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Abstract. We revisit the deterministic graphical games of Washburn.
A deterministic graphical game can be described as a simple stochas-
tic game (a notion due to Anne Condon), except that we allow arbi-
trary real payoffs but disallow moves of chance. We study the complex-
ity of solving deterministic graphical games and obtain an almost-linear
time comparison-based algorithm for computing an equilibrium of such a
game. The existence of a linear time comparison-based algorithm remains
an open problem.

1 Introduction

Understanding rational behavior in infinite duration games has been an impor-
tant theme in pure as well as computational game theory for several decades. A
number of central problems remain unsolved. In pure game theory, the existence
of near-equilibria in general-sum two-player stochastic games were established
in a celebrated result by Vieille [14, 15], but the existence of near-equilibria for
the three-player case remains an important and elusive open problem [2]. In
computational game theory, Condon [4] delineated the efficient computation of
positional equilibria in simple stochastic games as an important task. While
Condon showed this task to be doable in NP ∩ coNP, to this day, the best
deterministic algorithms are not known to be of subexponential complexity. To
the computer science community, the problem of computing positional equilib-
ria in simple stochastic games is motivated by its hardness for finding equilibria
in many other natural classes of games [17], which again implies hardness for
tasks such as model checking the µ-calculus [5], which is relevant for the formal
verification of computerized systems.

1.1 Simple Stochastic Games

A simple stochastic game [4] is given by a graph G = (V,E). The vertices in V
are the positions of the game. Each vertex belongs either to player Max, to player
Min, or to Chance. There is a distinguished starting position v0. Furthermore,
there are a number of distinguished terminal positions or just terminals, each
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labeled with a payoff from Min to Max.1 All positions except the terminal ones
have outgoing arcs. The game is played by initially placing a token on v0, letting
the token move along a uniformly randomly chosen outgoing arc when it is in a
position belonging to Chance and letting each of the players decide along which
outgoing arc to move the token when it is in a position belonging to him. If a
terminal is reached, then Min pays Max its payoff and the game ends. Infinite
play yields payoff 0. A positional strategy for a player is a selection of one outgoing
arc for each of his positions. He plays according to the strategy if he moves along
these arcs whenever he is to move. It is known (see [4]) that each position p in
a simple stochastic game can be assigned a value Val(p) so that:

1. Max has a positional strategy that, regardless of what strategy Min adopts,
ensures an expected payoff of at least Val(p) if the game starts in p.

2. Min has a positional strategy that, regardless of what strategy Max adopts,
ensures that the expected payoff is at most Val(p) if the game starts in p.

The value of the game itself is the value of v0. Condon considered the complexity
of computing this value. It is still open if this can be done in polynomial time.
In the present paper, we shall look at some easier problems. For those, we want
to make some distinctions which are inconsequential when considering whether
the problems are polynomial time solvable or not, but important for the more
precise (almost linear) time bounds that we will be interested in in this paper.

– A weak solution is Val(v0) and a positional strategy for each player satisfying
the conditions in items 1 and 2 above for p = v0.

– A strong solution is the list of values of all positions in the game and a po-
sitional strategy for each player that for all positions p, ensures an expected
payoff of at least/most Val(p) if the game starts in p.

In game theory terminology, weak solutions to a game are Nash equilibria of the
game while strong solutions are subgame perfect equilibria. Figure 1 illustrates
that the distinction is not inconsequential. In the weak solution to the left, Max
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Fig. 1. The left solution is weak, the right is strong.

1 In Condon’s original paper, there were only two terminals, with the payoffs 0 and 1.
The relaxation to arbitrary payoffs that we adopt here is fairly standard.



(if he gets to move) is content to achieve payoff 0, the value of the game, even
though he could achieve payoff 1. Note that the game in Figure 1 is acyclic. In
contrast to the general case, it is of course well known that a strong solution
to an acyclic game can be found in linear time by straightforward dynamic
programming (known as backwards induction in the game theory community).
We shall say that we weakly (resp. strongly) solve a given game when we provide
a weak (resp. strong) solution to the game. Note that when talking about strong
solutions, the starting position is irrelevant and does not have to be specified.

1.2 Deterministic Graphical Games

Condon observed that for the case of a simple stochastic game with no Chance
positions and only 0/1 payoffs, the game can be strongly solved in linear time. In-
terestingly, Condon’s algorithm has been discovered and described independently
by the artificial intelligence community where it is known under the name of ret-
rograde analysis [13]. It is used routinely in practice for finding optimal strategies
for combinatorial games that are small enough for the game graph to be repre-
sented in (internal or external) memory and where dealing with the possibility
of cycling is a non-trivial aspect of the optimal strategies. The best known ex-
ample is the construction of tables for chess endgames [8]. Condon’s algorithm
(and retrograde analysis) being linear time depends crucially on the fact that
the games considered are win/lose games (or, as is usually the case in the AI
literature, win/lose/draw games), i.e., that terminal payoffs are either 0 or 1 (or
possibly also −1, or in some AI examples even a small range of integers, e.g.,
[12]). In this paper we consider the algorithmic problem arising when arbitrary
real payoffs are allowed. That is, we consider a class of games similar to but
incomparable to Condon’s simple stochastic games: We disallow chance vertices,
but allow arbitrary real payoffs. The resulting class were named deterministic
graphical2 games by Washburn [16].

Some simple examples of deterministic graphical games are given in Figure 2.
In (a), the unique strong solution is for Min to choose right and for Max to choose
left. Thus, the outcome is infinite play. In (b), the unique strong solution is for

Min Max
1 -1

Min Max
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Fig. 2. (a) Infinite play equilibrium. (b) All values are 1, but one choice is suboptimal.

Min to choose right and for Max to choose right. The values of both vertices are
2 There is no relation to the more recent concept of “graphical games” — a succinct

representation for multi-player games [9].



1, but we observe that it is not a sufficient criterion for correct play to choose
a vertex with at least as good a value as your current vertex. In particular,
according to this criterion, Max could choose left, but this would lead to infinite
play and a payoff of 0, which is a suboptimal outcome for Max.

Washburn [16] gives an algorithm for computing a strong solution to a de-
terministic graphical game, but its running time is cubic in the size of the game.
We observe below that if a sorted list of the payoffs (with pointers to the cor-
responding terminals of the game) is given in advance, optimal strategies can
again be found in linear time without further processing of the payoffs. From
this it follows that a deterministic graphical game with n payoffs and m arcs
in the graph can be strongly solved in time O(n log n + m) by a comparison-
based algorithm. The main question we attempt to approach in this paper is the
following:

Main Question. Can a deterministic graphical game be (weakly or strongly)
solved in linear time by a comparison-based algorithm?

We believe this to be an interesting question, both in the context of game solving
(deterministic graphical games being a very simple yet non-trivial natural variant
of the general problem) and in the context of the study of comparison-based
algorithms and comparison complexity. This paper provides neither a positive
nor a negative answer to the question, but we obtain a number of partial results,
described in the next subsection.

1.3 Our Results

Throughout this section we consider deterministic graphical games with n de-
noting the number of terminals (i.e., number of payoffs) and m denoting the
total size (i.e., number of arcs) of the graph defining the game. We can assume
m ≥ n, as terminals without incoming arcs are irrelevant.

Strategy Recovery in Linear Time. The example of Figure 2 (b) shows
that it is not completely trivial to obtain a strong solution from a list of values
of the vertices. We show that this task can be done in linear time, i.e. time
O(m). Thus, when constructing algorithms for obtaining a strong solution, one
can concentrate on the task of computing the values Val(p) for all p. Similarly,
we show that given the value of just the starting position, a weak solution to the
game can be computed in linear time.

The Number of Comparisons. When considering comparison-based algo-
rithms, it is natural to study the number of comparisons used separately from
the running time of the algorithm (assuming a standard random access machine).
By an easy reduction from sorting, we show that there is no comparison-based
algorithm that strongly solves a given game using only O(n) comparisons. In
fact, Ω(n log n) comparisons are necessary. In contrast, Mike Paterson (personal
communication) has observed that a deterministic graphical game can be weakly



solved using O(n) comparisons and O(m log n) time. With his kind permission,
his algorithm is included in this paper. This also means that for the case of
weak solutions, our main open problem cannot be solved in the negative using
current lower-bound techniques, as it is not the number of comparisons that is
the bottleneck. Our lower bound uses a game with m = Θ(n log n) arcs. Thus,
the following interesting open question concerning only the comparison complex-
ity remains: Can a deterministic graphical game be strongly solved using O(m)
comparisons? If resolved in the negative, it will resolve our main open problem
for the case of strong solutions.

Almost-Linear Time Algorithm for Weak Solutions. As stated above,
Mike Paterson has observed that a deterministic graphical game can be weakly
solved using O(n) comparisons and O(m log n) time. We refine his algorithm
and obtain an algorithm that weakly solves a game using O(n) comparisons
and only O(m log log n) time. Also, we obtain an algorithm that weakly solves
a game in time O(m + m(log∗ m − log∗ m

n )) but uses a superlinear number of
comparisons. For the case of strongly solving a game, we have no better bounds
than those derived from the simple algorithm described in Section 1.2, i.e., O(m+
n log n) time and O(n log n) comparisons. Note that the bound O(m+m(log∗ m−
log∗ m

n )) is linear in m whenever m ≥ n log log . . . log n for a constant number of
’log’s. Hence it is at least as good a bound as O(m + n log n), for any setting of
the parameters m,n.

2 Preliminaries

Definition 1. A deterministic graphical game (DGG) is a digraph with ver-
tices partitioned into sets of non-terminals VMin and VMax, which are game posi-
tions where player Min and Max, respectively, chooses the next move (arc), and
terminals T , where the game ends and Min pays Max the amount specified by
p : T → R. ut

For simplicity, we will assume that terminals have distinct payoffs, i.e., that
p is injective. We can easily simulate this by artificially distinguishing terminals
with equal payoffs in some arbitrary (but consistent) fashion. We will also assume
that m ≥ n, since terminals without incoming arcs are irrelevant.

Definition 2. We denote by ValG(v) the value of the game G when the vertex
v is used as the initial position and infinite play is interpreted as a zero payoff.
This will also be called “the value of v (in G)”. ut

Remark 1. That such a value indeed exists will follow from Proposition 1. We
shall later see how to construct optimal strategies from vertex values.

Definition 3. To merge a non-terminal v with a terminal t is to remove all
outgoing arcs of v, reconnect all its incoming arcs to t, and then remove v. ut



The definitions of a strong and a weak solution are as stated in the introduction.
The following algorithm is a generalization of Condon’s linear time algorithm [4]
for solving deterministic graphical games with payoffs in {0, 1}. That algorithm
is known as retrograde analysis in the AI community [13], and we shall adopt
this name also for this more general version.

Proposition 1. Given a DGG and a permutation that orders its terminals,
we can find a strong solution to the game in linear time and using no further
comparisons of payoffs.

Proof. If all payoffs are 0, then all values are 0 and every strategy is optimal.
Suppose that the minimum payoff p(t) is negative. Any incoming arc to t

from a Max-vertex that is not the only outgoing arc from that vertex is clearly
suboptimal and can be discarded. Each other incoming arc is an optimal choice
for its source vertex, which can therefore be merged with t. Symmetric reasoning
applies when the maximum payoff is positive. ut

This immediately yields the sorting method for strongly solving DGGs: First
sort the payoffs, and then apply Proposition 1.

Corollary 1. A DGG with m arcs and n terminals can be strongly solved in
O(m + n log n) time. ut

Definition 4. To merge a terminal s with another terminal t is to reconnect all
incoming arcs of s to t and then remove s. Two terminals are adjacent if their
payoffs have the same sign and no other terminal has a payoff in between. ut

The following lemma states the intuitive fact that when we merge two adja-
cent terminals, the only non-terminals affected are those with the corresponding
values, and they acquire the same (merged) value.

Lemma 1. If G′ is obtained from the DGG G by merging a terminal s with an
adjacent terminal t, then for each non-terminal v, we have

ValG′(v) =
{

ValG(v) if ValG(v) 6= ValG(s),
ValG′(t) if ValG(v) = ValG(s). (1)

ut

Proof. Consider all DGGs with a fixed structure (i.e., underlying graph) but
with varying payoffs. Since a strong solution can be computed by a comparison-
based algorithm (Proposition 1), the value of any particular position v can be
described by a min/max formula over the payoffs. The claim of the lemma can
be seen to be true by a simple induction in the size of the relevant formula.

By repeatedly merging adjacent terminals, we “coarsen” the game. Figure 3
shows an example of this. The partitioning method we shall use to construct
coarse games in this paper also yields sorted lists of their payoffs. Hence, we
shall be able to apply retrograde analysis to solve them in linear time.
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Fig. 3. Coarsening by merging {−4,−1} and {2, 3, 5}.

Corollary 2. The signs of the values of all vertices in a given DGG can be
determined in linear time.

Proof. Merge all terminals with negative payoffs into one, do likewise for those
with positive payoffs, and then solve the resulting coarse “win/lose/draw” game
by retrograde analysis. ut
Clearly, arcs between vertices with different values cannot be part of a strong
solution to a game. From this, the following lemma is immediate.

Lemma 2. In a DGG, removing an arc between two vertices with different val-
ues does not affect the value of any vertex. ut
Remark 2. Corollary 2, Lemma 2, and symmetry together allow us to restrict
our attention to games where all vertices have positive values, as will be done in
subsequent sections.

Proposition 2. Given the value of the initial position of a DGG, a weak so-
lution can be found in linear time. If the values of all positions are known, a
strong solution can be found in linear time.

Proof. In the first case, let y be the value of initial position v0. We partition pay-
offs in at most five intervals: (−∞,min(y, 0)), {min(y, 0)}, (min(y, 0),max(y, 0)),
{max(y, 0)} and (max(y, 0),∞). We merge all terminals in each of the intervals,
obtaining a game with at most five terminals. A strong solution for the resulting
coarse game is found in linear time by retrograde analysis. The pair of strategies
obtained is then a weak solution to the original game, by Lemma 1.

In the second case, by Lemma 2, we can first discard all arcs between vertices
of different values. This disintegrates the game into smaller games where all
vertices have the same value. We find a strong solution to each of these games in
linear time using retrograde analysis. Combining these solutions in the obvious
way yields a strong solution to the original game, by Lemma 2. ut

3 Solving Deterministic Graphical Games

3.1 Strongly

For solving DGGs in the strong sense, we currently know no asymptotically faster
method than completely sorting the payoffs. Also, the number of comparisons



this method performs is, when we consider bounds only depending on the number
of terminals n, optimal. Any sorting network [10] can be implemented by an
acyclic DGG, by simulating each comparator by a Max-vertex and a Min-vertex.
Figure 4 shows an example of this. Thus, we have the following tight bound.

Proposition 3. Strongly solving a DGG with n terminals requires Θ(n log n)
comparisons in the worst case. ut

x1
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x4

x1

x2

x3

x4

Fig. 4. Implementing a sorting network by a deterministic graphical game.

Implementing the asymptotically optimal AKS-network [1] results in a game
with Θ(n log n) vertices and arcs. Thus, it is still consistent with our current
knowledge that a game can be strongly solved using O(m) comparisons.

3.2 Weakly

The algorithms we propose for weakly solving DGGs all combine coarsening of
the set of payoffs with retrograde analysis. By splitting the work between these
two operations in different ways, we get different time/comparison trade-offs. At
one extreme is the sorting method. At the other, we partition the payoffs around
their median (which can be done in linear time by Blum et al. [3]), use retrograde
analysis to solve the coarse game obtained by merging the terminals in each half,
and then discard the irrelevant half of the terminals (the one not containing the
value of the starting vertex) and all vertices with the corresponding values. This
method, which is due to Mike Paterson, uses the optimal O(n) comparisons, but
requires Θ(log n) iterations, each with a worst case running time of Θ(m).

O(n) Comparisons and O(m log log n) Time. To improve the running time
of Paterson’s algorithm, we stop and sort the remaining terminals as soon as this
can be done in O(n) time. The number of comparisons is still O(n). As noted in
Section 2, we may assume that all vertices have positive values.

Algorithm. Given a DGG G with m arcs, n terminals, and starting position v0,
do the following for i = 0, 1, 2, . . .

1. Partition the current set of ni terminals around their median payoff.



2. Solve the coarse game obtained by merging the terminals in each half.
3. Remove all vertices that do not have values in the half containing ValG(v0).
4. Undo step 1 for the half of v0.

When ni log ni ≤ n, stop and solve the remaining game by the sorting method.

Analysis. Steps 1–4 can be performed in O(m) time and O(ni) comparisons.
The number of iterations is O(log n − log f(n)), where f(n) is the inverse of
n 7→ n log n, and since this equals O(log log n) we have the following.

Theorem 1. A DGG with m arcs and n terminals can be weakly solved in
O(m log log n) time and O(n) comparisons. ut

Almost-Linear Time. We can balance the partitioning and retrograde analysis
to achieve an almost linear running time, by a technique similar to the one used
in [7] and later generalized in [11].3 Again, we assume that all vertices have
positive values.

Algorithm. Given a DGG G with m arcs, n terminals, and starting position v0,
do the following for i = 0, 1, 2, . . .

1. Partition the current set of ni terminals into groups of size at most ni/2m/ni .
2. Solve the coarse game obtained by merging the terminals in each group.
3. Remove all vertices having values outside the group of ValG(v0).
4. Undo step 1 for the group of v0.

When ni/2m/ni < 1, stop and solve the remaining game by the sorting method.

Analysis. All steps can be performed in O(m) time. For the first step we can do
a “partial perfect quicksort”, where we always partition around the median and
stop at level dm/nie+ 1.

To bound the number of iterations, we note that ni satisfies the recurrence

ni+1 ≤ ni/2m/ni , (2)

which by induction gives
ni ≤

n

bbb. . .b

}

i

(3)

where b = 2m/n. Thus, the number of iterations is O(log∗
b n), where log∗

b denotes
the number of times we need to apply the base b logarithm function to get below
1. This is easily seen to be the same as O(1 + log∗ m − log∗ m

n ). We have now
established the following.

Theorem 2. A DGG with m arcs and n terminals can be weakly solved in
O(m + m(log∗ m− log∗ m

n )) time. ut

Remark 3. When m = Ω(n log(k) n) for some constant k, this bound is O(m).
3 Note, however, that while the technique is similar, the problem of solving determin-

istic graphical games does not seem to fit into the framework of [11].
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