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Abstract. We consider finding maximin strategies and equilibria of ex-
plicitly given extensive form games with imperfect information but with
no moves of chance. We show that a maximin pure strategy for a two-
player game with perfect recall and no moves of chance can be found
in time linear in the size of the game tree and that all pure Nash equi-
librium outcomes of a two-player general-sum game with perfect recall
and no moves of chance can be enumerated in time linear in the size of
the game tree. We also show that finding an optimal behavior strategy
for a one-player game of no chance without perfect recall and determin-
ing whether an equilibrium in behavior strategies exists in a two-player
zero-sum game of no chance without perfect recall are both NP-hard.

1 Introduction

In a seminal paper, Koller and Megiddo [3] considered the complexity of finding
maximin strategies in two-player zero-sum imperfect-information extensive form
games. An extensive form game is an explicitly given game tree with information
sets modeling hidden information (for details, see [3] or any text book on game
theory). A main result of Koller and Megiddo was the existence of a polynomial
time algorithm for finding an equilibrium in behavior strategies (or equivalently,
a pair of maximin behavior strategies) of such a game when the game has perfect
recall. Informally speaking, a game has perfect recall when a player never forgets
what he once knew (for a formal definition, see below). In contrast, for the case
of imperfect recall, the problem of finding a maximin strategy was shown to be
NP-hard.

Pure equilibria (i.e, equilibria avoiding the use of randomization) play an
important role in game theory and it is of special interest to know if a game
possesses such an equilibrium. For the case of a zero-sum games, one may deter-
mine if a game has a pure equilibrium by computing a maximin pure strategy
for each of the two players and checking that these strategies are best responses
to one another. Unfortunately, Blair et al. [1] established that the problems of
finding a maximin pure strategy of a two-player extensive form game or deter-
mining whether a pure equilibrium exists are both NP-hard, even for the case
of zero-sum games of perfect recall. Their proof is an elegant reduction from the
EXACT PARTITION (or BINPACKING) problem and relies heavily on the fact
that the extensive form game is allowed to contain chance nodes, i.e., random
events not controlled by either of the two players.



Extensive form games without chance nodes is a very natural special case
to consider (natural non-trivial examples include such popular parlor games
as variants of Spoof). In this paper we consider the equilibrium computation
problems considered by Koller and Megiddo and by Blair et al. for this special
case. Our main results are the following:

First, we show that a mazimin pure strategy for a two-player extensive form
game of no chance with imperfect information but perfect recall can be found in
time linear in the size of the game tree. As stated above, Blair et al. show that
with chance moves, the problem is NP-hard. Apart from the obvious practical
interest, the example is also interesting in light of the recent work of von Stengel
and Forges [6]. They introduced the notion of extensive form correlated equilibria
(EFCEs) of two-player extensive form games. They showed that finding such
equilibria in games without chance moves can be done in polynomial time while
finding them in games with chance moves may be NP-hard. They remark that
EFCE seems to be the first example of a game-theoretic solution concept where
the introduction of chance moves marks the transition from polynomial-time
solvability to NP-hardness. Our result combined with the result of Blair et al.
provides a second and much more elementary such example.

Second, we extend the above result from maximin pure strategies to pure
Nash equilibria. We show that all pure Nash equilibrium outcomes of a two-
player general-sum extensive form game of no chance with imperfect information
but perfect recall can be enumerated in time linear in the size of the game tree.
Here, an outcome is a leaf of the tree defining the extensive form. Also, given
one such pure Nash equilibrium outcome, we can in linear time construct a pure
equilibrium (in the form of a strategy profile) with that particular outcome.
In contrast, the recent breakthrough result of Chen and Deng [2] implies that
finding a behavior Nash equilibrium for a game of this kind is PPAD-hard.

The results of Blair et al. and those of Koller and Megiddo give a setting
where finding a pure equilibrium is NP-hard while finding an equilibrium in
behavior strategies can be done in polynomial time. Considering games without
perfect recall, we give an example of the opposite. We show that determining
whether a one-player game in extensive form with imperfect information, imper-
fect recall and no moves of chance has a behavior strategy that yields a given
expected payoff is NP-hard. In contrast, it is easy to see that finding an optimal
pure strategy for such a game can be done in linear time. Our result strengthens
a result of Koller and Megiddo [3, Proposition 2.5] who showed NP-hardness of
finding a maximin behavior strategy in a two-player game with imperfect recall
and no moves of chance. Koller and Megiddo [3, Example 2.12] also showed that
a maximin behavior strategy in such a two-player game may require irrational
behavior probabilities. We give a one-player example with the same property.

Finally, we show that determining whether a Nash equilibrium in behavior
strategies exists in a two-player extensive form zero-sum game with no moves of
chance but without perfect recall is NP-hard.

The rest of the paper is organized as follows. In section 2, we formally define
the objects of interest and introduce the associated terminology (for a less concise



introduction, see the paper by Koller and Megiddo, or any textbook on game
theory). In sections 3,4,5 and 6, we prove each of the four results mentioned
above.

2 Preliminaries

A two-player extensive form game is given by a finite rooted tree with pairs of
payoffs (one payoff for each of the two players) at the leaves, and information
sets partitioning nodes of the tree. In a zero-sum game, the sum of each payoff
pair is zero. A general-sum game is a game without this requirement. In this
paper, we do not consider games with nodes of chance, so every node in the
tree is owned by either Player 1 or to Player 2. All nodes in an information
set belong to the same player. Intuitively, the nodes in an information set are
indistinguishable for the player they belong to. In a one-player game, all nodes
belong to Player 1. Actions of a player are denoted by labels on edges of the
tree. Given a node u and an action ¢ that can be taken in u, we let apply(u, ¢)
be the unique successor node v of u with the edge (u,v) being labeled c¢. Each
node in an information set has the same set of outgoing actions. The set of
possible actions in information set h we denote C}. The actions belong to the
player owning the nodes of the information set. Perfect recall means that all
nodes in an information set belonging to a player share the sequence of actions
and information sets belonging to that player that are visited on the path from
the root to each of the nodes.

A pure strategy for a player assigns to each information set belonging to
that player a chosen action. A behavior strategy assigns to each action at each
information set belonging to that player a probability. A pure strategy can also
be seen as a behavior strategy that only uses the probabilities 0 and 1. Thus,
concepts defined below for behavior strategies also apply to pure strategies. A
(pure or behavior) strategy profile is a pair of (pure or behavior) strategies,
one for each player. Given a pure strategy profile for a game without chance
nodes, there is a unique path in the tree from the root to a leaf formed by the
chosen actions of the two players. The leaf is called the outcome of the profile.
A behavior strategy profile defines in the natural way a probability distribution
on the leaves of the tree and hence a probability distribution on payoffs for each
of the two players. So given a behavior strategy profile we can talk about the
expected payoff for each of the two players.

A mazximin pure strategy for a player is a pure strategy that yields the max-
imum possible payoff for that player assuming a worst case opponent, i.e., the
maximum possible guaranteed payoff. A mazimin behavior strategy for a player
is a behavior strategy that yields the maximum possible expected payoff for that
player assuming a worst case opponent, i.e., the maximum possible guaranteed
expected payoff. A Nash equilibrium is a strategy profile (s1, s2) so that no strat-
egy s} yields strictly better payoff for Player 1 than s; when Player 2 plays so
and no strategy s, yields strictly better payoff for Player 2 than so when Player
1 plays s;.



Kuhn [5] showed that for an extensive form two-player zero-sum game with
perfect recall, a pair of maximin behavior strategies is a Nash equilibrium. The
expected payoff for Player 1 is the same in any such equilibrium and is called
the value of the game. Any extensive form general-sum game with perfect recall
in fact possesses a Nash equilibrium in behavior strategies.

3 Maximin pure strategies in games with perfect recall

Consider a two-player extensive form game G with perfect recall and without
chance nodes. We shall consider computing a maximin pure strategy for one of
the players, say, Player 1. For the purpose of computing such a strategy, we can
consider G to be a zero-sum game where Player 1 (henceforth the max-player)
attempts to maximize his payoff and Player 2 (henceforth the min-player) at-
tempts to minimize the payoff of Player 1. Let G’ be the zero-sum game obtained
from G by dissolving all information sets of the min-player into singletons.

Note that the set of strategies for the max-player is the same in G and G’.
For the min-player, however, the set of strategies is larger in G’ thereby making
G’ a better game that G for the min-player, so its value as a zero-sum game is
at most the value of G. However we have the following key lemma. Note that
the lemma fails badly for games containing chance nodes.

Lemma 1. A pure strateqy ™ for the maz-player has the same payoff against
an optimal counter strategy in G as it has against an optimal counter strategy
in G' (note that the statement makes sense as the maz-player has the same set
of strategies in the two games).

Proof. Let o be a pure best counter strategy against = in G’. As there are no
chance nodes, o and 7 defines a single path in the tree of G’ from the root to a
leaf. Due to perfect recall, none of the choices made by the min-player along the
path are choices of the same information set. Thus, the same sequence of choices
can also be made by a strategy in G. Thus, there is a counter strategy in G that
achieves the same payoff against 7 as o does in G’, and since the set of possible
counter strategies is bigger in G’, the best in each game each achieves exactly
the same payoff.

To compute the best payoff that can be obtained by a pure strategy in G/,
we define for information set h of G’ a value pval(h) (“pure value”) inductively
in the game-tree as follows.

— If h belongs to the min-player, and therefore consists of a single node u,
define

pval(h) = min pval(apply(u, c))
ceCh
— If h belongs to max-player, define

pval(h) = max min pval(apply (u, c))



The induction is well-founded due to perfect recall and the fact that there
are no chance nodes, see [6, Lemma 3.2].

Lemma 2. For every pure strateqy m for the maz-player, there exists a pure
strategy o for the min-player with the following property. For every information
set h of the maz-player there is some node u € h such that play from u using
the pair of strategies (w,0) yields payoff at most pval(h). Similarly, for every
information set h of the min-player, play from the single node u of h using the
pair of strategies (m,0) yields payoff at most pval(h).

Proof. Given a pure strategy 7 for the max-player, we construct the strategy o
inductively in the game tree. Let h be a given information set of the max-player.
Then, by definition of pval(h) there must be a path from some node u € h using
the action chosen by 7 out of u (say, L), then going through min-nodes to an
information set g of the max-player with pval(g) < pval(h), or to a leaf [ with
payoff less than or equal to pval(h).

In the latter case we simply let o take the choices defining the path to the
leaf . In the former case, by induction, we know we have constructed a pure
strategy ¢ for min from g onwards so that for some node v € g, play from g
using 7 and o leads to payoff at most pval(g). Note that we have a path from u
to some (possibly) other node v’ € g using min-nodes. We claim that there is a
path from some node @ € h to v using min-nodes and also choosing the action
L in u (see Fig. 1).

Fig. 1. Finding @

Indeed, assume that this is not the case. Then the sequence of information
sets and own actions encountered by max on the way to v differs from the
corresponding sequence in some of other node (namely v') in the information set
of v, contradicting perfect recall. But then, the node @ establishes the induction
claim, with the desired strategy o taking the choices defining the path from @
to v.



It remains to provide the first actions for the min-player in case the root node
belongs to the min-player. In this case there is a path from the root r, going
through min-nodes to an information set h of max with pval(h) < pval(r), or to
a leaf [ with payoff equal to pval(r). As before we let o take the choices defining
this path.

With this we can now obtain the following result.

Theorem 1. Given a two-player extensive form game with perfect recall G with-
out chance nodes, we can compute a mazimin pure strateqy for a player in linear
time in the size of the game tree.

Proof. We describe how to compute a maximin strategy for one of the players,
say Player 1. By Lemma 1 we can compute this by computing a pure maximin
strategy in the game G’. We compute the pval function of the information sets
in G’ and let the strategy of the max-player be the choices that obtains the
maximum in the definition of pval for every information set, i.e., the choice
in information set h is argmax ., min,ep pval(apply(u, ¢)). We claim that the
value pval(r) assigned to the root is the best guaranteed payoff the max-player
can get in G’ using some pure strategy. Indeed the max-player is guaranteed
payoff pval(r), where r is the root of G’, playing this strategy, and Lemma 2
establishes this is the best he can be guaranteed.

Note also that having computed the maximin pure strategy, we can determine
whether it is also maximin as a behavior strategy by computing the value v of
the game in polynomial time using, e.g., the algorithm of Koller and Megiddo [3]
or the more practical one by Koller, Megiddo and von Stengel [4] and checking
if the computed pure value pval(r) of the root equals v.

4 Enumerating all pure equilibria of games with perfect
recall

Let G be a 2-player general sum extensive form game with perfect recall and
without chance nodes. Let (7, 0) be a pair of pure strategies. For (7,0) to be
a pure equilibrium we must have that 7 is a best response to ¢ and vice versa.
Play using the pair (7, o) will lead to a unique leaf of G, since there are no
chance nodes. Consider now a leaf [ of G, as a potential outcome of a pure
equilibrium. Clearly the actions along the path from the root r of G to the leaf
must be such that they follow the path. Hence what remains are to find the
actions of the remaining information sets. Player 1 must find pure actions in his
remaining information sets such that Player 2 can not obtain greater payoff than
she receives at [. Similarly Player 2 must find pure actions in her information
sets such that Player 1 can not obtain greater payoff than he receives at . Given
[, we can define zero-sum games (G; and G5 by modifying G such that such
actions, if they exist, can be found in linear time using Theorem 1.

We can simply construct G from G as follows (the construction of G5 being
the same with Player 1 and Player 2 exchanged). Player 1 will be the max-player



of G; and Player 2 will be the min-player. For every information set of Player
1 along the path from the root to ! we remove all choices (and the subgames
below) except the ones agreeing with the path. The payoff at a leaf in G is the
negative of the payoff that Player 2 receives in the corresponding leaf in G. The
following lemma is immediate.

Lemma 3. There is a pure strateqy for Player 1 in G leading towards | ensuring
that Player 2 can obtain at most payoff p if and only if there is a pure strategy
for the maz-player of G1 ensuring payoff at least —p.

Using this lemma, is is easy to check in linear time if a given leaf [ with
payofls (p1,p2) is a pure equilibrium outcome: We check that the maximin pure
strategy for Player 1 in G; ensures payoff at least —po and we check that the
maximin pure strategy for Player 2 in G2 ensures payoff at least —p;. Also, given
such an outcome, we can in linear time construct a pure strategy equilibrium
with this outcome: The equilibrium is the profile consisting of transferring in the
obvious way to G the maximin pure strategies for Player 1 in G; and for Player
2 in GQ.

Since we can check in linear time if a given leaf is an outcome, we can enu-
merate the set of outcomes in quadratic time. To get a linear time algorithm,
we will go one step further and work with a derived game that is independent
of the leaf [.

Let G be the zero-sum game obtained from G by dissolving the information
sets of Player 2 and letting payoff at a leaf in G} be the negative of the payoff
that Player 2 receives in the corresponding leaf in G. We define the pval function
on G} as in section 3.

Let 71 be a tree on the information sets of Player 1 and the leaves together
with a root, such that the parent of an information set or leaf is the first infor-
mation set on the path to the root in G or the root itself.

Define a point of deviation with respect to a given leaf [, to be a node in T'
not on the path from the root to [, but sharing the sequence of actions leading
to the node with a node on the path from the root to . Thus only nodes that
have their parents on the path can be a points of deviation. See Fig. 2 for an
example. Intuitively, a point of deviation is an information set where Player 1
first observes that Player 2 has deviated from the strategy leading to .

The following lemma is easy to establish.

Lemma 4. There is a pure strateqy for Player 1 in G leading towards | ensuring
that Player 2 can obtain at most the payoff p if and only if for every point of
deviation h with respect to | we have pval(h) > —p.

Theorem 2. Given a 2-player general-sum extensive form game with perfect
recall G without chance nodes, we can in linear time in the size of the game tree
enumerate the set of leaves that are outcomes of pure equilibria.

Proof. Using Lemma 4, we compute the leaves [ such that Player 1 has a pure
strategy leading towards [ ensuring that Player 2 can obtain at most the payoff



Fig. 2. Node p is a point of deviation, node n is not.

received at [ and conversely Player 2 has a pure strategy leading towards [
ensuring that Player 1 can obtain at most the payoff received at [. These sets
can be computed separately; we describe how to compute the former.

We construct the game G} and compute the pval function on G} in linear
time. In linear time we then construct the tree 77 and record the computed
pval values in the nodes. Finally we traverse the tree T'. During this traversal we
maintain the minimum pval value that is on any sibling to the nodes on the path
to the root, corresponding to the points of deviations relevant for the leaves in
the subtree of the current node. Once we visit a leaf we can then directly decide
the criteria of Lemma 4 by comparing with the payoff of the leaf.

5 Optimal behavior strategies in one-player games
without perfect recall

In this section we consider one-player games without perfect recall and no moves
of chance and show NP-hardness of the problem of determining whether a be-
havior strategy yielding an expected payoff of at least a given rational number
exists. In contrast, it is straightforward to see that the corresponding problem
for pure strategies is in P: For each leaf of the game, one checks if this leaf can be
reached by a sequence of actions so that the same action is taken in all nodes in a
given information set. This results strengthens the result of Koller and Megiddo
[3, Proposition 2.6] who showed NP-hardness of the problem of determining
whether some behavior strategy in a two-player game without perfect recall
guarantees a certain expected payoff (against any strategy of the opponent).
Also, our reduction is heavily based on their reduction but uses imperfect recall
to eliminate one of the players. Before giving the proof, we give a simple example
showing that an optimal strategy may require irrational behavior probabilities
(therefore, strictly speaking, “finding” an optimal strategy is not a well-defined
computational problem which leads to considering the stated decision problem
instead). A corresponding two-player example was given by Koller and Megiddo
[3, Example 2.12]. Our one-player game of Fig. 3 is in fact somewhat simpler
than their example. All nodes in the game are included in the same information



Fig. 3. A one-player game where the rational behavior is irrational

set. The player can choose either L or R. Thus, a behavior strategy is given by
a single probability p;, with pr = 1 — pr. By construction, the expected payoff
is —2p3 — (1 — pr)®. This is maximized for py, = v/2 — 1.

Theorem 3. The following problem is NP-hard: Given a rational number v and
a one-player extensive form game without chance nodes and a rational number
v, does some behavior strategy ensure expected payoff at least v?

Proof. The proof is by reduction from 3SAT. Given a 3-CNF formula F' with m
clauses we construct a game G as follows.

Assume without loss of generality that m is a power of 2, m = 2*. First G
will consist of a complete binary tree of depth 2k, whose nodes are contained
in a single information set. If on the path from the root to a node, the same
choice is made in step 2(¢ — 1) + 1 and 2¢ for some ¢ € {1,...,k}, the game
is terminated and the player receives payoff 0. Otherwise, we will associate a
clause to the node in the following way: For « = 1,..., k we interpret the choices
made at step 2(: — 1) + 1 and 2i as defining a binary choice. With the choices
(left,right) we associate the bit 0, and with choices (right,left) we associate the
bit 1. Having defined in this way k bits, we may associate a uniquely determined
clause with the node.

From this node we let the player, for each of the three variables in the clause,
select a truth value. If one of these choices satisfies the clause, the player receives
payoff 1, and 0 otherwise. We place the nodes corresponding to the same variable
in a single information set. In particular, the player does not know the clause.

The proof is now concluded by the following claim: The player can obtain
expected payoff % if and only if F' is satisfiable.

Assume first that F' is satisfiable. The player will make the first 2k choices
by choosing left with probability % The rest of the choices are made according
to a satisfying assignment to F'. With probability (%)’C = %, the player gets to



a node corresponding to a clause, and will obtain payoff 1. The expected payoff
is therefore %

Assume on the other hand that the player can obtain expected payoff %
Suppose that the player chooses left with probability p in the first 2k choices.
The probability that the player reaches a node associated with a given clause
is (p(1 —p))* < #, independently of the given node. Since the player can in
fact obtain expected payoff %, we have that at every node associated with a
clause the player must obtain payoff 1, and thus his strategy gives a satisfying
assignment to F'.

6 Determining whether a two-player game without
perfect recall has an equilibrium

Our final hardness result again uses a reduction very similar to Koller and
Megiddo [3, Proposition 2.6]. In this case, we use the imperfect recall to force
Player 1 to use an almost pure strategy.

Theorem 4. The following problem is NP-hard: Given a two-player zero-sum
extensive form game without chance nodes, does the game possess a Nash equi-
librium in behavior strategies?

Proof. The proof is by reduction from 3SAT. Given a 3-CNF formula F' with m
clauses we construct a zero-sum two-player game G as follows.

Player 1 (the max-player) starts the game by making two actions, each time
choosing a clause of F. We put all corresponding m + 1 nodes (the root plus
m nodes in the next layer) of the game in one information set. If he fails to
choose the same clause twice, he receives a payoff of —m? and the game stops.
Otherwise, Player 2 (the min-player) then selects a truth value for each of the
three variables in the clause. We place all nodes of Player 2 corresponding to the
same variable in a single information set. If one of the choices of Player 2 satisfies
the clause, Player 1 receives payoff 0. If none of them do, Player 1 receives payoff
1.

The proof is now concluded by the following claim: G has an equilibrium in
behavior strategies if and only if F is satisfiable.

Assume first that F' is satisfiable. G then has the following equilibrium (which
happens to be pure): Player 2 plays according to a satisfying assignment while
Player 1 uses an arbitrary pure strategy. The payoff is 0 for both players and no
player can modify their behavior to improve this so we have an equilibrium.

Next assume that G has an equilibrium. We shall argue that F' has a satisfying
assignment. We first observe that Player 1 in equilibrium must have expected
payoff at least 0. If not, he could switch to an arbitrary pure strategy and would
be guaranteed a payoff of at least 0. Now look at the two actions (i.e., clauses)
that Player 1 is most likely to choose. Let clause i be the most likely and let
clause j be the second-most likely. If Player 1 chooses ¢ and then j he gets a
payoff of —m?. His maximum possible payoff is 1 and his expected payoff is at
least 0. Hence, we must have that —m?’pipj + 1> 0. Since p; > 1/m, we have



that p; <1 /m?. Since clause j was the second most likely choice, we in fact
have that p; > 1 — (m — 1)(1/m?) > 1 — 1/m. Thus, there is one clause that
Player 1 plays with probability above 1 — 1/m. Player 2 could then guarantee
an expected payoff of less than 1/m for Player 1 by playing any assignment
satisfying this clause. Since we are actually playing an equilibrium, this would
not decrease the payoff of Player 1 so Player 1 currently has an expected payoff
less than 1/m. Now look at the assignment defined by the most likely choices
of Player 2 (i.e, the choices he makes with probability at least %, breaking ties
in an arbitrary way). We claim that this assignment satisfies F'. Suppose not.
Then there is some clause not satisfied by F. If Player 1 changes his current
strategy to the pure strategy choosing this clause, he obtains an expected payoff
of at least (1/2)® > 1/m (supposing, wlog, that m > 8). This contradicts the
equilibrium property and we conclude that the assignment in fact does satisfy
F.
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