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Categories and Subject Descriptors: F.2.2 [Theory of Computation]: Analysis of Algorithms and Problem
Complexity – Nonnumerical Algorithms and Problems

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Equilibrium Computation, Equilibrium Refinements, Proper Equilib-
rium

1. INTRODUCTION
Since the birth of game theory, a lot of work has gone into describing and computing
good solutions to games. Most of this work has been focused on Nash equilibria. How-
ever, it has long been known [Selten 1965] that a strategy profile being a Nash equi-
librium only implies stability in the sense that no player has an incentive to deviate;
some of the stable strategy combinations may be undesirable, e.g., if a player is using
dominated strategies. A lot of work has therefore gone into developing several [Selten
1975; Myerson 1978; Kreps and Wilson 1982; van Damme 1984] refinements of the
Nash equilibrium, with the intent of eliminating such unreasonable equilibria. For a
comprehensive account, see the monograph of van Damme [van Damme 1991].

The equilibrium refinement that we consider in this paper is the proper equilibrium
of Myerson [Myerson 1978]. A bimatrix game (or two-player strategic form game), is
given as two matrices A,B ∈ Rm×n. The game is played by the two players simultane-
ously choosing a pure strategy; Player 1 from the m rows, Player 2 from the n columns.
Player 1 then receives payoff Ai,j and Player 2 receives payoff Bi,j , where i was the
pure strategy chosen by Player 1 and j was the pure strategy chosen by Player 2. The
players are also allowed to use mixed strategies, which are probability distributions
over indices. If the strategy played by Player 1 is x ∈ ∆m and the strategy played by
Player 2 is y ∈ ∆n, the respective expected payoff to each player is given by x>Ay and
x>By.
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An equilibrium in mixed strategies is said to be proper, if it is a limit point of a
sequence of ε-proper strategy profiles for ε→ 0+. A strategy profile (x, y) is ε-proper if
the following properties are satisfied:

∀i, j ∈ [m] : (Ay)i < (Ay)j ⇒ xi ≤ ε · xj

∀i, j ∈ [n] : (x>B)i < (x>B)j ⇒ yi ≤ ε · yj
∀i ∈ [m] : xi > 0

∀j ∈ [n] : yj > 0

(1)

In other words, for each player, if pure strategy i performs worse than pure strategy
j against the opponent’s mixed strategy, then the strategy must assign a probability
to pure strategy i that is infinitesimally smaller than the probability it assigns to pure
strategy j, though both must still be strictly positive. The intention of the definition
is to capture the behavior of players that are assumed to sometimes make mistakes,
but with negligible probability and in a rational manner: The assumption is that play-
ers will make bigger mistakes with significantly smaller probability than the smaller
mistakes, but that any mistake is played with infinitesimally small probability.

As an example of this, examine the game of Fig. 1. In any Nash equilibrium, the
column player will always play a; playing any other strategy would be a mistake, which
could be exploited by the row player. The row player is unrestricted by Nash, but he
can do better against a column player who sometimes makes mistakes. The row player
can try to get as much out of a potential mistake of the column player as possible. By
playing U with probability 2/3 and D with probability 1/3, any mistake of the opponent
will give the row player an expected reward of at least 2/3. The column player can make
sure that a mistake will only cost an expected 2/3, by making it twice as likely that he
will make the mistake of playing c than that he will play b, while he will play d with an
even smaller probability. A (3ε)-proper strategy profile is given by the polynomials in
ε stated in the below and to the right of the game. The limit as ε→ 0 gives the desired
proper strategy for the row player. Furthermore, it can be seen that (2/3, 1/3) is the
unique proper strategy for the row player.

Kohlberg and Mertens [Kohlberg and Mertens 1986] and van Damme [van Damme
1984, 1991] established a number of attractive properties of proper equilibria of
strategic-form games, giving additional motivation for computing them. One of the
very desirable properties proven is that if one takes an extensive-form game, con-
verts it to strategic-form [Kuhn 1953], computes a proper equilibrium, and trans-
lates the computed strategy profile back to the extensive-form game, the strategy will
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Fig. 1. A zero-sum game with labeled strategies at the top and left, and a 3ε-proper strategy profile to the
bottom and right. The payoff shown is for the row player, namely A. The payoff to column player is given by
B = −A.



be a quasi-perfect equilibrium. The quasi-perfect equilibrium was introduced by van
Damme [van Damme 1984] to resolve the inconsistency between the perfect equilibria
of an extensive-form game and the perfect equilibria of the corresponding strategic-
form game. It refines Kreps and Wilson’s sequential equilibria [Kreps and Wilson
1982]. See [Miltersen and Sørensen 2006b] for additional discussion on quasi-perfect
equilibria. In that respect, proper equilibria can be said to be able to reconstruct the
structure that is lost when a game is transformed from extensive-form to strategic
form.

In Myerson’s original paper [Myerson 1978], the proof of existence of proper equilib-
ria is non-constructive, and the definition offers very little help on how to compute it.
Fortunately, Kohlberg and Mertens [Kohlberg and Mertens 1986, Prop. 5] provide an
intuitive and constructive proof of existence of ε-proper equilibria. For a given game G
and ε > 0, their construction is a new game, G′, where the players have pure strategies
corresponding to all the n! permutations of the coordinates of

1− ε

1− εn
(1, ε, . . . , εn−1)

for a player with n strategies. Strategies in G′ can be translated to strategies of G in
a straightforward manner, as a mixed strategy over mixed strategies is just a mixed
strategy. Kohlberg and Mertens prove that any equilibrium of G′ will be an ε-proper
equilibrium of G. This directly gives a naı̈ve algorithm for computing an ε-proper equi-
librium, for a given fixed ε: explicitly construct G′ and compute an equilibrium using
existing techniques. This, however, has several drawbacks, keeping in mind that the
final goal is to compute an exact proper equilibrium. Firstly, the game G′ is exponen-
tially larger than G, since a player with n pure strategies in G will have n! strategies
in G′. This alone makes it infeasible to solve, and the construction would not help in
getting PPAD membership for the two-player case. Secondly, the parameter ε has to
be chosen small enough to ensure that the computed equilibrium is close to an actual
proper equilibrium of G. To the author’s best knowledge, it is unknown exactly how
small such an epsilon would have to be, but most likely it would have to be exponen-
tially small in the size of the game. Thirdly, even with a moderately sized ε, the εn−1

used in the construction of G′ will be a very small number. To ensure the desired prop-
erty of the computed strategy profile, G′ must either be solved exactly or to a precision
much smaller than εn−1, which rules out most off-the-shelf solvers. Finally, any fixed
positive epsilon would, at best, lead to something close to a proper equilibrium, at the
very least by making all probabilities strictly positive.

For ease of notation, we will omit the 1−ε
1−εn normalization factor in the rest of the pa-

per. Since it is just a uniform scaling of the probabilities, this does not change anything
in the game, other than scaling the payoff of the players, so the algorithm works both
with and without the scaling. This means that the strategy space of the players in G′

is permutations over (ε0, ε1, . . . , εn−1). This object is known in the operation research
community as a generalized permutahedron over the set {εi−1 | i ∈ [n]}. This object is
completely characterized by the following inequalities:

Pn = {x ∈ Rn :
∑
i∈S

xi ≥
|S|∑
i=1

εn−i ∀S ⊆ [n]

∑
i∈[n]

xi =

n∑
i=1

εn−i }
(2)



This formulation restricts the strategy space to that of G′, but without explicitly enu-
merating the exponentially many extremal points. It does, however, have an exponen-
tial number of constraints. This problem was recently fixed by a clever construction of
Goemans [Goemans 2009], who provided an extended formulation of the permutahe-
dron. Goemans construction will be described in Section 3. Using Goemans construc-
tion, we are able to express equilibria of G′ as solutions to a linear complementarity
problem (LCP) with O(n log n) rows and columns, described in detail in Section 4. The
LCP can be solved using Lemke’s algorithm, which is described in Section 5. To avoid
degeneracy, Lemke’s algorithm uses symbolic infinitesimal perturbations of the input
LCP. This perturbation can be used to compute an equilibrium of G′ with a symbolic
infinitesimal ε, details of which is discussed in Section 5.2. By construction, any equi-
librium of G′ will be an ε-proper equilibrium of G. It is exactly this relationship we will
be using in this paper. The rest of the paper deals with how to compute an equilibrium
of G′ with a symbolic ε. Doing so establishes our main theorem:

THEOREM 1.1. A symbolic ε-proper equilibrium for a given bimatrix game can be
computed by applying Lemke’s algorithm to an LCP of polynomial size.

Computing a Nash equilibrium of a bimatrix game is PPAD-complete [Daskalakis
et al. 2006; Chen and Deng 2006]. PPAD is a class of total function search problems,
where a directed graph is implicitly encoded by predecessor and successor circuits. The
problem is: given a node with a successor but no predecessor, find a different node that
also has degree 1. Such a node is guaranteed to exist, since you are given a node with
odd degree, so there must be at least one other. Since all proper equilibria are also
Nash equilibria, computing a proper equilibrium is also PPAD-hard. Each pivot of
Lemke’s algorithm can be implemented by a circuit, and the length of the encoding of
the numbers needed for Lemke’s algorithm can be bounded by a polynomial in the en-
tries of the payoff matrices. The last part follows from the fact that the values of the all
variables of a given choice of basis can be computed by a matrix inversion. Combined
with an orientation [Todd 1976] of Lemke’s algorithm, the problem of computing an
equilibrium of the game G′ becomes PPAD-complete. However, not all ε-proper equi-
libria of G are equilibria of some G′, so there may be some proper equilibria of G that
cannot be found using the method outlined in this paper. As there are no polynomial
time algorithm known for checking whether a given equilibrium of G is proper or not,
we do not have a proof that computing a proper equilibrium is in PPAD, only that a
refinement of it is:

COROLLARY 1.2. The refinement of proper equilibria, corresponding to Kohlberg
and Mertens’ proof of existence, is PPAD-complete to compute for a given bimatrix
game.

Before continuing with the contribution of this paper, we first review some related
research.

2. RELATED RESEARCH
Computation of proper equilibria of bimatrix games has long posed a challenge, with
infinitesimal ε being an important obstacle. Yamamoto [Yamamoto 1993] presented a
numerical procedure for computing a proper equilibrium of an n-player game, using a
explicit variable non-infinitesimal ε. It involves solving certain differential equations
numerically, and it is not clear under which circumstances it can be formally guaran-
teed to compute (or converge to) a proper equilibrium.

In a recent paper, Belhaiza et.al. [Belhaiza et al. 2012] treated the computation
of proper equilibria. Their primary contribution is an method for checking whether
a given strategy profile is a proper equilibrium, by numerically solving a number of



mixed quadratic programs. Their proposed method for computing a proper equilib-
rium consists of enumerating all extremal perfect Nash equilibria, and for each of
them checking whether it is proper. As they note, for some games, none of the ex-
tremal perfect Nash equilibria are proper. In this case, they incorrectly state [Belhaiza
et al. 2012, page 301]: “Step 6. Else randomize on the strategy profiles of extreme per-
fect equilibria (belonging to the same Selten subset) closest to a sequence of ε-proper
equilibria to find such a sequence analytically.”. The paper does not say how this ran-
domization is chosen, but their example 3.4 suggests the intended randomization is
uniform over the extremal points of some maximal Selten subset. This will rarely work
in general. As an example, observe the game in Fig. 1. There are two extremal perfect
equilibria: ((1, 0), (1, 0, 0, 0)) and ((0, 1), (1, 0, 0, 0)), and the two together is the unique
maximal Selten subset. However, the uniform mix between them, (( 1

2 ,
1
2 ), (1, 0, 0, 0)), is

not proper. In fact, finding the right randomization over the extremal points is just as
hard as finding the row-player’s strategy of some proper equilibrium from scratch. To
see this, take any bimatrix game G where Player 1 does not have dominated strate-
gies. Now add a new strategy to Player 2, which when played gives both players a fixed
payoff that is higher than all other payoffs of the game. In this new game, all strategy
profiles where Player 2 only plays his new strategy are perfect equilibria. However,
the only proper equilibria of the game are those where the row player also plays a
strategy that is part of some proper equilibrium of G. For this game, Belhaiza et.al.’s
method would return a strategy profile, where the row player played uniform over his
strategies, which will be incorrect in general.

All the previous work presented above work with a non-infinitesimal ε, which is not
followed up by the necessary numerical analysis to ensure that one would not run into
numerical problems. In the present paper, these problems are circumvented by using
a symbolic infinitesimal ε. This is possible, because Lemke’s algorithm already has to
keep track of a perturbation with powers of a symbolic infinitesimal to avoid degen-
eracy. This also means that the final output of the algorithm will be strategy profiles
with probabilities that are formal polynomials in ε. That such symbolic ε-proper equi-
libria exist for bimatrix games was argued by Miltersen and Sørensen [Miltersen and
Sørensen 2008], referring to results of Blume et al. [Blume et al. 1991].

For zero-sum games, like the one in the example from the introduction,
Dresher [Dresher 1961] argued that the optimal strategies were those that survived a
certain lexicographic application of the minimax condition. Van Damme [van Damme
1991] later proved that the set of proper equilibria of a zero-sum game is exactly the
Cartesian product of the polytopes of Dresher’s optimal strategies. This is analogous
to the case of Nash equilibria which for the case of a zero-sum game is the Cartesian
product of the maximin strategies of Player 1 and the minimax strategies of Player 2,
by von Neuman’s min-max theorem. These Dresher optimal strategies can be computed
in polynomial time [Miltersen and Sørensen 2006a], even when the game is given in
extensive form [Miltersen and Sørensen 2008].

In coalitional games, computing the nucleolus [Schmeidler 1969] corresponds to com-
puting a proper equilibrium of the related zero-sum excess game [Potters and Tijs
1992].

3. EXTENDED FORMULATION OF THE PERMUTAHEDRON
In this section, we briefly review the construction of Goemans [Goemans 2009], al-
lowing for a polynomial size representation of the permutahedron. An extended for-
mulation is, generally speaking, a polytope with few facets in a higher-dimensional
space, such that when it is projected down into the target subspace, it will have the
desired (often exponentially many) constraints. In Goemans’ construction, O(n log n)



extra variables (dimensions) are used, and the projection is simply on the n first coor-
dinates.

The construction for the n-dimensional permutahedron starts with any sorting net-
work on n elements. A sorting network is a very simple model for oblivious sorting, yet
the smallest ones are asymptotically optimal [Ajtai et al. 1983] for comparison based
sorting. Fig. 2 shows an example of a sorting network on three elements, which we will
use as the example for constructing a representation of a permutahedron in three di-
mensions. In sorting networks, the inputs are assigned to each of the wires at the left
side, and the network is evaluated from left to right. Every time a gate between two
wires is encountered, the elements are compared, and the smaller of the two elements
is moved to the top wire and the larger to the bottom wire. If the sorting network is
correct, the elements of the right-most wires will be sorted correctly, for any input to
the network. In Goemans’ construction, each piece of wire is assigned a variable (as in
Fig. 2), where the n left-most ones are the variables we wish to restrict to be in the per-
mutahedron. Each gate of the sorting network is turned into three constraints; each of
the input variables must individually be greater than the top output variable, and the
sum of the input variables must equal the sum of the output variables. Finally, each of
the right-most variables must equal the elements of the generalized permutahedron
in sorted order. One way of seeing the construction is as an exagerated sorting of the
variables: each gate must output sorted elements with the correct sum, and where the
smallest output is at least as small than the smallest input. Each gate must sort, but is
allowed to spread the values out. After this spreading sorting, the values must be the
extremal coordinates. Another way to see the contruction is as a right-to-left mixing of
the extremal coordinates. Each gate ensures that the values on the left are convex com-
binations of the values on the right. After enough of these pairwise mixes, the wires
can contain any convex combination of the extremal coordinates. For the network in
Fig. 2, the corresponding constraints are:

x1 ≥ x4 x3 ≥ x6 x4 ≥ x7 x7 = ε2

x2 ≥ x4 x5 ≥ x6 x6 ≥ x7 x8 = ε1 (3)
x1 + x2 = x4 + x5 x3 + x5 = x6 + x9 x4 + x6 = x7 + x8 x9 = ε0

For reasons of clarity, the construction in Goemans’ paper is for the normal permu-
tahedron, where the elements are {1, . . . , n}. However, it easily extends in the above
manner for the generalized permutahedron [Goemans 2010].

x1

x2

x3

x4

x5 x6

x7

x8

x9

Fig. 2. A sorting network on three elements with labeled wires

4. STRATEGY CONSTRAINTS AND LCP
The constraints derived from Goemans’ construction can be neatly packed into strategy
constraint matrices, which we will use of the rest of the paper. This allows us to use
the general framework of Koller et.al. [Koller et al. 1996] for computing with strategy
spaces given by linear constraints. To keep notation simple, we let x and y be the entire
vector of the extended formulation, including the added variables. The payoff matrices



E = F =



1 1 −1 −1

1 1 −1 −1

1 1 −1 −1
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G = H =



−1 1

−1 1

−1 1

−1 1

−1 1

−1 1


Fig. 3. Strategy constraint matrices for a 3× 3 game, using the sorting network from Fig. 2.

A and B are padded with extra rows and columns of 0’s to form the payoff matrices for
the extended formulation. The valid strategies in G′ for Player 1 are given by Ex = e,
Gx ≤ 0, and x ≥ 0, while the valid strategies for Player 2 are given by Fy = f , Hy ≤ 0,
and y ≥ 0. See Fig. 3 for an example of how these matrices could be constructed. The
derivation follows the same line as [Koller et al. 1996], and goes as follows. Given a
fixed strategy y, the best response x is an optimal solution to the linear program (dual
on the right):

maximize
x

x>(Ay)

subject to x>E> = e>

x>G> ≤ 0

x ≥ 0

minimize
p, g

e>p

subject to E>p +G>g ≥ Ay

g ≥ 0

(4)

Feasible solutions x and (p, g) to these two LPs are optimal if and only if the objective
values agree, i.e., x>Ay = e>p. Using the first constraint of (4), this is equivalent to
x>Ay = x>E>p. Combined with the first constraint of the dual in (4), this implies that

x>(−Ay + E>p + G>g) = 0 (5)

This is the complementary slackness condition of the linear program, that states that
the vector of slacks in the dual is orthogonal to the primal solution vector. Similarly, y
is a best response to x iff it satisfies the strategy constraints

Fy = f, Hy ≤ 0 (6)

and there exist vectors (q, h) that are feasible in the dual of the column players best-
response LP

F>q + H>h ≥ B>x (7)

and satisfies the complementary slackness condition

y>(−B>x + F>q + H>h) = 0 (8)



An LCP in standard form is specified by a pair (b,M) with b ∈ Rn and M ∈ Rn×n.
The problem is to find z ∈ Rn such that

b + Mz ≥ 0

z>(b + Mz) = 0 (9)
z ≥ 0

The constraints specified in this section can be packed into an LCP in standard
form in the following way. If we let z = (x, y, p′, p′′, g, q′, q′′, h)

>, where p = p′ − p′′ and
q = q′ − q′′, and

M =



−A E> −E> G>

−B> F> −F> H>

−E
E

−G
−F
F

−H


and b =



0

0

e

−e
0

f

−f
0


. (10)

then z ≥ 0 and b + Mz ≥ 0 corresponds to to the inequalities below on the left. Com-
bining those with and z>(b + Mz) = 0 imply the equalities below on the right:

−Ay + E>p + G>g ≥ 0

−B>x + F>q + H>h ≥ 0

−Ex + e = 0

−Gx ≥ 0

−Fy + f = 0

−Hx ≥ 0

x, y, g, h ≥ 0

x>(−Ay + E>p + G>g) = 0

y>(−B>x + F>q + H>h) = 0

g>(−Gx) = 0

h>(−Hx) = 0

(11)

As the complementary slackness conditions are enforced by the LCP, x and y are best
responses to each other, and a solution to the above LCP is thus an equilibrium of G′.

5. LEMKE’S ALGORITHM
Lemke [Lemke 1965] provided an algorithm for solving LCPs given in the standard
form, shown in (9). It works by relaxing the problem, by replacing (b + Mz) with (b +
Mz + d · z0), where z0 is a non-negative scalar variable, and d is a constant vector,
known as the covering vector. For our purpose, d = (1, 1, . . . , 1). This relaxation makes
it easy to find an initial solution (w, z, z0) to the relaxed problem

w = b + Mz + d · z0
z>w = 0 (12)
z, w ≥ 0

by choosing z0 large enough and z = 0. The algorithm performs a sequence of comple-
mentary pivots, searching for a solution with z0 = 0. The pivots are similar to those



of the simplex method [Dantzig et al. 1955] for linear programming, but the entering
variable is choosing so as to maintain the complementarity of z and w. Initially, the
basis consists of the w variables, and all z variables are non-basic. The first entering
variable is z0. The first exiting variable is chosen such that all entries of w become
non-negative. The exiting variable becoming 0 will allow the corresponding comple-
mentary variable to enter the basis. In all remaining iterations, the exiting variable
is chosen by the minimal ratio test, and the entering variable as the corresponding
complementary variable. This continues until z0 is evicted from the basis, in which
case the solution is a feasible solution to the unrelaxed input problem. For a thorough
exposition of Lemke’s algorithm, see the monograph by Cottle et.al. [Cottle et al. 2009].

There are two problems with the algorithm as presented above. Primarily, there
is an alternative undesirable way to terminate: the current entering variable might
not restricted by a basic variable. This is known as ray termination. To prove that
the algorithm works for our case, we must prove that ray termination cannot happen.
The second one is degeneracy: there may be multiple candidate variables to exit the
basis. The latter one is handled through a slight perturbation of the b vector. It turns
out that this solution also enables us to handle the infinitesimal ε that we need to
correctly compute an equilibrium of G′. This will be discussed in Section 5.2.

5.1. Ray termination
To prove that ray termination cannot happen, we use the following theorem by Koller
et.al. [Koller et al. 1996]:

THEOREM 5.1 (KOLLER ET.AL.’96). If (i) z>Mz ≥ 0 for all z ≥ 0, and (ii) z ≥ 0,
Mz ≥ 0 and z>Mz = 0 imply z>b ≥ 0, then Lemke’s algorithm computes a solution of
the LCP (2.9) and does not terminate with a secondary ray.

Our application of the theorem is similar to that of Koller et.al., and we need a
similar set of lemmas.

LEMMA 5.2. The only nonnegative solutions, x and y, to Ex = 0, Gx ≤ 0, Fy = 0,
and Hy ≤ 0, are x = 0 and y = 0.

PROOF. This follows directly from the construction of the strategy constraint matri-
ces from the sorting networks in the following way. Firstly, all the variables associated
with output wires at the right end of the sorting network are forced to be 0, due to the
last n rows of E and F . Secondly, each gate from right to left will have both output
variables forced to be 0, forcing the sum of the input variables to be 0 as well. As each
of the input variables must be greater than the smallest output variable, they must
both be 0 as well. Thus, x = 0 and y = 0 is the only solution.

LEMMA 5.3. If E>p+G>g ≥ 0, g ≥ 0, F>q +H>h ≥ 0, and h ≥ 0, then e>p ≥ 0 and
f>q ≥ 0.

PROOF. Consider the LP of the inequalities concerned with Player 1 (and it’s dual
on the right):

minimize
p,g

e>p

subject to E>p + G>g ≥ 0

g ≥ 0

maximize
x

0

subject to Ex = e

Gx ≤ 0

x ≥ 0

(13)

Since the dual is feasible and has value 0, by weak duality the objective function of the
primal is lower bounded by 0, i.e., e>p ≥ 0. Similarly, for Player 2, we get f>q ≥ 0.



THEOREM 5.4. If A ≤ 0 and B ≤ 0, then M and b in (10) satisfy all assumptions of
theorem 5.1.

PROOF. Let z = (x, y, p′, p′′, g, q′, q′′, h)
> ≥ 0, and p = p′−p′′, q = q′−q′′. Then we have

that z>Mz = x>(−A − B)y ≥ 0, satisfying condition (i) of theorem 5.1. Furthermore,
Mz ≥ 0 implies −Ay + E>p + G>g ≥ 0, −B>x + F>q + H>h ≥ 0, Ex = e, Gx ≤ 0,
Fy = 0, and Hy ≤ 0. Combining the latter with non-negativity of x and y, lemma 5.2
implies that x = 0 and y = 0. Combining this with the first, we get E>p + G>g ≥ 0
and F>q + H>h ≥ 0. By lemma 5.3, this implies that e>p ≥ 0 and f>q ≥ 0. Finally,
z>b = e>p + f>q ≥ 0, showing that we satisfy condition (ii) of theorem 5.1.

The conditions A ≤ 0 and B ≤ 0 can be ensured by subtracting a suitably large
constant from the payoff of both players (but not from the rows and columns added
by the extended formulation). This does not change the set of proper equilibria, as the
value of best replies are shifted by the same amount. Thus, ray termination is not a
possibility, and Lemke’s algorithm will terminate with an equilibrium of G′.

5.2. Degeneracy and perturbation
The problem of degeneracy in LCPs is generally [Cottle et al. 2009] handled by per-
turbing the entries of the b vector by different powers of an infinitesimal value. Since
this perturbation must not change the input so much as to change the set of solutions,
the perturbation is kept as a symbolic infinitesimal. This means that the entries of b,
z and w will be formal polynomials in the symbolic infinitesimal. This does not cause
problems for the algorithm, as the pivots only scales and adds these values. When a
solution is found, normally only the 0th order term of the polynomials are used in
the output, as the higher order terms are only used internally to avoid cycling. It is,
however, not more complicated to output the solution as the full polynomials.

This feature of the algorithm also provides a way to compute an equilibrium of G′
with a symbolic infinitesimal ε. The only places ε occurs in (10) is in the constant vector
b, which is also to be perturbed to avoid degeneracy. This means that we can encode
the powers of ε needed for the strategy constraints of G′ directly into the perturbation
in Lemke’s algorithm. The only thing to keep in mind is that the n lowest powers of
ε must be used for the strategy constraints, while higher powers can be used to avoid
degeneracy. This means that we can read of the equilibrium of G′ with symbolic ε,
which means we will have a symbolic ε-proper equilibrium of G as required.

6. ZERO-SUM GAMES
The problem of computing proper equilibria is a lot easier for zero-sum games. In-
deed, Dresher’s procedure [Dresher 1961] already achieved this half a century ago
by solving a sequence of linear programs. Nevertheless, by applying the above tech-
nique to zero-sum games, we can compute the set of proper equilibria using a sin-
gle linear program in the following way. Given a proper equilibrium (x∗, y∗), we can
skip all the steps of Dresher’s procedure, as the final output of the procedure will be
{x|x>A = x∗>A} × {y|Ay = Ay∗}. Furthermore, we can use the computed symbolic ε-
proper equilibrium to construct symbolic ε-proper equilibria for any given one of proper
equilibria. This follows from van Damme’s proof [van Damme 1991, Theorem 3.5.5]
that Dresher optimal strategies are proper: given a convergent sequence of ε-proper
equilibria, one can make it converge to any other payoff equivalent strategy profile.

For matrix games, the payoff to Player 2 is the negative of that to Player 1, i.e., B =
−A. This simplifies the computation, as we can use linear programming to compute
equilibria. The derivation of the linear program is very similar to what was done for
the bimatrix case. Notice that Player 2’s strategy y only occurs on the constant right



hand side of dual in (4). Reintroducing y as a variable, and restricting it to be a valid
strategy for Player 2 in G′, we get:

minimize
p, g, y

e>p

subject to E>p +G>g −Ay ≥ 0

Fy = f

Hy ≤ 0

g ≥ 0

(14)

This linear program thus describes the payoff Player 2 can achieve, given that
Player 1 plays a best response, and the optimal solutions are thus the minimax strate-
gies for Player 2. A similar derivation for Player 1 leads to exactly the dual of (14)
which describes the payoff Player 1 can achieve, against a Player 2 that plays best
response, and thus also the minimax strategies for Player 1. Since these two are dual
to each other, they also correspond to equilibria of G′.

While normal linear programs can be solved in polynomial time [Khachiyan 1979;
Karmarkar 1984], we need to solve one with an infinitesimal ε. One way would be to
use a simplex method, and keep track of the ε-polynomials, exactly like for Lemke’s
algorithm. While practical, this would not lead to a polynomial time algorithm. Fortu-
nately, we can again use the fact that ε only occurs in polynomials on the right hand
side. This allows us to use the same technique as Miltersen and Sørensen [Miltersen
and Sørensen 2010, Proposition 1] used for computing a quasi-perfect equilibrium of
a zero-sum extensive form game in polynomial time. They show that as long as ε only
occurs on the right hand side, ε∗ = 1

2n
−n−1V −2n−1 is sufficiently small to work as an in-

finitesimal, where n is the number of constraints and V is the maximal absolute value
of coefficients of the LP. This ε∗ only requires a polynomial number of bits to represent,
so constructing (14) with an explicit ε = ε∗ will only cause a polynomial blow-up, and
it can thus also be solved in polynomial time. With the computed solution with the ex-
plicit ε at hand, one can pivot a simplex algorithm to the same solution, while keeping
track of the symbolic ε. Thus, one can compute a symbolic ε-proper equilibrium of a
zero-sum game in polynomial time.

7. DISCUSSION AND OPEN PROBLEMS
The focus of this paper, both for the zero-sum and for the general-sum case, has been on
computing symbolic ε-proper equilibria. This has the advantage of allowing easy veri-
fication of the properties of the refined equilibrium. This is naturally most important
in the general-sum case; if one is only provided with the proper equilibrium of a bima-
trix game, finding a symbolic ε-proper strategy profile is at least as hard a computing
a proper equilibrium from scratch. This can be seen by taking any bimatrix game, and
adding one new strategy ⊥ to each player. If either player plays ⊥, both players receive
some fixed payoff that is higher than all other possible payoffs. If neither player plays
⊥, they receive the payoff from the original game. The constructed game has a unique
(proper) equilibrium: (⊥,⊥), but finding a symbolic ε-proper equilibrium corresponds
to computing at least a proper equilibrium of the original game.

As mentioned in Section 6, the proposed algorithm can potentially speed up
Dresher’s procedure by only solving a single linear program. The linear program will,
however, be larger: instead of solving O(n) linear programs each with O(n) rows and
columns, the presented approach solves one linear program with O(n log n) rows and
columns. The additional rows and column are, however, sparse, and the total number
of non-zero entries is asymptotically the same as for the linear programs of Dresher’s
procedure.



The presented algorithms works for bimatrix games. An interesting idea would be
to try to extend it to succinct representations like the extensive form. This was done
for the zero-sum case by Miltersen and Sørensen [Miltersen and Sørensen 2008], but
their approach offers no hope of working for general sum games. We therefore phrase
the following open problem:

OPEN PROBLEM 7.1. Is finding a strategic-form proper equilibrium of a given two-
player extensive-form general-sum game in PPAD?

While the above discussion shows that it is PPAD-hard to expand a proper equilib-
rium of a bimatrix game to a symbolic ε-proper equilibrium, there might be an easier
way to verify whether a given strategy profile is a proper equilibrium. The approach of
Belhaiza et.al. does not provide hope here, as their approach includes solving quadratic
programs, which are NP-hard to solve. We therefore pose the following open problem:

OPEN PROBLEM 7.2. Given a strategy profile of a bimatrix game, can it be deter-
mined in polynomial time whether it is a proper equilibrium?
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