
and it should show the rooms for this stay.

As you see, we need two queries: one to combine stay
and guest to supply data for the main Stay form; an-
other to extract room data for the list of rooms. We will
now outline how to do it. We will shorten the explana-
tion a bit and leave it to you to open and close things
properly.

Finish the main form
1. Make a query, qryStay (not shown on the figure).

It must join tblGuest and tblStay. It should include
all of the fields, since they will all be needed
somewhere on the Stay form. The easiest way is to
drag the two stars from the tables to the grid. Don't
worry that we get two guestID fields - one from
each table. We actually need them in the later pro-
grams.

2. Bind to qryStay. You should have made a simple
version of frmStay already (section 3.4). Now set
its Record Source to qryStay in order to connect it
to the query.

3. Connect the existing main-form controls to the
query. For instance the Stay No. field should have
its ControlSource set to stayID, in order to show
this query field in the text box.

4. Add fields. Add a few more fields to the main
Stay window, for instance the name, address and
state. A convenient way to do it is to use the small
Field List window that may have popped up when
you connected the form to the query. Otherwise
open the Field List window through the View
menu or with the Field List icon next to the
hammer icon. Drag a field to the form to create a
text box and associated label. Access will
automatically bind the text box to the query field.

5. For combo boxes, such as pay method and state,
make the first column width zero to let the user see
the mnemonic text rather than the number code.

Have a look at the stay window in user mode. It should
show the first stay. You can use PageUp and Page-
Down to browse through all the stays. You can edit
guest and stay data through the window since the dy-
naset behind the form allows it.

In the final system, the user should be allowed to edit
data this way, but it makes no sense to allow him
browsing through thousands of stays this way. We will
later see how to control this and the creation of new
stays (section 5.5.2).

Make the subform
We will now make the subform that shows the rooms
for the stay.

6. Make a query, qryStayRooms. It is a join of three
tables: tblRoomState, tblRoom, and tblRoomType
(Figure 4.7).

The result of the raw query would be a list of all room
states with data added about the room type and the
prices. For a long stay, this would give an awfully long
list of room states with one line per day. We want to
shorten it to one line per room. In each line we need to
show the first date the room is used and the number of
nights it is used in total.

The query should give a result like the datasheet to the
right in Figure 4.7. Here is a description of the fields in
the query result. Try to define the query on your own.

stayID: Not shown in the continuous form, but needed
to bind the list properly to the main form.

roomID: Not shown directly in the continuous form,
but needed by the program to find out what the user
has selected.

From: The first date this room was used by the stay.
Nights: The number of nights this room was used by

the stay.
Room: A computed text string consisting of roomID, a

comma, and the description from tblRoomType.
Persons: The number of persons actually staying in the

room.
Price: The price - taking into account a possible dis-

count for one person staying in a double room.
More precisely, when the number of actual persons
is one and the bedCount is more than one, price2
should be used. Otherwise price1.

Total: The total price for the room for all these nights.

Binding the subform to the main form
7. The query is to be shown in the subform on the

Rooms tab. First make a continuous form based on
qryStayRooms. Use the Form Wizard and omit
stayID and roomID from the continuous form.
Since the field names above are user-oriented, the
continuous form should automatically look correct
in datasheet view.

8. Connect the continuous form to the subform con-
trol on the Rooms tab. When you now look at the
Stay window in user mode, you will see that the
subform shows all rooms in the database.

9. To show only the rooms related to the stay, set
these properties on the Data tab for the subform
control:
 Link Child Fields = stayID
 Link Master Fields = stayID.

66 4. Queries - computed tables

Fig 4.7 Bound main form

Wanted result

Query for
the subform

Query for
the subform

RecordSource = qryStay

RecordSource = qryStayRoomsLink to main
form stayID

In this way you specify that you only want to see those
child records (in qryStayRooms) where stayID matches
stayID in the master form.

Now the stay window should look right. Try browsing
through the stays and notice how the room lists vary
from one stay to another.

4.7.1 Editing a GROUP BY query
What kind of actions can the user make on a complex
query table such as qryStayRooms? Actually very
little. It would make sense to edit the number of
persons in the room, but since the room list is made by
a Group By, this is impossible. There are two ways out:

a) Dialog box. Provide an edit-button that the user
can click when he has selected a rooms line. The

user will then see a dialog box where he can enter
the number of persons and possible other editable
data. When he closes the button, the VBA program
updates the corresponding room state records.

b) Store query result in a temporary table. The
alternative is to store the query result as a new,
temporary table. (SQL can do this by means of an
INSERT INTO query. See section 7.1) Then you
show this table instead of qryRoomState. Since
this is a table and not a query, the user can edit it.
Next, the VBA program will have to transfer the
changes to tblRoomState.

Programming issues such as these are the reason many
software applications don't allow the user to edit di-
rectly in what he sees, but offer him a dialog box in-
stead.

 4. Queries - computed tables 67

5. Access through Visual Basic
Highlights
• Addressing and changing Forms, Controls and

records
• Responding to clicks, typing and other events.

When you develop Access-based user interfaces, you
soon get to a point where the built-in features don't suf-
fice. It happens for instance when buttons or menu
items must do something a bit complex. Then you need
to make program pieces that cooperate with the built-in
features.

From this chapter and on, we assume that you have
some understanding of programming in general. For
instance that a program consists of statements that can
be executed one by one; that it has variables and can
change them during the execution; that it can call a
procedure (also called subroutine, function, method or
operation), which executes and then returns to the place
where it was called; and that a procedure may have
parameters.

We will first have a look at the built-in objects, for
instance Forms and Controls. We will see how they can
be addressed from the programming language, Visual
Basic for Applications (VBA). Next we see what
happens when the user types or clicks something, and
how the VBA program can respond. We will also look
at the tools available to the programmer.

From section 5.4 and on, the text is no longer a tutorial
you have to follow to understand the rest. We don't say
do this and do that, although we still explain
experiments you can do to explore Access. These
sections are for looking up some topic, for instance
how you can open and close forms from VBA, how
you can access records in the database, etc.

We only show pieces of VBA in this chapter. Chapter 6
is for reference purposes and covers VBA systemati-
cally. The VBA-language itself is rather simple and has
the same components as many other programming lan-
guages, for instance Java and C++. The difficult part is
how the program cooperates with the built-in objects
and how these objects really work. This is our focus in
this chapter.

5.1 The objects in Access
In the previous chapters we have encountered a lot of
Access concepts: tables, queries, forms, and controls.
How do they relate to each other? Figure 5.1A is a
slightly simplified data model for all of these concepts.

When you work with Access, you really work with two
different systems, the SQL engine and Access. The
SQL engine supplied with Access is called the Jet En-
gine. It is used also by other systems than Access. You
can for instance use your database through Excel and
Word too. Access is primarily a tool for accessing data
in databases through user windows (forms). Access can
also work with other SQL engines than Jet, for instance
Oracle. When doing this, you may lose some designer
features but gain other qualities, for instance speed and
reliability.

Databases
The database class on Figure 5.1A contains the cur-
rently open databases. Until now we have only looked
at one database, but Access can handle and connect to
several open databases at the same time.

Recordsets, tables and queries
A database contains a number of recordsets. Some
recordsets are tables, others are queries (shown as
subclasses). Each recordset has a description for each
of its fields. The description includes the field name,
the field type, format, etc.

A query has also an SQL-property - the text that
describes how to compute the records in the query.

Tables and queries play much the same role. Both of
them can for instance be the record source for a Form.

Records and fields
Each recordset contains a number of records, and each
record contains a number of fields. Each field has only
one attribute, the value stored in the field.

You can see the records in Datasheet view. You look
either directly into a table or into records selected and
computed by a query. The model shows that each
recordset keeps track of a current record in the set.

The model in Figure 5.1A doesn't show that each field
actually may belong to several recordsets, for instance
fields that are seen through several queries at the same
time. (It is one of the simplifications we have made.)

Access instances
The Access class on Figure 5.1A contains the currently
open Access windows. When you open an mdb-file,
you will see an Access window with title bar and a da-
tabase window inside. The Access window corresponds
to an object in the Access class. You may open another
mdb-file, and will then get another Access window
(another instance) and another object in the Access
class.

68 5. Access through Visual Basic

Access

Form

Control

Record
Query

Table

Recordset

Combo

Subform

Textbox

Button

FieldForm

Forms

Name,
RecordSource,
Events

Name,
Position ...

Name

ControlSource,
Value, Locked . . .

Form, SourceObject, LinkChildFields . . .

Fig 5.1A The objects in Access

Database

Forms ! frmFindStay ! txtName.Value = “abc”

Forms ! frmFindStay! subStayList.Form ! stayID.Value

Named item
in collection

Name, type, ...

Controls SQL

ControlSource,
Value, Locked . . . Property

Forms(0)
Forms(“frmFindStay”)

Forms ! frmFindStay . Caption = . . .

current
record

Property

bound to

Properties

Open forms

FieldDescr
value

Forms
Each Access window contains a collection of open
Forms. These are the forms you can address from
VBA. (The closed forms are there too, of course, but
you must open them before you can address them.)
Notice that the 1:m connector from Access to Form has
the name Forms. You can use this name to address the
forms:

Forms(0)
Gives you the first open form.

Forms("frmFindStay")
Gives you the open form with the name
frmFindStay.

Forms!frmFindStay
Another way of getting this open form.

Notice that you can address a form by its sequential
number in the Forms collection or by its name. You
can address it by its name in two ways: With the name
in quotes inside a parenthesis, or with an exclamation
mark and the name without quotes. (Sometimes it is
useful to store the name of a form in a variable. To
access the form you write the name of this variable
inside the parenthesis.)

The exclamation mark is called the bang-operator. It
works exactly as the name in the parenthesis, but is
simpler to read and write. You can use the addressing
methods to set a property of a form. The following
statement will for instance change the user-oriented
name (heading) of frmFindStay:

Forms!frmFindStay.Caption = "Guest Lookup"

Set and get properties - try it out
The addressing mechanisms are very important when
you use VBA, but you have to practice.

1. Open the hotel database and open frmFindStay
(the Find Guest window).

2. Open the Immediate window with Ctrl+G.
3. If you work in Access 2000 or 2003, this also

opens the Visual Basic window where you can
program. Make the Visual Basic window smaller
than the full screen (use the Restore button next to
the cross that closes the window).

Figure 5.1B shows the Immediate window. You can
enter VBA statements here and have them executed
immediately. Try to set and get some properties:

4. Enter this statement:
 Forms!frmFindStay. Caption = "Guest Lookup"
You should see the form heading change.
Note: Don't use spaces around ! or before .

5. Use the ? statement to print the caption in the
Immediate window:
 ?Forms!frmFindStay. Caption

6. Try printing the caption using the other addressing
mechanisms: Forms(0) and Forms("frmFindStay").

7. Close and reopen frmFindStay. The caption should
now be back to Find Guest.

What happens here? The caption is just a dialogue
variable that doesn't survive close and open. However,
when you constructed the form, you specified the cap-
tion as Find Guest. This setting is the default value for
the caption property when you open the form. Any

 5. Access through Visual Basic 69

caption changes you make in the open form will be lost
when you close the form.

(It is possible to change the default value for the
Caption with VBA. Just open frmFindStay in design
mode and then set Caption in the same way.)

8. Keep frmFindStay open and open also fsubStay-
List. (This subform is also used inside
frmFindStay). Change and print its caption.

The change has no effect on the subform inside
frmFindStay. We are dealing with two open instances
of fsubStayList. We cannot even access the subform
instance with Forms(). It is not a member of this
collection.

Controls
Each form contains a collection of Controls, for in-
stance text boxes and command buttons. In the same
way as for forms, you can address a control on the
form in these ways:

Forms(0). Controls(0)
The first control on the first open form.

Forms(0). Controls("txtName")
The txtName control on the first open form.

Forms!frmFindStay. Controls!txtName
The txtName control on frmFindStay.

In the last line, notice how the first bang selects the
form by name, the other the control by name. Notice
also the usual dot-operator. It selects a built-in property
of the form.

To shorten these long expressions, VBA works with
default collections. The Controls collection is the de-
fault collection on a form. This means that if you omit
the word Controls, VBA will look in the controls-col-
lection anyway. You could thus write this instead:

Forms(0) (0) The first control on the first open form.
Forms(0) ("txtName")

The txtName control on the first open form.
Forms!frmFindStay!txtName

The txtName control on frmFindStay.

Controls come in many variants (sub-classes), for in-
stance Subform, Text Box, Combo Box, Command
button. They all have a name, a position, a height and a
width, but otherwise they have very different proper-
ties. We will look at some of the controls in more detail
later.

Try it out
9. If you have followed the earlier exercises closely,

the name of the Last-name field should be
txtName. Try setting the value of this control:
 Forms!frmFindStay!txtName. Value = "abc"
You should see the text box changing on the form.

10. The default property of a field is the Value, so this
statement should work the same way:
 Forms!frmFindStay!txtName = "def"

11. Try printing and setting some other properties of
txtName, for instance FontSize.

12. Also try printing the Name property of txtName.
Its name should be "txtName". You should not be
able to change the name unless you set the form in
design mode.

A form may be bound to a recordset, and the property
RecordSource specifies how.

13. Use the ?-command to print the record source for
the two open forms. FrmFindStay should have an
empty record source while fsubStayList should be
bound.

When the form is bound, it can show records from the
recordset. In single-form view, it shows only one
record at a time. In continuous-form and datasheet
view it can show a sequence of records. In all cases, an
arrow in the record selector area marks the current
record. From VBA, you can address the current record:

14. Print the value of the stayID for the current record
in fsubStayList:
 ? forms!fsubstaylist!stayid
Check that it matches the open fsubStayList.

15. Use the mouse to select another record in the open
fsubStayList. Now repeat the ? command. You
should see the stayID for the new current record.

Collections
Collections have a count property, which gives you the
number of items in the collection.

16. Try printing the number of items in the Forms
collection:
 ?Forms. Count
Is it correct?

17. The controls on a form are also a collection, called
Controls. Try in the same way to print the number
of controls on frmFindStay and fsubStayList.

Even the properties of a control or a form make up a
collection, called Properties (see Figure 5.1A). You
may also look into them with the general addressing
mechanism.

Keep frmFindStay open for further exercises in the
next section.

Subform
SourceObject property. A subform control has many
properties, but a particularly interesting one is Sour-
ceObject. It is the name of the form to show. When we
constructed frmFindStay, we set SourceObject to fsub-
StayList. We can see it and change it from VBA:

18. First display the SourceObject property:
?Forms!frmFindStay!subStayList. SourceObject

The first part of this statement is the reference to sub-
StayList on frmFindStay. Now comes a dot saying that

70 5. Access through Visual Basic

Fig 5.1B Addressing the objects

frmFindStay

txtName

subStayList
+ fsubStayList

current record

Ctrl+G: Open the
Immediate window

we look for the SourceObject property of subStayList.
The result is the name of the fsub. (Notice that our pre-
fix rules help us distinguish between the subform con-
trol and the fsub connected to this control).

19. Try setting SourceObject to nothing (an empty text
in quotes):
Forms!frmFindStay!subStayList. SourceObject = ""
The subform in the user window becomes blank.
Try setting it back again (it is a text, so remember
the quotes.)

As soon as we set SourceObject, Access closes the
previous subform and opens the new one. The Source-
Object property is a dialogue variable, so a change will
not survive close and open.

Form property. Above we looked at the SourceObject
property, which is a text - the name of the fsub. But a
subform has another interesting property, Form. It is a
reference to the open form that is shown in the subform
area. You cannot see this property in the property box
because it is not a text, but a pointer that only exists in
user mode. However, you can use the Form property in
VBA.

20. Try this command in the Immediate window:
?Forms!frmFindStay!subStayList. Form!name

It should print the name of the guest selected in the
subform area. The first part is the reference to sub-
StayList on frmFindStay. Now comes a dot saying that
we look for the Form property of subStayList. The re-
sult is a reference to the open form that is shown in the
subform area.

Next comes a bang and a reference to the name field,
i.e. the address of a guest. Now which guest? The sub-
form shows many records - which of the addresses will
we get? The address in the currently selected record.

Was this what you got? Try selecting another record on
the list and repeat the command.

Bang versus dot
21. Try using a dot instead of a bang before name:

?Forms!frmFindStay!subStayList. Form. name

It doesn't print the name of the guest, but the name of
the subform. Because of the dot, the statement asks for
the name property of the form.

When you use the bang, you ask for a control on the
fsub - or a field in the bound record behind the fsub.

Abbreviations. Above we have used the full address
expressions, but Access allows various abbreviations.
For instance you may refer to the guest control of the
subform in any of these ways:

Dot instead of bang
Forms!frmFindStay!subStayList. Form. address1

This works only because there is no address1 property
in a form.

Form omitted
Forms!frmFindStay!subStayList!guest

However, you cannot omit Form and use a dot at the
same time. Access will believe that you ask for a prop-
erty of the sub-control.

Warning. The bang mechanism works only in Visual
Basic. It doesn't work in SQL. For instance you have to
write

 ... JOIN ON tblGuest.guestID = tblStay.guestID

If you write tblGuest!guestID, the system gives an error
message.

 5. Access through Visual Basic 71

5.2 Event procedures (for text box)
Above, we have executed VBA statements through the
Immediate window, but when the user uses the system,
we need another way to activate VBA. We want the
system to respond to user actions, for instance the user
clicking a button, typing something in a text box, etc.
These user actions are called events. You can write a
VBA procedure for each kind of event.

AfterUpdate event
We will now write an event procedure that makes
txtName respond when the user has entered a search
criterion.

1. Open frmFindStay, select the txtName search cri-
terion, and view the property box. (In Access 97
you can only do this in Design mode.)

2. Look at the Event tab. It has a list of the events
that the control can respond to (Figure 5.2A). The
event we are interested in is AfterUpdate. It hap-
pens when the user has finished entering the text in
the control.

3. Create event procedure. Choose AfterUpdate, the
three dots, and Code Builder. This creates the
event procedure for AfterUpdate.

You are now in the Visual Basic window. You may
make the window smaller so that you can see frmFind-
Stay too. Also make the Access window smaller so that
you can see the two windows side by side.

Inside the Visual Basic window you see the event pro-
cedure for AfterUpdate (Figure 5.2A, right). The first
line reads
 Private Sub txtName_AfterUpdate
It shows that it is the AfterUpdate subroutine (proce-
dure) for the txtName control.

4. The body of the procedure is initially empty. Now
enter this statement:
 Me!subStayList . Requery

Me. The word Me means the open form where this
control is placed - in this case the same as
Forms!frmFindStay. We ask Access to find the
subStayList control. Finally we ask Access to call the
procedure Requery in this control. The result is that
subStayList recomputes the query behind the subform.
Since the query gets its where-condition from txtName,
the stay list should change.

Omitting Me. In most cases you can omit Me. You
may for instance write
 subStayList . Requery

The exception is when some built-in function or
property has the same name as the control. In the

following sections we will sometimes write Me for
emphasis, sometimes omit it.

When is the AfterUpdate procedure called? Whenever
the user shows that he has finished entering the text, for
instance when he clicks on another control in the same
form, tabs to another field, or hits Enter. Try it:

5. Enter a criterion in the name field, for instance "a".
Click Enter. The stay list should now shrink ac-
cording to the new criterion. Enter another crite-
rion and use Tab. The system should respond.

6. Change the criterion and then - without using En-
ter, etc. - click in another window, for instance the
property box. The stay list should not change be-
cause txtName still has the focus and Access as-
sumes that the user hasn't finished the field. Now
click another field on FindStay. The stay list
should respond.

5.2.1 More text box properties
We will now make txtName respond each time the user
hits a key. To do this, we need to act on another event,
OnChange. This event happens whenever the user
types something in the text box or deletes a character.
When Access calls this event procedure, the situation is
a bit complex because several properties of the text box
are involved:

Value: This property is the value before the user
started editing the text box. Note that Value is the
default property for a text box, so if you don't spec-
ify another property in your address expression,
VBA will use Value. When the Value property is
empty, it has the value Null, similar to a database
field

Text: The value the user enters, but hasn't finished yet.
This is the text the user sees on the screen, but it is
not yet stored in Value. You can only access this
property when the text box has the focus. At other
times, the Text variable doesn't exist at all. When
the Text property is empty, it is a zero-length text
with the value "", similar to a VBA string variable.

OldValue: The value before the user started editing the
text. For bound controls (bound to a field in the
database), this is the same as the value in the
database. When the entire record is complete,
Access transfers Value to OldValue. OldValue is
useful when the editing must be undone for some
reason. For unbound controls, OldValue and Value
are always the same.

72 5. Access through Visual Basic

Fig 5.2A An event procedure

Click three dots.
Select Code Builder

Form

Form
module

Important Textbox attributes
Value: Last value completed by user (default attribute)
Text: What user sees during editing
OldValue: Value saved in database

Change event
We will now make txtName respond to each keystroke.
Proceed in this way:

7. On the event tab for txtName, choose OnChange
and the three dots. You now see the event proce-
dure for the Change-event.

8. Write these statements in the procedure body (Fig-
ure 5.2A):
 Me.txtName = Me.txtName.Text
 Me.subStayList.Requery
 Me.txtName.SelStart = 100

9. Try it in user mode. As soon as you enter some-
thing in the text box, the stay list changes accord-
ingly.

The first procedure line copies Text to the Value of the
control. As a result, Value becomes what the user has
entered until now. Then the program recomputes the
stay list. During this it gets the search criterion from

the value of txtName. This is why we moved Text to
Value.

The last procedure line is more of a mystery. If you try
using the system without this line, the entire text box
becomes selected whenever you enter something. This
seems to be an undocumented side-effect of setting the
Value. To compensate for it, we let the program define
what is selected. We define the selection start point
(SelStart) to be character 100 of the text. Since the text
is much shorter, Access interprets it as being the end of
the text.

This solution works, but not very well. If you for in-
stance try to change a few characters in the middle of
the search criterion, the system annoyingly moves the
cursor to the end of the text. We could repair it by
storing the position before we set the Value, and set it
back afterwards. This is messy, and in the next section
we will show a more professional solution.

 5. Access through Visual Basic 73

5.2.2 Computed SQL and live search
We will now the professional solution. We don't
change Value at all, but compute the SQL-statement to
be used for the stay list. Let us first assume that the
user has entered the search criterion john. The event
procedure could then compute the list of stays in this
way:

Me.subStayList.Form . RecordSource = _
 "select * from qryStayList where name like ('*john*');"

This is one long Visual Basic statement split into two
lines by means of the space and underscore at the end
of the first line.

Now, what does the statement do? The first line refers
to the open form in subStayList. The form has a record
source property, which defines the records to display.
We had bound the form to qryStayList, so the record
source was "qryStayList".

Now the procedure changes the record source to the
SQL statement in the second line. This statement takes
all records in qryStayList where the name contains
john. And it selects all attributes from the records. This
is what we need.

Notice that the SQL statement is a text surrounded by
double quotes. Inside the statement we have another
text string '*john*'. This text string is surrounded by
single quotes to distinguish it from the large text. We
haven't cared to write SELECT etc. with caps. The
SQL engine accepts the statement anyway.

The only problem is that john should be the text that
the user has entered. So the event procedure has to
compose the SQL statement from three parts, like this:

"select * from qryStayList where name like ('*" & _
Me.txtName.Text & "*');"

Note: Some developers don't use single quotes for the
text inside the text. They use double quotes for the
inner text. So instead of

" . . . like ('*" & they would write

" . . . like (""*" &

The rule is that inside a text string, the characters ""
mean a single ".

Try it out
You may try the solution right away, but take care. The
next time you open frmFindStay and try to search,
Access remembers the SQL statement your program
has set. It uses this statement as the initial query for the
future. (I would call this an error.)

To avoid problems do as follows:

1. In qryStayList, remove the user criterion that we
defined earlier (like . . .). We don't need it any-
more.

2. In fsubStayList, the record source is qryStayList.
Change it to select * from qryStayList;

3. Change the event procedure and try it out (see
Figure 5.2B).

You should now have a live search similar to the one
used in the real system.

(If Access still remembers the previous search crite-
rion, open frmFindStay in design mode and set once
more the Source Object of subStayList to fsubStayList.)

Computed SQL may seem very cumbersome. Yes - it
is, no doubt! However, when we need complex user
criteria, for instance a combination of name and/or
phone and/or date, the easiest way is to let the program
compute the SQL statement. In general, computed SQL
is the professional way to make complex systems.

In the next section we will use computed SQL to deal
with combinations of search criteria, some of them live
and some lazy.

74 5. Access through Visual Basic

Fig 5.2B Computed SQL and live search

Define new
record source

To make it work properly:
Remove the old user criterion from qryStayList.
Set record source of fsubStayList to: select * from qryStayList;
Change the event procedure as above. Try it out.

Compute SQL from
part1 & part2 & part3

Note the single quotes around
text strings that end up in SQL:
('*" & . . . & "*'); "

 5. Access through Visual Basic 75

5.2.3 Composite search criteria
Figure 5.2C shows an example where the user can use
one or more criteria in any combination - composite
search criteria. The figure also shows the programmer
names of the various controls. The name criterion is
called txtName, the booked criterion chkBooked, etc.

The user may fill in part of the guest's name, and/or
parts of his address, etc. The user may also restrict the
search to booked stays, and/or checked-in stays, etc.

To achieve this, the program must generate a suitable
SQL statement for each combination of criteria. The
pattern in the final SQL should be this, with optional
parts shown in square brackets:

SELECT * FROM ... WHERE TRUE
[AND name Like("*john*")]
[AND address1 Like("*buf*")]
[AND phone Like("*3700*")]
[AND arrival = #21-10-02#]
AND (FALSE [OR state=1] [OR state=2]
 [OR state>2 OR ISNULL(state)]);

Notice that we start with a useless TRUE before the
optional AND's, and a useless FALSE before the
optional OR's. This is a trick that makes the program
far simpler. Each piece of the program doesn't have to
care whether it adds the first element to an AND/OR
list, or a later element.

The figure shows the program that generates the SQL
statement. It gradually builds up the SQL-statement in
the string variable s. First it puts SELECT * . . . TRUE
into s. Next it tests whether the name criteria holds
something. If so, it appends AND name Like . . . to s.
And so on. Finally, it stores the SQL statement as the
records source of the stay list.

In the places where the pattern has john, buf, etc., the
program inserts the value from the appropriate text
box.

Notice how we have written SQL parts in caps.
Professionals do so to make the SQL pattern stand out
more clearly. We explain the details below.

Shared procedure
When should this tricky piece of program be executed?
If the screen used an ordinary Search button, the
program should be the event procedure for the button.
However, we want to make a live search. In this case
the program must be executed whenever one of the
criteria changes value, i.e. for a whole bunch of event
procedures.

The solution is to make the program piece a separate
procedure. It starts with Private Sub and ends with End
Sub (see more on procedures in section 6.2). The
appropriate event procedures call this procedure as
shown for txtName_Change, txtArrival_AfterUpdate
and chkBooked_AfterUpdate.

Live search criteria
In order to make a live search, the program must
respond whenever the user has typed something. The
partially finished criteria are used for the search, and
the stay list shrinks gradually. While the user types, the
result is not in the box's Value, but in the temporary
variable Text. The other text box values are in Value.

It would complicate the search procedure to deal with
this too. The solution is to let the event procedures
store the current criteria in the variables copyName,
copyStreet and copyPhone. The event procedure
txtName_Change shows how. The search procedure
uses these copies to generate the SQL statement.

Note how we have declared the copy variables in the
first line of the form (see more in section 6.2).

Lazy search criteria
Some of the search criteria should not be live. The
check boxes, for instance, are either true or false. It is
sufficient to let their AfterUpdate procedure call the
search procedure and let it use the checkbox values. No
copy is needed.

The arrival date might be live, but while the user types
the date, the intermediate value has little meaning. The
stay list would just flicker and confuse the user. For
this reason, the arrival date reacts only at AfterUpdate.

Date comparison
In Figure 5.2C, the arrival date is a text box control
with the format property short date. Access will check
that the text corresponds to a valid date. It will show
the date according to the format property, but it will
store it as a Double number - the number of days since
the end of 1899 (see page 11).

When generating the SQL statement, the program uses
the CDbl function (Convert to Double) to show the
date as a number:
 " AND arrival = " & CDbl(txtArrival)

This would generate an SQL fragment like this:
 AND arrival = 37550

Later, the SQL engine will compare the dates in their
number form, and everything works fine.

Why all this fuzz? Couldn't we simply write:
 " AND arrival = " & txtArrival

When Access appends txtArrival, it converts it to text
format by means of the CStr function. This function
produces a date in the regional date format set up in
MS Windows. With a European date format, we would
get this SQL fragment:
 AND arrival = 21-10-07

SQL would reject it since dates have to be enclosed by
#. So what about this:
 " AND arrival = #" & txtArrival & "#"

76 5. Access through Visual Basic

Fig 5.2C Composite criteria

txtName

Dim copyName As String, copyStreet As String, copyPhone As String

Private Sub search()
Dim s As String

s = "SELECT * FROM qryStayList WHERE TRUE "
If copyName <> "" Then s = s & " AND name Like('*" & copyName & "*') "
If copyStreet <> "" Then s = s & " AND address1 Like('*" & copyStreet & "*') "
If copyPhone <> "" Then s = s & " AND phone Like('*" & copyPhone & "*') "
if txtArrival > 0 Then s = s & " AND arrival = " & CDbl(txtArrival)
s = s & " AND (FALSE "
If chkBooked Then s = s & " OR state = 1 "
If chkCheckedIn Then s = s & " OR state = 2 "
If chkOther Then s = s & " OR state > 2 OR ISNULL(state) "
s = s & ");"
Me.subStayList.Form.RecordSource = s

End Sub

Private Sub txtName_Change()
copyName = txtName.Text
Call search

End Sub

Private Sub txtArrival_AfterUpdate()
Call search

End Sub

Private Sub chkBooked_AfterUpdate()
Call search

End Sub

frmFindStay3

txtStreet

txtPhone

chkBooked

chkCheckedIn

chkOther

Sub search doesn't know whether criteria
are in Value or Text. So they are always here.

SELECT * FROM qryStayList WHERE
TRUE AND name Like('*joh*') . . .

AND (FALSE OR state = 1 . . .

. . .);

txtArrival

Now we would get this fragment:
 " AND arrival = #21-10-07#

Looks all right, but unfortunately, SQL expects dates in
the US format. In this case it would reject 21 as a non-
existing month, in other cases produce a wrong result.

Fortunately, the Access database engine can treat dates
as double numbers, but other databases may not. In
such cases you would have to generate the dates with
an explicit US-format, for instance in this way:
 " AND arrival = #" & Format(txtArrival, "mm/dd/yyyy") & "#"

Empty texts
An empty field in the database has the value Null for
all types of fields. The same applies for the Value in an
empty text box. To test for an empty field , we would
ask for IsNull(f). In a VBA string variable, an empty
text is a zero-length text with the value "". Since
copyName is a string variable, we ask whether the text
is different from "".

Null values
Notice how the program deals with Other stays, i.e.
stays that are neither booked nor checked-in. These
stays include those with state > 2 and those without a

state (a NULL state). Stays with a NULL state are not
real stays, but records generated by the outer join for
guests that don't have a stay.

Initialize the form
A final touch is to make the Find Guest screen
initialize itself properly:

• Let the three checkboxes have a mark initially.
Otherwise, the stay list will be empty initially and
the user may panic. To do this, set the initial value
of the boxes through their property sheet.

• Let the Form's Load event procedure call the
search procedure in order to make the stay list
match the initial criteria:

 Private Sub Form_Load()
 Call search
 End Sub

Try it out
You should try to make the solution work in practice. It
is a challenge, but fun. Make a copy of frmFindStay
and use it for the experiment.

 5. Access through Visual Basic 77

5.2.4 Event sequence for text box
We have now looked at two events for the text box,
Change and AfterUpdate. However, there are many
more, as you can tell from the Event tab in the property
box. (Select the event procedure and click F1 to get an
explanation of the event.) Figure 5.2D shows typical
event sequences for a text box. We will explain what
happens.

User clicks in the text box. First, the text box's Form
object may get a Current event. This happens if the
text box is in a record that wasn't selected before.

 Next, the text box receives two events, Enter and
GotFocus. Enter signals that now the control is
active. Before calling the Enter event-procedure,
Access creates the Text property and sets it to the
current Value of the text box. GotFocus signals that
typing will now go to this control.

 Then the textbox receives this series of events:
MouseDown, MouseUp, Click and maybe also a
DblClick.

User types an Ascii character. The text box receives
four events: KeyDown, KeyPress, Change, KeyUp
(plus mouse events if the mouse is used). KeyDown
occurs when the user depresses any key. The event
procedure has parameters that give details of the
physical key and other keys depressed at the same
time, for instance Shift and Ctrl. KeyPress occurs
when the key has generated an Ascii character, for
instance a letter, digit, space, tab or backspace. All
of these correspond to characters in the Ascii al-
phabet.

 The Change event occurs when the visible content
of the control has changed, for instance that a char-
acter was added to the text or a character was de-
leted. Before calling this event procedure, Access
updates the Text property so that it contains what
the user sees.

 The KeyUp event occurs when the user releases the
key. If the user keeps the key down to generate for
instance a whole sequence of x's, each x generates
KeyDown, KeyPress and Change. The KeyUp oc-
curs only when the user releases the key.

User types a non-Ascii character, for instance Arrow
left or F6. This generates only the KeyDown-event
(and the KeyUp). Nothing happens to Text or
Value, and no Change event is generated.

User types Delete. Delete is not an Ascii character, so
no KeyPress-event occurs. However, one or more
characters may be deleted, and then a Change event
occurs. KeyDown and KeyUp occur too.

User tabs to the next field. Access generates several
events. KeyDown occurs since the user pressed the

Tab key. BeforeUpdate shows that the user has fin-
ished the field, but it is not yet accepted. Before
calling the event procedure, Access has copied Text
to Value. BeforeUpdate may check the value, and
in case something is wrong reject the update.
Rejecting the update means that focus remains on
the text box and no AfterUpdate event is generated
yet. The user may edit the field or click Esc to set
the value back to its old value.

 If it is an unbound control (not connected to a
database record), Access will also copy Text to
OldValue before calling the procedure. This is quite
illogical because OldValue is intended for letting
the program restore an erroneous field. This is not
possible for unbound controls.

 Next comes the AfterUpdate-event. The value has
been checked and the procedure may act on it. In
the example above we used this opportunity to re-
compute the stay list. If it is a bound control, the
value will not yet be stored in the database, nor will
OldValue be changed. Storing the value in the
database doesn't happen until the user moves to
another record or explicitly saves the record with
Shift+Enter (or Records -> Save Record).

 Next comes the Exit event. It signals that the field is
not active anymore. Finally, LostFocus occurs and
signals that typing will go to another control. When
both events have occurred, the Text property disap-
pears.

 What about KeyUp? It happens in the next field,
which accordingly receives the KeyUp event.
Before that, the next field receives Enter and
GotFocus - in the same way as if the user clicked in
the next field.

 What about errors in what the user has typed, for
instance an incorrect date? Access shows an error
message to the user instead of calling Before-
Update, and the cursor remains in the field. Can't
the program interfere before this error message?
Yes it can. The form receives a Form_Error event,
which may take action and cancel the error message
that Access was about to show (see section 5.5.10).

User clicks in next field. Access does almost the same
as when the user tabs to the next field. The only dif-
ference is that there is no KeyDown event.

User moves to next record. First the text box in focus
will receive the same events as if the user moved to
another control in the same record.

Next, the Form object receives three events.
BeforeUpdate signals that the record is about to be
saved and that the program may check that values
are correct and consistent with each other. The Be-

78 5. Access through Visual Basic

Fig 5.2D Event sequence, textbox

User action Events Property changes before call

Click in textbox (Form: Current)
Enter. Text = Value, OldValue = Value
GotFocus.
MouseDown, MouseUp
Click, (DblClick).

Type Ascii character KeyDown, KeyPress.
(letter,digit, tab . . .) Change. Text = Modified text

KeyUp.

Type ArrowLeft or F6 KeyDown, KeyUp.

Type Delete KeyDown.
Change. Text = Modified text
KeyUp.

Tab to next field KeyDown.
in same record BeforeUpdate. Value = Text. Unbound controls

(or Form: Error) also have OldValue = Text
(Program may cancel update)

AfterUpdate.
Exit, LostFocus. Text property disappears
Next field gets: Enter,
GotFocus, KeyUp.

Click in next field As tab to next field,
but no KeyDown event.

Move to next record Form: BeforeUpdate. (Program may cancel update)
Form: AfterUpdate. All bound controls in the form:

Database = OldValue = Value
Form: Current.

Click outside form LostFocus. (no action)
Click in form again GotFocus. (no action)

Click outside Access (no event)

foreUpdate procedure may cancel further event
processing so that the database is not updated.

If everything is okay, Access stores all the bound
control values in the database and in OldValue,
then calls the AfterUpdate procedure. Finally,
Access calls the Current procedure to signal that a
new record is selected.

User clicks outside the form, but inside the same
Access window. Access generates a LostFocus
event to show that typing will go to another object
in Access. In this case the Text property does not
disappear.

User clicks in form again. The active text box
receives a GotFocus event. The Text property has
survived.

User clicks outside Access. The text box does not re-
ceive any events (except for MouseMove events).
All properties survive. When the user clicks on the
Form again - even on the title bar - focus will be
back at the text box, but it receives no events at that
point.

The OldValue property allows the program to undo
changes to bound controls until the moment when the
form receives an AfterUpdate event. To undo a change,
the program sets Value=OldValue.

Key Preview. In some cases we want a key or key
combination to perform the same thing no matter
which control is selected. One example is function
keys. For instance we may want F2 to mean Reset
Criteria no matter where in the form the cursor is. This
can be handled by letting the Form look at the key
before any control gets to know about it. See section
5.5.9 for this Key Preview function.

 5. Access through Visual Basic 79

5.3 Visual Basic tools
Before we go on writing more complex event proce-
dures, we will show some tools that Visual Basic of-
fers.

1. Open a form in Design mode. Now click the Code
icon on the toolbar (close to the Toolbox icon).

You are now in the Visual Basic window. (You might
also get there by choosing an event procedure in the
property box, as we did above.)

Docking and undocking, Access 2000 and 2003
The Visual Basic window may contain many frames. In
Access 2000 and 2003, they may be docked inside the
window or undocked, i.e. floating as separate small
windows. By accident you may dock or undock them,
and it may be very frustrating trying to get them back
where you want. So better learn how to deal with it:

2. Make sure the Visual Basic window occupies only
part of the screen.

3. Make sure the Docking settings are all on: Go to
Tools -> Options -> Docking and make sure that all
the checkboxes are set. Close the option box.

4. Click the Project Explorer icon. The window may
now look like Figure 5.3A with a list of forms at the
left (the Explorer frame) and some program code at
the right. However, it may also show only the Ex-
plorer frame, or show the Explorer frame as a small,
floating window.

5. Drag the Explorer frame to somewhere outside the
Visual Basic window. The Explorer frame is now
undocked.

6. Drag the Explorer frame to somewhere inside the
Visual Basic window. The frame will dock some-
where along a side of the window. Where it docks
does not depend on where the frame is when you
release the mouse button. It depends on where the
mouse pointer is when you release the button.

7. Try dragging the frame around in the Visual Basic
window. Notice that when the mouse pointer is
close to one of the sides, the frame changes to a thin
line showing the new shape of the frame. Release
the button to dock the frame accordingly.

8. Try double-clicking the title bar of the frame. The
frame toggles between docked and undocked.
Leave it docked as on Figure 5.3A.

Project Explorer
To the left you see a list of all forms in the database. In
object-oriented terminology, each form is a class. The
class has a code module with event procedures for the
controls on the form. When you double-click a form on
the list, you will see the code module to the right in the
Visual Basic window.

The database may also contain code modules (classes)
that are not forms. They are shown at the bottom of the
Project Explorer list.

All code modules may contain procedures and declare
variables. VBA offers three kinds of modules:

Form module. A form module has event procedures
for all controls on the form, and it may have ordi-
nary procedures too. It may declare variables.
When you open a form, you get an object based on
the form class. The object is a visible form and it
has a set of variables corresponding to the declara-
tions.

You cannot open several versions of the form just by
clicking multiple times in the database window, but
you may do it from Visual Basic. Then you get more
form objects, appearing as other open copies of the
form. Each copy has its own variables, but the same
code. When the code uses addresses such as
Me.txtName, it refers to the controls and variables of
this particular copy of the form.

When you create a form, you don't get its form module
until you create its first event procedure.

Class module. A class module corresponds to a class
in other object-oriented languages. It has proce-
dures and declares variables, and you can create
multiple objects based on the class, each with their
own variables. The only difference between form
modules and class modules is that the latter are not
visible to the user and have no controls.

See section 5.7 on how to create modules.

Module (simple). A simple module is similar to a class
but there is only one object based on the module.
The system creates this object automatically. The
first versions of Visual Basic had no class modules,
only simple modules.

Code window
To the right in the Visual Basic window, you see the
code window with the Visual Basic program. Figure
5.3A shows the code module for frmFindStay. You see
three event procedures for the txtName control. You
can scroll to other event procedures and controls, or
you can select them by means of the two combo boxes
at the top.

Creating an event procedure. Initially, the event pro-
cedures are not in the code, but if you select one of
them by means of the combo boxes, Visual Basic cre-
ates it. The same thing happens if you select an event
procedure through the control's property window.
However, Access doesn't always coordinate these two
things. You may experience that you have created an
event procedure in the code window, but it doesn't
appear in the property box. As a result, Access never
calls the event procedure. This may for instance happen

80 5. Access through Visual Basic

Fig 5.3A VBA window and debugger

Project Explorer Object BrowserList of controls Events in
the control

Project explorer:
One class per form

Code module

if you have created the event procedure while looking
at the code in debug mode (see page 82).

The cure may be to select the event procedure from the
property box and compile the module (Debug ->
Compile), then close and open the form.

9. Create the missing event procedures for txtName as
shown on the Figure. Use the combo boxes to
create them. If you have followed the previous steps
closely, only the Enter procedure should be miss-
ing.

10. Type the debug statements shown in the proce-
dures, for instance:
 Debug.Print "After", Me.txtName, Me.txtName.Text
When executed, this statement prints something in
the Immediate window. We will explain more on
the Debug statement below.

Note that VBA automatically capitalizes the words that
it recognizes. If it doesn't, it may be because you have
spelled the word incorrectly, but it may also be because
the word comes after the bang operator (!). VBA can-
not recognize things after the bang at edit time, but it
will check all the words at execution time. At that time
it will give you an error message if it cannot recognize
the word.

Deleting an event procedure. If you want to delete an
event procedure, simply delete all the lines of the pro-
cedure. Don't try to delete it on the Event tab.

Closing the VBA window. You can close the VBA
window at any time. It only hides the window. Saving

the code doesn't happen until you close the form it be-
longs to. Sometimes you may want to save the code
explicitly. Use File -> Save (or Ctrl+S).

Debug command and event logging
The statement Debug.Print prints its parameters in the
Immediate window (also called the debug window). As
an example, when the AfterUpdate event occurs, the
event procedure will print the text "After" followed by
the current Value and Text. The event procedure for
Change behaves similarly, and as a result, the Immedi-
ate window will show a log of what happened. Try it:

11. Open the Immediate window with Ctrl+G. Adjust
the sizes so that you can see the Immediate window
as well as frmFindStay.

12. Type something in txtName. The Immediate win-
dow should log what happens.

This is the hard way to find out exactly which events
occur and what the situation is at these points. During
such experiments, you may want to temporarily disable
some statements. For instance, we might want to dis-
able one of the debug statements to avoid too many
lines in the Immediate window.

13. Comment-away statements that you don't want for
the moment. Set an apostrophe (a "ping") at the be-
ginning of the line. When you move the cursor, the
line turns green to show that this is a comment for
humans only.

 5. Access through Visual Basic 81

Breakpoints and debug
We are able to stop the program in the middle of an
event procedure. To do this, we set a breakpoint at the
code line where we want the program to stop. Figure
5.3A shows a breakpoint in the last event procedure -
marked with a big dot in the left margin. Try it:

14. Click at the left margin of the Debug.Print line. The
dot should appear and the line be high-lighted as on
the figure. You have set a breakpoint. (Clicking
again will remove the breakpoint. Don't worry
about the line Msgbox. We will add it later.)

15. Click in some other field on FindStay, then click in
txtName. This generates an Enter event in txtName.
As a result, the program stops just before executing
Debug.Print.

16. Current value. Try moving the cursor to an ex-
pression, for instance the Debug parameter
Me.txtName. After a moment, VBA shows the cur-
rent value of this expression. You can see the value
of expressions in the procedure where the execution
stopped, but not values in other procedures because
they are not active at present.

17. You can use the Immediate window to try out vari-
ous statements. The statements are executed as if
they were written where the breakpoint is. Try for
instance
 Me.txtName.Text = "abc" (should change the text in
the form)
 ? Me.subStayList.Form!name (should print the
name of the first guest in the list)

In section 5.1 we used the Immediate window with
statements such as
 Forms!frmFindStay!txtName = . . .
Now you can use Me. The reason is that now the Im-
mediate window runs in the context of the event proce-
dure. It can address the form object in the same way as
the program.

Correcting bugs at breakpoints. Using the Immediate
window in connection with a breakpoint is an impor-
tant way to find out what the program does. If you find
an error in the program, you may usually correct it
while at the breakpoint. However, sometimes VBA
cannot do the correction, for instance if you delete an
event procedure. It asks whether you want to "reset the
project". This question sounds threatening, but simply
means "stop the program execution and restart it from
the beginning". Nothing to worry about - nothing is
lost.

Continue after breakpoint. When you have made
your experiments at the breakpoint, you can resume
ordinary program execution. There are several ways to
resume execution (Figure 5.3A):

• Run (F5). The program continues in the normal
fashion.

• Step Into (F8). The program executes the next
statement, then stops again in breakpoint mode.
With repeated use of F8, you can execute the pro-
gram step by step. If the program calls another
procedure, you will step into it statement by state-
ment.

• Step Over (Shift+F8). As F8, but if the program
calls another procedure, it executes all of the pro-
cedure without stopping, then stops at the return
from the procedure.

Stop an endless loop. If the program gets into an end-
less loop, you can stop it with Ctrl+Break.

Pop-up help
You have probably noticed that as you type a state-
ment, Access often shows a list of what you can type at
this point. You may bring up several kinds of lists:

• Ctrl+J brings up the property list. It shows you
the possible properties, procedures, and controls at
this point of typing. You may choose one with the
Tab-key.

• Ctrl+Shift+J brings up the Constant list. It shows
you the possible named constants at this point of
typing. (Ctrl+J may be used too, but it brings up
the full list of named constants.)

• Ctrl+I brings up the Quick Info list. It shows the
data type you are dealing with, or the list of pa-
rameters to the procedure you call, or the value of
a named constant.

Try the pop-up help
18. Start entering this statement in the Change proce-

dure (Figure 5.3B):
 MsgBox "test", vbYesNo
When you have typed MsgBox, use Ctrl+I to bring
up the list of parameters. Notice that most of the pa-
rameters are optional (enclosed in brackets). When
you have typed the comma, bring up the list of pos-
sible constants with Ctrl+Shift+J. Select the right
constant with the Tab-key.

When executed, the MsgBox statement will show a
message to the user and ask for a Yes or No. (In section
3.6, we used MsgBox to print messages for a tool-
based mockup.)

19. Put the cursor on RecordSource and use Ctrl+J to
bring up a list of possible properties and procedures
at this point.

20. Put the cursor on txtName and use Ctrl+J to bring
up a list of possible controls at this point.

82 5. Access through Visual Basic

Quick Info
Ctrl+I

Constant list
Ctrl+Shift+J

Fig 5.3B Breakpoint, pop-up help and object browser

Object Browser
F2

Classes
(objects)

Properties and
procedures for

the class

Sometimes a
good explanation.

Else use F1.

Debug actions:
Run F5
Step Into F8
Step Over Shift F8
Break Ctrl+Break
Open Immediate window Ctrl+G

Breakpoint

Property list
Ctrl+J

Object Browser (F2) and Help (F1)
The Object Browser gives an overview of the classes in
Access, Visual Basic, and your own database. Open the
browser with F2 (Figure 5.3B). To the left you see a
list of the classes, to the right all properties and proce-
dures of the selected class (called "members" in the
window). In the figure we have selected the SubForm
class. The right-hand side shows the properties and
event procedures.

For some properties and procedures, VBA shows a
good explanation at the bottom of the window, for oth-
ers you get a good explanation with F1 (Help). The
Object Browser doesn't show all the classes available.
For instance you will look in vain for the Debug class,
which we have used several times already.

Another way to get help about classes, properties, and
language structures such as if-then, is to position the

cursor on the word in the VBA code, then use F1. Usu-
ally you get good help. Try it:

21. Put the cursor on the word MsgBox and use F1.
You get an excellent explanation of the procedure
and its parameters.

22. Put the cursor on the word RecordSource in the
code and use F1. You get a reasonable explanation.

23. The quality of the help information varies. Put the
cursor on the word Debug in the code and use F1.
You may get the message Can't find project or li-
brary. Or you get an explanation, but not an excit-
ing one. You may try F1 with the cursor on the
word Print. You get a lot of information, although it
is hard to find out what it means.

 5. Access through Visual Basic 83

5.4 Command buttons
When the user clicks a command button, it receives a
Click event. The event procedure must perform what
the button is planned to do. We will look at a few typi-
cal examples.

Make a button open another form
We will first let the New guest button open a stay form
in the simplest way (Figure 5.4).

1. On frmFindStay give the NewGuest button the
name cmdNewGuest. (The usual prefix for a com-
mand button is cmd.)

2. Define the event procedure for the OnClick event.
The procedure body should be:
 DoCmd.OpenForm "frmStay"

The object DoCmd can do various things. Here we use
it to open a form. You can use PgDown to step through
all the stays, and even add a new stay at the end.

Open a form to show only one record
You may use OpenForm to open a specific stay:

3. Try to change the procedure body to
DoCmd.OpenForm "frmStay", , , "stayid=2"

If you try it in user mode, you see that stay 2 is visible
and the user may edit it. Parameter 4 did the trick. It is
a filter - a text that automatically enters an SQL-
WHERE clause and restricts the visible stays. In prac-
tice, the program must compute the filter text so that 2
in the example becomes the stayID the user has chosen.

Section 5.5.2 explains more about opening a form for
various purposes. Section 5.5.3 explains the many
parameters for OpenForm.

Make a button reset the search criteria
The real FindGuest window has a button for resetting
the search criteria. Try to add it:

4. In design mode, add a button to frmFindStay. Give
it the label Reset criteria and the name cmdReset.

5. Define the event procedure for the OnClick event.
The procedure body should be:
 Me.subStayList.Form.RecordSource = _
 "select * from qryStayList; "
 Me.txtName = ""

This procedure sets the record source to the full list of
stays, and it sets the search criterion to an empty text. If
there are more search criteria, for instance also the
phone number, they should be set too, of course.

Other button events
The click event happens if the user clicks the button.
What happens if the user tabs to the button and then
presses Enter? Or if the user uses a shortcut key? The
button doesn't notice. It receives a click event in all
these cases.

A command button also receives the same events as a
text box, for instance Enter, GotFocus, MouseDown,
KeyPress. There is rarely a need to do something for
these events. A button doesn't receive Change, Before-
Update and AfterUpdate. These events deal with stor-
ing some data, and a command button doesn't store
anything.

Default button and Cancel button
A form may have a default button. If the focus is
somewhere on the form or its subforms, and the user
presses Enter, the default button gets a click event.
(The exception is when the focus is on another button.
Then this button gets the click, of course.)

You may define any button as the default. In the prop-
erty box for the button, select the Other tab and set
 Default = Yes

Access will automatically set Default = No for the
previous default button on the form.

A form may also have a cancel button. If the focus is
somewhere on the form or its subforms, and the user
presses Escape, the cancel button gets a click event.
You may select any button as the cancel button. In the
property box, select the Other tab and set
 Cancel = Yes

You will typically let the cancel button close the form
without saving anything. This can be done with these
statements in the event procedure:
 Me.Undo
 DoCmd.Close

The Undo procedure sets all fields on the form to their
OldValue. As a result, Access will not save them at
close.

84 5. Access through Visual Basic

 Fig 5.4 Command buttons, default and cancel buttons

Private Sub cmdNewGuest_Click()
DoCmd.OpenForm "frmStay"

End Sub

Or open only one stay:
DoCmd.OpenForm "frmStay", , , "stayid=2"

Default button - responds at Enter:
Other tab -> Default = Yes

Private Sub cmdReset_Click()
Me.subStayList.Form.RecordSource = "select * from qryStayList; "
Me.txtName = ""

End Sub

Cancel button - responds at Esc:
Other tab -> Cancel = Yes

 5. Access through Visual Basic 85

5.5 Forms
Forms are very complex. They handle many events and
have many properties. Below we explain the more
important ones.

5.5.1 Open, close, and events
In Visual Basic you can open a form in this way:
 DoCmd.OpenForm "name of the form"

 OpenForm can have many parameters, as explained in
section 5.5.3. You can close the form that is in focus
with
 DoCmd.Close

As an example, a button on the form could close the
form in this way. When the user clicks the button, the
form is in focus.

 If you want to close another form than the one cur-
rently in focus, you can specify the form through two
parameters, for instance:
 DoCmd.Close acForm, "frmStay"

The parameter acForm says it is a form. The last pa-
rameter is the form name.

An alternative is to set the form in focus, and then
close it, for instance like this:
 Forms!frmStay.SetFocus
 DoCmd.Close

Event sequence
During open and close, the form receives many events.
Figure 5.5A gives an overview.

Open(Cancel). This is the first event that the form re-
ceives. At this point in time, the various data struc-
tures in the form have been created, including all
controls. The subforms have been opened and have
received their first Current event. Most controls
also have the right value, but some have not. The
form is invisible to the user at this point. The event
procedure may set the parameter Cancel=True,
thereby refusing to open the form.

Load event(). Next the form receives a Load event.
The form is still invisible, but all unbound controls
have a value. Controls bound to a database record
may still not have the right value. Accessing data in
the database proceeds in parallel with opening the
form, and bound controls gradually get the right
value.

Resize(). This event occurs during opening of the
form, and when the user resizes the form by drag-
ging its borders. The event procedure may adjust
the controls on the form to better utilize the avail-
able space. As an example, a subform area may ex-
pand and contract in step with the main form. See
section 5.5.13.

Activate(). This event signals that the form, or one of
its controls, will get the focus (the title bar becomes
blue). The event doesn't occur when the user clicks
from another application. Subforms never receive
an Activate event. They are active when their main
form is active.

GotFocus(). This event occurs only when the form
has no controls that can get the focus.

Current().This event occurs at open no matter whether
the form is bound to the database or not. For bound
forms, it also occurs when the user moves to
another record, for instance with PageDown. This
event is the place to update controls that depend on
the current record, for instance detail windows.

 When Current is called during open, the form is
still invisible, but the controls have the right value.
When Current returns, the form becomes visible.

Dirty(Cancel). This event occurs the first time the user
edits some bound data in the current record. The
event occurs right before the Change event of the
control changed by the user. At return the Form
property Dirty becomes True.

BeforeUpdate(Cancel). This event occurs when the
form has data that is about to be saved in the data-
base. The event is an opportunity to check consis-
tency between pieces of data before they are saved.

The event procedure may set Cancel=True to stop
saving and let the user change the data. It may also
use Me.Undo to restore the old values and in that
way skip the saving.

BeforeUpdate will occur when the form is to be closed
or when focus moves to another record on the form.
Canceling the update means that the form will not be
closed or focus not moved.

BeforeUpdate will not occur when focus moves to an-
other Access form. However, it will occur when focus
moves to a subform on the same form, or when the user
switches to a different tab sheet on the same form. This
makes it difficult to maintain consistency between data
in the main form and data in its subforms.

AfterUpdate(). This event occurs when values have
been saved in the database. Also the OldValue
properties have been set to the saved values. The
event is an opportunity to act on the new data.

Unload(Cancel). This is the first event when a form is
closed. The event procedure may check that every-
thing is okay. If it returns Cancel=True, the form
will remain open.

86 5. Access through Visual Basic

Fig 5.5A Event sequence, Form open and close

User action Events Property changes before call
Open Open(Cancel) The Form and its controls are created, but not

visible. Some controls are not initialized. Subforms
are open. The procedure may refuse to open the
form (Cancel=True).

Load All controls are initialized, except bound ones.
The Form is still invisible.

Resize (Opportunity to reposition controls)
Activate (Signals that the form will get focus)
(GotFocus) (Only for Forms where no control can get the

focus)
Current A current record has been selected. Bound controls

have a value. At return, the form becomes visible.
Edit Dirty First time the user edits some data in the record.
PageDown, BeforeUpdate(Cancel) Some bound fields to be saved.
etc. The procedure may refuse to save.

AfterUpdate Bound fields saved. All values = OldValue.
Current Form is invisible. A new record is current.

At return, the Form becomes visible.
Click in BeforeUpdate(Cancel) As for PageDown.
subform AfterUpdate As for PageDown.
Close Unload(Cancel) Form to be closed. The procedure may refuse and

the form stays open.
Deactivate (Signals that the form will lose focus)
Close At return, the form becomes invisible and the

subforms are closed. Memory is released.

Deactivate(). This event signals that the form will lose
focus. It occurs during close and when the user
clicks in another main form. It doesn't occur when
the user clicks in another application. Subforms
never receive a Deactivate event.

Close(). This is the last event the form receives. The
form is still visible and all subforms are still open.
When Close returns, the form becomes invisible, all
subforms are closed, and data structures are deleted.

5.5.2 CRUD control in Forms
When you create a form in the default way and open it
with DoCmd.OpenForm, the user is allowed to step
through all records, and add several new records. De-
pending on circumstances, we may want a more re-
stricted behavior. We may for instance want the user to
see and edit only one single stay. Or we may want the
user to create only one new record.

CRUD and filter properties
The way to control this is through the following prop-
erties, called CRUD properties because they specify
Create, Read, Update, and Delete of records (Figure
5.5B gives an overview). You can see their initial val-

ues on the form's data tab. You can change them at run
time through Visual Basic:

AllowEdits. If True, the user can edit fields in existing
records. Default=True.

AllowDeletions. If True, the user can delete a record
with the Del key. (Requires that the record selector
is displayed in the form.) Default=True.

AllowAdditions. If True, there will be an empty record
at the end of the list for adding new records.
Default = True.

Filter. A text that works as a WHERE clause in the
query behind the form. For instance, you may set
filter to "stayID=740". The result will be that the
user only sees the stay with ID=740. (Don't write
the word WHERE itself.)

FilterOn. If True, the Filter property works and selects
records. If False, the filter has no effect. FilterOn is
a property that you cannot see in the form's prop-
erty box, but you can set it through the program or

 5. Access through Visual Basic 87

the Immediate window. The user can toggle Filter-
On with the filter icon on the toolbar.

AllowFilters. If True, the user is allowed to set filters
on and off through icons on the toolbar. The pro-
gram can always set filters independently of Al-
lowFilters.

DataEntry. If True, the user will not be able to see old
records. If AllowAdditions is also True, the user is
allowed to add new records. If the program sets
AllowAdditions to False while the user is editing a
new record, the user is allowed to finish editing the
record, but cannot add further records. Default =
False.

Setting DataEntry to False has an undocumented
side effect: It also sets FilterOn to False, in that
way blocking filters set up by the program. In this
case, let your program set FilterOn after setting
DataEntry.

All of these properties are dialog variables that don't
survive closing of the form. What you have specified in
the form's property box are simply the default value for
these variables. You may try out the properties in this
way:

1. Open frmStay in Datasheet mode. You should see
all records from the stay query. At the end of the
datasheet you should see an empty line for entering
a new record.

2. Open the Immediate window with Ctrl+G. Adjust
the sizes so that you see the datasheet and the Im-
mediate window at the same time. Try to change
the settings with statements such as:
 Forms!frmStay.AllowAdditions = False
 Forms!frmStay.Filter = "stayid=740"
 Forms!frmStay.FilterOn = True
The datasheet should change accordingly, removing
the empty line, showing only one record, etc.

See and edit a single record
In order to see and edit a single record, set these prop-
erties in the form's property box (see overview in Fig-
ure 5.5B):
 AllowEdits = True
 AllowDeletions, AllowAdditions, DataEntry = False

Then open the form with a filter, for instance:
 DoCmd.OpenForm "frmStay", , , "StayID=2"

In practice, the program must compute the filter text so
that 2 in the example becomes the stayID the user has
chosen.

Update the record. When the user enters something, it
is not stored in the database until he closes the form (or
enters a subform). Sometimes storing is needed earlier.
The program can do it with this statement:
 Me.Recordset.Move(0)

This trick assumes that Access is configured for DAO
3.6 (see section 5.6). The statement works on the open
recordset bound to the form. It moves current record
back or forth a number of records, and as part of this it
saves the current record. In our case we move zero
records away - to the same record. But we get the
update anyway. (See more in section 5.6.3.)

Create a single record
In order to create a single record without seeing exist-
ing records, set these properties in the form's property
box (see overview in Figure 5.5B):
 AllowAdditions = True
 DataEntry = True

This will still allow the user to enter a record and then
move on to enter a new record. To avoid this, block
further record creation when the first record is updated:

 Private Sub Form_AfterUpdate()
 Me.AllowAdditions = False
 End Sub

Open the form with
 DoCmd.OpenForm "frmStay"

Prevent two blank lines in datasheet
The method above for creating a single record works
okay when the Form is shown in normal mode. In
Datasheet mode, however, the user may be confused at
what happens. The user sees the blank record at the end
of the datasheet, but as soon as he starts typing in it,
another blank line appears.

Access creates the second blank line right after calling
the Dirty-event procedure. However, it is impossible to
adjust things at this point because the user's character
hasn't yet ended where it should be.

The solution is to store something in the new blank
record before the user types anything. This initiates a
temporary record for further editing. Then AllowAddi-
tions is set to False to prevent further new records. This
can be done at the Current event:

Private Sub Form_Current()
 If Not IsNull(Me.someField) Then Exit Sub
 Me.someField = " "
 Me.AllowAdditions = False
 Me.someField = Null
End Sub

The first statement checks whether something has been
stored in the field to be initialized. In this case the user
has selected an existing record and nothing should be
done now. The next statement stores a space in the
field. This creates the temporary record. Next Allow-
Additions is set to False. This prevents further records
being created. Finally the field is set back to the initial
empty state.

The solution must be extended with means to add an-
other record, for instance a button or a response to
Enter. Care must also be taken not to leave empty

88 5. Access through Visual Basic

DoCmd.OpenForm “frmStay”, view, , “StayID=5”, CRUDproperties, windowMode, openArgs

acDesign
acFormDS
acNormal
acPreview

acDialog
acHidden
acIcon
acWindowNormal

Datasheet
view

Print
preview

Available to the
Form procedures

Form properties: CRUD and Filter
AllowEdits: See and edit data
AllowDeletions: Del-key works
AllowAdditions: Empty record at end
DataEntry: Old data invisible
Filter: e.g. StayID=740
FilterOn: Use filter
AllowFilters: User-controlled filter

A
llo

w
E

di
ts

A
llo

w
-

D
el

et
io

ns

A
llo

w
-

A
dd

iti
on

s

D
at

aE
nt

ry

To see and edit a single record:
(Also set the filter)

True False False False

To create a single record:
Initially x False True True
At Form_AfterUpdate x False False True
acFormEdit True True True False
acFormAdd True True True True
acFormReadOnly False False False False
acFormPropertySettings (default) x x x x

Fig 5.5B Controlling Open, CRUD, and filter

FilterFilter name
?

records in the database in case the user doesn't enter
something.

5.5.3 The OpenForm parameters
From VBA you normally open a form with
DoCmd.OpenForm. A lot of parameters determine
what goes on (see the details on Figure 5.5B).

Form name. The first parameter is the name of the
form, for instance "frmStay".

View. The second parameter specifies whether the
form is to be shown in design view, as a datasheet,
as a normal form (default), or as a preview of a
print.

Filter name. The name of a query, for instance
"qryStay". (I have not been able to figure out what
this parameter does.)

Filter. A WHERE condition for the records to show,
for instance "StayID=5".

CRUDproperties. A choice of CRUD combinations
that determine whether records can be edited,
added, etc. Figure 5.5B shows that acFormEdit sets
AllowEdits, AllowDeletions, AllowAdditions to
True and DataEntry to False. In other words, the

user can do anything to the records. At run time
these settings overrule the initial settings from the
Form's property box.

As another example, acFormPropertySettings (the
default), doesn't set any of the CRUD properties but
lets the initial settings rule.

WindowMode. Specifies whether the form is to be
shown as a dialog box, a hidden window, an icon,
or a normal window. A dialog box keeps the focus
until the user closes it. It has borders that cannot be
resized. A hidden window is like a normal window
except that it is invisible. The event procedures can
make it visible with me.Visible=True. The window
mode acIcon seems to have no effect.

OpenArgs. This parameter is stored in the property
OpenArgs in the Form. It can tell the event proce-
dures in the Form what to do. The parameter might
for instance specify whether the form is to be used
for creating a new record or viewing an existing
one, in this way allowing the Form to do it in its
own way. Below we show how this is used in the
hotel system to let the same form handle a new
guest, a new stay, or an existing stay.

 5. Access through Visual Basic 89

5.5.4 Multi-purpose forms (hotel system)
In the hotel system we use frmStay for creating guest
and stay records, as well as editing existing records.
Using the same Form is an advantage to the user (for
recognition) and for the developer (he needs to main-
tain only one Form).

Now, how does the Form know what it should do?
OpenArgs is intended for such things. In the hotel sys-
tem, we use OpenArgs in this way:

• OpenArgs < 0: Open an existing stay. The
WhereCondition parameter in the OpenForm
statement selects the right one.

• OpenArgs = 0: Create a new guest and a new
stay.

• OpenArgs > 0: Create a new stay for an existing
guest. OpenArgs is the guestID for the existing
guest.

Figure 5.5C shows the full solution. It deals also with
error cases where the user for instance clicks the
ShowStay button, but hasn't selected a stay. The Find
Guest screen has three buttons for opening a stay. The
figure shows the three click-event procedures.

cmdNewGuest
This is the simplest of the buttons. Independent of what
the user has chosen, the button should create a new
guest and a stay for him. What is needed is to open the
form with OpenArgs=0.

cmdNewStay
Here we have two situations. (1) The user has selected
a line, and thus a guest. (2) The list is empty so the user
has not chosen anything. The property CurrentRecord
allows the program to distinguish the two situations.
CurrentRecord gives the sequential number of the se-
lected record. It is zero if nothing is selected. If the list
is empty, we might claim it is an error to make a new
stay for a non-existing guest, but it turns out that users
find it natural to create a new guest in this case. So this
is what the program does; it opens the form with Open-
Args = 0. If a line is selected, it opens the form with
OpenArgs = guestID.

Notice the If-Then-Else-EndIf construct that makes the
program choose alternative paths, either executing the
Then-statements or the Else-statements. The line-
breaks must be as shown, with Else and EndIf on lines
of their own.

Notice also the comment we have put after Then to
explain to the reader what situation the program deals
with after Then.

cmdShowStay
Here we have three situations. (1) A stay is selected.
(2) A guest without stay is selected. (3) The list is
empty. In the last two cases, the program cannot open a
stay. The current value of stayID allows the program to

distinguish. StayID is >0 in the first case, and Null in
the last two cases. Notice that stayID exists even if the
list is empty and CurrentRecord is zero. The value of
stayID is just Null.

When stayID>0, we open the form with OpenArgs=-1.
We also have to set the filter so that only this stay is
visible. The WhereCondition-parameter to OpenForm
allows us to do this in a simple manner. If the user for
instance has selected a line with stayID=740, the
WhereCondition has to be the text
 stayID=740
In the program we compute this text by concatenating
the text "stayID=" with the current stayID using the &-
operator. StayID is a number, but Visual Basic converts
it to a text before the concatenation.

When stayID is Null (or a number <=0) we have an
error situation. The program may show a message
using MsgBox, but in our case we just make the pro-
gram beep. The DoCmd-object can do this too. (Us-
ability tests show that users understand what is wrong
without any message explaining about it.)

FrmStay, Load event
Inside frmStay an event procedure must take care of
setting the right CRUD properties. Access calls the
Load-event procedure during open, and this is the place
we set the CRUD properties. Figure 5.5C shows the
procedure. Let us follow the path through the code for
each of the three cases.

OpenArgs is < 0: We open an existing stay. The
WhereCondition parameter has set the filter, so we
don't have to do much. The procedure just executes the
last line, which sets AllowAdditions to False.

OpenArgs = 0: We must create a new guest record and
a new stay record. First we allow additions and data
entry. Data entry means that existing records are not
visible, so the current record is a new "blank line".
FrmStay is bound to a join of tblGuest and tblStay, so
the current record will now consist of Null data for the
guest as well as the stay. In order to create the records,
we have to store something in them.

First we set the guest name to a single space character.
This creates a new guest record, and Access gives it an
AutoNumber. Notice how we address name with a
bang (!) to distinguish it from the built-in Name prop-
erty.

Next we set the foreign key of the stay record to this
guest. This creates the stay record and also links it
properly to the guest. Then we set the name back to a
Null so that the user doesn't see a name starting with a
space when he enters the guest name. Notice the
strange use of square parentheses. We explain more
about them below.

90 5. Access through Visual Basic

Fig 5.5C Edit or create connected records through a form

Bind to one
old Stay

Bind to old Guest
+ new Stay

Bind to new Guest
+ new Stay

Private Sub Form_Load()
' OpenArgs: -1: existing stay, filter set; 0: new guest; >0: new stay for existing guest, OpenArgs = guestID.
' Assumed CRUD settings: AllowEdits = True, DataEntry = False.
 If OpenArgs >= 0 Then ’ NewStay or NewGuest
 Me.AllowAdditions = True
 Me.DataEntry = True ’ Don't see existing records
 If OpenArgs = 0 Then ’ NewGuest
 Me!name = " ” ’ Set blank name to create a dummy guest. Access makes guestID
 Me.[tblStay.guestID] = Me.[tblGuest.guestID] ' Create a stay record. Access makes stayID
 Me!name = Null ‘ Remove the blank name
 Else ‘ New stay for existing guest
 Me.[tblStay.guestID] = OpenArgs ‘Create a stay record. Access makes stayID
 End If
 End If
 Me.AllowAdditions = False ' All cases. No more additions
End Sub

Private Sub cmdNewGuest_Click()
 DoCmd.OpenForm "frmStay", , , , , , 0
End Sub

Private Sub cmdNewStay_Click()
 If Me.subStayList.Form.CurrentRecord = 0 Then 'No guest selected
 DoCmd.OpenForm "frmStay", , , , , , 0
 Else
 DoCmd.OpenForm "frmStay", , , , , , Me.subStayList.Form!guestID
 End If
End Sub

Private Sub cmdShowStay_Click()
 If Me.subStayList.Form.stayID > 0 Then 'Stay selected
 DoCmd.OpenForm "frmStay", , , "stayID=" & Me.subStayList.Form!stayID, , , -1
 Else
 DoCmd.Beep
 End If
End Sub

frmStay

frmFindStay

OpenArgs

WhereCondition.
Becomes the Filter

OpenArgs

Finally we set AllowAdditions to False so that Page-
Down will not bring the user to a new empty record.

OpenArgs is > 0: The guest exists already and Open-
Args is the guestID. First we allow additions and data
entry. Data entry makes the current record a new
"blank line". Next we set the foreign key of the stay
record. This creates the stay record and links it to the
guest. Access automatically joins it to the guest, so the
guest data is now in the "blank line".

Finally we set AllowAdditions to False to prevent fur-
ther record creation.

The strange []
The program has a strange use of square parentheses.
The reason is that the query behind the form has two
guestID fields, one from each table. None of these are
visible on the form, but they are available anyway as
fields. The SQL-engine has given them the names

 5. Access through Visual Basic 91

 tblStay.guestID and tblGuest.guestID

In SQL-view of the query they sometimes appear as
 [tblStay].[guestID] and [tblGuest].[guestID]

However, when we address them in Visual Basic, we
have to write
 Me.[tblStay.guestID] and Me.[tblGuest.guestID]

Confusing? Yes, very, but Visual Basic needs these
parentheses to indicate that tblStay.guestID is one sin-
gle name.

Note that we use the dot-operator after Me to address
these fields. This allows us to use Ctrl+J to get a list of
all properties and fields. You will find tblStay.guestID
on the list, but you have to add the parenthesis your-
self.

See the mechanisms live
The Load event is the more interesting part of the solu-
tion. You may try it out in this way:

1. Open frmStay and use the property sheet to give it a
Load-event procedure. Type in the procedure from
Figure 5.5C. Set a breakpoint at the first line. Close
the form.

2. Open the Immediate window with Ctrl+G. Now
simulate the NewStay button with this command in
the Immediate window:
 docmd.OpenForm "frmstaymono",acFormDS , , , , ,2

3. The command starts opening the form and will
show it in Datasheet mode. The Load procedure
stops at the breakpoint, but the form is not yet visi-
ble. Make it visible with this command in the Im-
mediate window:
 me.Visible = True

4. The form should now appear in Datasheet mode.
Step through the Load procedure with F8 to see
what happens to the datasheet. When the procedure
sets DataEntry, the datasheet should reduce to a
blank line. When the procedure stores OpenArgs in
the record, the guest data should appear in the blank
line.

You may try out the other cases in the same manner.

5.5.5 Dialog boxes (modal dialog)
Many of the boxes you see in Windows applications
are dialog boxes. When a dialog box pops up, you have
to fill in what is asked for and then close the box. You
cannot look around at other windows until you have
closed that dialog box. This is a modal dialog. One
example is a message box. Another example is the Op-
tions box that many applications have.

A dialog box is a special case of a Form. Apart from
being modal, it has narrow borders, and the user cannot
drag the borders to change the size of the box.

There are several ways to open a dialog box:

Message box
• Use the MsgBox function, for instance:

 MsgBox "the message", vbYesNo+vbQuestion

This opens a box with the message and shows a num-
ber of buttons (Yes and No in the example), plus an
icon (a question bubble in the example). You can check
the return value to see which button the user chose, for
instance:
 If MsgBox("the message", vbYesNo) = vbYes Then . . .

Notice that we write MsgBox with parameters in a pa-
renthesis when we need to look at the return value. Use
F1 to see the help information about MsgBox. There is
an excellent explanation of all the details.

Multi-line message
When the message is more than one line, you have to
compose it in this way:
 MsgBox "line 1" & Chr(10) & "line 2", vbYesNo

Chr(10) is the new-line character, or more precisely a
text consisting of the new-line character. In Visual
Basic you cannot write a new-line character inside the
text string itself.

Use OpenForm with acDialog
• Make a Form in the usual way with data fields,

buttons, etc. Open it with DoCmd and the acDia-
log parameter, for instance:
 DoCmd.OpenForm "form name", , , , ,acDialog

OpenForm sets the right border on the form and makes
it modal. There is no return value. The form has to
store results somewhere, for instance in global vari-
ables or in the database.

Set the dialog properties of the Form
The last way to make a dialog box is to set the Form
properties yourself:

• On the Format tab for the form, set Border Style to
Dialog. The effect of this is that the border of the
Form is narrow and the user cannot drag the bor-
ders to change the size.

• On the Other tab set PopUp to Yes. When you
open the form, it stays on top of other forms. It is
not modal however. You can work with other
forms while the dialog form is open.

• On the Other tab set Modal to Yes. In Access 97
this makes the form modal. When open, the user
cannot work with other forms. In Access 2000 and
2003 the Modal property has no effect at all (al-
though the help text says it has).

You may then open the form with DoCmd.OpenForm
without specifying the acDialog parameter.

92 5. Access through Visual Basic

5.5.6 Controlling record selection
A bound form is connected to a record set (a database
table or a query). At any given time one of the records
is the current record. When you see the recordset in
datasheet mode, the current record is marked with an
arrow. When you see it in Form mode (normal mode)
only the current record is visible.

In many cases we want the program to move to another
current record. Figure 5.5D illustrates some ways to do
this. The Form is bound to tblGuest and shows one
guest at a time. At the top of the form we have added
some navigation controls. One is a combo box where
the user can select a guestID from a drop down list.
The list shows guestID as well as guest name. There
are also two buttons that navigate to the previous and
the next record.

Move and see one record
First we will look at the situation where we want to
navigate to the guest selected by the guestID. The user
should not see other guests than this one.

The solution is to set the filter properties of the Form
when the user selects something with the combo box.
The AfterUpdate procedure for the combo box could
look like this (top left of the figure):

Private Sub cboGuestID_AfterUpdate()
 Me.FilterOn = True
 Me.Filter = "guestID=" & Me.cboGuestID
End Sub

The filter is a condition to be used by Access in a hid-
den WHERE clause when retrieving the Form's record
set. It is a computed text. For instance, when the user
selects guest 2, the text becomes
 guestID=2

Scroll to a record
Next we will look at the situation where we want to
navigate to the guest, but the user should be allowed to
move back and forth from there. In this case we cannot
use the filter. The solution is to work directly on the
Form's recordset. The AfterUpdate procedure for the
combo box could look like this (top right of the figure):

Private Sub cboGuestID_AfterUpdate()
 Me.Recordset.FindFirst ("guestID=" & Me.cboGuestID)
 ' Might also be written without a parenthesis
End Sub

The recordset has a FindFirst function with a condition
as a parameter. It finds the first record in the set that
matches this condition. Then it makes this record the
current record.

The two arrow buttons also work directly on the re-
cordset. They use the MovePrevious and MoveNext
functions for moving current to the previous or next
record. Actually, these buttons do the same as Page-
Down and PageUp. Section 5.6 explains more about
recordsets.

Fig 5.5D Controlling record selection

Scroll to
guestID=2

See only
guestID=2

Scroll to
previous

Scroll to
next

Unbound
control

 5. Access through Visual Basic 93

5.5.7 Column order, column hidden, etc. SelTop (attribute, read and write). The number of the
top row in the selected area. The first record in the
table behind the form is row 1, the next 2, etc.
Notice that the first records may be scrolled out of
sight.

When a form (or subform) is shown in table view, the
user can rearrange and hide columns. To rearrange
columns, the user selects a column and drags it to a
new position. To hide it, he selects the column and uses
Format -> Hide columns.

SelHeight (attribute, read and write). The number of
rows selected. If SelHeight is zero, no area is
selected, but the record is still selected.

The program may need to know these settings or it may
need to change them.

SelWidth (attribute, read and write). The number of
columns selected. Hidden columns are included. If
SelWidth is zero, no area is selected, but the record
is still selected.

Remember that each column corresponds to a control
on the form (section 3.2.1). As an example, column 2
on Figure 5.5E corresponds to a text box control bound
to the description field of the table. The column
heading (Class) is the label associated with the text box
(or the name of the text box if there is no label). SelLeft (attribute, read and write). The number of the

left column in the selected area. In Access 97 the
columns are numbered from 1 and up. In Access
2000 they are numbered from 2 and up when an
area is selected.

The program can detect and set column order, etc.
through these three attributes of the controls:

ColumnHidden (attribute, read and write). True or
False. Beware: The strange change from 1-based numbering

to 2-based numbering must have puzzled quite a
number of developers. Obviously it is an error. The
situation is even stranger when only a record is
selected, but not an area. In this case you set SelLeft
with 1-based numbers, but retrieve it with 2-based
numbers.

ColumnOrder (attribute, read and write). The number
of the column. Columns are counted from 1 and up
in the sequence that the user sees. However, hidden
columns are included in the counts.

ColumnWidth (attribute, read and write). The width of
the column measured in twips (see section 5.5.13).
If the program sets ColumnWidth to -2, the width is
adjusted to fit the data in the column. Width = -1
means a default width. Width = 0 makes the column
hidden (and you have to explicitly unhide it -
setting the width is not enough).

If columns have been reordered, their numbers follow
what the user sees. However, hidden columns are
included in the counts.

Keeping the area selected
In the hotel system, the user selects rooms through a
form like Figure 5.5E. In principle this is easy.
However, as soon as focus moves from the subform to
the main form, Access removes the area selection. This
happens for instance when the user clicks a button in
the main form. The event procedure behind the button
wouldn't even know which area was selected.

Example: Suppose the program needs to change the
column width of Class (the description control) in
Figure 5.5E. An event procedure on the main form
could do it in this way:

Me.subRoomGrid.Form ! description.ColumnWidth = 1500

The program has to compensate for Access's strange
behavior. When focus leaves the subform, the Exit
event procedure saves the area size attributes before
Access removes the area selection. When some control
on the main form gets the focus, its event procedure
sets them back. There is no common event on the main
form that can do it, so each control has to act.

5.5.8 Area selection, SelTop, etc.
When a subform is shown in table view, the user can
select a rectangular area of the subform. Figure 5.5E
shows an example where the user has selected column
3 and 4 from the fourth and fifth row (see more about
the room grid in sections 7.4 and 7.5).

Main form The program can detect which area the user has
selected. The figure shows how we can try it out
through the Immediate window (Ctrl+G). We address
the first open form, its subform control, and the
subform it is bound to. When asking for the value of
SelTop, we get 4 because the top row in the selected
area is record number 4.

In the main form, declare these variables:

Public aWidth As Long, aHeight As Long, aLeft As Long
' These variables keep track of the current area size. aleft is
the correct column number, not the Access2000 distortion.
SelTop is not saved since current record always is the top.

The following procedures on the main form update and
use these variables (shown in the Access 2000 version).As the figure shows, we can also change the area size

and location. We have changed the area width to 2. The
following four attributes of the form control the area.

94 5. Access through Visual Basic

Fig 5.5E Selected area, SelLeft, SelTop, SelWidth, SelHeight

SelTop = 4
SelLeft = 4 (3 in Access 97)
SelHeight = 2
SelWidth = 2

ColumnHidden = False
ColumnOrder = 2
ColumnWidth = 920 (twips)

Private Sub subRoomGrid_Exit(Cancel As Integer)
' This event happens when focus moves from the subform to
the main form. Save the current area size before Access
removes it.
 aWidth = subRoomGrid.Form.SelWidth
 aHeight = subRoomGrid.Form.SelHeight
 aLeft = subRoomGrid.Form.SelLeft - 1
 ' -1 to correct for the Access2000 error
End Sub

Private Sub resetSelection() ' Shared procedure
 subRoomGrid.Form.SelWidth = aWidth
 subRoomGrid.Form.SelHeight = aHeight
 ' Make sure to set Width and Height before setting Left
 subRoomGrid.Form.SelLeft = aLeft + 1
 ' +1 to compensate for the Access 2000 error.
End Sub

Private Sub txt . . ._GotFocus()
' Reset the area size when a main-form control gets the focus.
 Call resetSelection()
End Sub

. . . (GotFocus for other controls)

Private Sub subRoomGrid_Enter()
' When focus moves from the main form to the subform.
Access removes the area selection just before this event
(Access 2000 only). So reset the area size
 Call resetSelection()
End Sub

User actions in the subform
The solution above works fine when an area is selected
in the subform. For the hotel system, the program
selects a suitable area corresponding to a free room. If
the user clicks Check in, for instance, everything is
okay.

If the user expands the area by means of Shift + arrow
key, everything is fine too.

But what happens if the user clicks a cell to move the
area to another room? Access will remove the area
selection and the user will just see the cursor flashing
in the cell he clicked. The user may drag the cursor to
select an area, or use Shift + click, but it is not
intuitive. The program should make sure that a suitable
area is selected at any time.

One problem is that as soon as the user clicks a cell,
Access removes the area selection before calling any
event procedure. The program cannot catch the old
selection at this point.

The solution is to let the program act at MouseUp and
KeyUp. There are two situations:

An area is selected: This happens if the user expanded
the area with Shift + arrow key, or if the user
dragged an area with the mouse. The program
should save the area size.

No area is selected: This happens if the user has
clicked a cell or moved to the cell with an arrow
key. The program should reset the area size so that
the selected cell becomes the top left of the area.

Each single control on the subform has to react this
way. Although there is a Form_MouseUp and a
Form_KeyUp, they don't respond to clicks inside the
grid. They respond only to clicks on the grid border,
i.e. the headings and the record selectors.

In the hotel system, fsubRoomGrid has one control for
each column in the grid. The names of these controls
are cbo1, cbo2, etc. (see section 7.5 for details). So we
need these procedures on the subform:

 5. Access through Visual Basic 95

Public Sub saveSelection() ' Save the current area selection
after key up or mouse up, or reset it after clicks, etc.
 If SelHeight = 0 Then ' No area selected. Reset area.
 ' Check first that the new area is within the grid.
 SelHeight = Parent.aHeight
 SelWidth = Parent.aWidth
 End If
 Parent.aWidth = SelWidth
 Parent.aHeight = SelHeight
 Parent.aLeft = SelLeft - 1 ' Access 2000 compensation
End Sub

Private Sub cbo1_KeyUp(KeyCode As Integer, Shift As
Integer)
 Call saveSelection()
End Sub

Private Sub cbo1_MouseUp(Button As Integer, Shift As
Integer, X As Single, Y As Single)
 Call saveSelection()
End Sub

. . . (KeyUp and MouseUp for the other controls)

Notice that when saveSelection resets the area size, it
should first check that the area is within the grid. The
user may for instance have clicked at the far right with
a wide area selected.

Also notice how the program uses Parent to address
the saved area size.

This solution works okay. The user can use mouse or
keyboard to move an area around in the grid. However,
the screen flickers. It is clearly visible that Access
removes the area selection before the program resets it.
Below we explain how to deal with it.

By the way, since the subform saves the area size on its
own, there is no reason that the subform control on the
main form saves it too. So the event procedure
subRoomGrid_Exit may be removed.

Clicking in the grid border
If the user clicks in the grid header, Access selects the
entire column. If he clicks in the record selector in the
left border, Access removes the area selection and
selects the record the user clicked. In both cases we
want the old area selection to be reset.

The place to deal with this is the MouseUp procedure
for the subform, Form_MouseUp. It should set the area
size in the same way as saveSelection(). However, here
is another Access error. Access refuses to change
SelHeight etc. The work-around is to start out with
 SelHeight = 0
This is necessary even if SelHeight is 0 already (at
least in Access 2000).

Avoiding flicker
It is possible to avoid the flicker by letting the program
take action before Access removes the area selection.
Two event procedures on the subform are involved:

Form_KeyDown(KeyCode As Integer, Shift As Integer)
This is the Key preview procedure (see section

5.5.9). It must handle arrow keys and tabs to the left
or right by setting SelLeft and aLeft - after
checking that the area is inside the grid, of course.
Setting SelLeft causes Access to not remove the
area.

 Form_Current()
Is called when the user uses arrow up or down, or
clicks in a new row. It is called before MouseUp or
KeyUp occurs. Sets SelWidth and SelHeight early
on to avoid flicker. If Current doesn't do anything,
the area will be set at MouseUp or KeyUp, but
Access will remove the area in between, causing
flicker.

Getting the selected data
When a function acts on the selected area, it needs to
know which data the area contains. If the area is only
one row high, it can directly address the controls in the
current subform record. In general, however, it needs to
retrieve data for several rows. The data has to be
retrieved from the recordset bound to the form.

One solution is to retrieve a number of rows from the
recordset by means of the GetRows property. Here is
an outline of the solution for the hotel case.

In the main form, declare a variant array:

Dim A()
' The A-array will receive a number of records

The basic idea is to use this piece of code inside the
button event procedure:

A = Me.subRoomGrid.Form. Recordset. GetRows(n)

We address the subform (fsubRoomGrid) in the usual
way. The property Recordset is the recordset bound to
the subform. The property GetRows copies n records
from the current record and on. It stores the copies in
the array A.

While the area size and position is 1-based (and 2-
based), the A array is zero-based. As a result, A will
hold this:

A(0, 0): The first field in the first record.
A(0, 1): The first field in the second record.
A(1, 0): The second field in the first record.
. . . and so on.

As a side effect, GetRows moves the current record
forward so that it points to the row after the selection.
To avoid this, use the built-in clone of the recordset,
make it point to the current record, and then copy the
rows through it:

Me.subRoomGrid.Form.RecordsetClone.Bookmark = _
Me.subRoomGrid.Form.Recordset.Bookmark
A = Me.subRoomGrid.Form.RecordsetClone.GetRows(n)

Section 5.6 explains more on this.

96 5. Access through Visual Basic

Dealing with re-ordered columns
A small problem remains. If the user has re-ordered the
columns in the datasheet, the order of the record fields
and the datasheet columns don't match.

To overcome this, use the ColumnOrder property of the
subform controls. This property gives you the column
number (1-based) for the control. The ControlSource
property of the control gives you the field name that
the control is bound to. See section 5.5.7 for more on
ColumnOrder.

5.5.9 Key preview
When the user clicks something on the keyboard, the
control in focus will receive several key events. How-
ever, the Form can have a look at the key events before
the control gets the events. This is useful when no spe-
cific control has to take action.

One example is function keys. For instance we may
want F2 to mean Reset Criteria no matter where in the
form the cursor is. For the Find Guest window it can be
done in this way:

• On frmFindStay, open the Form-property box, se-
lect the Event tab and set Key Preview to Yes.

• Define an event procedure for the Form's KeyDown
event. It should look like this:

Private Sub Form_KeyDown (KeyCode As Integer, _
 Shift As Integer)
 If KeyCode = vbKeyF2 Then
 Me.subStayList. Form. RecordSource = _
 "select * from qryStayList; "
 Me.txtName = ""
 End If
End Sub

The KeyDown event has two parameters. KeyCode (an
integer) shows which key is pressed. There are prede-
fined constants for the various keys. For instance
vbKeyF2 means the F2 key, vbKeyA the A-key and
vbKeyEscape the Esc key.

If the procedure returns with KeyCode = 0, Access
stops further processing of the KeyDown event.

Shift (an integer) shows whether some of the shift keys
were down at the same time (Shift, Alt, Ctrl). There are
predefined constants for the shift keys: acShiftMask
(=1), acCtrlMask (=2), acAltMask (=4). The program
can for instance test whether Shift and Ctrl are down at
the same time with this statement
 If Shift = acShiftMask + acCtrlMask Then . . .

In the example above, the procedure tests whether the
F2 key was used. In this case it sets record source to
the full list of stays, and it sets the search criterion to an
empty text.

Parent form
If you try it, you may notice that F2 works okay if the
focus is in the main form, but not when it is in the sub-
form. You have to define key preview actions also for
the subform if F2 is to work here too. However, from
the subform you have to address the items in the main
form slightly differently:

' In the subform:
Me. Parent. subStayList. Form. RecordSource = _
 "select * from qryStayList; "
Me. Parent. txtName = ""

Me refers to the subform, and Me.Parent refers to the
parent form, i.e. the master form.

Return value
At return from the preview procedure, Access contin-
ues processing the event. It sends it to the control in
focus, or makes its own response to the event. In case
of F2 the control ignores F2, but Access has a standard
response: it toggles between selecting the entire field
and just showing the simple cursor.

The preview procedure can skip further processing by
setting KeyCode=0 at return. In case of F2, the result
would be that Access didn't toggle between field selec-
tion and the simple cursor.

5.5.10 Error preview
Access detects various kinds of user errors, for instance
that the user enters a non-existing date, or the user
forgets to select a related record where referential
integrity is required. Access will show an error
message that often is entirely gibberish to the user.
When for instance the referential integrity is violated,
Access will say:

You cannot add or change a record because a related
record is required in table 'tblGuest'.

How can the program show a meaningful message
instead? The BeforeUpdate procedure is intended to let
the program check the data, but when Access detects
the error it doesn't even call BeforeUpdate.

However, the Form has an Error event procedure that
can interfere before Access shows the error message to
the user. To use it, define the event procedure for the
Error event:

Private Sub Form_Error(DataErr As Integer, _
 Response As Integer)
 If DataErr = 3201 Then
 MsgBox "Select a guest", vbOKOnly + vbExclamation
 Response = acDataErrContinue
 End If
End Sub

The Error event has two parameters. DataErr is an ID
for the error. Response tells Access what to do at re-
turn. When Response = acDataErrContinue, Access
will not show its own error message. When Response =

 5. Access through Visual Basic 97

acDataErrDisplay (the default), Access will show its
own error message.

In the example, the event handler tests whether the
error is "You cannot add or change . . ." (ID 3201). In
this case it shows a message box with a more user-
oriented text. Then it tells Access to keep its mouth
shut about the error.

At return, Access keeps the focus on the Form where
the error occurred, so that the user can correct the data -
or use Esc to undo changes. This happens no matter
whether Response is acDataErrContinue or not.

The main problem when using the Error event is to find
out what the error ID means. I have not been able to
find a list of the codes.

Don't confuse the Error event with VBA's handling of
program errors. The Error event handles errors caused
by the user's actions. VBA handles cases where the
program tries to divide by zero, access a non-existing
object, etc. VBA has statements such as On Error
GoTo x to let the programmer deal with the error. See
section 6.1 for a detailed explanation of this kind of
error handling.

5.5.11 Timer and loop breaking
A Form responds to user actions such as editing a field
or clicking a button. Sometimes we want the Form to
act on its own. It might for instance update a list of data
every minute. This would be useful in a multi-user
application where several people update the database.

Timer handling
Start the timer by setting the Form's TimerInterval, for
instance in the Form's Load event procedure:

 Me.TimerInterval = 60 000 ' One minute is 60 000 ms.

Next define an event procedure for the Timer event:

Private Sub Form_Timer()
 Me.Requery
End Sub

When the Form opens, it sets the timer interval to one
minute and waits for some event. The event may be the
user doing something or one minute having passed.
When the minute has passed, Access calls the Timer
event procedure, which recalculates all bound data in
the form.

The next timer event will occur one minute after the
first timer event, even if the recalculation has taken
several seconds. How would the program stop the timer
events? Set the timer interval to 0:

 Me.TimerInterval = 0 ' Stop the timer.

Let user break a loop - SendKeys
Assume the user should be allowed to stop the periodic
updating. It is easy. Provide a button labeled Stop. Let
its click procedure set the timer interval to 0.

This works because when the Form waits for the timer,
it also responds to user events. It will handle the events
in the sequence they occur.

Now imagine that the Form runs a long calculation or
scans the Internet for hours. It runs in a loop and it
doesn't wait for events at any point. How can we allow
the user to break the loop? If we provide a Stop button
as above, the user may click it, but the Form doesn't
listen to events. However, Access stores the event in a
queue for later processing.

The user could use Ctrl+Break. It will in a very rough
way stop the program, probably in the middle of
something, so that data is left in an inconsistent state.
Actually, Ctrl+Break is the only way you can stop a
very long-lasting database query. In this case the
database engine takes care that the database ends up in
a consistent state. For a long calculation in our own
program, we need a structured way to stop.

The trick is to let the program use SendKeys every now
and then to generate an event and wait for the event to
be processed. This allows Access to process all events
in the queue. It also allows Access to update the screen,
for instance to show controls that the program has
changed during the calculation.

Here is an outline of such a program. We declare a
module-level Boolean in the Form, which becomes true
when the user clicks the Stop button:

 Dim bStop As Boolean

When Access responds to the click, this event
procedure sets bStop:

 Private Sub cmdStop_Click()
 bStop = True
 End Sub

A long computation runs in a loop until the computa-
tion is finished. Once in the loop it displays the
progress of the computation by storing a result in a text
box control. It could look like this:

 Private Sub cmdCompute_Click() ' Plain loop
 While . . . ' Until calculation is finished
 . . . ' One step in a long calculation
 txt . . . = . . . ' Display progress
 Wend
 End Sub

In order to respond to the stop, we modify the loop so
that it runs until bStop is True or the computation is
finished. In addition we use the SendKey operation to
send a character to Access and wait for Access to

98 5. Access through Visual Basic

process it - and process other events too. Here is the
new program:

Private Sub cmdCompute_Click() ' Test once in loop
 bStop = False
 While Not bStop And . . . ' Until stop or calculation finished
 . . . ' One step in a long calculation
 txt . . . = . . . ' Display progress
 SendKeys "{home}", True ' Type a character and wait.
 ' Allows Access to handle all events and
 ' update the screen.
 Wend
End Sub
SendKeys has two parameters. The first is a string of
characters. They are sent to Access as if the user typed
them. (Or rather, to the program that has the focus on
the screen. You might for instance send characters to
MS Word in this way.) The second is a Boolean. If it is
True, SendKeys waits for Access to process all pending
events and update the screen. The string can hold
several characters, e.g. "abc{home}+-". Special
characters are shown as a mnemonic in { }. We have
chosen {home} since it is a rather harmless character in
the user dialog.

SendKeys takes around 1 ms on a plain computer. In
the IT world this is quite slow. If the calculation step
for instance takes 0.01 ms, the program suddenly
becomes 100 times slower.

One solution is to let the program listen and update the
screen only once a second. In the procedure below, we
use the Time() function to find out when a second has
passed. It returns the number of seconds since
midnight, with fractional seconds too. The Time
function itself takes around 0.0005 ms, so it will rarely
slow down the loop significantly.

Private Sub cmdCompute_Click() ' Test once a second
Dim startTime As Double
 bStop = False
 startTime = Timer() +1
 While Not bStop And . . . ' Until stop or calculation finished
 . . . ' One step in a long calculation
 If Timer() > startTime Then ' A second has passed
 txt . . . = . . . ' Display progress
 startTime = startTime + 1 ' Next in one second
 SendKeys "{home}", True ' "Type" a character and wait.
 ' Allows Access to handle all events and
 ' update the screen.
 End If
 Wend
End Sub

5.5.12 Multiple form instances
When we open a form with DoCmd.OpenForm, we get
only one instance of the form. If we try to open it
again, nothing happens.

In order to open multiple instances, we need to use the
basic VBA mechanism of creating an object. Here is a
program piece that opens two instances of frmStay:

Dim stay1 As Form, stay2 As Form
' References to open forms
. . .

Set stay1 = New Form_frmStay
Call stay1.Init(740)
stay1.Visible = True

Set stay2 = New Form_frmStay
Call stay2.Init(753)
stay2.Visible = True

The first line declares two references to an open form,
stay1 and stay2. The declarations may be in a global
module that remains open as long as Access is open.

In an event procedure somewhere else, the statement
Set stay1 = . . . creates a new object of the class
Form_frmStay. The reference stay1 will now refer to this
object. During the creation, the form object receives the
usual open-events: Open, Load, Activate. The form is
still invisible.

When we open a form in this way, we cannot give it
OpenArgs like those we use with DoCmd.OpenForm.
The form has a property called OpenArgs, but it is
ReadOnly so we cannot store anything in it. For this
reason we have written a procedure for initializing the
form, the procedure Init. We call it with a parameter
that tells it to open stay 740. The procedure will set the
filter of the form to show this stay.

Finally, we set the Visible attribute of the form to True.
This generates the Current event and makes the form
visible.

Then we repeat the whole thing using stay2 instead of
stay1. The result is that one more form instance opens,
this time showing stay 753.

Closing the forms
Usually the form closes itself, for instance when the
user clicks the close button. Access automatically sets
references to it to Nothing. We may also close the form
by setting references to it to Nothing, like this:

Set stay2 = Nothing

The reason we have stay1 and stay2 in a global module
is that they have to be there all the time. If we made
them local variables in a procedure, the opened forms
would close as soon as the procedure returned. See
more about variables and their life-time in section 6.2.

Handling many open forms
When we need many open instances, we have to make
an array of references. A click event could then open a
new instance in this way:

Dim stay(1 To 10)
. . .
Private Sub cmdOpenStay_Click()

' Find an unused reference, let it be j
Set stay(j) = New Form_frmStay
Call stay(j).Init(. . .)
stay(j).Visible = True

End Sub

 5. Access through Visual Basic 99

5.5.13 Resize
When the user drags the border of a form, Access calls
the Resize event procedure of the Form. The procedure
is called for every few pixels the user drags, depending
on how fast he drags. Access also calls the Resize pro-
cedure once during open.

If the program doesn't do anything at these events, the
user will just see a larger or smaller gray area. Usually
the user expects that the controls somehow adjust to the
new size, for instance that a subform area expands or
contracts.

The way to handle this is to let the Resize procedure
recompute sizes and positions for the controls. Figure
5.5F shows a simple example. The form has a couple
of controls, one of them being a text box (txtTest) and
another a subform (subTest). As the user drags the
right border, these controls adjust their width so that
they keep the same distance from the right border of
the form. Care must be taken when a control becomes
so narrow that it cannot keep its distance from the bor-
der. Trying to set its width to a negative number will
cause a run-time error - and the mouse gets trapped
inside Access! On the lower version of the form, the
text box has width zero, and as a result the controls
don't adjust their width anymore.

At the time Resize is called, the situation is as follows:

me.WindowWidth: The new width of the form, in-
cluding the border.

me.WindowHeight: The new height of the form, in-
cluding the border.

me.WindowTop: The distance between the form and
the top of the surrounding Access window.
(Access 2003 only).

me.WindowLeft: The distance between the form and
the left side of the surrounding Access window.
(Access 2003 only).

The figure shows the Resize procedure. It declares two
important variables:

formWidth: The previous width of the form. When the
form opens, the variable has its default value,
zero. It is declared as Static, meaning that it sur-
vives from one call of Resize to the next.

dif: The difference to add to the control widths. Ini-
tially, when the form opens, dif becomes zero.
Later, it is the difference between the new form
width and the previous form width.

The procedure computes the new width of txtTest, the
smallest of the controls. When the new width is larger
than zero, it adjusts the widths of txtTest and subTest.
It also saves the new form width in order to calculate
future changes relative to this.

For subforms it may be necessary to change the width
not only of the subform control, but also of the subform
itself. See below.

Size unit
All positions and sizes are computed in twips.

One twip is 1/20 typographical point =
 1/567 cm =
 1/1440 inch

Resizing a form
It is easy to change the width of a control, so it is
tempting to change the width of a form in a similar
way:
 me.WindowWidth = me.WindowWidth + dif

However, this works in none of the Access versions.
You have to use this statement to change position or
size of a form:

 DoCmd.MoveSize right, down, width, height

right: Distance between form and the left side
of the surrounding Access window. (The
same as the property WindowLeft.)

down: Distance between form and the top of the
surrounding Access window. (The same
as the property WindowTop.)

width: The width of the form including the
frame. (The same as the property Win-
dowWidth.)

height: The height of the form including the
frame. (The same as the property Win-
dowHeight.)

In order to increase the width of the form by dif, you
have to set the form in focus and use

 DoCmd.MoveSize , , oldWidth + dif

When you do this, the form receives a Resize event.

Resizing a subform
Resizing with DoCmd works fine for a main form, but
not for a subform. You cannot bring the subform in
focus. However, it doesn't matter because an open sub-
form automatically has a width that matches the sub-
form control.

When resizing the subform control, you just have to
make the program resize and/or reposition the controls
on the open subform too. You can do this from the
Resize procedure in the main form. It soon becomes
messy to let the main form know about the controls
inside the subform. So a better approach is to call a
procedure in the subform that resizes its own controls,
in much the same way as its resize procedure would do
it.

When the subform is shown as a datasheet, it has no
effect to adjust widths and heights of the controls. In-

100 5. Access through Visual Basic

Fig 5.5F Resizing a form

Private Sub Form_Resize()
Static formWidth As Long ' Initially zero, survives calls
Dim dif As Long ‘ The width adjustment

dif = IIf(formWidth = 0, 0, Me.WindowWidth - formWidth)
If Me.txtTest.Width + dif > 0 Then

Me.txtTest.Width = Me.txtTest.Width + dif
Me.subTest.Width = Me.subTest.Width + dif
formWidth = Me.WindowWidth

End If
End Sub

Resizing and moving a form:

DoCmd.MoveSize right, down, width, height

right =
WindowLeft

down =
WindowTop

width =
WindowWidth

height =
WindowHeight

stead of setting the width, set the ColumnWidth prop-
erties of the controls (see section 5.5.7). You might for
instance extend all the columns in a proportional way.

 5. Access through Visual Basic 101

5.6 Record sets (DAO)
When we need complex record handling, there are two
ways to go: through SQL statements that update
records, or through programmed record access. In this
section we look at the latter possibility. The SQL way
is explained in section 7.1)

Select the database model. Before you can try the
following example, you should make sure that your
program accesses the database with the right method.
Over the years, Access has used different methods to
access the tables, trying at all times to be compatible
with earlier versions. Below we will use the DAO ap-
proach which works across all Access versions. Access
97 is born with DAO, but in Access 2000 and 2003 you
have to select DAO. Do as follows:

1. Open Visual Basic and select Tools -> References.
You now see a list of the libraries that Access may
use. At the top of the list, you see those selected at
present. When VBA looks for a built-in class name,
it first looks in the top library. If the name is not
there, it looks in the next library, and so on.

2. If MicroSoft DAO 3.6 Object Library is not se-
lected, go far down the list and select it. Next move
it to the top of the list. The easiest way is to close
the list, then reopen it. Now DAO 3.6 is in the top
list. Move it further up as far as it can go. Then
VBA will find the DAO 3.6 names first.

There is no reason to restart the system. You may no-
tice that in the Object Browser and with Ctrl+J you will
now see two RecordSet classes. Use the one with an
Edit property.

5.6.1 Programmed record updates
As the first example we will outline how the CheckIn
button on the Stay form could work (Figure 5.6A).

3. Open frmStay in design view. (If you followed the
earlier exercises closely, there are no buttons on the
form.)

4. Create a Book button and a CheckIn button and
give them names with the cmd prefix.

5. Define the event procedure for the OnClick event
on the CheckIn button. Figure 5.6A shows the body
of the procedure. It demonstrates many new things
that we explain below.

Declarations. The first lines of the procedure declare
two variables. The variable s can hold a text string. The
variable rs can hold a Recordset, or more precisely, it
holds a reference (a pointer) to a Recordset. These
variables are local for the procedure, which means that
VBA creates them when it calls the procedure, and de-

letes them when it returns from the procedure. Initially
they both have the value Nothing.

Computed SQL
The statement s="SELECT . . . " computes a text and
stores it in the variable s. If the form shows stay 728,
then s will hold this text:
 SELECT * FROM tblRoomState
 WHERE stayID=728;
It is an SQL statement that selects all fields from the
RoomState records that belong to the stay. As you see,
the program computes this SQL statement from three
parts, the text "SELECT . . . ", the expression
Me.stayID and the text ";".

If you are not fluent in SQL, it may be easier to make
the query with the query grid. Then switch to SQL-
view and copy and paste the statement into the pro-
gram. VBA makes a lot of noise about this non-VBA
statement, but just modify the statement with quotation
marks, &-operators, and so on. As usual, don't care
about capitalization. SELECT may for instance be
written with small letters. VBA doesn't look at what is
inside the quotes and the SQL-engine doesn't care
about caps.

Warning. You may wonder why we have to compute
the SQL. When working with the query grid, we could
write things like
 WHERE stayID=Forms!frmStay!stayID
Why don't we write something similar here, for in-
stance
 WHERE stayID=Me.stayID

The answer is that in VBA we compose the final SQL-
statements directly. When working with the query grid,
Access translates our SQL-statement into the final SQL
version. As part of this, Access finds the current value
of Forms!frmStay!stayID and inserts it into the SQL-
string that it passes to the database engine. In other
words, it does the same kind of work that our VBA
program does.

Open the Recordset. The statement
 Set rs = CurrentDB.OpenRecordset(s)
creates a Recordset and stores a reference to it in rs.
The command Set says that we want to store the ref-
erence, not the Recordset itself. CurrentDB is the da-
tabase currently used by the program, and we ask it to
open a record set that gives us the records specified by
the SQL statement in s. When Access has opened the
record set, the first record in the set becomes the cur-
rent record. If the set is empty, there is no current
record, and End Of File (EOF) is true.

While loop. The statements from While to Wend are a
loop. The four statements inside the loop are repeated
until rs.EOF becomes True. This happens when the
program tries to move the current record beyond the

102 5. Access through Visual Basic

Private Sub cmdCheckin_Click()
Dim s As String
Dim rs As Recordset

 s = "SELECT * FROM tblRoomState WHERE stayID=" & Me.stayID & ";"
 Set rs = CurrentDb.OpenRecordset(s)

 While Not rs.EOF
 rs.Edit
 rs!state = 2 ‘ CheckedIn
 rs.Update
 rs.MoveNext
 Wend
 Me!state = 2
 rs.Close ‘ Not needed when rs is a local variable
End Sub

Fig 5.6A Recordset, updating records

frmStay

Declare variables.
Local for this procedure.

Set StayState to CheckedIn and
set all its RoomStates to CheckedIn

Compute SQL

Repeat to End Of File

Update FindGuest window
Me.Recordset.Move (0) ‘ Save records
Forms!frmFindStay!subStayList.Requery

end of the set. If the record set is empty, EOF is True
from the beginning and the loop terminates immedi-
ately.

Updating a record. The first statement inside the loop
starts editing the current record. VBA transfers the
fields to an edit buffer. If we don't transfer the fields to
the edit buffer, the program can read the fields but not
change them.

The next statement changes the state of the RoomState
record to 2, meaning CheckedIn. The change takes
place in the edit buffer - not in the database table. No-
tice the bang-operator that ensures that we get the field,
not a possible built-in property.

The rs.Update statement transfers the changed fields to
the database table. At this time Access checks that
mandatory fields are filled in, that referential integrity
is okay, etc. There are several ways the program can
catch these errors so that the user doesn't see the cryp-
tic messages produced by Access. See sections 5.5.10
and 6.1.

Move to next record. The rs.MoveNext statement
moves to the next record, that now becomes the current
record. If there is no next record, EOF becomes True
and the loop will terminate. When EOF is true, there is
no current record in the record set, and attempts to
address fields in it will fail.

Updating the stay record. When the loop is finished,
the program sets Me!state to 2, thus updating the stay
record as well.

Close the Recordset. The last statement closes the re-
cord set. It is customary to do so, but in this case it is
unnecessary. When the procedure returns, VBA will
delete the local variables. Since rs contains a reference
to a record set, it will close it before deleting rs.

Try the program
6. Close the program and try out the CheckIn button.

You should see the state field change in the stay
window.

7. To ease experimentation with the system, program
the Book button so that it does exactly the same as

 5. Access through Visual Basic 103

CheckIn, but sets the states to one, meaning
Booked.

Update the stay list. You may notice that the Find-
Guest window doesn't update its own stay list auto-
matically. In this list, the stay doesn't seem to change to
CheckedIn, etc. It is tempting to repair it by letting
CheckIn make a requery on the stay list. Try it:

8. Insert this statement at the end of the CheckIn and
Book procedures:
 Forms!frmFindStay!subStayList.Requery

9. Try to book and check in while watching the stay
list. Nothing changes in the list. Why?

Because the stay state is not yet saved in the table.
Saving doesn't happen until the user closes the stay
window, but at that time the Requery has been per-
formed already.

One way to deal with the requery is to do it in the
AfterUpdate procedure for the stay form. This event is
intended for things to be done after the update, i.e. after
saving the stay and guest records from the query. How-
ever, in our user dialog we don't want the user to close
the stay window all the time. He might want to change
other things for the stay. Here is a tricky way to update
the stay record before doing the requery:

10. Insert this magical statement in CheckIn and Book
just before the Requery:
 Me.Recordset.Move(0)

This statement works on the open recordset bound to
the form. It moves current record back or forth a num-
ber of records, and as part of this it saves the current
record. In our case we move zero records away - to the
same record. But we got the update anyway. (See more
in section 5.6.3.)

11. Try to book and check in while watching the stay
list. It should now update automatically.

Notice that this version of CheckIn and Book is very
experimental. In the real system we have to check
many things. For instance we shouldn't be able to book
someone if he hasn't any rooms. The action of Book
should also depend on the current state of the stay, for
instance so that if the user tries to book a stay that is
checked in, the system asks him whether he wants to
undo the checkin.

5.6.2 How the record set works
Figure 5.6B shows how a record set works. The record
set consists of a record list and some properties for

navigating in it. The current record is the one the pro-
gram can access with rs!fieldX. The operations
 rs.MoveNext and rs.MovePrevious
move current one record ahead or back. There are other
Move operations too:
 rs.Move(n), rs.MoveLast and rs.MoveFirst
The first one moves current n records (forward or
backwards depending on the sign of n). The next two
move current to the last or first record in the record set.

If the program tries to move beyond the last record,
rs.EOF becomes True. If it tries to move before the
first record, rs.BOF becomes True.

In order to edit the current record, we have to move it
to the edit buffer with the operation
 rs.Edit
When we have finished editing it, we move it back to
the record set with
 rs.Update
If we move to another record without using rs.Update,
the changes will be lost.

Clone. Figure 5.6B also shows a Clone object. It is
another set of navigation properties working on the
same record list. It has its own current record pointer.
By means of clones, the program can access several
records in the list at the same time. It may for instance
compare two records in the list, one accessed with the
record set and one accessed with the clone.

To the right in the figure, you see how a Clone is cre-
ated and used. You declare the clone rc exactly as a
record set. However, instead of opening the clone, you
ask the record set rs to create a clone of itself. You may
now use rc exactly as the record set itself, for instance
moving the current record of rc back and forth. We
have shown how you could compare the current record
of rc with the record of rs.

Add a record. The figure also shows how to create
new records. First we use rs.AddNew to fill in the edit
buffer with a Null record. Next we fill in the fields we
want, and then we use rs.Update to create a new record
in the record set and transfer the edit buffer to it. Be-
fore doing rs.Update, Access will check that referential
integrity is okay, that mandatory fields are filled in, etc.

Delete a record. Finally the figure shows how to de-
lete a record. We simply use rs.Delete. After this there
is no current record. When we execute rs.MoveNext,
the record after the deleted record will be the current
record.

104 5. Access through Visual Basic

. . .
Dim rs As Recordset, rc As Recordset
 s = "SELECT * . . . “
 Set rs = CurrentDb.OpenRecordset(s)
 Set rc = rs.Clone

 If rs.roomID = rc.roomID Then . . .

 While . . .
 rs.AddNew
 rs!fieldX = . . .
 rs.Update
 rs.MoveNext
 Wend

 While Not rs.EOF
 rs.Delete
 rs.MoveNext
 Wend

Fig 5.6B Recordset, clone, add and delete

Delete
records

Add
records

BOF

EOF

Edit bufferMovePrevious
Current record
MoveNext

Edit buffer
Clone
MovePrevious
Current record
MoveNext

RecordsetRecordset

 5. Access through Visual Basic 105

5.6.3 The bound record set in a Form
Above, the program has explicitly created a record set.
However, when we open a form such as frmStay it be-
comes bound to a record set. Can our program refer-
ence this record set explicitly? Yes, it can.

Figure 5.6C shows how it works. We have opened
frmStay directly from the database window, and al-
though the form shows only one stay at a time - the
current record, we can scan through all the stays with
PageDown. Behind the form is a record set with all the
stays. We can access this record set with Me.Recordset.
Furthermore, Access offers a clone of this record set,
called Me.RecordsetClone.

Access uses Me.Recordset in much the same way as
our program would do with a record set. There are
small differences, however. When the user for instance
types something into a field, Access doesn't use the edit
buffer, but a hidden buffer of its own. (This hidden
buffer deals with the Value and Text properties of text
controls.) If our program tries to do something with
Me.Recordset, Access will first save the hidden buffer
and call BeforeUpdate and AfterUpdate for the
changed record.

Try the mechanisms at work (also shown on Figure
5.6C):

1. Set a breakpoint in the beginning of the CheckIn
procedure on frmStay.

2. Open frmStay in form view and also open tblGuest
to see what happens.

3. Change a letter in the name field on the form. Then
click CheckIn. You will now be at the breakpoint in
the CheckIn procedure. Open the Immediate win-
dow with Ctrl+G and adjust window sizes so that
you see the guest table, the form, and the Immediate
window at the same time.

4. Notice that the name of the guest hasn't changed in
the guest table. Now enter this statement in the Im-
mediate window
 Me.Recordset.Move(0)

Notice that this changes the guest name in the guest
table. What happened? Access was editing the name
field through the hidden buffer, but now updated the
record in the table to allow current to move. This is the
trick we used at the end of CheckIn to update the data-
base and then update frmFindStay.

5. Try this statement in the Immediate window
 Me.Recordset.MoveNext

The current record moves one record ahead and the
form will show the next stay.

6. Use the clone. Try moving the current record of the
clone with this statement
 Me.RecordsetClone.FindFirst("stayID=740")

This causes the clone to point to the first record with
stayID=740 (use another stayID to match your own
data). You cannot see any effect of this on the form,
because the form is bound to the record set, not to the
clone.

7. Now try to move the record set to the same place as
the clone. To do this we use the Bookmark concept.
Bookmarks are built-in, unique identifications of
the records in the record set. They are generated
when the recordset is opened and don't survive
closing the set. The property Recordset.Bookmark
is the bookmark of the current record. You can read
the bookmark property and set it. Try this:
 Me.Recordset.Bookmark =
 Me.RecordsetClone.Bookmark

The form should now show stay 740 (or the stay you
have chosen). What happened? VBA read the book-
mark for the current record in the clone. Then VBA
moved current to this bookmark.

This approach is often useful when we want to let the
user move from one record to another, for instance
based on a complex criterion. The program first finds
the record using the clone, in that way avoiding that the
user sees intermediate steps of the search or sees un-
successful attempts. When the search succeeds, the
program moves current to the right place.

Me versus Me.Recordset. Notice that we can access a
field in the current record in two ways: through the
form with Me.field and through the record set with
Me.Recordset.field. There are some important differ-
ences between these two approaches.

If the program reads past the last record in the record
set, EOF becomes true and there is no current record in
the record set. If we try to use Me.Recordset.field we
will get an error message. However, there is a current
record in the form - the last record - and we can access
it in the program with Me.field.

If the record set is empty, EOF is true and there is no
current record in the record set. However, there is a
Null record in the form, the user sees blank fields, and
the program can access them with Me.field. The fields
are all Null and we cannot store anything in them.

106 5. Access through Visual Basic

Fig 5.6C Me.Recordset, Me.RecordsetClone

BOF

EOF

Edit bufferMovePrevious
Current record

MoveNext

Edit buffer
Me.RecordsetClone

MovePrevious
Current record

MoveNext

RecordsetMe.Recordset

 Me.Recordset.Move(0) ‘ Updates Me-changes.

 Me.Recordset.MoveNext ‘ Updates Me-changes. Moves to next record.

 Me.RecordsetClone.FindFirst(“stayID=740”)
 Me.Recordset.Bookmark=Me.RecordsetClone.Bookmark

Hidden buffer
(Text)

 5. Access through Visual Basic 107

5.6.4 Record set properties, survey
In this section we give a summary of the record-set
properties. There are more properties than those shown,
but they are for special, technical use. Section 5.6 is a
tutorial introduction to record sets.

AbsolutePosition (attribute, read and write). The po-
sition in the record set of the current record. The
first record in the set has AbsolutePosition 0, the
next AbsolutePosition 1, and so on. Setting Abso-
lutePosition to x will make record x current. If you
- or a concurrent user of the database - insert or de-
lete records, the Absolute positions may change.

AddNew(). Sets a Null record in the edit buffer. The
Update operation will transfer the edit buffer as a
new record to the record set.

BOF (attribute, read only). True if the program has
tried to move current record before the first record.
Also True for empty record sets. When True there
is no current record.

Bookmark (attribute, read and write). A unique iden-
tification of the current record in the record set.
You can set the bookmark property to the book-
mark of some other record in the same record set.
This will make this record current. The method is
advantageous to setting AbsolutePosition because
bookmarks don't change when records are inserted
or deleted.

Clone(). Creates a clone object that behaves like a re-
cord set but works on the same set of records. It has
its own pointer to a current record. Returns a refer-
ence to the Clone object. Example:
 Set cloneRecordset = rs.Clone

Close(). Closes the record set and frees the associated
memory.

DateCreated (attribute, read only). The date and time
the current record was created. Only available when
the record set is based on a table, not on an SQL-
query. This means that it must be opened like this:
 Set rs = currentDB.OpenRecordset ("tblGuest")
(See also OpenRecordset below.)

Delete(). Deletes the current record. After Delete there
is no current record, but after a MoveNext the
record after the deleted record will be current.

Edit(). Transfers the current record to the edit buffer.
Edits can then take place in the edit buffer. The
Update operation will transfer the edit buffer to the
current record in the record set. Any operation that
moves current record (e.g. MoveNext or Find) will
cancel what is in the edit buffer.

EOF (attribute, read only). True if the program has
tried to move beyond the last record. Also True for

empty record sets. When true there is no current re-
cord.

FindFirst(criterion As String). Finds the first record
in the set that matches the criterion. Makes this re-
cord current. The attribute NoMatch is False or
True depending on whether a matching record was
found or not. The criterion is a text looking like a
Where-clause in SQL but without the word Where.
For instance "stayID=740".

FindLast(Criterion As String). Similar to FindFirst,
but finds the last matching record in the set.

FindNext(Criterion As String). Similar to FindFirst,
but searches forwards from the current record.

FindPrevious(Criterion As String). Similar to Find-
First, but searches backwards from the current
record.

GetRows(n As Long). Copies n records to an array of
variant data. The first record is current. Moves cur-
rent forward n records to the first record after the
ones copied. If there are less than n records left,
GetRows only transfers what is left.

Example: Assume that rs is a record set. The
records have 3 fields.
 Dim A()
 A = rs.GetRows(7)
 ' A(f, r) is now field f of record r

This program piece transfers the next 7 records and
sets the range of A to A(0 To 2, 0 To 6). The in-
dexes of A are zero-based and A(0, 3) will thus
contain the first field of the fourth record.

LastUpdated (attribute, read only). The date and time
the current record was last changed. Only available
when the record set is based on a table, not on an
SQL-query. This means that it must be opened like
this:
 Set rs = currentDB.OpenRecordset ("tblGuest")
(See also OpenRecordset below.)

Move(n As Long). Moves current n records away.
When n>0 the movement is forward, if n<0 back-
ward. Move(0) is useful in bound record sets
(Me.Recordset) to make Access store the current
record in the database.

MoveFirst(), MoveLast(). Moves current to the first
or last record in the record set.

MoveNext() , MovePrevious(). Moves current one
record forward or one record backward. If the
movement goes beyond the ends of the record set,
EOF or BOF become True.

108 5. Access through Visual Basic

Name (attribute, read only). The SQL query behind the
record set. In order to define the SQL-statement,
use OpenRecordSet.

RecordCount (attribute, read only). Shows the number
of records in the set that are presently loaded by the
SQL-engine. After a MoveLast, it will show the
total number of records in the set. When the record
set has just been opened, it will be zero for an
empty set, usually one in other cases. Use EOF as a
safe way to determine whether the set is empty.

NoMatch (attribute, read only). Is False or True de-
pending on whether the previous Find operation
found a record or not.

OpenRecordSet(s As String). This is not an operation
in the record set but in a database object. Opens a
record set and returns a reference to it. The text s
may be an SQL-statement, a table name, or a query
name. Examples:

Requery(). Re-computes the query behind the record
set. Useful if the records behind the query have
been changed by other means than this record set.

Update(). Transfers the edit buffer to the record set,
either to the record from which it came (after Edit)
or as a new record (after AddNew). Dim rs As Recordset

Set rs = currentDB.OpenRecordset ("SELECT * FROM
tblGuest WHERE . . . ; ")
. . .
Set rs = currentDB.OpenRecordset ("tblGuest")

 5. Access through Visual Basic 109

5.7 Modules and menu functions
One way to implement functions is by means of com-
mand buttons and the Click event. Another important
way is through a menu. This section explains how to
implement menu functions. Figure 5.7A shows the
principle.

For command buttons, we utilize that each Form has a
module with code. In this Form module you write the
event procedures that responded to clicks and other
events. For menus, the situation is slightly different - a
menu doesn't belong to any particular Form. Where
should we write the procedures that handle clicks in the
menu? The answer is to make a simple module - one
that doesn't belong to a form. In this module we write
the procedures. Next we set the OnAction properties
for the menu items so that they will call the procedures.
We explain the details below.

5.7.1 Create a menu function
We will show how to implement the menu item Can-
celStay. If you followed the book closely, your hotel
system should already have this menu point under the
menu heading Stays, but it doesn't work yet (see sec-
tion 3.5.2). Proceed as follows:

1. Create module. In the database window, select the
Module tab. There is no Wizard here to help you
create a module, so click New in the database
window heading. You should now be in the VBA
editor.

2. Enter the procedure mniCancelStay as shown on
Figure 5.7A. The central part of the procedure is
similar to cmdCheckin (Figure 5.6A), so you may
simply copy the check-in event procedure and
modify it. (We use the prefix mni for menu-item
procedures.)

The CancelStay procedure uses several new VBA con-
cepts. Look at the first line:
 Public Function mniCancelStay() As Integer

First of all it is not a Private Sub like the event proce-
dure, but a Public Function. It is public because it must
be accessible from other modules and from the menu
mechanisms. It is function because it has to return a
result. We have arbitrarily specified As Integer mean-
ing that it returns an integer value. The only reason to
make it a function is that the menu mechanisms insist
on it being that way. The result is not used for anything
as far as I can tell.

The first part of the procedure body tries to find the
stay that was selected when the user clicked Cancel-
Stay. This statement does it:
 Stay = Screen.ActiveForm!stayID

Screen is the VBA concept of the computer screen. The
property ActiveForm gives us the form that was in fo-
cus. Finally, we use the bang-operator to find the
stayID of this form.

However, what happens if there is no open stay win-
dow when the user clicks CancelStay? VBA would not
be able to find stayID and would show strange mes-
sages to the user. It would also halt the program. For-
tunately, VBA has a mechanism that allows us to catch
such errors:
 On Error GoTo NoStay

After this statement, any error will cause the program
to continue at the line NoStay. In VBA terms this
statement has enabled the error handler of the proce-
dure. (See more on error handling in section 6.1.)

In the line NoStay, the program uses MsgBox to tell the
user to open a stay window.

The central part of the procedure is like CheckIn
(Figure 5.6A), but sets the states to 4, meaning
Canceled. We might delete the stay and the connected
room states entirely, but for auditing purposes and
undo-purposes, we just change the states. By the way,
it also allows you to experiment with the procedure
easily, since you can cancel a stay, then book it again,
etc.

Note that we set the state of the stay itself through this
statement:
 Screen.ActiveForm!state = 4
This will always work since the program has checked
that a stay form is active.

Finally, we have to let the program return from the
procedure without continuing into the error handling,
where it would ask the user wrong things. The state-
ment
 Exit Funtion
takes care of this.

3. Save the module. Use File -> Save (or Ctrl+S).
This saves the module, but keeps it open. Give the
module the name basCommon for common base
module.

If you just close the VBA window, the window
disappears and the module is not visible in the database
window. Very scaring! It is not gone, however, just
hidden. The VBA window shows it. When you close
the database, Access will ask for a name for the
module. Section 5.7.3 explains more about creating and
naming modules.

110 5. Access through Visual Basic

Fig 5.7A Modules and menu functions

Form module

Form

Simple module
basCommon

Catch error when no
stay window is selected

Get stayID in the
selected Stay window

Change state for the
selected Stay window

Ask user to
select a stay window

 5. Access through Visual Basic 111

5.7.2 Define the menu item
We have now written the menu function. It is time to
connect it to the menu.

4. Close VBA, right-click the toolbar area and select
Customize.

5. Roll down the Stays menu, right-click CancelStay,
and select Properties (Figure 5.7B). Set the
OnAction property to:
 =mniCancelStay()

6. Close the customize boxes and try out the menu:
Open a stay through FindGuest, select the stay,
and use the menu point CancelStay. Unless you are
very, very lucky and careful, there will be errors in
your mni-procedure. Don't worry - it is normal.
Find the errors and repair them.

You may later set the stay back to booked or checked-
in with the buttons in the stay window. Also check that
the program behaves correctly when you use Cancel-
Stay without having a stay window in focus.

Menu procedures in the form module
Above, we put the menu procedure in a simple module.
The advantage is that we can call the procedure inde-
pendently of which forms are open or in focus. The
disadvantage is that we have to check that the right
form is in focus.

In some cases it is more convenient to have the menu
procedure in the form module. If you like, you can
make an experiment with how to do it.

• Add another menu item to the Stays menu. Call it
CancelLocal as on Figure 5.7B. Set its OnAction
property to
 =mniCancelLocal()

• Open the VBA module for frmStay and insert a
function that looks like mniCancelStay. However,
it should have the name mniCancelLocal. Further,
it should not use Screen.ActiveForm but Me in-
stead. The reason is that this function will be
called in the context of the form module, meaning
that the controls are always available. As a result,
you don't need all the error handling stuff.

• Try out the new menu item. It should work cor-
rectly when used from a stay window, but gives
Access-language error messages when used from
other forms. Actually, Access cannot even find the
function if the form is not in focus.

This way of calling a menu function is particularly
suited when the menu is in a toolbar that is specific for
the form. You may remember (section 3.5.3) that tool-
bars may be attached to a form in such a way that the

toolbar is only shown when this form is in focus. In
this way the menu functions on the toolbar are always
available when the user can click on the menu item.

5.7.3 Managing modules and class modules
You can create a module through the database
window's Module tab, but the usual way is to do it
through the VBA editor. However, things work in a
strange way here. Figure 5.7C shows how to manage.

• To create a module, right click an item in the
Project Explorer window. Select Insert and either
Module or Class Module.

You can now edit the module in the code window.

• To name or rename a module, select it and use the
property icon on the tool bar. (You cannot right
click to change it.) Edit the name in the property
window.

• To delete a module, select it, right click and use
Remove . . .

Class module
A class module corresponds to a class in other object-
oriented languages. It has procedures and declares
variables. You can create multiple objects based on the
class, each with their own variables. The only
difference between form modules and class modules is
that the latter are not visible to the user and have no
controls.

In order to create an object of class claGuest, declare a
reference to it and create it with New. Address public
variables and procedures in the object with the dot
notation:

Dim guest As claGuest
' References to a Guest object
. . .
Set guest = New claGuest
guest.address = . . .
guest.SendLetter(" . . . ")

This is similar to creating multiple open forms (section
5.5.12). Beware: the claGuest objects are just for
illustration. They exist only in memory. They are not
stored in the database and they have nothing to do with
the guest records in the database.

Module (simple)
A simple module is similar to a class but there is only
one object based on the module. The system creates
this object automatically. In order to address a public
procedure or variable in the module basCommon, use
the dot notation:

basCommon.simDate = . . .
d = basCommon.getDate()

112 5. Access through Visual Basic

Properties for
Cancel stay menu item

Call mniCancelStay

Properties for
Cancel stay menu item

Fig 5.7B Action for menu items

Fig 5.7C Managing modules and class modules

Select properties
to change module name

Right click to
insert Module or

Class Module

Delete module

Property
window

Project
explorer

 5. Access through Visual Basic 113

5.7.4 Global variables
The only persistent data in our application is the data in
the database. Until now the only dialog data has been
some data in the forms, for instance the value of the
unbound controls. This data disappears when the form
closes, so we need some way to handle dialog data that
lives across the entire dialog with the user. Modules is
the solution to the problem because a module is open
and holds data as long as the application is running.

As a simple example, we will see how to handle a
simulated today's date. In the real system, we need to
show today's date in many places, for instance as the
default search criterion for arrival date. It is easy to do
by means of the built-in function Date() which always
gives us today's date (or rather the current date setting
in the computer).

However, when testing the system, our test data is
planned for some specific dates. We cannot change the
test data every day we need it. We might instead
change the current date setting of the system to the
simulated date, but this is not recommended because it
has side effects on other things, for instance the date of
files created or changed, which again may create havoc
in automatic backup procedures.

So let us create a simulated date and keep it in the bas-
Common module. Figure 5.7D shows the solution.

1. Open the basCommon module and enter this line at
the top
 Public simDate As Date
Also create the public function getDate() as
shown.

The variable simDate is a variable in the simple mod-
ule and lives as long as the application is open. The
function getDate simply retrieves the simulated date
and returns it as its own value.

2. Open the module for frmFindStay and create the
load procedure as shown.

This is the place where the program will set the simu-
lated day to be used. The first thing we will do in the
hotel system is to open frmFindStay, and at that mo-
ment the Load procedure will be executed. It will set
the simulated date to the 23rd October 2002, the date
used in several pictures in the User Interface Design
book. Note how a date is written inside VBA. The for-
mat is a US date, independent of any regional settings
in Microsoft Windows. Note also how we address
simDate through basCommon. We might omit bas-
Common, but if we have many modules, we resolve
any name ambiguity in the way written. It also allows
the VBA editor to guide us in selecting the right ele-
ment in basCommon.

3. Look at the property box for the arrival date. De-
fine the default value as this expression:
 =getData()

4. Open frmFindStay and check that the default value
for the arrival date is correct. The user can of
course change the arrival date to what he likes.

The arrival date is a combo box and the real system
provides a list of dates around today for the user to
choose. The default day is still important, however.

You may wonder why we write basCommon.simDate
in the Load-procedure and =getDate() in the property.
The answer is that in properties we can only use public
functions, not public variables. Furthermore we cannot
use the basCommon prefix. The same rule applied
when we specified the OnAction property of the menu
item.

Once our system is tested and ready for use, how do we
let it use the real date? One simple way is to keep eve-
rything and just change the getDate function to
 Public Function getDate() As Date
 getDate = Date()
 End Function

The system will work exactly as before except that it
gets the real today instead of the simulated one.

114 5. Access through Visual Basic

Fig 5.7D Global variables

Simple module
basCommonGlobal variable

Form module
frmFindStay

Property box
cboArrival

Reference to
global variable

Access function

 5. Access through Visual Basic 115

6. Visual Basic reference
In this chapter we give an overview of VBA, the Visual
Basic language for Applications. We assume that you
know something about programming already. We also
assume that you have looked at some of the Visual
Basic examples in the booklet so that you have seen
program pieces written in this language.

Our discussion is mainly based on the examples shown
on the figures. Most of these figures are also available
as the VBA Reference Card. It may be downloaded
from www.itu.dk/people/slauesen.

If you want additional explanation, you have to use the
on-line help or experiment on your own. Be prepared
that the official documentation (on-line help) is often
incomplete or outright wrong, in the sense that the
system does something different than described. The
examples we show in the figures are based on testing
what the system actually does.

Using VBA functions outside VBA. Although we de-
scribe VBA below, most of the built-in functions and
operators are available also in SQL-statements and in
some control properties (e.g. ControlSource). In these
places you may for instance use the functions
 IIF(a, b, c) and
 DMin("roomId", "tblRooms", "roomType=2")
However, the regional settings may influence the syn-
tax. As an example, with Central European settings,
you have to separate parameters with semicolon when
working outside VBA. (See more in section 6.6.)

Also notice that when you use the functions from
VBA, you get excellent help and excellent error mes-
sages, but when using them in SQL or ControlSource,
you get little help and very confusing error reactions.

6.1 Statements
Line continuation. A simple VBA statement consists
of a line of text. If the statement is too long for a line,
you can split it into two or more lines. To do this, you
write a space followed by an underscore at the end of
the line (Figure 6.1A). You cannot break the line in the
middle of a text string. You have to compose a long
text from shorter texts joined with the &-operator.

Comment. You can write a comment at the end of the
line. It starts with an apostrophe ('). The compiler then
ignores the rest of the line. You can only have com-
ments on the last of the continued lines.

Assignment statement. An assignment statement
computes a value and stores it in the variable to the left
of the =. The Set statement is a special version of as-
signment. It doesn't store a computed value, but a ref-
erence to some object. The figure shows how it stores a
reference to the first open Form, how it creates a new
open form object and stores a reference to it, and how
it can set the reference to point at nothing.

Whenever you set a reference, VBA checks whether
this overwrites an earlier reference. If so, VBA also
checks whether this is the last reference to the object,
and if so it deletes the object since nobody can refer to
it any more (this is called garbage collection).

Conditional statements
Conditional statements are executed when some condi-
tion is met. They are examples of compound state-
ments, which may consist of more than one simple
statement. As Figure 6.1A shows, there are several
kinds of conditional statements.

Simple If-Then. The simplest version consists of an If-
Then clause followed by a single statement, which is
executed when the condition is True. It must all be on
one line, possibly broken with line continuations.

If-Then-Else. The more general version consists of an
If-Then clause followed by one or more statements,
which may be compound themselves. These statements
are executed when the condition is True. If the condi-
tion is False, the program continues with any ElseIf-
Then clauses, each testing their own condition, and
passing the control on if the condition is False. If all
these conditions are False, the program continues with
the statements after any Else clause. The net result is
that the statements after at most one of the clauses are
executed.

Select-Case is often a more elegant way to choose
between statements. In the example, we test the vari-
able zip. If zip is 4000 the program executes the state-
ments after Case 4000. If zip is 4001 or between 5000
and 5999, it executes the statements after this clause.
And if none of this is True, the program executes any
Case-Else statements. Again, the net result is that the
statements after at most one of the clauses are exe-
cuted.

116 6. Visual Basic reference

Fig 6.1A Visual Basic Statements

Conditional statements
If a=1 Then c=d+2 ‘ Single statement
If a=1 Then

c=d+2 . . . ‘ Multiple statements
ElseIf a=2 Then

c=d/2 . . .
Else

c=0 . . .
End If
Select Case zip
Case 4000

type = a . . .
Case 4001, 5000 To 5999

type = b . . .
Case Else

type = c . . .
End Select
On Error Resume Next ‘ Ignore error
. . . If Err > 0 Then . . . ' Test for error
On Error GoTo fail ‘ Enable error handler

. . .
fail: MsgBox(. . .) ‘ Continue here at error
On Error GoTo 0 ‘ Let VBA handle errors

Optional

Optional

Optional

Line continuation, comments, assignment
i = i+2 ‘ Comment
s = “long text A” & _

“long text B” ‘ Comment in last line only
Set f = Forms(0) Store a reference
Set f = New Form_frmG Create object, store ref
Set f = Nothing Delete object if last ref

Error handling
On-Error statements switch error trapping on and off
inside the current procedure. In order to allow the pro-
gram to handle errors at all, you have to set an option
in VBA:
Access 2000 and 2003:
 Tools -> Options -> General ->
 Break on Unhandled Errors

Access 97:
 Tools -> Options -> Advanced ->
 Break on Unhandled Errors

After On Error Resume Next, any program error or
other unexpected situation just skips the statement
where the error occurred. For instance, if the error
occurred during an assignment to x, nothing will be
assigned to x, so x is left unchanged.

After On Error GoTo L, any unexpected situation
causes the program to continue at label L. Should fur-
ther errors occur here, they cause the procedure to re-
turn with an error condition to be treated by the calling
procedure.

After On Error GoTo 0 (zero), VBA will handle all
unexpected situations, halting the program if necessary.
When the procedure returns, the calling procedure will
handle all errors according to its own On-Error set-
tings.

When Access detects a program error, it sets an Err
object with information about the error. Err has several
properties, for instance

Err.Number (or just Err): The error ID. Err = 0
means no error.

Err.Source: The program that generated the error.
Err.Description: A text describing the error (or giving

the error message).

Notice that Access doesn't clear the Err object until the
procedure returns. This can be confusing in program
patterns where the program tries various things to
succeed:

 On Error Resume Next
 . . . Do something that may cause an error
 If Err > 0 Then
 . . . Try something else
 If Err > 0 Then . . . Give up

If Try something else actually succeeds, Err is still > 0
and the program gives up by mistake. The right pattern
is to use
 Err.Clear or Err = 0
just before Try something else.

The main problem when using the Err object is to find
out what the error ID means. I have not seen a list of
the codes. The idea is that each subsystem defines its
own error ID's, but this makes it even harder to know
the ID's.

 6. Visual Basic reference 117

Loop statements
Loop statements repeat one or more statements until
some condition is met or until an explicit Exit from the
loop (Figure 6.1B). The repeated statements may be
compound themselves.

While-Wend repeats the statements as long as the
While-condition is True. If the condition is False from
the beginning, none of the statements in the loop will
be executed. It is not possible to break the loop with an
Exit-statement.

Do-While-Loop is similar to While-Wend, the only
difference being that it is possible to break out of the
loop with an Exit Do.

Do-Loop-While is also similar, but the condition is
tested at the end of the loop, meaning that the state-
ments will be executed at least once.

For-To-Next updates the loop variable (i in the exam-
ple) for each trip around the loop. In the example, i was
one for the first round through the loop. Then i was
increased by 2 before the next trip, and so on. When i
>last, the loop terminates. If i >last from the beginning,
the loop is not executed at all. Statements inside the
loop may break out of the loop with an Exit For. In this
case the value of i is defined. However, if the loop ter-
minates due to i >last, it is not defined what the value
of i will be. So don't even rely on it being >last.

For-Each-Next scans through all objects in a collec-
tion. The example shows how to scan through all
Forms in the collection of open Forms. The reference
variable f will in turn point to each of the objects in the
collection. It is possible to break out of the loop with
an Exit For.

118 6. Visual Basic reference

Fig 6.1B Loop statements

Loops
While a<10 ‘ Maybe empty loop

c=c*2
. . . ‘ Exit not allowed

Wend
Do While a<10 ‘ Maybe empty loop

c=c*2
. . . Exit Do ‘ Exit optional
. . .

Loop
Do ‘ Loop at least once

c=c*2
. . . Exit Do ‘ Exit optional
. . .

Loop While a<10
For i=1 To last Step 2 ‘ Step optional

c=c*2 ‘ Maybe empty loop
. . . Exit For ‘ Exit optional
. . .

Next i
‘ Don’t trust value of i when loop ends without Exit
For Each f In Forms ‘ Scan collection

call print(f.name . . .)
. . . Exit For ‘ Exit optional
. . .

Next

 6. Visual Basic reference 119

6.2 Declarations
The ancestor of Visual Basic, the programming lan-
guage Basic, was designed for teaching programming
with a minimum of formalities about the writing. This
meant that there was no need to declare variables at all.
Basic created the necessary variables as they were
needed. This is still possible in Visual Basic, but soft-
ware developers agree that when developing larger
programs it is a huge advantage to declare all variables.
You can tell VBA to insist on declarations. Write this
specification at the beginning of the module
 Option Explicit

Variant type. Even if you declare a variable, you don't
have to specify its type. Without an explicit type, the
variable is of type Variant. This means that its actual
type may change dynamically according to what the
program stores into it. It may thus hold a number at one
point in time, a text string at another point in time.
Apart from the value in the variable, VBA also stores a
tag telling what the type is at present.

Simple variables
Declarations of variables usually start with the word
Dim (for dimension) followed by a list of the variables.
Figure 6.2A shows such a list
 Dim B, C As Byte
The result is that variable B is of type Variant and vari-
able C of type Byte. Unfortunately this is counterintui-
tive and cumbersome. Most people would believe that
B as well as C are of type Byte. You have to specify a
type for each of the variables to avoid them becoming
variants.

Simple variables may be of the types shown on the fig-
ure: Byte, Boolean, Integer, etc. We have met most of
them already. Byte, Integer and Long hold integers
with different range. Single and Double hold floating
point numbers with at least 6 significant digits (Single)
or 14 significant digits (Double). (See section 2.2 for
details.)

Currency. The Currency type is a funny in-between
intended for keeping track of monetary amounts. It is a
very long integer (64 bits) interpreted as this integer
divided by 10,000. This means that the integer 147,000
is the number 14.7 exactly. Why this rule? It is because
we can guarantee that amounts are rounded correctly as
a bookkeeper would do it. With floating point numbers
you have no control over the round-off.

Date. A date value is technically a Double. The integer
part is the number of days since 12/30-1899 0:00, the
fractional part is the time within the day. As an exam-
ple, the number 1 corresponds to 12/31-1899 at 0:00,
the number 1.75 to 12/31-1899 at 18:00 (6 PM).

Object and Form variables are references to objects,
not the objects themselves. You can set the references
by means of the Set-assignment and test them by
means of the Is-operator.

Variant. You can explicitly declare the variable as
Variant, but if you don't specify a type, the variable is
Variant anyway. Variants can not only hold the simple
values above, but also values such as Null or Empty.
Notice that VBA treats all fields in database records as
Variant.

Initial values. When a record field is empty, it has the
value Null. When a Variant is just created, it has the
value Empty, because no memory is allocated for the
value. When a String is just created, it holds a text of
length 0. When a numerical variable is just created, it
holds the value 0.

Strings come in two versions. Strings of variable
length and strings of fixed length. The former change
their length to match what the program stores in them.
The length may be very long, nominally 2 billion, in
practice limited by memory space. Strings of fixed
length always use space from the left, and fill up the
remaining characters with spaces (blanks).

The field types text and memo correspond to VBA
strings of variable length.

Arrays
Arrays can have one or more dimensions. In Figure
6.2A, array c has two dimensions. The first index
ranges from zero to 5 (zero is the default), the second
from 1 to 6. You may specify the type of the elements
of the array. If omitted, they are Variants.

The second array, d, is dynamic, meaning that its di-
mensions and index ranges can change over time. The
program can dynamically change the dimensions and
ranges by means of the Redim statement, but in general
the values stored in the array don't survive this opera-
tion. You can use Redim Preserve if you only change
the range of the last dimension. In that case, the values
survive.

You can release the memory occupied by a dynamic
array by means of the Erase statement.

Type declarations
You can declare types of your own (user-defined
types). They will typically take the form of a record
declaration as shown on the figure. Notice that each
field of the record must be specified on a line of its
own.

You can only declare types in simple modules, not in
Form modules. Once you have declared a type, you can
use it for declaring variables and arrays.

Procedures
There are two kinds of procedures: subroutines and
functions. The only difference is that a function returns
a value. For this reason you can store the result of a

120 6. Visual Basic reference

Fig 6.2A Visual Basic declarations

Procedures = Subroutines and Functions
proc a, b, , d ‘ Parenthesis-free notation
Call show(a, b, , d) ‘ Subroutines only
res = fnc(a, b, , Me) ‘ Functions only
Sub show(a, b As t, Optional c, d)

If IsMissing(c) Then . . .
Exit Sub ‘ Optional
. . .

End Sub
Function fnc(a, b As t, Optional c, d As Object) _

As String ‘ As String is optional
If IsMissing(c) Then . . .
fnc= result . . .
Exit Function ‘ Exit optional
. . .

End Function

Declarations
Dim B, C As Byte B is Variant, C is 0..255
Boolean True (<>0, False (=0)
Integer 16 bit, -32,786 .. 32,767
Long 32 bit integer, -2.14E9 .. 2.14E9
Currency 64 bit integer / 10,000
Single 32 bit, -3.4E38 .. 3.4E38, 6 digits
Double 64 bit, -1.8E308 .. 1.8E308, 14 digits
Date Double, days since 30. Dec 1899 0:00
Object Reference to any object
Form Reference to any Form
Variant Any of the types or Null, Empty,

Error, Nothing - plus a type tag.
All database fields are Variant

String Variable length, max 2E9 characters
String * 50 Fixed length, space filled
Initial values String = “”, Boolean =False
Number, Date = 0 Database field = Null
Object = Nothing Variant = Empty
Dim c(5, 1 To 6) As t Same as c(0..5, 1..6)
Dim d() As Single Dynamic array declaration
ReDim d(5, 1 To 6) Statement

Index range (re)defined, data lost
ReDim Preserve d(5, 1 To 8)

Last index range redefined, data preserved
Erase d Releases memory for dynamic array
Type Customer ‘ Simple modules only

custID As Long
custName As String * 50
custAddress As String

End Type
Dim custTable(20) As Customer

Enumeration Type
Public Enum RoomState ' Visible to all modules

rmBooked = 1
rmOccupied = 2
rmRepair = 3

End Enum
Public states(12) As RoomState
. . . states(i) = rmRepair

function call as shown in Figure 6.2A, while you have
to call a subroutine with the word Call. You may call
either of them with the parenthesis-free notation as
shown on the figure. It means exactly the same, but
you cannot store the result in case you call a function
this way.

The figure also shows how subroutines and functions
are declared. Note how you specify that a specific type
of parameter is required, and how you specify that a
parameter may be omitted (optional). The procedure
can check whether an optional parameter is present
with the operator IsMissing.

Note how you can use Me as a parameter when you call
a procedure. Inside the procedure, the parameter must
be specified as Object, not as Form as you might
expect.

When control passes to the end of the procedure, it
returns to the point it was called. The program can also
exit from the procedure with Exit Sub or Exit Function.

Enumeration type - constant declaration
You can define enumeration types as shown on Figure
6.2A. A variable of type RoomState can have the value
rmBooked, rmOccupied or rmRepair.

VBA doesn't restrict the value of the variables to
rmBooked, etc. The Enum declaration is primarily a
structured way of defining the constants rmBooked, etc.
See section 6.3 for other ways of defining constants.

 6. Visual Basic reference 121

Module and scope
You create simple modules with the VBA editor (see
section 5.7.3). Declare module variables at the top of
the module, procedures below (Figure 6.2B). The
module variables live as long as the application runs. If
they are declared with Public instead of Dim, they are
accessible from other modules and from Forms.

You create class modules the same way. Objects of the
class are created dynamically (see section 5.7.3). You

can address Public variables and procedures in an
object through an object reference.

Procedures can declare variables of their own. If de-
clared with Dim, the variable is created at the time the
procedure is called and deleted when it returns. How-
ever, if it is declared with Static, it survives from one
call to the next. Variables declared inside a procedure
are never accessible from outside the procedure.

6.3 Constants and addresses
Constants
Figure 6.3 shows the various ways to write constant
values in VBA.

Numeric constants can be written in the usual decimal
way, in octal (preceded by &o) or in hexadecimal (pre-
ceded by &h). Note the scientific notation
 -4.9E-20 meaning -4.9 * 10-20

Color values consist of 8 bits for the amount of blue,
followed by 8 bits for green and 8 bits for red. This is
conveniently written in hex, e.g. &h09A0FF. Note that
colors on the web (HTML) are similar, but use the
opposite sequence, RGB.

String constants are enclosed in quotes. There is no
way to write special characters inside the string con-
stant. You have to generate a string with a single spe-
cial character using Chr(x), where x is the Ascii value
of the character. As an example, Chr(10) is a line feed.
Next you concatenate these string parts by means of the
&-operator. A quote inside a string constant is written
as two quotes. When you have to compute SQL-state-
ments in VBA, these statements will often include
string constants in quotes. Fortunately, SQL accepts
double quotes as well as single quotes. Generate the
single quotes-version with VBA to avoid conflicts with
VBA double quotes.

Date/time constants are enclosed in # #. The date
format between # and # is always US format mm/dd/yy
or mm/dd/yyyy. Time may be part of the date/time
constant as shown.

Null and Empty can be used for testing, for instance
 If x = Empty Then . . .
 If IsNull(x) Then . . .
 If x = Null Then ' Always gives Null, never True

Notice that comparing with Null always gives Null.
You have to use IsNull to test whether something is
Null. See section 6.4 for more on Null.

You can assign Null to a variant variable. You cannot
assign an empty string to a record field in a database,
you have to assign Null:
 rs . f = Null ' Okay, works as an empty string

 rs . f = "" ' Empty string not allowed
 rs . f = " " ' Okay, spaces as a text

Nothing. The value Nothing can be used for testing
with the Is-operator and for assigning to a reference
variable with the Set statement, for instance
 If x = Nothing Then . . .
 Set x = Nothing

Constant declaration. You can declare constants, i.e.
give them a name. In the example, we have given the
constant 10 the name max and the constant 24th March
2002 the name start. VBA has many predefined con-
stants, for instance vbKeyA to denote the Ascii value
of the letter A and vbYes to denote the result of
MsgBox when the user has chosen Yes.

Define constants for your project in a simple module,
e.g. basCommon.

Addressing variables and objects
Figure 6.3 also shows the various ways to address a
variable or an object. The first examples address the
members of the Forms collection in different ways. The
first version uses an integer index as a reference, the
second a computed string as the name of the Form, the
third a short-hand notation with a fixed string as the
name of the form.

The next examples address Form properties and fields
from code in the Form itself. The property Name is
addressed with the dot-operator, while the name field is
addressed with the bang-operator. In this case there is a
name conflict between the two meanings of name. If
there was no conflict, the dot could also be used to
address the field. A property in a subform is addressed
with the name of the subform control followed by
Form to get a reference to the open subform object.
From a subform, the main form can be addressed with
Me.Parent.

Note that Me and Parent are of type Object, not type
Form as one might expect.

In most cases, you can omit Me. The exception is when
a built-in function has the same name as the property or
control.

122 6. Visual Basic reference

Fig 6.2B Module and Scope

Module and Scope
Dim a ‘ Visible in this module only
Public b ‘ Visible to all modules
Private Sub show(p) ‘ Visible in this module only

Dim c ‘ Visible in this sub only
Static d ‘ Visible in this sub only,

‘ but survives calls
If . . . Then . . .

End Sub
Public Sub show(p) ‘ Visible to all modules

Dim c ‘ Visible in this sub only
. . .

End Sub

Fig 6.3 Visual Basic constants and addresses

Constants
23, -23, 0, -4.9E-20 Decimal numbers
&h09A0FF, &o177 Hex and Octal, color: bgr
“Letter to:” Strings
Chr(65), Chr(vbKeyA) The text “A”
“John” & Chr(10) & “Doe” Two-line text
“Don’t say “”No”” “ Don’t say “no”
“select * from g where a=‘simpson’ ;”

Single quotes are suited for SQL
True, False Booleans

Date/time
#10/24/02# 24th Oct 2002
#10/24/02 14:15:00# 24th Oct 02 at 14:15
#10/24/02 2:15 pm# 24th Oct 02 at 14:15
Null, Empty Special values
Nothing Object reference to nothing
Constant declaration
Const max=10, start=#3/24/2#

Addressing
Forms(i) Element in collection
Forms(“frmCst” & i)
Forms!frmCst2 Bang-operator

Me.Name, Me!name Property and Control in
this Object (e.g. form)

Me.subLst.Form.name Property in subform
Me.Parent.txtName Control in main form

basCommon.simDate Var in foreign module
c(row, col) Indexing an array
custTable(i).custID Field in array of records

With Me.Recordset Apply before dot and bang
.addr = .addr & zip
!name = Null
!phone = “ “
.MoveNext
. . .

End With

A public variable in a foreign, simple module can be
addressed as moduleName.variableName as shown.
Array elements are addressed with indexes in paren-
thesis. Arrays of records are addressed with index and
the dot-operator to get a field in element i.

With-End. There is a short-hand notation for address-
ing an object. The With-End statement specifies a par-
tial address, for instance an object. Inside the With-
End, all dot and bang-operators are automatically pre-
fixed with this partial address.

 6. Visual Basic reference 123

6.4 Operators and conversion functions
Operators
Figure 6.4A shows the operators available in VBA.
The operators are shown in decreasing precedence,
meaning that high-precedence operators are computed
before low-precedence operators. This is the rule that
ensures that for instance
 a*b+c*d
is computed as (a*b) + (c*d) rather than a* (b+c) *d.

The top operators are the conventional mathematical
operators. In general Visual Basic does a good job of
converting the operands to the best possible data type
before applying the operator.

Null
Null values need attention. Think of Null as Unknown.
As a general rule, if one of the operands is Null, the
result is Null too. Look at
 If x = Null Then . . .

X = Null will always give Null. This is not True and
the statement after Then will never be executed. See
section 4.5 for examples of handling Null in queries.

There are a few exceptions to the general rule:
 Null and False is False.
No matter what the unknown is, the result will be false.
 Null or True is True.
No matter what the unknown is, the result will be true.

The &-operator concatenates two string operands into
one. If one or both operands are non-string, it converts
them to strings before concatenation. This also applies
to concatenating with Null, which in this case is con-
verted to an empty string. Note that & converts dates to
the regional date format. To avoid this, use the Format
function to explicitly convert to a specific string
format.

Other operators
There are the usual comparison operators, equal, un-
equal, etc. They can compare numbers as well as texts.

The Is-operator compares two object references to see
whether they refer to the same object. It may also help
checking whether an object reference is Nothing, i.e.
refers to no object.

The Partition operator translates a value into an
interval of values, shown as a string. It takes four
parameters:

 Value: An integer.
 Lower: The lowest value considered.
 Upper: The highest value considered.
 Int.length: The range of values is divided into

intervals of this length.

As an example Partition(22, 0, 100, 10) = "20:29". The
entire range 0:100 is divided into intervals of length 10.
The first interval is 0:9, the next 10:19, etc. The value
22 belongs to the interval 20:29.

Between and In. Most VBA operators may be used in
SQL too. However, Between and In may only be used
in SQL:
 WHERE a BETWEEN 3 AND 9
 WHERE a IN (2, 3, 5, 7)

Finally, we have the logical operators. Usually they
work on Boolean values, for instance
 If a Or b Then
But if a and b are integers, they work in parallel on all
the bits of these integers.

Like operator, wildcarding
The Like operator can compare string patterns. It treats
some characters in its right-hand operand in a special
way. As an example, the character * means any
sequence of characters. The expression
 s Like "sim*an"
will thus check whether s starts with the characters
"sim" and ends with the characters "an" with any char-
acters in between.

The character ? means any single character here. The
expression
 s Like "b?n"
will thus check whether s starts with b, ends with n,
and has exactly one character in between.

The character # means any digit here. The sequence
[ad3] means either a, d, or 3 here. The sequence [a-d3]
means either a letter between a and d here, or the digit
3. We can even negate the rules: [!ad3] means neither
a, d, or 3 here. The Like operator is also called the
wildcard operator.

124 6. Visual Basic reference

Fig 6.4A Operators and conversion functions

Operators, decreasing precedence
Nulls: A Null operand usually gives a Null result.
^ Exponentiation
- Unary minus, 2*-3 = -6
* Multiply, Result type is Integer, Double, etc.
/ Divide, Single or Double result
\ Integer divide, result truncated, 5\3 = 1
Mod Modulus (remainder), 5 Mod 3 = 2
+ - Add and subtract
& Concatenation, String result (local format)
= <> < > <= >= Equal, unequal, less than, etc.
Is Compare two object references, e.g.
If r Is Nothing (Test for nil-reference)
Partition(22, 0, 100, 10) = "20:29"
a Between 3 and 9 Not in VBA, okay in SQL
a IN (2, 3, 5, 7) Not in VBA, okay in SQL
Not Negation. Bit-wise negation for integers
And Logical And. Bit-wise And of integers
Or Logical Or. Bit-wise Or of integers
X Exclusive Or. Bitwise on integers
Eqv Logical equivalence. Bitwise on integers
Imp Logical implication. Bitwise on integers
s Like “s?n” Wildcard compare. ? any char here.

any digit here. * any char sequence here.
[a-k] any letter between a and k here.

Conversion to Integer, Double, Date . . .
Errors: “Invalid use of Null” for Null parameters
Overflow or type mismatch for bad parameters.
CByte(“37”) =37. Overflow outside 0..255
CInt(“2.6”) = 3
Round(2.6) = 3.0000 (as Double)

Rounding down: See Math functions Int, Fix
CLng(“99456”) = 99456
CCur(1/3) =0.3333 (always 4 decimals)
CSng(“-2.6e-2”) = -0.026
CDbl(“-2.6”) = -2.6
CDbl(#12/31/1899#) = 1.0
CDate(“23-10-03”) = #10/23/2003# (as Double)

Uses regional setting for input date
CDate(1) = #12/31/1899# (as Double)
CStr(23) = “23”. No preceding space.
Str(23) = “ 23”.

Preceding space for numbers >= 0
CStr(#10/23/2003#) = “23-10-03”

Converts to regional date format
CVar(X) = X As Variant. X may be Null

Conversion to Integer, Double, Date, etc.
There is a conversion function for most of the types. It
converts an expression of another type to its own type.
For instance, CInt(D) converts D to an integer - if pos-
sible - and returns the result as the value of the func-
tion. D might for instance be a string. If D is a decimal
number, it is rounded to the nearest integer (up or
down).

The function Round(D) does exactly the same as
CInt(D) but returns the integer as a Double. See Math
Functions, section 6.5, for rounding down with Int and
Fix.

CDate(D) converts D to a date/time value (technically a
Double number). Often D is a string, and CDate is
quite liberal in its interpretation of the string. However,

some dates are ambiguous. For instance the string
"02/03/04" can be interpreted in many ways as a date.
In these cases, CDate uses the regional setting for the
date format.

CStr() can convert a number to a string. It never puts a
space (blank) in front of the digits. In contrast, Str()
puts a space in front of numbers >= 0, a minus in front
of negative numbers. Notice that both functions
convert dates to the regional date format. To avoid this,
use the Format function to convert to a specific date
format.

CVar(X) converts X to a variant type. It doesn't really
change anything, but sets a type tag on the result it re-
turns.

 6. Visual Basic reference 125

Format function
The Format function has two parameters: a value to be
converted to a text, and the format of the result. The
format is a string and its details are a complex affair.
Basically each character in the format is either a
placeholder that causes VBA to show part of the value,
or it is a literal character that is shown as it is. As an
example, # will show a digit from the value, while / is
not a placeholder and will show up as a / in the result.
If a placeholder character is to be shown as the charac-
ter itself, precede it with a backslash. As an example, \#
will show a # in the result.

There are separate placeholders for numbers, strings,
and dates. Apparently, the first placeholder determines
whether to show the value as a number, a string or
date/time. From this point on, the format characters are
interpreted according to the type to be shown.

For numbers, the format string can contain from one to
four sections separated by semicolons. The first section
is used for positive numbers, the second for negative,
the third for zeroes, and the fourth for Null values (no
value).

The details of the format strings and their effect are
best studied through the examples on Figure 6.4B.

Week number
The week number for a date is shown with the ww
placeholder. Since different regions of the globe have
different rules for what is the first day in the week, the
Format function needs a third parameter in this case. It
is vbSunday (1) if Sunday is the first day of the week.
It is vbMonday (2) if Monday is the first day of the
week, etc.

As an example, Sunday 3rd February, 2002 gives these
results depending on whether Monday or Sunday is the
first day of a week:

 Format(#2/3/2002#, "ww", 2) = 5 (week 5)
 Format(#2/3/2002#, "ww", 1) = 6 (week 6)

Formats for controls, etc.
Many control properties require formats of the same
kind, for instance the date format for a textbox or a
DateTime Picker. Usually the format follows the same
rules as VBA's Format function, but there may be
deviations. Some very annoying ones are:

 MM for month and mm for minute.
 HH for 24 hours, hh for hours with AM/PM.

Named formats
The format string may also be the name of a regional
(local) format. As an example, the named format
"Currency" will show a number with a $ in the US and
with a £ in UK. The user can define the regional
formats in Window's Control Panel -> Regional and
Language Options. The following named formats exist:

Named numeric
formats

Named date/time formats

General Number General Date
Currency Long Date
Fixed Medium Date
Standard Short Date
Percent Long Time
Scientific Medium Time
Yes/No Short Time
True/False
On/Off

126 6. Visual Basic reference

Fig 6.4B Format function

Format function
Converts a value to a string, based on a format
string. Format characters that are not
placeholders, are shown as they are.
Backslash+character is shown as the character
alone, e.g. \d is shown as d.
Numeric placeholders:
0 Digit, leading and trailing zero okay here
Digit, no leading or trailing zero here
. Decimal point (or regional variant)
E- or e- Exponent, use all placeholders
E+ or e+ Show exponent with plus or minus
% Show number as percent
Format(2.3, “00.00”) = “02.30”
Format(2.36, “#0.0”) = “2.4”
Format(0.3, “##.0#”) = “.3”
Format(32448, “(00)00 00”) = “(03)24 48”
Format(32448, “##.#E+”) = “32.4E+3”
Format(32448, “##.#E-”) = “32.4E3”
Format(0.5, “#0.0%”) = “50.0%”
; Separator between formats for positive,

negative, zero, and null values.
Format(-3, "000;(000);zero;---") = “(003)”
String placeholders
@ Character or space
& Character or nothing
! Cut off from left
Format(“A123”, “@@@@@@”) = “¬¬A123”
Format(“A123”, “&&&&&&”) = “A123”
Format(“A123”, “(@@)-@”) = “(A1)-23”
Format(“A123”, “!(@@)-@”) = “(12)-3”

Date/time placeholders
Example: DT = #2/3/2002 14:07:09# (Sunday)
Format(DT, “yyyy-mm-dd hh:nn:ss”, vbMonday)

= “2002-02-03 14:07:09”
Format(DT, “yy-mmm-d at h:nn am/pm”)

= “02-feb-3 at 2:07 pm”
Format(DT, “dddd t\he y’t\h \da\y of yyyy”)

= “Sunday the 34’th day of 2002”
d Day of month, no leading zero “3”
dd Day of month, two digits “03”
ddd Day of week, short text “Sun”
dddd Day of week, full text “Sunday”
ww Week number. First day of week as

third parameter, e.g. vbMonday
m Month, no leading zero “2”

(Interpreted as minutes after h)
mm Month, two digits “02”

(Interpreted as minutes after h)
mmm Month, short text “Feb”
mmmm Month, full text “February”
y Day of year “34”
yy Year, two digits “02”
yyyy Year, four digits “2002”
h Hour, no leading zero “14” or “2”
hh Hour, two digits “14” or “02”
AM/PM Show AM or PM here, hours 12-based
am/pm Show am or pm here, hours 12-based
n Minutes, no leading zero “7”
nn Minutes, two digits “07”
s Seconds, no leading zero “9”
ss Seconds, two digits “09”
Named formats (local format)
Format(2.3, "Currency") = "£2.30" (in UK)

also "Percent", "Yes/No", "Long Date" . . .

 6. Visual Basic reference 127

6.5 Other functions
String functions
String functions work on strings and characters. Figure
6.5A shows the most important ones.

Asc(s) takes the first character of s and returns it as an
integer, the Ascii code for that character. Chr(c) works
the other way and returns an Ascii code as a string of
one character.

A set of functions return the length of a string (Len),
extract the left, right or middle part of a string (Left,
Right, Mid), or trim a string of leading or trailing
spaces (LTrim, RTrim, Trim).

The functions LCase and UCase transform all letters to
upper or lower case. Space(n) generates a string of n
spaces.

Comparing strings is in principle easy, in practice dif-
ficult due to regional variations of the alphabet, how to
treat upper and lower case letters, etc. In each module,
you can specify how strings are to be compared. They
may be compared according to their Ascii codes
(Option Compare Binary), according to the regional
alphabet and without case sensitivity (Option Compare
Text), or according to the rules of the database (Option
Compare Database). In the Access database engine,
Option Compare Database seems to work exactly as
Option Compare Text.

The function StrComp(s1, s2) compares s1 to find out
whether s1 comes before s2 in the alphabetical se-
quence (result=-1), are equal (result=0), or comes later
(result=1). Strings may also be compared simply with
s1<s2, s1<=s2, etc.

Iif and Choose
Two functions select one value out of two or more
choices. Iif(a, b, c) returns b if a is True, c otherwise.
Choose(i, b1, b2, b3 . . .) returns b1 when i=1, b2
when i=2, etc. Figure 6.5A shows the details and ex-
amples.

Array bounds
Since arrays can be dynamic with variable bounds, it is
convenient with functions that can tell the actual
bounds. LBound() and UBound() give lower and
upper bounds for the first or a later dimension.

Dlookup, DMin, DMax, DSum
These function are also called Direct Lookup, Direct
Min, etc. They execute an SQL-query on the spot to
extract a single value. One example on the figure is
 DMin("roomID", "tblRoom", "roomType=2")
It corresponds to this SQL-statement:
 Select Min(roomID) From tblRoom
 Where roomType=2;

The parameters to DMin() must be strings that can be
substituted into the SQL-statement at the underscored
places to give the desired result.

MsgBox
The MsgBox function shows a message to the user,
asks for a choice, and returns the choice as the result.
There are many parameters, but only the first one is
required. It specifies the text to show to the user. The
second parameter specifies the icon to show plus the
set of choices to give. Later parameters specify box
title, help codes, etc. There are many constants avail-
able to specify all of these. The example on Figure
6.5A shows a few. (See section 3.6 for more exam-
ples.)

128 6. Visual Basic reference

Fig 6.5A String functions and miscellaneous

String functions
Null parameters: A Null string as input will give
the result Null. Null as another parameter is an
error.
Asc(“AB”) = 65, Ascii code for first character
Chr(65) = “A”, a one-letter string with this

ascii character
Len(“A_B”) = 3, length of string.
Left(“abc”, 2) = “ab”, leftmost two characters
Left(“abc”, 8) = “abc”, as many as available
Right(“abc”, 2) = “bc”, rightmost two characters
Mid(“abcdef”, 2, 3) = “bcd”,

three characters from character 2
LTrim(“ ab ”) = “ab ”, leading spaces removed
RTrim(“ ab “) = “ ab”, trailing spaces removed
Trim(“ ab “) = “ab”, leading and trailing removed
Lcase(“A-b”) = “a-b”, lower case of all letters
Ucase(“A-b”) = “A-B”, upper case of all letters
Space(5) = String of 5 spaces
Option Compare Text | Binary | Database
Option in start of module. Text: string comparison
is case insensitive and follows regional settings.
Binary: comparison is based on the internal
ASCII code.
Database: comparison is defined by the SQL-
engine.
StrComp(“ab”, “abc”) = -1, first string smallest
StrComp(“ab”, “ab”) = 0, strings equal
StrComp(“ac”, “abc”) = 1, first string largest
If “ab” < “abc” . . . ‘ Works just as well

Iif and Choose
Iif(a=a, b, c) = b
Iif(a<>a, b, c) = c
Iif(Null, b, c) = c
Choose(2, a, b, c) = b
Choose(4, a, b, c) = Null
Choose(Null, a, b, c) Error
Array bounds
LBound(d) Lower bound for first index
LBound(d, 2) Lower bound for second index
UBound(d) Upper bound for first index
UBound(d, 3) Upper bound for third index
DLookup, DMin, DMax, DSum
DLookup(“name”, “tblGuest”, “guestID=7”)
= name of guest with guestID=7.

DMin(“roomID”, “tblRooms”, “roomType=2”)
= smallest room number among double rooms.
All three parameters are texts inserted into SQL.

DMax, Dsum, DCount, DAvg
Similar, just finds largest, sum, number of,
average. Null treatment, see SQL

MsgBox
MsgBox(“Text”, vbYesNo+vbCritical) =vbYes
Also: vbInformation, vbQuestion, vbExclamation

 6. Visual Basic reference 129

Type check functions
Figure 6.5B shows a set of functions that can check the
type of an operand or an expression. As an example,
IsDate(d) checks whether d is of type Date or is a string
that could be converted to a date by means of
CDate(d).

An interesting check function is VarType(v). It returns
a number that shows the type of v. The figure shows
the many possibilities and the constant name for each
of them. In case of an array, two constants are added,
vbArray (8192) and the constant for the type of the
array. As an example, an array of integers will have the
type number vbArray+vbInteger.

Date and time functions
Figure 6.5B also shows a set of functions to handle
date and time. Three functions return the current date,
the current time, and the current date+time (Date,
Time, Now). The function Timer() returns the number
of seconds since midnight, with the highest accuracy
available to the computer. It is a good tool for timing
program parts to find the bottleneck in a slow program.

DateSerial computes a date value from the integer ar-
guments year, month, and day. TimeSerial computes a
time value from hour, minute, and second.

Finally a set of functions can extract day, month, etc. as
integers from a date value. Refer to the figure for de-
tails.

Math functions
Figure 6.5C shows the mathematical functions avail-
able. We find the square root, the trigonometric func-
tions, exponential function and logarithm. There is also
a random number generator.

Abs(x) returns the absolute value of x. Sgn(x) returns
the signum of x (1, 0, or -1). Int(x) and Fix(x) rounds
the argument with different rules for negative numbers
(for positive numbers they are equal).

Hex(x) and Oct(x) shows x as a string in hexadecimal
or octal notation.

Financial functions
Figure 6.5C also shows two of the many financial
functions available. NPV returns the Net Present Value
of a sequence of payments (positive and negative). It
calculates what these values would total today at a
given interest rate.

IRR calculates the Internal Rate of Return for a se-
quence of payments. IRR is the interest rate at which
the Net Present Value of the payments would be zero.
There are many other financial functions available, but
we don't explain them here.

130 6. Visual Basic reference

 6. Visual Basic reference 131

Fig 6.5B Type check and date/time functions

Type check functions
Returns True if v is declared with the type tested
for, is a Variant currently with this type, or is a
constant of this type. IsDate and IsNumeric also
test whether v is a text that can be converted to
that type.
IsArray(v) Tests for any type of array
IsDate(v) Tests whether v is a date or a string

that can be converted to a date
IsEmpty(v) Tests whether v is unallocated

(Strings of length 0 are not Empty)
IsError (v) Tests whether v is an error code
IsMissing (v) Tests whether v is a parameter that

is missing in the current call.
IsNull (v) Tests whether v is of type Null.

(Strings of length 0 are not Null)
IsNumeric(v) Tests whether v is a numeric type

(Byte, Integer, Currency, etc.) or a
string that can be converted to a
numeric type.

IsObject(v) Tests whether v is a reference to
an object, for instance a Form. True
also if v is Nothing (the nil-pointer)

VarType(v) Integer showing the type:
0 vbEmpty 8 vbString
1 vbNull 9 vbObject
2 vbInteger 10 vbError
3 vbLong 11 vbBoolean
4 vbSingle 12 vbVariant (array)
5 vbDouble 17 vbByte
6 vbCurrency 36 vbUserDefinedType
7 vbDate 8192 vbArray (added)

Date and time functions
A date value is technically a Double. The integer
part is the number of days since 12/30-1899, the
fractional part is the time within the day.
Several functions accept date parameters as well
as strings representing a date and/or time.
Null parameters: Always give the result Null.
Now() = current system date and time
Date() = current date, integral date part
Time() = current time, fractional date part
Timer() = Number of seconds since

midnight, with fractional seconds.
Date = . . . Sets current system date
Time = . . . Sets current system time
DateSerial(2002, 12, 25) = #12/25/2002#
TimeSerial(12, 28, 48) = 0.52 (Time 12:28:48)
Day(#12/25/02#) = 25, the day as Integer
Month(#12/25/02#) = 12, the month as Integer
Year(#12/25/02#) = 2002, the year as Integer
Weekday(#12/25/02#) = 4 (Sunday=1)
Hour(35656.52) = 12 (Time 12:28:48)
Minute(35656.52) = 28
Second(35656.52) = 48

Fig 6.5C Math and financial functions

Math functions. Don't accept x = Null:
Sqr(x) Square root of x. Sqr(9) = 3.
Sin(x), Cos(x), Tan(x), Atn(x) Trigonometric

functions. X measured in radian (180
degrees = p = 3.141592 radian)

Sin(0) = 0, Sin(3.141592 / 2) = 1
Exp(x) e to the power of x (e = 2.7182...)
Log(x) Natural logarithm of x. Log(e) = 1.
Rnd() A random number between 0 and 1.

Type is Single.
The following functions accept x = Null:
Abs(x) Returns x for x>=0, -x otherwise.
Sgn(x) Returns 1 for x>0, 0 for x=0, -1 for x<0
Int(x) Rounds x down to nearest integral value
Fix(x) Rounds x towards zero
Hex(x) Returns a string with the hexadecimal

value of x. Hex(31) = “1F”
Oct(x) Returns a string with the octal value of

x. Oct(31) = “37”

Financial functions
NPV(0.12, d()) The array d must be of type

Double and contain a list of payments.
Returns the net present value of these
payments at an interest rate of 0.12, i.e. 12%.

IRR(d()) The array d must be of type Double and
contain a list of payments. Returns the
internal rate of return, i.e. the interest rate at
which these payments would have a net
present value of 0. If the list of payments
have many changes of sign, there are many
answers, but IRR returns only one.

IRR(d(), 0.1) The second parameter is a guess
at the interest rate, to allow IRR to find a
reasonable result.

SYD, NPer and many other financial functions are
available for finding depreciated values,
number of periods to pay a loan back, etc.

6.6 Display formats and regional settings
Different regions of the world use different formats for
numbers, dates, and other things. The user can define
the regional formats in Window's Control Panel ->
Regional and Language Options.

This not only influences the input and output format for
user data, but also formats inside the program, the
control properties, and the query grid. For a developer
working outside the US, it can be a nightmare to figure
out how it all works. Below I illustrate the issues with
the small regional difference I know about, the
difference between US formats and central European
formats. I cannot even imagine the problems if we talk
about regions with different alphabets, writing
directions, and calendar systems such as Chinese and
Arabic.

Figure 6.6 gives an overview of the situations. The
main regional differences relate to the format of dates
for input and output, the list separator, and the decimal
characters. The regional differences show up in differ-
ent ways in the three main developer and user envi-
ronments:

• Designer environment: The designer defines
controls and their properties. He may also define
queries through the query grid.

• Programmer environment: The programmer
works in Visual Basic and defines SQL-statements
rather than queries through the grid.

• User environment: The user sees data through
controls and datasheets.

Input date. Let us first look at the entry of dates. In the
designer and programmer environments, Access makes
a good guess at the format for dates. If we for instance
enter #2003-13-5# into the query grid or SQL, Access
guesses what is year, month and day. However, in the
many situations where this is impossible, such as the
date #02-03-04#, Access guesses differently in the two
environments. In the designer environment, it uses the
regional date format, which in Central Europe is #dd-
mm-yy#. In the programmer environment, it uses the
US format #mm/dd/yy#.

Input mask property. What about the user environ-
ment? Here the designer defines what the user sees by
means of the Input mask in the Control Property box.
When the user starts entering a date, the field switches
to showing the date according to the Input mask. This
mask is similar to the format string in the Format func-
tion, but uses quite different placeholders. When an

input mask is specified, the user can only use Over-
write mode, not the ordinary edit mode.

Output date. How is a date shown? In the designer
environment, it is always shown according to the re-
gional date format (Short Date).

In the programmer environment it is always shown in
US format with one exception: The concatenation
operator & converts the operands to texts if needed,
and dates are converted to regional format. Thus we
get this with a central European setting:

 "Xmas " & #12/25/2007# = "Xmas 25-12-2007"

But this with a US setting:

 "Xmas " & #12/25/2007# = "Xmas 12/25/2007"

Format property. The user sees the date in the format
defined by the Format property. This format may be
different from the input mask, so the user enters one
thing, then the system shows it differently. The de-
signer has to make sure that these formats match.

List separator. In Central Europe, the list separator is
a semicolon since the comma is used to denote the
decimal separator. In the US the list separator is a
comma. As a result, the designer has to write for in-
stance Iif(a; b; c) in the query grid or in Control Source
properties, while the programmer has to write Iif(a, b,
c). To make things worse, if the designer uses commas
in the Control Source or the grid, the error reaction is
completely confusing.

Fortunately, there is no reason to worry about the user
environment for the list separator. Users normally don't
see it at all.

Number format. The number format in Central
Europe has comma as decimal separator and dot as
thousand separator. In the designer environment you
have to use these characters, while you use the US
format in the programmer environment. In the user en-
vironment, the Format property and the Input mask
determine the format.

Practice. Developers are sometimes designers and
sometimes programmers. It is no wonder that they usu-
ally set up their development system in pure US mode.
They can ship the system to the users with little change
since the users don't see the designer stuff. But if they
have to change something at the user's site, they have
to take care since the developer formats now look dif-
ferent from back home.

132 6. Visual Basic reference

Fig 6.6 Regional settings

Display format depends on regional setting
and designer environment:

Designer Programmer User
Query grid, SQL, Table field,
Property line VBA Textbox

Input VBA guess, e.g. #2003-13-5# According to
date In doubt, e.g. #02-03-04#: Input mask

dd-mm-yy mm-dd-yy

Output EU-regional: US: mm/dd/yy According to
date dd-mm-yy Except & which Format

uses regional format

List EU-regional: US:
separator semicolon: comma:

iif(a ; b ; c) iif(a , b , c)

Number 12.300,25 12,300.25 Format ...

 6. Visual Basic reference 133

7. Access and SQL
In this chapter we look at more complex SQL issues,
for instance how we can create and delete records
through SQL, how we can use queries inside queries,

and how we can show matrices of data where the table
headings vary according to the data.

7.1 Action queries - CRUD with SQL
Section 5.6 explains how the program can Create,
Read, Update and Delete records in the database by
means of recordsets. In this section we will see how
the program can make such CRUD operations by
means of SQL.

We have four kinds of SQL queries available:

INSERT INTO . . . (Create)
This query inserts new records into a table.

SELECT . . . FROM . . . (Read)
This query extracts data from the tables. It is the
query we have used in the rest of the booklet
(e.g. sections 4.1 to 4.4). In many cases it also
allows the user to edit the data. We will not
explain it further in this section.

UPDATE . . . (Update)
This query changes records in a table.

DELETE FROM . . . (Delete)
This query deletes records from a table.

The term action query means INSERT, UPDATE or
DELETE - the queries that change something in the
database.

We will explain the mechanisms through the examples
in Figure 7.1. To execute an action query, we use this
VBA function:

 CurrentDb.Execute ”INSERT . . . ", dbFailOnError

CurrentDB is the database currently used by the
program. We ask it to execute the INSERT query.
Usually the query statement is a computed string that
includes dialog variables, for instance the customer the
user works with.

The last parameter dbFailOnError is optional. It asks
the database to give an error message if something goes
wrong during the query, for instance if we try to insert
a record that violates referential integrity. If we omit it,
there is no response in case of errors - nothing changes
in the database, and the program doesn't know about it.
Include dbFailOnError, particularly while you are
testing the program.

INSERT
The figure shows a full INSERT statement. It inserts a
single record into tblRoomState. It sets the roomID to
14, the date to 27th Oct 2002, and the state to 1. The

remaining fields of the record become Null. Note how
we have put date in brackets. If we omit the brackets,
the database engine believes we try to use the built-in
date function and reports it as a syntax error (inde-
pendent of whether we have included dfFailOnError).

The INSERT statement can also insert a bunch of
records extracted from another table or query. The
bottom of the figure shows an example (explained
below).

AutoNumber
Assume you have a table with a field of type Auto-
Number. When you insert a record into the table,
Access will automatically fill in the AutoNumber field.
However, if you explicitly specify a value for the field,
Access will accept it if it is unique (different from
other values of this field).

When Access generates the number automatically, it
will use the highest used number plus one. (The highest
used number may have been used by a record now
deleted.) As an example, assume we want the booking
numbers in the hotel to consist of a year number and a
sequence number, for instance 20040001, 20040002
etc. We can then generate the first booking of the year
with this query:

 INSERT INTO tblStay (stayID) VALUES (20040001)

New stay records will then be auto-numbered from this
value and on. Deleting some of the records still makes
the number grow sequentially.

UPDATE
The UPDATE statement sets room state to 2 and
personCount to 1 for all roomState records where
roomID=14 and date=27/10/2002. In this case there is
only one such record because roomID and date make
up the primary key for the table.

Confused about the dates? Access SQL uses American
dates, while the explanations in the booklet use middle
European dates. See more in section 6.6.

DELETE
The DELETE statement deletes all roomState records
where roomID=14 and date=27/10/2002. In this case
there is only one such record.

7.1.1 Temporary table for editing
The user (or the program) can edit the fields in a simple
query. However, if the query contains a GROUP BY,

134 7. Access and SQL

Fig 7.1 Action queries - CRUD with SQL

CurrentDb.Execute ”INSERT . . . ", dbFailOnError

CurrentDb.Execute ”DELETE FROM tblTemp;", dbFailOnError
CurrentDb.Execute ”INSERT INTO tblTemp SELECT * FROM qryStayRooms “ _

& “WHERE stayID=” & me.stayID & “;” , dbfailonerror

Execution of an action query.

Insert one record in tblRoomState.
Only these three fields get a value.
(The rest become Null.)
Note the brackets on name to
distinguish from the built-in name
function

Show a message in
case of errors

UPDATE tblRoomState SET state=2, personCount=1
WHERE roomID=14 and [date]=#10/27/02#;

DELETE FROM tblRoomState
WHERE roomID=14 AND [date]=#10/27/02#;

Set state to 2 and personCount to 1 for
all RoomStates with roomID=14 and
date=27-10-2002 (there is only one)

Delete all RoomStates with roomID=14
and date=27-10-2002 (there is only one)

INSERT INTO tblRoomState (roomID, [date], state)
VALUES (14, #10/27/02#, 1);

Delete all records from tblTemp.
Then copy all query records from
the current stay to tblTemp

Allow user to edit a GROUP BY query:
Make a temporary copy

an outer join, or another complex query, the result can
not be edited. From a usability perspective, there is
often a need to edit such a query anyway. It can either
be done through a dialog box (low usability), or
through a temporary table that holds a copy of the
GROUP BY result. The user will edit the temporary
table directly. The bottom of the figure shows an
example of this. Let us see how it works.

In the hotel system the user sees a single record for
each room booked by the guest. In the database there is
a roomState record for each date the room is booked,
but on the user interface we aggregate it to a single line
with start date and number of nights. The query
qryStayRooms does this, but the user can not edit the
result directly.

The solution is to have a temporary table tblTemp with
the same fields as qryStayRooms. The first statement
deletes the present records in tblTemp. The next
statement copies all the query records that belong to the
current stay into tblTemp. Note how the program

computes the SQL statement from several parts, one of
them being me.StayID, the current stay number the user
is working on. Since the SQL statement is very long, it
is split into two lines with an underscore at the end of
the first line.

Note also the SELECT * part that extracts all fields of
the query. This only works if tblTemp has the same
fields - and with the same names. It is possible to
extract only some of the fields - or rename them - in
order to match the fields in tblTemp. We could for
instance extract roomID (renamed to Room) and
Nights:

INSERT INTO tblTemp SELECT roomID AS Room, Nights . . .

After the INSERT, the program can show tblTemp in a
form so that the user can edit it. The program may
either update the real database each time the user
changes something in tblTemp, or it may update the
whole thing when the user closes the form.

 7. Access and SQL 135

7.2 UNION query
A UNION query combines two queries so that the
result contains all the records:

SELECT . . . FROM . . . UNION
SELECT . . . FROM . . . ;

The two queries must have the same number of fields.
The queries need not have matching names or types.
The first field of each query goes into the first field of
the result, the second field into the second field of the
result, etc. The field name of the result is the field
name from the first query. The field type of the result is
compatible with all the queries, for instance Long
Integer if one query has a simple integer, the other a
Long.

The query grid cannot show a union query. You have
to work in SQL view. You may make one of the
queries with the query grid, then switch to SQL view to
add the second query.

You can set the presentation format of the fields in
grid view, for instance date or number formats. Right-
click the field column and select properties. When you
switch to SQL and add the union part, the presentation
format remains. (Editing the SQL version and
switching back and forth between SQL view and grid
view, may remove the format information.)

Example: Service charges
The first example in Figure 7.2 takes a list of breakfast
services and adds a list of telephone charges to give a
combined list of service charges. (The breakfast
services are recorded by the receptionist, while the
telephone charges may be produced by a separate
telephone system.)

The combination is not quite straightforward because
the breakfast list has a stayID field which is not wanted
in the result. Furthermore, the telephone charges lack a
serviceID; they should end up with a serviceID of 5
(meaning telephone). Finally, what is called ticks in the
telephone charges is called quantity in the result.

The first part of the SQL statement selects the required
fields from tblServiceReceived. The second part selects
roomID from the telephone charges, computes a

second field with the value 5, selects the date field and
finally the ticks field. It doesn't even care to rename the
ticks field.

The figure shows the result ordered by roomID. Notice
that the last field is named quantity according to the
field name in the first query.

In the real hotel system, the result must be joined with
the roomState records to add the stayIDs, so that the
data end up on the right guest invoice. To do this
properly, we also need time of day for the telephone
charges. We don't discuss this here.

Example 2: Combo box with a New option
The second example in Figure 7.2 shows a list of
service prices extended with a New option. The list is
intended for a Combo Box and gives a convenient way
for the user to select an existing choice or add a new
one.

The list is computed with a union query. The last part
is a simple select of the fields in tblServiceType. The
first part computes a constant record with the name
New, serviceID = 0 (dummy value), and price = Null.
Formally, this record is computed based on
tblServiceID, but any table might be used. However, to
save computer time, it is a good idea to use a short
table. Some developers use a dummy table with a
single record for the purpose.

This query is used as the Control Source in the Combo
Box.

Note how we managed to get the currency sign ($) on
the list. We first used the query grid to make the last
part of the union. We set Property -> Format to
Currency for the price field. Then we switched to SQL
view and added the first part.

An alternative is to compute the price field using the
Format function, for instance with the named format
Currency, which adds the regional currency symbol:
 Format(tblServiceType.price, "currency") AS Price

136 7. Access and SQL

Fig 7.2 Union: Concatenate two tables

SELECT roomID, serviceID, date, quantity FROM tblServiceReceived
UNION SELECT roomID, 5 AS serviceID, date, ticks FROM tblPhone;

SELECT 0 AS serviceID, "New . . ." AS name, Null AS price
FROM tblServiceType
UNION SELECT serviceID, name, price FROM tblServiceType;

Start with query grid and last part.
Set column property for price
column to currency.
Switch to SQL and add the first
part (SELECT . . . UNION).

List of breakfast services, etc.

List of telephone charges
from the telephone system. Combined list of all services.

List of service types extended with
New. Shown in table view, and as
drop-down list.

 7. Access and SQL 137

7.3 Subqueries (EXISTS, IN, ANY, ALL . . .)
A subquery is a select statement used inside another
select statement. As an example, this statement selects
records from tblA that have a value that is in tblB:

SELECT . . . FROM tblA WHERE
 v IN (SELECT w FROM tblB)

You can use subqueries in this way:

EXISTS (SELECT * FROM . . .)
True if the subquery returns one or more records.
You can also write NOT EXISTS (. . .)

v IN (SELECT w FROM . . .)
True if the set of w's returned by the query contains
the value v. You can also write v NOT IN (. . .)

v IN (3, 7, a+b)
True if v is in the list of values 3, 7, a+b. This is not
really a subquery, because we write the list of
values explicitly.

v > ANY (SELECT w FROM . . .)
True if the value v is larger than one or more of the
w's returned by the query. You can also write v=,
v>, v>=, etc. You can write SOME instead of ANY.
The meaning to the computer is the same.

v > ALL (SELECT w FROM . . .)
True if the value v is larger than all of the w's
returned by the query. You can also write v=, v>,
v>=, etc.

An alternative to v > ANY is:
v > (SELECT Min(w) FROM . . .)

Similarly an alternative to v > ALL is:
v > (SELECT Max(w) FROM . . .)

EXISTS (SELECT . . .) AND v > ANY (SELECT . . .)
You can combine subqueries in the same way as
other logical expressions.

In summary, you can use a subquery in a logical
expression. You cannot join a subquery with other
subqueries, group it, etc. In order to do such things,
you have to store the subquery as a named query (we
show an example in section 7.4).

Example: Used and free rooms
The first example in Figure 7.3 shows a list of rooms
with an indication of those used in the period 23/10 to
26/10.

In principle the query is quite simple. We query
tblRoom and select the roomID and a computed value.
The computed value makes the trick. It tests whether
the room has a roomState record in the period 23/10 to
26/10. The result will be True or False. We give the
result the name Used.

In this case we show the result as Yes/No. We have set
Property -> Format to Yes/No for the Used field.

Notice the comparison operator BETWEEN. It is part
of standard SQL, but not of VBA. This is one of the
few exceptions where an expression in SQL doesn't
work in VBA. The other way around, lots of VBA
expressions don't work in standard SQL although they
work in Access SQL.

Example 2: List of free rooms using NOT EXISTS
The second example lists only the free rooms. Again
we select roomID from tblRoom, but in the WHERE
clause we check that the room has no roomStates in the
period we consider.

Example 3: List of free rooms using NOT IN
The third example also lists the free rooms, but selects
them in a different way. In the WHERE clause the
subquery lists all roomStates in the period we consider.
The WHERE clause checks that the roomID from
tblRoom is not in this list.

Correlated queries
SQL specialists talk about correlated queries. The
subquery is correlated with the main query if it
references fields in the main query. In the figure, the
first two queries have correlated subqueries while
qryTest3 has not.

Example 4: DISTINCT values only
A query may produce a list of records with duplicates.
QryTest 4 shows an example. It extracts all roomState
records in the period we consider, and selects the
roomID. Since many rooms are occupied multiple
times in this period, the same roomID will appear
many times.

QryTest 4A has added the word DISTINCT. This
causes SQL to remove all duplicates.

Example 5: Self-correlation
The fifth example shows how we can select records
based on other records in the same table.

The example is from the hotel system. A guest may
have booked several rooms for different periods. When
guests arrive, we want the receptionist to see a list of
the rooms booked for the arrival date.

The query looks at each roomState record to see
whether it must be included in the list. It must be if the
date of this roomState is the arrival date for the
corresponding stay. The subquery finds the arrival date
by looking at all roomStates that belong to this stay.
The arrival date is the first date among these
roomStates.

Note how the subquery selects tblRoomState. It gives
the table an alias-name (T2) in order to compare these
room states with those from the outermost query. This
is called a self-correlation.

138 7. Access and SQL

qryTest2:
SELECT roomID FROM tblRoom WHERE
NOT EXISTS (SELECT * FROM tblRoomState
WHERE tblRoomState.roomID = tblRoom.roomID AND
(tblRoomState.date BETWEEN #10/23/02# AND #10/26/02#));

qryTest:
SELECT roomID,
EXISTS (SELECT * FROM tblRoomState
WHERE tblRoomState.roomID = tblRoom.roomID AND
(tblRoomState.date BETWEEN #10/23/02# AND #10/26/02#))
AS Used
FROM tblRoom;

Fig 7.3 Subqueries (Exists, In, etc.)

qryTest3:
SELECT roomID FROM tblRoom WHERE
roomID NOT IN (SELECT roomID FROM tblRoomState WHERE
tblRoomState.date BETWEEN #10/23/02# AND #10/26/02#);

Room list with indication
whether the room was used
between 23/10 and 26/10.

Rooms free between
23/10 and 26/10
Rooms free between
23/10 and 26/10

qryTest5:
SELECT stayID, roomID, [date] FROM tblRoomState
WHERE [date] =
(SELECT Min([date]) FROM tblRoomState AS T2 WHERE
tblRoomState.stayID = T2.stayID)
ORDER BY stayID;

qryTest4:
SELECT roomID FROM tblRoomState
WHERE tblRoomState.date BETWEEN #10/23/02# AND
#10/26/02#;

qryTest4A:
SELECT DISTINCT roomID FROM tblRoomState
WHERE tblRoomState.date BETWEEN #10/23/02# AND
#10/26/02#;

Room states in the period. Same
roomID occurs multiple timesDuplicates removed

Rooms for the arrival date, i.e.
the first date of the stay.

Self-correlation with alias.

 7. Access and SQL 139

7.4 Multiple join and matrix presentation
In this section we will look at queries that present data
in a matrix. A matrix is a table where the headings
aren't fixed but vary according to data in the database.

Figure 7.4 shows an example from the hotel system. It
is part of the rooms window, which shows when rooms
are occupied. The rooms are listed vertically and the
dates horizontally. Whether a room is booked,
occupied, etc. on a given date is shown as a number
code. This is just to simplify the example a bit. In the
real system the code is replaced with a mnemonic text,
for instance Booked.

The principle
The query behind the table follows this idea:

SELECT roomID . . . , r1.date, r2.date, r3.date
FROM tblRoom
LEFT JOIN (tblRoomState AS r1 WHERE date=first) ON . . .
LEFT JOIN (tblRoomState AS r2 WHERE date=first+1) ON . . .
LEFT JOIN (tblRoomState AS r3 WHERE date=first+2) ON . . .

We start with tblRoom and left-join it with the room
states belonging to the first date. This would give us
the roomID column and the first date column in the
result. Next we left-join the result with the room states
belonging to the next date. This would add the second
date column in the result. And so on.

Practice
Unfortunately this is wishful thinking, but not SQL.
The main problem is that we cannot have a subquery
with WHERE after JOIN. It doesn't help to add
SELECT . . . FROM inside the parenthesis. Could we
have a WHERE after the last ON, such as this?

LEFT JOIN tblRoomState AS r3 ON . . .
WHERE r1.date=first AND r2.date=first+1 AND r3.date=first+2

This would work okay if we were using INNER JOINs,
but we need outer joins to produce all the empty cells
in the table. Another guess would be to set the
necessary conditions in the ON criterion. This too is
not allowed in Access SQL.

Named query. The solution is to use a named query
for each of the parentheses. Figure 7.4 shows the full
solution. Using the query grid in Access, we create a
query for each of the date columns in the result. The
figure shows qryRoom1, the query for the first date
column. It simply selects the roomState records for the
first date in the period. QryRoom2 selects the
roomState records for the second date, and so on.

The room grid is now computed with the big query. It
follows the idea above, but uses the named queries

instead of the parentheses. It also adds room
descriptions through an INNER JOIN with
tblRoomType. Finally, it renames the date columns to
the proper headings, for instance [21-10-02] for the
first date column.

The big query was actually made with the query grid,
as shown on the figure. This helped set the proper
parentheses inside the SQL statement. As long as the
statement contains only inner joins, the grouping with
parentheses doesn't matter. The result will be the same
no matter in which sequence the joins are made.
However, when outer joins are used, the sequence does
matter.

Standard SQL allows outer joins to be freely grouped
with parentheses, but Access SQL does not. The
Access rule is that a table with an arrow pointing to it
cannot have another arrow pointing to it, nor be
connected with an arrow-less connection. If needed,
you can get around this rule by means of named
queries.

Dynamic headings, Form versus table
In order to make a true data matrix, we need to change
the column headings according to the data. In the
example, the user chooses the period of dates. The
program then computes the corresponding SQL
statements and inserts the appropriate dates. This is
rather straightforward.

All of this works okay if we just want to show the user
the result as a table. The query determines the table
headings.

However, the table presentation provides a poor user
interface. We may connect the table to a subform
control (Access 2000 and 2003), but this gives us no
possibility to change the appearance, for instance
removing navigation buttons or coloring the fields. The
user may select an area of the table, but the program
has no way to detect which area the user selects.

The solution is to make a Form based on the query, and
set its default view to Datasheet. (A datasheet looks
like a table, but behaves differently.) We may use the
form as it is or connect it to a subform control. Now we
can control the appearance of the datasheet, and the
program can "see" the user's selections of data cells.

Unfortunately this introduces another problem. The
query doesn't any more determine the headings. They
are defined by the field labels on the form. In the next
section we show how to manage all of this.

140 7. Access and SQL

qryRoomGrid:
SELECT tblRoom.roomID, tblRoomType.description, qryRoom1.state AS [21-10-02],
qryRoom2.state AS [22-10-02], qryRoom3.state AS [23-10-02]
FROM tblRoomType INNER JOIN (((tblRoom
LEFT JOIN qryRoom1 ON tblRoom.roomID = qryRoom1.roomID)
LEFT JOIN qryRoom2 ON tblRoom.roomID = qryRoom2.roomID)
LEFT JOIN qryRoom3 ON tblRoom.roomID = qryRoom3.roomID)
ON tblRoomType.roomType = tblRoom.roomType;

qryRoom1:
SELECT roomID, state FROM tblRoomState
WHERE tblRoomState.date=#10/21/2002#;

Fig 7.4 Multiple join and matrix presentation

 7. Access and SQL 141

7.5 Dynamic matrix presentation
In this section we show how to make a dynamic matrix
as a Form in datasheet view. Compared to showing the
matrix as a query table, the Form approach allows us to
control the presentation better and let the program
"see" what the user selects.

Figure 7.5 shows the details of the solution. The form
at the top left is an outline of the hotel system's rooms
window. The user can enter the first date of the period,
click Find, and the system updates the subform (the
datasheet) to show room occupation from that date and
on. Initially, we assume that the period is always three
days.

QryRoomGrid is exactly as the version in the previous
section, except for the AS parts of the SELECT clause.
The room states are now renamed to C1, C2, C3 rather
than the dates in the period. This ensures that the states
always end up in the proper form fields, no matter
which dates we work with.

The datasheet is based on the subform shown to the
right. This subform was generated with the Form
Wizard using qryRoomGrid as the record source. It
uses a columnar layout (see section 3.2.1). The date
fields are bound to C1, C2, and C3 in the query. (The
names of the controls will be cbo1, cbo2, etc., but this
is not important.) We have manually given the labels
the names L1, L2, L3.

The program doesn't have to compute the SQL-
statement in qryRoomGrid. This query is based on the
named queries qryRoom1, 2, and 3, and the program
has to compute these when the user clicks Find. The
figure shows the Click procedure for cmdFindRoom.

First the procedure stores the main part of the query in
the string variable s. This is only to save a lot of
writing since the string is used in three queries.

Next the procedure computes the SQL-statement in
qryRoom1. The procedure computes qryRoom2 and
qryRoom3 in the same way. Note how we address the
named query from VBA, using
 CurrentDB.QueryDefs

Notice how we compute the date comparison, for
instance
 SELECT . . . WHERE date = 37550;

We explicitly convert the contents of txtDate (the user's
search criterion) to Double. The &-operation will then
translate it to the string "37550". (See more on date
comparison in section 5.2.3.)

Changing the headings
The next part of the procedure sets the dynamic
headings. It sets the captions of the three labels to the
proper date. Notice how we first address the subform

control, then the Form connected to the control, and
finally the label in the form.

We use the automatic date conversion when setting the
caption. It uses the regional date format - exactly what
we want when showing the date to the user.

Updating the subform
Finally the procedure has to update the subform
according to the new queries. This is done by setting
the record source once more to qryRoomGrid. This
causes Access to compute the query from scratch.

Updating the various parts of a form is a mystery - at
least to me. Through experiments I have found the
solution above. It seemed more natural to use the built-
in requery method for a form, for instance in this way:
 Me.subRoomGrid.Form.Requery

However, Access (or the Jet engine) doesn't figure out
that something has changed in the named queries, and
as a result doesn't update anything.

Handling varying number of columns
The techniques above can be generalized to a period of
N days, where N is defined by the user. First the Click
procedure needs to compute also qryRoomGrid with
C1, C2 . . . CN and N nested parentheses. This is not
too hard.

We might create a variable number of named queries in
a loop where i runs from 1 to N. The inner part of the
loop would use this statement to create a named query:

Call currentdb.CreateQueryDef ("qryRoom" & i, "select . . . ")

However, making a variable number of fields on the
form cannot be made dynamically. Adding fields can
only be made in design mode.

In practice we have to plan for a maximum number of
date columns, for instance 20. We construct
fsubRoomGrid with 20 date fields, cbo1, cbo2 . . .
cbo20, and bind them to C1, C2 . . . C20. We also
make 20 named queries, qryRoom1 . . . qryRoom20.

With a proper Click procedure this works fine except
for a little detail: The datasheet always shows 20
columns even if the user only asked for 3. The last
columns will be blank if the query didn't generate
something.

This is easy to correct. The procedure can hide the last
columns. It can for instance hide the 4th date column in
this way:

Me.subRoomGrid.Form!cbo4.ColumnHidden=True

In the procedure, the number 4 is given by a variable,
for instance j. The statement would then be:

142 7. Access and SQL

Me.subRoomGrid.Form("cbo" & j).ColumnHidden=True

qryRoomGrid:
SELECT tblRoom.roomID, tblRoomType.description,
qryRoom1.state AS C1, qryRoom2.state AS C2, qryRoom3.state AS C3
FROM tblRoomType INNER JOIN (((tblRoom LEFT JOIN qryRoom1 . . .

frmRooms:
Private Sub cmdFindRoom_Click()
Dim s As String

s = "SELECT roomID, state From tblRoomState WHERE date = "
CurrentDb.QueryDefs!qryRoom1.SQL = s & CDbl(Me.txtDate) & ";"
CurrentDb.QueryDefs!qryRoom2.SQL = s & CDbl(Me.txtDate+1) & ";"
CurrentDb.QueryDefs!qryRoom3.SQL = s & CDbl(Me.txtDate+2) & ";"
Me.subRoomGrid.Form!L1.Caption = Me.txtDate
Me.subRoomGrid.Form!L2.Caption = Me.txtDate + 1
Me.subRoomGrid.Form!L3.Caption = Me.txtDate + 2
Me.subRoomGrid.Form.RecordSource = "qryRoomGrid"

End Sub

Fig 7.5 Dynamic matrix presentation

Column headings are the label captions.
Label names: L1, L2, L3

Set RecordSource again.
(Requery doesn’t notice that the
named queries changed.)

txtDate

subRoomGrid

. . . WHERE date = 37550;

. . . WHERE date = 37551;

See section 5.5.7 for more on hiding columns,
adjusting their width, etc.

The real rooms window
In the real hotel system, the user sees the days around
the first day he asks for and the days around the last
day. When the period is long, all the days in the middle
are lumped together with a heading saying ". . . ".

The queries are also more complex because the user
can ask for rooms that are free in a certain period,
rooms of a certain type, etc. However, the solution
follows the ideas above.

Another issue is to let the user select rooms and period
from the matrix. This is discussed in section 5.5.8.

 7. Access and SQL 143

7.6 Crosstab and matrix presentation
The previous sections show how hard it is to make a
data matrix. So there is a good reason that Access
provides a non-standard SQL feature for making data
matrices: the Crosstab query.

A simple example - room number versus date
Figure 7.6A shows a simple example. We want a
matrix with dates running horizontally and rooms
running vertically. In the matrix we show the room
state for each date (as a numeric code for simplicity).

This matrix is made with the query shown to the right.
It is based on tblRoomState. We have used the menu

 Query -> Crosstab Query

to add the Crosstab gridline to the grid. We have
marked roomId as a row heading and date as a column
heading. Note how we group data by roomId and date.
Each group is a bundle of room state records to be
shown somehow in the matrix cell. In the hotel system,
each bundle will contain at most one record since a
room cannot have more than one state for a given date.
This is just how it happens to be in the hotel case,

however.

Finally, we have marked state as the value to be shown
inside the matrix. Since a crosstab is a kind of
aggregate query, we can only show data as aggregate
functions. In this case we have used the aggregate
function First. Since the bundle has at most one room
state, we could as well have used Max or Min.

The figure also shows the SQL version of the query.
The inner part of the query is an ordinary SELECT -
GROUP BY query. The group-by attribute becomes
the row heading. There may be several group-by
attributes, and then there will be several row headings.

The first part of the query is a non-standard thing, the
TRANSFORM part. It defines the value to be shown in
a cell. The last part is another non-standard thing, the
PIVOT part. It defines the attribute to be used as the
column heading.

Note the query name: qxtbRoomGrid. The prefix qxtb
tells the programmer that it is a crosstab query.

Fig 7.6A Crosstab query

qxtbRoomGrid:
TRANSFORM First(tblRoomState.state) AS FirstOfstate
SELECT tblRoomState.roomID
FROM tblRoomState
GROUP BY tblRoomState.roomID
PIVOT tblRoomState.date;

Column headingRow heading

Column heading
Value in cell –
aggregate dataRow heading

Query ->
Crosstab

Ordinary SELECT
. . . GROUP BY

144 7. Access and SQL

Outer join and several row headings
Figure 7.6B shows a more complex crosstab. We want
to show also the room description. Furthermore we
want to show all rooms, whether they are used or not.
(In the top of the figure, room 22 wasn't shown because
it wasn't used.)

The new crosstab is based on three tables: tblRoom-
State, tblRoom, and tblRoomType. We use an outer
join for tblRoomStates and tblRoom in order to include
all rooms. We mark roomID and description as row
headings.

The result is as shown. We have now got room 22 in
the matrix. Unfortunately, we have also got a strange

column with the heading <>. It is caused by the outer
join producing a row with a Null date since no room
state matched room 22.

Figure 7.6C shows how to get rid of the Null column
(<>). Instead of grouping by date, we group by a
computed date:

 d: IIf(IsNull(date), #24-10-02#, date)

The effect of this is that Null dates are replaced by a
specific date in the range of dates we consider. Records
with a Null date also have a Null state, so they don't
show up as being used.

Unused room
now included

Null date for the
unused room

Fig 7.6B Outer join and two row headings

Fig 7.6C Avoiding the Null date

Avoiding the Null date

Dates with no used
rooms are excluded

 7. Access and SQL 145

Fig 7.6D Restricting the date range

Avoiding the Null date

Restricting the date range
to 24/10 - 27/10

Dates with no used
rooms are excluded

Restricting the date range
In practice we cannot show a matrix with all the dates.
It would require hundreds of columns. We want to
restrict the query to a specific range of dates.

In Figure 7.6D we restrict the range of computed dates
to those between 24-10-02 and 27-10-02 (European
date format).

The result is as shown. We got rid of the <> column
and see only the dates in the restricted range. The only
problem is that we don't get a column for every date in
the range. For instance 26-10-02 is missing because no
room is used this date.

Including all dates in the range
We might include all dates in the range by means of an
additional outer join. To do this we need a table of all
dates in the range, but this is not an existing part of the
data model. The program might generate such a table,
but let as utilize another feature in the crosstab.

In Figure 7.6E we have added an IN-clause to the
PIVOT part of the SQL statement. The PIVOT part
specifies the column headings, and now we have
explicitly asked for all the dates in the range. Notice
that we have to use US date formats in SQL.

The IN-clause also causes the computer to discard all
dates that are not in the IN-list. Thus we don't need the
WHERE-clause anymore.

If you try to look for the IN-clause in design view (the
query grid), you won't find it. It has become a property
of the query grid. To see it, right click inside the
diagram area and select Properties.

Unfortunately, the result looks ugly. The column
headings have the programmer format, and I have not
been able to find a way to change it. For other fields of
the query, we can set field properties, for instance the
display format. But not for the column headings. (I
would call this a bug in Access.)

The IN-trick works okay if we use something else than
dates for the headings. We will see an example now.

Using the query in a subform
In a good user interface, we wouldn't present the query
directly to the user, but embed it in a subform. To make
the column headings change dynamically, we make the
same trick as in section 7.5.

We let the query generate column headings that are the
texts C0, C1, C2 etc. They will bind to the controls C0,
C1, etc. in the subform. The program will dynamically
set the labels of these controls to the real dates.

146 7. Access and SQL

Fig 7.6E Including all dates

qxtbRoomGrid4:
TRANSFORM First(tblRoomState.state) AS FirstOfstate
SELECT tblRoom.roomID, tblRoomType.description
FROM tblRoomType INNER JOIN (tblRoom LEFT JOIN tblRoomState ON . . .)
GROUP BY tblRoom.roomID, tblRoomType.description
PIVOT IIf(IsNull(date), #10/24/2002#, date)
IN (#10/24/2002#, #10/25/2002#, #10/26/2002#, #10/27/2002#);

In design view, this list appears as the
Column Heading property of the query

Required column headings

Headings cannot be formatted
(Looks like an error in Access)

qxtbRoomGrid5:
TRANSFORM First(tblRoomState.state) AS FirstOfstate
SELECT . . .
PIVOT IIf(IsNull(date), "C0", "C" & (date-#10/24/2002#))
IN ("C0", "C1", "C2", "C3");

Column headings are used as
control names in the subform

26-10-2002 is
now included

The bottom of Figure 7.6E shows the query to be used.
We compute the column heading with this expression:

 IIf(IsNull(date), "C0", "C" & (date - #10/24/2002#))

Null dates are replaced by the text C0. Other dates are
replaced by a C followed by the date index: 0 for the
first day in the period, 1 for the next day, and so on.

Notice that although the IN-clause has the texts in
quotes, the result shows the text in user format without
quotes.

Crosstab restrictions
Crosstab is great for quick and dirty solutions where
you want to show the relationship between two
attributes in a query. This is for instance the case for
experimental data mining where the user defines
queries on his own.

However, when designing a production system such as
a hotel system, Crosstab provides too little flexibility.
Crosstab can for instance not handle subqueries or
Having, even if they occur in named queries.

 7. Access and SQL 147

8. References
Jennings, Roger (1999): Using Microsoft Access 2000

- special edition. ISBN 0-7897-1606-2. QUE, Indi-
anapolis (1300 pages). An advanced textbook for
learning how to make Access applications. Only
200 of the pages use Visual Basic. Comprehensive
lists of all icons and shortcut keys, all functions
used in expressions, all date formats, etc. Also cov-
ers using Access for Web applications and com-
bining Access with other MS-Office applications
("automation"). The index in this version is fine.
(The 1997 version had a useless index.)

Litwin, Paul; Getz, Ken & Gilbert, Mike (1997):
Access 97 - Developer's Handbook. Sybex, San
Francisco. ISBN 0-7821-1941-7 (1500 pages). The
professional developer's handbook for making
Access applications with Visual Basic. Has a
comprehensive chapter on SQL and the differences
between Access SQL and standard SQL. Also cov-
ers how to combine Access with other MS-Office
applications in a programmed fashion ("automa-
tion"), multi-user aspects, and configuration man-
agement. It is a book for looking up advanced top-
ics, not a book to study from the beginning.

148 8. References

Index
! (bang operator), 41, 69
! versus dot, 71
" (quotes inside quotes), 74
" (strings), 122
#Error, 40
#Name?, 41
& (concatenation, VBA), 124
& (label control), 22
* (all fields), 52
 [] (name parenthesis), 40, 54, 91
+ - * / (VBA), 124
< <= . . . (VBA), 124
= (assignment, VBA), 116
= (computed control), 40

A
Abs function (VBA), 130
AbsolutePosition (recordset), 108
Access file formats, 8
Access versions, 6
action queries, 134
Activate (form event), 86
ActiveForm, 110
AddNew (recordset), 108
addressing forms and objects, 69
addressing variables (VBA), 122
AfterUpdate (form event), 86
AfterUpdate (text box event), 72,

78
aggregate query, 58
- editing the data, 67, 134
- in subform, 66
alias (query, AS), 58
align
- controls, 20
- controls (grid), 18
- text in text box, 28
ALL (SQL), 138
AllowAdditions (form), 87
AllowDeletions (form), 87
AllowEdits (form), 87
And, Or . . . (composite search),

76
And, Or, Not . . . (VBA), 124
application title (startup settings),

48
area selection (datasheet, VBA),

94
arrays (data type, VBA), 120
AS (query, alias), 58
Asc (VBA), 128
assignment (VBA), 116
autoformat (on form), 21
AutoNumber field, 11
- setting the value, 134
average (AVG, query), 60

B
bang operator (!), 41, 69
- versus dot, 71, 122
BeforeUpdate (form event), 86
BeforeUpdate (text box event), 78
BETWEEN (operator), 124
BETWEEN (SQL), 138
BOF (begin-of-file, recordset),

108
BookMark (recordset), 108
Boolean field, 11
Border Style (on form), 21
bound column (in combo box), 26
bound controls, 40
bound forms, 32
bound forms (main and subform),

66
bound recordset, 106
break program, 98
breakpoints (Visual Basic code),

82
button. See command button

C
calendar control, 22
calendar control (DT Picker), 22
Cancel (button property), 84
capital letters
- query, 54
- Visual Basic, 41, 81
Caption (on form), 21
Caption (on text box label), 28
Cartesian product (query), 54
Case Select (VBA), 116
Change (event), 73
Change (text box event), 78
checkbox
- drawing, 22
Choose function (VBA), 128
Chr (VBA), 128
CInt, CDate . . . (VBA), 125
class module. See module
Click (command button), 84
clone (recordset), 104, 106, 108
Close (form event), 87
Close (recordset), 108
color
- datasheet, 34, 42
- on controls, 22
- value dependent, 42
column format, 136
column hidden (VBA), 94
column sequence (subform), 34
column sequence (VBA), 94
column width
- combo box, 34
- datasheet view, 34

- datasheet, VBA, 94
combo box
- column width, 34
- enumeration type, 14, 24
- hiding the code (Column

Width), 34
- table lookup, 26
- with a New choice, 136
command (in menus), 48
command button, 84
- Cancel (property), 84
- Click (event), 84
- Default (property), 84
- drawing and Wizard, 18
comment (VBA), 116
compact database, 15
Compare Option (VBA), 128
comparison of dates, 76
comparison of texts (Like), 64,

124
composite search, 76
computed controls, 40
computed fields (query), 58
computed SQL, 74, 76, 102
conditional color and format, 42
conditional statements (VBA),

116
constant list (Visual Basic help),

82
constants (VBA), 122
- Null, Empty, Nothing, 122
continuous form, 30
Control Box (on form), 21
Control Source (text box), 28
control tips (pop-up help), 50
controls, 70
- adding a field, 34
- align, 20
- align (grid), 18
- bound and unbound, 40
- calendar, 22
- checkbox, 22
- combo box

- enumeration type, 24
- hiding the code (Column

Width), 34
- table look up, 26

- command button, 18
- properties, 84

- computed, 40
- DateTime picker, 22
- front/back, 22
- label, 18, 28
- label (delete/add), 20
- line, 22
- moving and sizing, 20
- name (programmer's), 28
- option group/radio button, 44

 Index 149

- rectangle, 22
- subform, 32
- tab order, 28
- tab sheet, 44
- text box, 18

- events, 72, 78
- properties, 28, 72

ControlTip (text box), 28
conversion functions (type,

VBA), 125
correlated query (SQL), 138
COUNT (query), 60
create
- controls, 18
- database, 6
- event procedure, 80
- forms, 18
- menu, 46
- module (class), 110, 112
- relationships, 12
- single record (VBA), 88
- table and fields, 7
criteria (composite), 76
criteria (live search), 74
criteria (user-defined), 64
Crosstab (SQL), 144
CRUD (Create, Read . . .)
- form, 87, 90
- recordset, 102
- SQL, 134
currency (data type), 120
Current (form event), 78, 86
current record (in a form), 38, 93
current record (in recordset), 68,

104
CurrentDb, 102, 134

D
DAO 3.6 (recordset), 102
data entry
- into table, 8
- shortcut keys, 8
data type, 10, 120
- array, 120
- AutoNumber, 11
- AutoNumber (setting the

value), 134
- Boolean, 11, 120
- Byte, 120
- currency, 120
- date/time, 11, 120
- double, 11, 120
- enumeration (lookup), 14
- foreign key (type match), 11,

12
- form, 120
- integer, 11, 120
- long integer, 11, 120
- memo, 10, 120
- number, 10
- object, 120

- single, 120
- static, 122
- string, 120
- text, 10, 120
- type, 120
- variant, 120
- yes/no, 11
database
- compaction, 15
- creation, 6
- multiple connectors, 16
- network structure, 16
- objects, 68
- self-reference, 16
- SQL-engines, 55, 68
- tree structure, 16
- versus files, 6
DataEntry (form property), 88
datasheet
- area selection (VBA), 94
- as subform, 31, 36
- column hidden (VBA), 94
- column sequence, 34
- column sequence (VBA), 94
- column width, 34
- column width (VBA), 94
- font and color, 34, 42
- mockup, 36
- sorting, 34
- versus form view, 38
date comparison, 76
date format
- Format function, 126
- in controls, 126
- regional settings, 132
date/time field, 11
date/time functions (VBA), 130
DateCreated (recordset), 108
DateTime Picker, 22
dbFailOnError, 134
Deactivate (form event), 87
debug (Visual Basic code), 81
debug window (immediate), 50,

69
declarations (variables, VBA),

120
Default (button property), 84
DELETE (record, SQL), 134
Delete (recordset), 108
delete event procedures, 81
designer role, 6
detail area (connected to a list),

42
developer role, 6, 132
Dialog box (form), 92
Dim (declaration, VBA), 120
Dirty (form event), 86
display formats (regional

settings), 132
DISTINCT (SQL), 138

DLookup, DMin . . . (VBA), 128
Docking windows, 80
double field (in table), 11
dynaset, 52
- editing the data, 53
- group by, 61

E
Edit (recordset), 108
Empty (VBA), 122
Enabled (text box property), 28
engine (database), 55, 68
Enter (text box event), 78
enumeration type
- combo box, 24
- table field, 10
- VBA, 121
EOF (end-of-file, recordset), 108
Err (error object), 117
Error (in computed value), 40
error handling
- before update, 78
- Error preview, 97
- MsgBox, 50
- On Error GoTo, 110, 117
error messages (MsgBox), 50
events, 72–79
- Activate (form), 86
- AfterUpdate (form), 86
- AfterUpdate (text box), 72, 78
- BeforeUpdate (form), 86
- BeforeUpdate (text box), 78
- Change (text box), 73, 78
- Click (text box), 84
- Close (form), 87
- command button, 84
- creating event procedures, 80
- Current (form), 78, 86
- Deactivate (form), 87
- deleting event procedures, 81
- Dirty (form), 86
- Enter (text box), 78
- Error (form), 97
- form, 86
- form (sequence), 86
- GotFocus (form), 86
- GotFocus (text box), 78
- KeyDown (text box), 78
- KeyPress (text box), 78
- KeyUp (text box), 78
- Load (form), 86
- logging, 81
- MouseDown, Click, etc., 78
- Open (form), 86
- Resize (form), 86, 100
- text box, 72
- text box (sequence), 78
- Timer, 98
- Unload (form), 86
- wait for, 98
Execute (CurrentDb), 134

150 Index

EXISTS (SQL), 138

F
field (in table). See also data type
- combo box, 14
- enumeration type, 10
field list (for adding controls), 34
file formats (Access versions), 8
filter properties (form), 87
financial functions (VBA), 130
FindFirst, FindNext . . .

(recordset), 108
FIRST/LAST (query), 60
focus
- dialog box, 89
- GotFocus (form event), 86
- SetFocus, 86
font (datasheet), 34, 42
For Next statements (VBA), 118
foreign key, 11, 12
- combo box, 26
form, 86–101
- Activate (event), 86
- ActiveForm (current), 110
- AfterUpdate (event), 86
- AllowAdditions, 87
- AllowDeletions, 87
- AllowEdits, 87
- area selection (VBA), 94
- autoformat, 21
- BeforeUpdate (event), 86
- Border Style, 21
- bound, 32
- bound main and subform, 66
- caption, 21
- close, 86
- Close (event), 87
- column sequence, 34
- column sequence (VBA), 94
- column width, 34
- column width (VBA), 94
- continuous form, 30
- Control Box, 21
- create single record (VBA), 88
- creation, 18
- CRUD (multi-purpose, VBA),

90
- CRUD control, 87
- Current (event), 78, 86
- DataEntry property, 88
- datasheet view for subform, 31
- Deactivate (event), 87
- design view (shortcut keys), 22
- Dialog box, 92
- Dirty (event), 86
- edit single record (VBA), 88
- error preview, 97
- event sequence, 86
- Filter, 87
- form view for subform, 36

- form view versus datasheet
view, 38

- Forms object, 69
- GotFocus (event), 86
- grid, 18
- KeyPreview, 97
- Load (event), 86
- main form, 30
- menu connection, 48
- MinMax buttons, 21
- mockup, 36
- moving and sizing (VBA), 100
- multiple instances, 99
- navigation buttons, 21
- New (create open form), 99
- open, 86
- Open (event), 86
- OpenArgs, 89
- OpenForm parameters, 89
- record selection (current

record), 93
- record selector, 21
- Recordset, 106
- RecordSetClone, 106
- Resize (event), 86, 100
- saving, 22
- Scroll Bars, 21
- SelTop, SelHeight, etc. (VBA),

94
- size, 100
- sorting datasheet rows, 34
- style (AutoFormat), 21
- subform, 30–39
- Timer, 98
- Unload (event), 86
Form reference (in subform), 71,

122
format
- columns, 136
- date in controls, 126
- Format function (VBA), 126
- input mask, 28, 132
- regional settings, 132
- text box property, 28
Forms object, 69
front/back (on forms), 22
function (in menu), 112
function (procedure), 110, 120
function keys (F2, F3 . . .VBA),

97

G
GetRows (recordset), 96, 108
global variables (in modules), 114
GotFocus (form event), 86
GotFocus (text box event), 78
grid (for queries), 52
grid (on forms), 18
GROUP BY (aggregate query),

54, 58
- editing the data, 67, 134

- in subform, 66

H
HAVING (aggregate query), 54,

60
Height (size property), 28, 100
help (for field types), 7
help (in Visual Basic code), 82,

83
help (pop-up), 50
Hex function (VBA), 130
hotel system, 4
hotel system (room grid), 4, 94,

140

I
If Then (VBA), 116
IIf function (VBA), 128
immediate window (debug), 50,

69
IN (operator), 124
IN (SQL), 138
initial values (VBA), 120
Input Mask (text box), 28
INSERT (record, SQL), 134
integer field (in table), 11
IRR (internal-rate-of-return,

VBA), 130
Is operator (VBA), 124
IsArray, IsDate . . . (VBA), 130

J
Jet engine (database), 68
JOIN (multiple joins), 140
JOIN (query), 52, 54, 56

K
key field (foreign key), 11, 12
key field (primary key), 7
keyboard handling
- function keys, 97
- shortcut keys on controls, 22
- shortcuts (built in), 8, 22
- tab order, 28
KeyCode (VBA), 97
KeyDown (text box event), 78
KeyPress (text box event), 78
KeyPreview (form), 97
KeyUp (text box event), 78

L
label (Caption), 28
label (delete/add), 20
label (for text box), 18
LastUpdated (recordset), 108
LBound (array bound, VBA), 128
LCase function (VBA), 128
Left (position property), 28, 100
Left function . . . (VBA), 128
Len function (VBA), 128
Like (text comparison), 64, 124

 Index 151

limit to list (in Combo Box), 24
line (on form), 22
list separator (regional settings),

132
list with detail area, 42
live search, 74
Load (form event), 86
Locked (text box property), 28
logging (of events), 81
logical operators (And, Or), 124
long integer field (in table), 11
lookup field
- combo box, 26
- enumeration type, 14
- hiding the code (Column

Width), 34
lookup Wizard, 14, 24, 26
loop (forced break), 98
Loop statements (VBA), 118

M
main form, 30
math functions (VBA), 130
matrix presentation (with SQL),

140, 142
Me (as parameter, VBA), 121
Me (this object/form, VBA), 72,

122
memo field (in table), 10
menus (toolbars), 46–49
- commands, 48
- commands (VBA), 112
- connect to form, 48
- creation, 46
- pop-up, 46
- show all on list, 20
- startup settings, 48
messages (MsgBox), 50, 92
MIN/MAX (query), 60
MinMax buttons (on form), 21
mockup
- datasheet, 36
- screen prints, 50
Modal dialog (form), 92
module (class), 80, 110, 122
- creating and naming, 112
- global variables, 114, 122
MouseDown, MouseUp (events),

78
Move, MoveFirst . . . (recordset),

108
moving and sizing
- controls, 20
- forms, 100
MsgBox, 50, 92
multiple connectors (in database),

16
multiple form instances, 99

N
Name (recordset), 109

name of control, 28
Name? (error in computed value),

41
named query (SQL), 140, 142
national settings, 132
navigation (current record), 93
navigation (shortcut keys), 8
navigation buttons (on form), 21
network structure (in database),

16
New (create new object), 99
new-line character Chr(10), 92
NoMatch (recordset), 109
Nothing (VBA), 122
NPV (net-present-value, VBA),

130
Null
- blank fields at outer join, 56
- comparing with, 62, 77, 122
- in computations, 62, 124
number field (in table), 10
number format (regional

settings), 132

O
object browser (Visual Basic), 83
objects
- addressing, 69
- controls, 70
- database, 68
- Forms, 69
- in Access, 68–71
- recordset, 68
- screen, 110
- through VBA, 69
Oct function (VBA), 130
OldValue (text box), 72
On Error (VBA), 117
Open (form event), 86
OpenArgs (form parameter), 89
OpenForm (parameters), 89
OpenRecordSet, 109
operators (VBA), 124
Option Compare (VBA), 128
option group (radio buttons), 44
ORDER BY (query), 54, 62
ordering
- controls (front/back), 22
- controls (tab order), 28
- datasheet rows, 34
- records in query, 62
OUTER JOIN (query), 56

P
Parent reference (from subform),

97, 122
partial referential integrity, 12
Partition (operator), 124
pop-up help, 50
pop-up menu, 46
prefixes (for controls, etc.), 38

primary key, 7
printing (mockup screens), 50
procedure (in menu), 112
procedure (public function), 110,

120
procedure (shared), 76
program break, 98
project explorer (VBA tool), 80
properties
- AllowAdditions (form), 87
- AllowDeletions (form), 87
- AllowEdits (form), 87
- Border Style (form), 21
- Cancel (command button), 84
- Caption (label), 28
- Caption (on form), 21
- ColumnHidden (text box, etc.),

94
- ColumnOrder (text box, etc.),

94
- ColumnWidth (text box, etc.),

94
- command button, 84
- Control Box (form), 21
- Control Source (text box), 28
- ControlTip, 28
- DataEntry (form), 88
- Default (command button), 84
- Enabled (text box), 28
- Filter (form), 87
- Format (text box), 28
- KeyPreview (form), 97
- label, 28
- Left, 28, 100
- Locked (text box), 28
- MinMax buttons (form), 21
- Name (programmer's), 28
- OldValue (text box), 72
- record set, 104, 108
- Scroll Bars (on form), 21
- Scroll Bars (text box), 28
- SelHeight (on form), 94
- SelLeft (on form), 94
- SelTop (on form), 94
- SelWidth (on form), 94
- size and position, 28, 100
- subform, 38, 70
- Tab Index, 28
- Text (text box), 72
- Text Align (text box), 28
- text box, 28, 72
- through VBA, 69, 70
- TimerInterval, 98
- Top, 28, 100
- Value (text box), 72
- Width, 28, 100
property list (Visual Basic help),

82
public (function), 110

152 Index

Q
queries, 52–67
- action, 134
- aggregate, 58

- in subform, 66
- alias (AS), 58
- ALL, 138
- all fields (*), 52
- ANY, 138
- average (AVG), 60
- Cartesian product, 54
- computed fields, 58
- computed SQL, 74, 76, 102
- correlated, 138
- COUNT, 60
- Crosstab, 144
- CRUD, 134
- DELETE, 134
- DISTINCT, 138
- dynaset, 52

- group by, 61, 134
- editing the data, 53, 134
- EXISTS, 138
- FIRST/LAST, 60
- grid, 52
- GROUP BY, 54, 58

- editing the data, 67, 134
- in subform, 66

- HAVING, 54, 60
- IN, 138
- INSERT, 134
- JOIN, 52, 54
- JOIN (multiple), 140
- live search, 74
- MIN/MAX, 60
- named (stored), 140, 142
- ORDER BY, 54, 62
- OUTER JOIN, 56
- SELECT, 54, 55
- SQL, 54
- SQL-engine, 55, 68
- StDev, 60
- subquery, 138
- SUM, 60
- UNION, 136
- UPDATE, 134
- user criteria in grid, 64
- Var, 60
- WHERE, 54
QueryDefs (VBA), 142
quick info (Visual Basic help), 82
quotes (nested "), 74

R
radio buttons (option group), 44
record
- saving, 8
- saving (VBA), 88
record selector (on form), 21
RecordCount (recordset), 109
recordset, 68, 102–9

- bound to form, 106
- clone, 104, 106
- CRUD control, 102
- DAO 3.6, 102
- properties, 104, 108
rectangle (on form), 22
reference card (VBA), 116
referential integrity, 12
regional settings, 132
relationships, 12
- referential integrity, 12
repair database, 15
Requery (recordset), 109
Resize (form event), 86, 100
role
- developer, 6, 132
- user, 6, 132
room grid (hotel system), 4, 94,

140
row source (in Combo Box), 26

S
save
- form, 22
- module (class), 110
- record, 8
- record (VBA), 88
- Visual Basic code, 81
Screen (VBA object), 110
Scroll Bars (on form), 21
Scroll Bars (on text box), 28
searching
- live search, 74
- many criteria, 76
- user criteria in grid, 64
security (when opening a

database), 8
SELECT (query), 54, 55
Select Case (VBA), 116
self-reference (in computed

expressions), 40
self-reference (in database), 16
SelTop, SelHeight, SelWidth,

SelLeft (datasheet, VBA), 94
SendKeys, 98
Set statement (VBA), 116
SetFocus (VBA), 86
shadow table, 16
shared procedure, 76
Shift (KeyCode, VBA), 97
shortcut keys
- data entry, 8
- for change of view, 22
- navigation, 8
- underlined letter on control, 22
shortcut menu (pop-up menu), 46
size unit (twips), 100
sizing and moving
- controls, 20
- forms, 100
sorting

- datasheet rows, 34
- records in query, 55, 62
Space function (VBA), 128
SQL. See also queries
- computed, 74, 76, 102
- how it works, 54
SQL engine (database), 55, 68
square brackets [name

parenthesis], 40, 54, 91
startup settings (menus etc.), 48
statements (VBA), 116
Static (declaration, VBA), 122
StDev (query), 60
stop program, 98
StrComp (VBA), 128
string functions (VBA), 128
strings ", 122
strings (nested), 74
strings, multi-line, Chr(10), 92
style (on form), 21
subform, 30–39
- columnar, 31
- datasheet versus form view, 38
- datasheet view, 31
- Form property, 71, 122
- form view, 36, 38
- Parent property, 97, 122
- properties, 38, 70
- subform control, 32
subquery (SQL), 138
subroutine (procedure, VBA),

120
SUM (query), 60

T
Tab Index (cursor movement), 28
tab sheet (control), 44
table
- as subform, 36
- creation, 7
- data entry, 8
- shadow copy, 16
Text (text box property), 72
text box, 18
- AfterUpdate (event), 72, 78
- BeforeUpdate (event), 78
- Change (event), 73, 78
- Control Source, 28
- ControlTip, 28
- Enabled, 28
- Enter (event), 78
- event sequence, 78
- events, 72
- Format, 28
- GotFocus (event), 78
- KeyDown (event), 78
- KeyPress (event), 78
- KeyUp (event), 78
- Locked, 28
- MouseDown, Click, etc., 78
- OldValue, 72

 Index 153

- properties, 28, 72
- Scroll Bars, 28
- Text (property), 72
- Text Align, 28
- Value, 72
text comparison (Like), 64, 124
text field (in table), 10
time/date field (in table), 11
time/date functions (VBA), 130
Timer event, 98
TimerInterval, 98
toolbars. See menus
toolbox (for drawing), 18
tools (Visual Basic), 80–83
Top (position property), 28, 100
tree structure (in database), 16
trim functions (VBA), 128
twips (size unit), 100
type check functions (VBA), 130
type conversion (VBA), 125
type declaration (VBA), 120
types of data. See data type

U
UBound (array bound, VBA),

128
Ucase function (VBA), 128
unbound controls, 20, 40
undo data entry, 8

undo drawing, 20
undo lookup-Wizard, 14
undo update (VBA), 79, 84
UNION (SQL), 136, 138
Unload (form event), 86
unsafe expressions (when

opening a database), 8
update (record), 8
UPDATE (record, SQL), 134
update (record, VBA), 88
Update (recordset), 109
user role, 6, 132
user windows (forms), 18

V
Value (text box), 72
Var (query), 60
variables (declarations, VBA),

120
variables (initial values), 120
variant data type (VBA), 120
VarType (VBA), 130
vbKey . . . (VBA), 97
view (of form)
- datasheet advantages, 38
- form view advantages, 38
- shortcut keys for changing, 22
Visual Basic, 68–115, 116–34
- breakpoints, 82

- debug command, 81
- help, 83
- object browser, 83
- objects in Access, 68–71
- pop-up help, 82
- project explorer, 80
- reference card, 116
- saving the code, 81
- tools, 80–83

W
wait for event, 98
week number (Format function),

126
WHERE (query), 54
While statements (VBA), 118
Width (size property), 28, 100
wildcarding (text comparison),

64, 124
windows (forms), 18
With-End (VBA), 123
Wizard
- form, 31
- lookup, 14

Y
yes/no field, 11

154 Index

	1. The hotel system
	2. Creating a database
	2.1 Create a database in Access
	2.2 Create more tables
	2.3 Create relationships
	2.4 Look-up fields, enumeration type
	2.5 Dealing with trees and networks

	3. Access-based user interfaces
	3.1 Forms and simple controls
	3.1.1 Text box, label and command button
	3.1.2 Adjusting the controls
	3.1.3 Cleaning up the form
	3.1.4 Shortcut keys for the user
	3.1.5 Lines, checkbox, calendar
	3.1.6 Combo box - enumeration type
	3.1.7 Combo box - table look up
	3.1.8 Control properties - text box

	3.2 Subforms
	3.2.1 Subform in Datasheet view
	3.2.2 Adjust the subform
	3.2.3 Mockup subform
	3.2.4 Subform in Form view
	3.2.5 Summary of subforms
	3.2.6 Prefixes

	3.3 Bound, unbound and computed controls
	3.3.1 Showing subform fields in the main form
	3.3.2 Variable colors - conditional formatting

	3.4 Tab controls and option groups
	3.5 Menus
	3.5.1 Create a new menu bar
	3.5.2 Add commands to the menu list
	3.5.3 Attach the toolbar to a form
	3.5.4 Startup settings - hiding developer stuff

	3.6 Control tips, messages, mockup prints

	4. Queries - computed tables
	4.1 Query: join two tables
	4.2 SQL and how it works
	4.3 Outer join
	4.4 Aggregate query - Group By
	4.5 Query a query, handling null values
	4.6 Query with user criteria
	4.7 Bound main form and subform
	4.7.1 Editing a GROUP BY query

	5. Access through Visual Basic
	5.1 The objects in Access
	5.2 Event procedures (for text box)
	5.2.1 More text box properties
	5.2.2 Computed SQL and live search
	5.2.3 Composite search criteria
	5.2.4 Event sequence for text box

	5.3 Visual Basic tools
	5.4 Command buttons
	5.5 Forms
	5.5.1 Open, close, and events
	5.5.2 CRUD control in Forms
	The OpenForm parameters
	5.5.4 Multi-purpose forms (hotel system)
	5.5.5 Dialog boxes (modal dialog)
	5.5.6 Controlling record selection
	5.5.7 Column order, column hidden, etc.
	5.5.8 Area selection, SelTop, etc.
	5.5.9 Key preview
	5.5.10 Error preview
	5.5.11 Timer and loop breaking
	5.5.12 Multiple form instances
	5.5.13 Resize

	5.6 Record sets (DAO)
	5.6.1 Programmed record updates
	5.6.2 How the record set works
	5.6.3 The bound record set in a Form
	5.6.4 Record set properties, survey

	5.7 Modules and menu functions
	5.7.1 Create a menu function
	5.7.2 Define the menu item
	5.7.3 Managing modules and class modules
	5.7.4 Global variables

	6. Visual Basic reference
	6.1 Statements
	6.2 Declarations
	6.3 Constants and addresses
	6.4 Operators and conversion functions
	6.5 Other functions
	6.6 Display formats and regional settings

	7. Access and SQL
	7.1 Action queries - CRUD with SQL
	7.1.1 Temporary table for editing

	7.2 UNION query
	7.3 Subqueries (EXISTS, IN, ANY, ALL . . .)
	7.4 Multiple join and matrix presentation
	7.5 Dynamic matrix presentation
	7.6 Crosstab and matrix presentation

	8. References
	Index

